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Bioinspired Search and location of Air Pollutant Sources
based on a Bayesian Heuristic + Dragonfly Algorithm.

by
Andrés Fernando Garcı́a Calle

Abstract

In nature there are many types of interaction between individuals. These behaviors have
been optimized in millions of years and their main objective is the survival of the species.
The objective of interacting with other individuals is to solve difficult problems, problems
that a single individual would solve inefficiently. The problem aborted by this thesis is the
search for and location of air pollutant sources. A SO2 plume is simulated and placed in a
region to perform the search. To collect contaminant samples, the dynamics of 2 unmanned
aerial vehicles are simulated. The algorithm runs under a real-time simulation environment.
A 2-dimensional Hammersley sequence is used in an exploration stage. Clustering by K-
means and a Greedy Search are also used to solve the Travelling Salesman Problem at the
Hammersley points. In this first stage an attempt is made to find a measure of the concentration
of air pollutants that exceeds a certain threshold. In an exploitation stage, the Unmanned
Aerial Vehicles (UAVs) will track the source approaching this point. A probability map is used
to modify the behavior of the Dragonfly Optimization Algorithm. The probabilistic map acts
as the heuristic of the system to locate the source of air pollution. To check the efficiency of the
proposed strategy it is compared with 3 other algorithms: Greedy Search, Greedy Search with
cooperation and the Dragonfly Algorithm without modifications. All these approaches are
tested in the same simulated environment, without obstacles for UAVs. Efficiency is measured
with respect to the maximum level of concentration of contaminants found, the distance to the
source of contamination, the time taken to find the maximum concentration of contaminants
and the UAVs path until that time. Finally, a one-factor ANOVA is performed to check that
the responses are statistically better.
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Chapter 1

Introduction

Nowadays, it is not strange to hear about environmental pollution. Daily, the news talk about
the pollution of forests, sea, rivers, air, etc. Pollution harms agriculture, livestock, people
and animals. For instance, air pollution causes diseases such as cerebral stroke, asthma,
cancer, and heart or lung conditions. In many cities, entities such as the World Health
Organization (WHO) conduct environmental monitoring to verify levels of air pollutants.
In Mexico, cities like Toluca, Monterrey, Mexico city among others, show high levels of
air pollutants concentrations. According to the statistics, every year there are around 9300
deaths occasioned by air pollution. The 3.2% Gross National Product in Mexico is spent on
environmental issues. Figure 1.1 shows the air pollutants present in Mexico, according the
Greenspace organization.

Figure 1.1: Cities with air pollution problems due PM10, PM2.2 and O3 in México [11].

The monitoring systems are used to alert for high pollutant concentrations in the air.
In Monterrey, environmental monitoring is carried out by Sistema Integral de Monitoreo
Ambiental (SIMA), with 13 towers that are distributed in strategic points of the city.

1



CHAPTER 1. INTRODUCTION 2

The stations have sensors that provide very accurate measurements of the concentration
of pollutants, temperature, magnitude and wind direction, etc. Although the key monitoring
task is performed, the stations are constrained to achieve fixed spatial sampling. To expand
the applications of static monitoring platforms is necessary to take information from several
points with a non-static system. Balloons and UAVs are options for doing this task. Platforms
based on UAVs can complement static monitoring systems. By having greater versatility, can
get more information about the dispersion of pollutants in the air. In addition to above, they
have some advantages such as: being able to mobilize in the 3 dimensions of space, low cost,
access to difficult or dangerous places for people. A problem connected with the monitoring
of air pollutants is related to the search and location of sources of pollution. This a challenging
problem, due mainly to the highly dynamic environment, the uncertainty and the wide areas
to search. UAVs instrumented with adequate sensors and guided by intelligent algorithms can
be used as an effective tool to deal with the problem of search and locate pollutant sources.

1.1 Problem statement and Motivation
The key factor to succeed in the location of pollutant sources is the efficient use of flight time
of UAVs, in order to take more samples and cover more areas. In this work, is described
the design and testing of cooperative intelligent heuristics which can be used to guide the
navigation of 2 UAVs, in order to search and locate the source of air pollutants.

1.2 Similar Works
This section presents a table showing various works in which UAVs have been used for similar
purposes to the project. Different approaches are taken into account, such as interactions
between UAVs, types of monitoring that have been carried out in a real or simulated
environment, target tracking techniques, etc. One of the main differences between the
proposal and the related work is that the tests were simulated in real-time. The 2 main stages
of the algorithm are exploration and exploitation. In these stages a search area is sought until a
high level of concentration of pollutants is found and then until the highest concentration point
is approached. Other characteristics are that the search area is large and quadcopters are used
to make the sensing of contamination levels. Below are the main objectives of each project,
as well as a brief description of the test platform and any striking features of the project.
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Table 1.1: Summary of the application of UAVs for air quality monitoring

Author
(et.al),
year

Objective UAV Characteristics Notes

V.
Smı́dl
2012
[29]

Tracking an atmospheric
release of pollution with
two autonomous navigate
UAVs.

Two UAVs and
simulations

The platform pretends
to complement ground station
networks for monitoring the
air
quality. There is a comparison
of wind direction between real
measurements and ALADIN
numerical model.

J. Han
2012
[12]

Detect nuclear radiation
with a platform based on
multiple UAVs.

Simulations and fixed-
wing UAV
with wingspans about
48 in.

The contour mapping of the
nuclear radiation is simulated.
2 UAVs formations were
discussed: in a normal nuclear
reactor operation and when
there is a radiation leakage

R. Kris-
tiansen
2012
[18]

Discuss UAVs formations
for monitoring industrial
emissions.

Simulated

Discuss UAVs formations for
monitoring
industrial emissions.The UAV
formation configuration and
the UAVs operation strategies
are analyzed. Some concepts
for guidance and control of
UAVs are given too.

S. Zhu,
2013
[31]

Seek a unknown scalar
source field with multiple
UAVs.

Simulated

The multiple
UAVs cooperation is based on
a leader-follower strategy and
a gradient descent algorithm.

A.
Khan,
2014
[16]

Propose strategies to
measure
the impact of cooperation
between multiple UAVs.

Simulated

The individual map is updated
with the sensing information,
then this information is shared
with the rest of UAVs and then
group actions are taken.

S.
Li 2014
[20]

Study robotic tracking of
dynamic plume front
modeled by advection-
diffusion equation

Simulated

A single robot and a group of
cooperating robots is used to
tracking the dynamic pollution
plume. The transport model
of the pollution source and
the gradient measurements are
considered in tracking control
design.

B. Di,
2015
[6]

Regulated the network
topology and optimize the
surveillance horizon in a
multiple UAV platform.

Simulated

A distributed
receding horizon optimization
algorithm regulate the horizon
boundaries.
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Table 1.1 continued from previous page

M. Al-
varado
2015
[1]

Develop a methodology for
characterizing blasting
pollution plumes in near-
real time.

Small fixed-wing
and multi-rotor copter,
dust sensor SHARP
GP2Y10

PM2.5 and PM10 particle
concentration were sampled.
The collected data is streamed
during flight. A correlation of
the dust sensor utilized and a
industry grade dust sensor is
shown.

J.J.
R, 2016
[25]

Propose a new control
architecture for multi-UAV
missions.

Simulated in:
Multiple Mini-Robot
Simulator (MMRS)

The proposal architecture has
three layers: the
action layer,the task layer and
the mission layer.

F.
Koohi-
far,
2017
[17]

Locate a moving
radio frequency transmitter
with a UAV swarm.

Simulated
The system uses path planning
algorithm based on a finite
receding horizon.

M.
Rossi,
2016
[26]

Develop a new board for
environmental monitoring
that can be embedded in
any mobile carrier.

DJI hexacopter with
80-cm diameter.

The work evaluate the
pollutant sensors sensitivity in
presence of propellers
turbulent air. Two experiments
were developed: a flight with a
isotropic alcohol source and a
flight over a kitchen.

J.J.
Cas-
sano,
2016
[4]

Scan the details of the
air-sea ice-ocean coupling
using 5 fixed wing UAV
over the Terra Nova Bay
polynya, Antarctica.

Wingspan
of 3.6m, maximum
speed of 22/33 m/s,
RF communication of
900 MHz
and a Iridium satellite
phone modem

The data from the coordinated
UAVs flights
give a 3 dimensional data set
of the atmospheric state (air
temperature,
humidity, pressure, and wind)
and surface skin temperature
over Terra Nova Bay.

Y. Qu,
2017
[24]

A cooperative positioning
approach for multiple
UAVs flight.

Simulated

This is a fault tolerant
cooperative positioning
system.The approach uses the
azimuth angle and a angle
relative to a reference.

V.
Sharma,
2017
[27]

Secure
the network connectivity of
a UAV swarm through an
efficient strategy to select a
controller and autonomous
relaying.

Simulated

The work presents a system
that ensure the connectivity
between the swarm members.
The approach is based on a
neural model.

P. Li,
2017
[15]

Track pollutants in
the environment by using a
swarm of UAVs.

Simulated in QRSim.
The
UAV swarm reconfigure itself
when pollution is detected.
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Table 1.1 continued from previous page

C.
Great-
wood,
2017
[9]

Atmospheric sampling for
characterize methane
concentrations and
their isotopic composition
from Ascension Island, in
the middle of Atlantic.

Octocopter with X-8
configuration, typical
battery capacity of
533 Wh, temperature
and humidity sensors,
autopilot with
Pixhawk and
ArduCopter v3.1.5

A Sampling platform based
on a Small Unmanned Air
System (SUAS) is used for
sample the atmosphere, also
the temperature and relative
humidity were measured. The
measurements were
transmitted to a ground station.

T. Zhu,
2018
[32]

Search targets located in
probabilistic positions.

Simulated

Use
a discretization of searching
areas by grid division. A
spiral fly model is used for
path optimization.

S. Ben-
ders
2018
[2]

Improve the path tracking
performance through a
proposed technique
based in wind adaptive path
planning.

Simulation and
Skywalker X8 fixed-
wing model equipped
with position, attitude,
velocity over ground
and airspeed sensors.

The paths are updated with
estimates of the local wind
velocity. The platform uses in-
flight wind velocity estimator.
2 scenarios were simulated for
the wind: a scenario with
constant air density and other
with turbulent wind.

N. Yun-
gaicela
2018
[30]

This work propose an
algorithm for air pollutant
source localization.

A quadrotor Q-ball
(Quanser) equiped
with a QuaRC-
powered Gumstix
embedded computer.

A probabilistic
method was used to compute a
heuristic source location. This
technique, together
with a gradient based search
algorithm, was developed to
localize the pollutant source.
The algorithm was
tested in a simulated polluted
environment.

1.3 Hypothesis
An algorithm based on the flying dragon behavior can be an efficient cooperative strategy to guide 2
UAVs in the search and location of pollutant sources.

1.4 General objective
Design and testing of a biomimetic strategy for search and location of pollutant sources with 2
cooperative UAVs.
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1.5 Specific objectives
• Design and implementation of the biomimetic strategy for search and location of pollutant

sources with 2 UAVs.

• Design of simulated scenarios to test the efficiency of search and location algorithms.

1.6 Research Questions
Throughout the work it is intended to answer the following questions:

• Is it possible to combine the information taken by each quadcopter to improve the platform’s
search algorithm based on one UAV?

• Is it possible that 2 UAVs can find the source of an air pollutant in wide areas?

• Does the use of cooperative flight strategies significantly improve the location time of a polluting
air source?

1.7 Contribution
Main contributions of this research work are:

1. Design of a new cooperative strategy to guide the navigation of UAVs, based on a dragon fly
algorithm and a heuristic map

2. Demostrate the effectivity of the proposed algorithm against similar approaches.

1.8 Composition
The content of the following chapters is summarized below:

• Chapter 2 contains the theoretical framework of the project. Here it will be explained the
algorithms, techniques, and models that were used to develop the project.

• Chapter 3 explains the project methodology. It shows every step taken to develop the proposed
algorithm, using the concepts mentioned in chapter 2.

• Chapter 4 presents the experiments, the assumptions, and parameters used in the scenarios and
the results.

• Chapter 5 presents the discussion, conclusions, recommendations and the future.



Chapter 2

Theoretical Framework

This chapter shows the fundamentals concepts related to navigation, optimization, UAV construction
and others.

2.1 MAVLINK protocol
MAVLink is a binary telemetry protocol for communications on aerial platforms with UAV. This
protocol is used through XML files. This feature allows you to use the protocol with several
programming languages such as C, java, python, etc. Telemetry data streams are sent in a multicast
design. Configuration aspects are carried out through more secure protocols with retransmission, such
as the Mission Protocol or the Parameter Protocol. There are 2 versions of the protocol: MAVLINK 1
and 2. All the commands of the first version are compatible with the second.

2.1.1 MAVLINK packaging
The format of a MAVLINK 2 package is illustrated in the figure 2.1. Every package component is
explained in the table 2.1.

Figure 2.1: Signed package format in MAVLINK V2 protocol.

7
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Table 2.1: Format for a MAVLink 2 packet [33]

Byte
Index Data Content Explanation

0 STX
Packet start

marker
Beginning of a new package

1 LEN Payload length
Indicates length of the
following payload section

2 INC flags
Incompatibility

flag
For MAVLink
compatibility

3 CMP flags
Compatibility

flag
For MAVLink
compatibility

4 SEQ
Packet

sequence
number

Used to detect packet loss

5 SYS ID System ID ID of system (vehicle)

6 COMP ID Component ID
Used to
differentiate components in
a system

7 to 9 MSG ID Message ID
Used to decode data back
into message object

n to
n+10 PAYLOAD Payload Message data

n+11 to
n+13 CHECKSUM Checksum X.25 CRC for message

n+12 to
n+26 SIGNATURE

Signature
(optional)

Signature to ensure the link
is tamper-proof.

The bits that make up the payload are those in which the UAV navigation orders will be placed.
Below is an example of a Mavlink message in the Python language.

1 d e f g o t o p o s i t i o n t a r g e t g l o b a l i n t ( s e l f , L o c a t i o n ) :
”””

3 Send SET POSITION TARGET GLOBAL INT command t o r e q u e s t t h e v e h i c l e f l y
t o a s p e c i f i e d L o c a t i o n G l o b a l .
”””

5 msg = s e l f . F l y C o n t r o l l e r . m e s s a g e f a c t o r y .
s e t p o s i t i o n t a r g e t g l o b a l i n t e n c o d e (

0 ,
7 0 , 0 ,

m a v u t i l . mavl ink . MAV FRAME GLOBAL RELATIVE ALT INT , # f rame
9 0 b0000111111111000 , # type mask ( on ly s p e e d s e n a b l e d )

L o c a t i o n . l a t ∗ 1e7 , # l a t i n t − X P o s i t i o n i n WGS84 frame i n 1 e7
∗ m e t e r s

11 L o c a t i o n . l o n ∗ 1e7 , # l o n i n t − Y P o s i t i o n i n WGS84 frame i n 1 e7
∗ m e t e r s

L o c a t i o n . a l t , # a l t − A l t i t u d e i n m e t e r s i n AMSL a l t i t u d e
13 0 ,
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0 ,
15 0 ,

0 , 0 , 0 ,
17 0 , 0 )

# send command t o v e h i c l e
19 s e l f . F l y C o n t r o l l e r . s e n d m a v l i n k ( msg )

Mavlink code for move an UAV to a desired Position.py

2.2 UAV interactions

2.2.1 UAVs Interactions
A team is defined as a collection of loose, controlled and distributed objects in space. In the case of
UAVs , a team consists of several drones and sometimes a human operator. The interactions of a team
are induced by common goals or tasks. There are various degrees of interaction in a team: coordinated,
cooperative and collaborative [28].

Cooperative Interactions

In this team, all members have specific target functions, but also try to optimize the overall cost
function. Private or global functions are weighted with a value of 0 ≤ w ≤ 1, where the following
cases of w can be presented for the private objective function:

• w = 1 means that there’s no team action.

• 0 < w < 1 means that there is a degree of cooperation with team members.

• w = 0 implies that every individual target function is in strict coordination with the overall
target function.

Coordinate Interactions

In this case, the UAVs of a team share the objectives to be met. This means that all members will try
to optimize the same cost function. If there are several cost functions these can be weighted and put
together to form a global objective function. There are no conflicts of interest between team members.
Some team members may not have objective functions, they are considered usable resources to meet
the overall objective. All team members are obligated to participate in some task that helps to fulfill
the common goal. The team is distributed in the space but operates as a single unit.

Collaborative Interactions

Collaborative teams can result from task allocation or resource allocation. Each team member attempts
to optimize their cost function, taking into consideration the overall cost function and avoiding
conflicting tasks. This type of interaction requires a negotiation or arbitration protocol. Private target
functions are necessary tasks for the global target function. The more coupled the tasks of the team
members, the more difficult it is to carry out the common task. Cooperative or coordinated operations
are necessary, as there may be task conflicts. If a task cannot be solved by a member, the member may
choose not to participate and join an alternative team that is more in line with the overall objective.
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2.3 Greedy Search
This section explains concepts about Greedy Search for swarm robotic navigation. The goal of
navigation is to find a target in a limited area. The approach of this navigation is directed towards
the use of UAVs. The use of this kind of vehicle avoids putting people at risk, in addition to providing
more efficient results.

One of the most common search strategies is Greedy Search. This algorithm is based on
following a gradient until some condition is satisfied. The algorithm always chooses the path that brings
the UAV closest to its target. This approach has the advantage that operations with high computational
costs are not necessary. If swarms of UAVs are used, communication between everyone isn’t strictly
necessary. Each UAV can locate the target with its collected information, using the Gradient Descent
technique [8]. This increases the algorithm robustness if any UAVs are lost, also reduces the probability
of stagnation at local minimums or maximums.

One of the important aspects of the search is the collection of close information. To move the
UAV to a new position it must first map all its alternatives from its current position. Once all the
information has been obtained, they are compared and the measure with the best aptitude is selected. It
can be said that the UAV is transformed into a mobile sensor. Then, the UAV goes to the position that
has the best aptitude and repeats the cycle, until a completion criterion is met. A completion criterion
can be that all UAVs arrive at the same position. In figure 2.2 a flowchart about the greedy search is
showed.

Figure 2.2: Greedy Search Flowchart
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2.4 Dragonfly Optimization
In nature it’s common to see groups of individuals to solve problems. These problems are often difficult
for a single individual but working as a team efficiently resolves them. For species survival, interactions
have been perfected over millions of years. These include colonies of ants that cooperate to get food,
schools of fish that alert each other of predators, packs of wolves that have an efficient hunting system,
among others [22].

The observation of this type of behavior gives rise to several bio inspired algorithms. Swarm
Intelligence is a field dedicated to studying these behaviors. In this field, algorithms have been
developed to mimic the interactions of biological groups and thus solve several problems. The
Dragonfly Optimization Algorithm is based on these insects, but it is also influenced by PSO (Particle
Swarm Optimization) and ACO (Ant Colony Optimization). The survival of dragonflies depends on
factors such as the search for food and the evasion of predators. The behaviors of swarms of dragonflies
are shown in the figure 2.3. The swarm behavior of the aforementioned algorithm allows to exceed local
minimums or maximums.

Figure 2.3: Dragonfly behavior in nature [22]

The previous figure shows each form of interaction of the dragonflies in a swarm. These
behaviors, and their mathematical modeling, are described below:

1. Separation: This behavior serves to prevent members of the swarm from colliding. There is a
tendency for the individual to separate from the entire swarm.

Si =−
N∑
j=1

X −Xj (2.1)
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2. Alignment: It refers to the speed of adaptation of individuals with respect to others in the
neighborhood.

Ai =

∑N
j=1 Vj

N
(2.2)

3. Cohesion: It is the tendency of each individual to go towards the group centroid.

Ci =

∑N
j=1Xj

N
−X (2.3)

4. Attraction to food: It allows the individual to approach the place where there is food.

Fi =X+ −X (2.4)

5. Stay away from predators: Allows you to get away from certain points.

Ei =X− +X (2.5)

Where:
i represents the i-th swarm individual.
N is the number of individuals in the swarm.
X is the position of the current individual.
Xj is the position of the j-th neighbor of the swarm.
Vj is the speed of the j-th neighbor of the swarm.
X+ is the position of the food.
X− is the position of the enemy.
The step vector is calculated with:

∆Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w∆Xt (2.6)

s, a, c, f, e and w are the weights that determine the behavior of the swarm. Finally, the position
vector is calculated as:

Xt+1 =Xt + ∆Xt+1 (2.7)

To perform the exploration phase with randomness and stochastic behavior, it is necessary to travel the
search space with a random path [22]. In the section 2.5 we describe the process to meet this objective
using Hammersley sequences. In addition, for this stage it is considered to use step vectors with a Lévy
distribution in case the Hammersley sequence does not approximate the algorithm to the solution. In
the case of using the Lévy distribution, the position of the dragonflies is:

Xt+1 =Xt + Lévy(d) ·Xt (2.8)

Where:

Lévy(d) =c · r1σ
|r2|

1
β

(2.9)

Being r1 y r2 random numbers with uniform distribution in [0, 1], c a scalar and σ the result of the
following expression:

σ =

(
Γ(1 + β · sin(πβ/2))

Γ(1+β2 )β · 2β−1
2

)1/β

A high cohesion coefficient and a low separation coefficient are required for the exploitation phase.
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2.5 Hammersley sequence
To define a Hammersley sequence it is necessary to explain about van der Corput sequences and Halton
sequences first [5].

2.5.1 Van der Corput sequences
A van der Corput sequence is the simplest one-dimensional low-discrepancy sequence. This sequence
is over the interval from 0 to 1. The van der Corput sequence uses the representation of positive integers
on a given basis (b-ary representation). This sequence is defined as:
For n ≥ 1, let:

n− 1 =
s∑
j=0

ajb
j (2.10)

be the dyadic expansion of n− 1. Then we set the sequence (xb(n)) as:

xb(n) =

s∑
j=0

aj(n)b−j−1 (2.11)

Where aj is the j − th digit in the b− ary representation of the integer n.

2.5.2 Halton sequence
Halton sequences is an expansion of van der Corput sequences, but for higher dimensions. For this
series we take arbitrary b1, ..., bs integer numbers that are coprime with each other. This numbers will
be the bases to form the van der Corput sequences resulting in:

xn = (xb1(n), ..., xbs(n)) (2.12)

2.5.3 Hammersley Sequence
A Hammersley sequence is nothing more than a Halton sequence, in which replacing a dimension by
a linear sweep. The sequence results as:

xn =
(
xb1(n), ..., xbs−1(n),

n

N

)
(2.13)

Being N the length of the sequence [19].

2.6 K-Means Clustering
When a big amount of time has passed, the UAVs next positions tend to be the same, hence the
Hammersley sequence is used to avoid the converge of objective points. The resulting points are
distributed on the map, but not assigned to a specific UAV. As the initial positions of the UAV can be
different, it is necessary to divide the k Hammersley points into 2 groups. The K-means clustering is
a non-deterministic and unsupervised algorithm that can perform the previous task [7]. Every cluster
obtained from k-means algorithm will maximize the similarity between their members and minimize
the similarity with the other clusters. The basic K-means algorithm is given as [21]:
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1. Choose 2 points as the initial centroids.

2. Determine distance between each Hammersley point and the cluster centroid.

3. Reassign data point to new cluster with minimum distance.

4. Get the centroids of the new clusters.

5. Repeat till convergence criteria is meet.

The stop algorithm criteria is given when the clusters have shown no change or the sum squared error
(Eq. 2.14) reach a small value.

SSE =
C∑
i=1

Ci∑
j=1

(||Xi − Yj ||)2 (2.14)

Where ||Xi − Yj || is the Euclidean distance between Xi and Yj . Ci is the total members in the i− th
clusters. C is the number of cluster centroids.

2.7 Pollutant Plume Model
This section describes the model of an air pollutant plume. The modeled plumes have a point source, of
the type shown in figure 2.4. This model begins with the resolution of the Partial Differential Equation
(PDE), which represent the pollution plume [13].

Figure 2.4: Pollution dispersion from a stack due the wind, turbulent mixing and gravity [13].

2.7.1 Advection-Diffusion PDE
In order to analyze the dispersion of pollutants in the environment, dispersion and advection models
will be necessary. The differential equation that models these phenomena is governed by the following
principles:

• Pollutant Concentration

• The relationship between flow and density
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Defining c( ~X, t)[kg/m3] as the concentration of the mass in a given time t[sec], in addition to
~X = (x, y, z) ∈ R[m] as the position, we have that the equation of concentration is:

∂c

∂t
+∇ · ~f =s (2.15)

Where ~f( ~X, t)[kg/m2s] is the flow of contaminant mass due to diffusion and advection and
s( ~X, t)[kg/m3s] is the source of contamination. ~f is the term that has the components to model
the advection and diffusion of the pollution plume. For the diffusion of one substance into another,
Fick’s law is used:

~fD = − ~D∇c (2.16)

Where ~D = (Dx, Dy, Dz) has the diffusion coefficients in the respective axis. These coefficients are
usually in the function of the position. The advection component is given by the dragging of the fluid
by the wind:

~fA = −c~u (2.17)

Where ~u = (ux, uy, uz)[m/s] is the wind velocity. Adding up the two components of f , and replacing
them in equation 2.15 we have:

∂c

∂t
+∇ · (c~u) =∇ · ( ~D∇c) + s (2.18)

2.7.2 Boundary Conditions
Couple of constraints must be taken into account in solving the 2.18 equation:

• If the z-axis is considered as the ground, the dispersion only happens in z ≥ 0.

• The concentration tends to 0 when is analyzed in a far field.

Then:

uzc−Dz
∂c

∂z
= 0 at z = 0 (2.19)

If we consider uz = −uset as settling velocity for the particulates and Wdep as a deposition coefficient
that captures the effect of total flux of contaminants penetrating the ground, we have the Robbin
Boundary Condition:

−usetc−Dz
∂c

∂z
= −Wdepc (2.20)

2.7.3 The source
A Dirac delta function is used to model the source of pollution, allowing it to be modeled as a point
source in space:

s( ~X, t) = Q · δ(x− xs)δ(y − ys)δ(z − zs) (2.21)

Where: δ(·) is the Dirac delta function, ~xs = (xs, ys, zs) is the source position and Q[kg/s] is the total
output of the source in unit time.
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2.7.4 Diffusivity in Low Pressure
There are several methods for calculating the coefficient of the diffusion of one substance in another.
In this work the Fuller method will be used:

DAB =
0.00143T 1.35

PM0.5
AB

[
(
∑
vA)1/3 + (

∑
vB)1/3

]2 (2.22)

Where:
T is the temperature (298oK).
P is the pressure (1.02 bar).
MAB is the harmonic average of molecular weights [g/mol].∑
v is the Molecular volumes of diffusion.

2.7.5 Analytical solution
To obtain the analytical solution of the differential equation we need some assumptions:

• The wind is in the direction of the x-axis: ~u = (u, 0, 0).

• The source position is: ~X = (0, 0, H)

• The contaminant cannot penetrate the ground.

• Concentrations tend to zero in the far-field.

• The solution for negative values of x is not physically relevant.

• The diffusion coefficients are: Dx = Dy = Dz = D

• The advection effect is much greater than the diffusion effect: Dx = 0

Using all the assumptions we can reduce equation 2.18 in:

u
∂c

∂x
= D

∂2c

∂2y
+ c

∂2c

∂2z
+Qδ(x)δ(y)δ(z −H) (2.23)

That has as solution:

c(r, y, z) =
Q

4πur
exp

(−y
4r

)[
exp

(
−(z −H)2

4r

)
+ exp

(
−(z +H)2

4r

)]
(2.24)

This solution is associated with a Gauss distribution with variance σ2 = 2r.

2.8 Probabilistic Map
The work develop by [23] shows the obtention of a probability map for the location of chemical plumes.
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2.8.1 Search Area
To facilitate calculations, the search area is rectangular. This area is divided into n×m sub cells with
length Ly and width Lx. A vector of cells C = [C1, · · · , CM ] covering the area of interest is also
required, where M = m · n. Let a ∈ [1,m] count over cells in x direction. Let b ∈ [1, n] count over
cells in y direction. For mapping cells with respect to a and b we need:

i =a+ (b− 1)m (2.25)

For the inverse mapping, with respect to i, we need:

a(i) =rem(i− 1,m) + 1 (2.26)

b(i) =int(i− 1,m) + 1 (2.27)

Where rem(n,m) is the remainder of n/m, and int(n,m) is the greatest integer less than or equal to
n/m. The figure 2.5 show cellular subdivision of the target area.

Figure 2.5: Search area divided in n×m sub cells [23]

2.8.2 Probability map based on one detection or no detection events
To obtain the probability map it is necessary to define some probabilities and events:

• Sij(tl, tk) is the probability that there is a source in Ci that released one chemical filament at

time tl, given that the chemical is in Cj at time tk(tk > tl).

Sij(tl, tk) =
e
− (xj−xi−vx(tl,tk))

2

2(tk−tl)σ
2
x e

− (yj−yi−vy(tl,tk))
2

2(tk−tl)σ
2
y

2π(tk − tl)σxσy
LxLY (2.28)

Where v is the velocity vector.

• βij(t0, tk) is the probability that there is a source in cell Ci, given that there is detectable
chemical in cell Cj at time tk.

βij(t0, tk) =
1

k

k−1∑
l=0

Sij(tl, tk) (2.29)
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• γij(t0, tk) is the probability of not detecting the chemical in cell Cj at time tk due to the
continuous release from a source in cell Ci.

γij(t0, tk) =
k−1∏
l=0

(1− µSij(tl, tk)) (2.30)

Where µ denote the probability of detecting chemical given that there is detectable
chemical in the cell.

• Ai is the event that there is a source in cell Ci.

• D(tk) is the event that there is a chemical detection at time tk in cell Cj .

• D̄(tk) is the event that there is no detection at time tk in Cj .

• B(tk−1) is a sequence of detection and no detection events from time t0 to tk−1.

• αi(tk−1) is the source probability map based on the sequence of detection and no
detection events between times t0 and tk−1.

To update αi(tk) we assume that B(tk−1) and Dj(tk) are independent events.
If there’s a detection in Cj :

αi(tk) = P (Ai|B(tk−1), Dj(tk)) = Mαi(tk−1)βij(t0, tk) (2.31)

If there’s not a detection in Cj :

αi(tk) = P (Ai|B(tk−1), D̄j(tk)) =
Mαi(tk−1)γij(t0, tk)∑i=1

M γij(t0, tk)
(2.32)



Chapter 3

Methodology

This chapter presents a description of the strategy used to meet the objectives presented in 1.4 and
1.5. For this, 3 components are needed: the virtualization of the UAVs, the simulation of the location
probability map of polluting sources and the respective Location and Tracking algorithms. Figure 3.1
shows the main components in a flowchart.

Figure 3.1: Project Methodology

3.1 Virtual UAVs
Ardupilot is an open-source autopilot software based on the Arduino Mega board. With this is possible
to control land vehicles, fixed-wing airplanes, airplanes with rotors, helicopters, boats, etc... Ardupilot
has a simulator that allows you to run the navigation algorithms without having a physical vehicle.
The simulator provides the sensor data from a flight dynamics model in a flight simulator. MAVLINK
navigation commands are sent using TCP/IP Sockets on the local network. No specific models of any
contamination concentration sensor are used for the simulation. It is assumed that the UAV is equipped
with a sensor with sufficient sensitivity to measure contaminants. There are several models that are

19
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precompiled. Some specifications of the selected model are presented in Table 3.1. The corresponding
airplane is shown in figure 3.2.

Figure 3.2: The simulated UAV is the Scorpion 280-RATE model

Table 3.1: Parameters of the simulated multicopter

SITL Copter Specifications
The simulated QUAD Scorpion 280-RATE

Communication Protocol MAVLINK
Fly controller ArduPilot
Connection Socket TCP/IP

Overall Length 224 mm
Overall height 155 mm

Net Weight 238 g
Diagonal (Motor to Motor) 280 mm

Vertical frame width 41 mm
Motor available size M-22 ∼M-25

3.2 Probabilistic Map and Plume simulation
The work of the contaminant map depends on the measures of contaminant concentration and the
search area. This section will break down the work done to obtain the contaminant map, which is
dependent on the measures taken by the virtual UAVs.

3.2.1 Plume Simulation
One of the assumptions mentioned in section 4.1, is that this work considers SO2 as the air pollutant.
Sulfur dioxide is a colorless gas produced by burning coal in power plants or petroleum-based products.
This gas causes acid rain. In the air it forms sulfates that are part of PM10 and PM2.5.
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The first step to simulate a plume is to calculate the diffusion coefficient. For this, the molecular
volumes of diffusion (

∑
v) for air and SO2 are required. These values are 19.7 and 41.8 respectively.

Using the equation 2.22, the diffusion coefficient of SO2 in air is calculated as D = 0.4003e − 3.
Considering an advection coefficient of 0.5 (wind) on the x-axis, the resulting polluting plume, after
20 minutes of emission, is shown in the figure 3.3:

Figure 3.3: Plume Shape after 20 minutes of release

The simulation of polluting plume in real-time will need many computational resources, so instead of
doing that, an offline simulation is performed and data is saved in memory. Instead, it will be calculated
off-line and then loaded into memory. This will reduce the computational cost of the simulation. The
plume will be simulated in a space of 250x20x20. The concentration of each point in space is calculated
with a separation of 1 meter in all axis. The source shall be located at point Xs = (5, 10, 10). Each
plume space state is stored, from 0 until 1200 seconds. In order to measure the concentration of
pollutants, the location of the UAV in GPS coordinates will be mapped to the plume simulation space.

3.2.2 Plume Mapping
The plume is simulated in a rectangular prism. The SO2 concentration level is maintained in each cubic
metre of the prism, i.e. it is discretized. The UAVs fly at a height of 11 and 13 meters, respectively, so
the 2D map will refer to the plane z=12 in the space of the plume. To calculate coordinate matching
we need the lines that define the search area, then:

Let (Lon0, Lat0) the coordinates for the point (0, 0, 12) in the plume space and R = 6378137 the
radius of spherical earth. The (Latf , Lonf ) coordinates for the point (250, 20, 12) are:

Latf =Lat0 +
Y · 180

R · π (3.1)

Lonf =Lon0 +
X · 180

π ·R · cos(π · Lat0/180)
(3.2)

Where X = 250 and Y = 20. The condition for the UAV to take a SO2 concentration sample is:

UAVLat ∈ [Lat0, Latf ] and UAVLon ∈ [Lat0, Latf ] (3.3)
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The correspondence between the GPS coordinates of the UAV and the coordinates of the plume is
shown below:

∆Lat =UAVLat − Lat0
∆Lon =UAVLon − Lon0
xindex = bR · (∆Lon · π/180)c (3.4)

yindex = bR · (∆Lat · π/180)c (3.5)

With this relationship, it is already possible to obtain the concentration values of SO2, to perform the
search. The next step in the project is to obtain the probability map.

3.2.3 Probabilistic Map
The objective of the navigation algorithm is to move every UAV towards the highest level of pollution.
For this, the system needs some criteria to select the next position to go. The probability map will
be part of this criterion, in the proposed strategy. From this point, we will call ”heuristic” to any
additional information that helps us to select a new UAVs position. Section 2.8 shows the theory
needed to generate a map in a specific area. In this section, suitable changes will be made to use the
map as a heuristic of the search algorithm and the location algorithm. In addition, the map delimitation
algorithm is presented, which depends on the UAV take-off location.

3.2.4 Map delimiters
In order to compare the answers to each search strategy, it is necessary to have specific starting points.
This is so that the experiments are on an equal footing. Due this, the probability map must be in the
same place in all experiments. In addition, all maps must have the same values of: N,M as the number
of squares on the x and y axis and Dx, Dy as the square length and width.
However, defining n0,m0 as the initial UAV cell position in the map and (UAVlat, UAVlon) as the
current position of the UAV, the distances towards every map border are:

dist2LonU =(N − n0 − 0.5) ·Dx/N

dist2LatU =(M −m0 − 0.5) ·Dy/M

dist2LonL =(n+ 0.5) ·Dx/N

dist2LatL =(M + 0.5) ·Dy/M (3.6)

The value of 0.5 is added as we assume that the UAV takes off from the center of the Cell (n0,m0).
Then, using equations 3.1 and 3.2, the boundaries of the map are as in figure 3.4.
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Figure 3.4: Map boundaries established at the time of take-off

3.2.5 Cell subdivisions
Once the search area is delimited, the map is subdivided into smaller squares. The map will be divided
in a similar way to the one shown in figure 2.5. The main difference will be the reference shape of each
cell. The way to do this will be as if it were a 2-dimensional matrix, that is, we will not use equations
2.26 and 2.26 proposed by [23].

Figure 3.5: How to reference the cells in the probabilistic map
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The location of each cell center, on the real map, is calculated as:

Lat(m) =LatL +
LatU − LatL

M
·
(
m+

1

2

)
(3.7)

Lon(n) =LonL +
LonU − LonL

N
·
(
n+

1

2

)
(3.8)

With this system, the probability map also allows us to have fixed UAV positions within the search
area.

3.2.6 Bayesian-Based Map
The work of [23] presents a probability vector for the air pollutant source location. In this section,
simplifications of equations 2.28, 2.29 and 2.30 will be used to obtain a probability matrix. This matrix
is directly related to the equations 2.31 and 2.32, but in the reference system shown in the section 3.2.5.
The equations for calculating the probability matrix, with respect to those shown in section 2.8.2, are:

Sij(tk) =
e
− (|nj−ni|−vx)

2

2tkσ
2
x e

− (|mj−mi|−vy)
2

2tkσ
2
y

2πtkσxσy
LxLY (3.9)

Note the absolute value in the exponential. This considers the closeness of the cells, but not
their position in the matrix. The other equations are:

βij(tk) =
Sij(tk−1) + Sij(tk)

k
(3.10)

γij(tk) =(1− Sij(tk−1))(1− Sij(tk)) (3.11)

For the calculation of the probability matrix, based on equations 2.31 and 2.32:
If there’s a detection in Cj:

αij(tk) = NMαij(tk−1)βij(tk) (3.12)

If there’s not a detection in Cj:

αij(tk) =
NMαi(tk−1)γij(tk)∑i=1

M γij(tk)
(3.13)

Where i is for the source location and j is for the current UAV location. With the formulas
shown above it is possible to update the probability matrix (or map), given the condition that
a high level of SO2 concentration is detected or not. In order to obtain this measure, it is
necessary an UAV Navigation system. This system will be explained in the next section.
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3.3 Navigation System
The navigation system guides the UAV to the desired locations. In this paper we will consider
the use of 2 UAVs. The UAVs do not work as a single unit, i.e. they do not move in a
coordinated way. Figure 3.6 shows the most basic navigation algorithm.

Figure 3.6: Flowchart of the basic Navigation System

The rem time variable is the time for move the UAV until the next point at 8 m/s. This
variable is necessary because the condition to ensure that you reached the target position
may fail. In order to say that the current position is approximately the target position, it is
considered that at least 90% of the calculated path has been travelled. This measure works
very well over long distances. If the target point is close enough, the condition will not be met,
so the algorithm will assume that the target was never reached. This time condition causes the
program not to stop if this situation occurs. Remaining Path is computed with the Haversine
formula:

a =sin2(∆Lat/2) + cos(Lat1) · cos(Lat2) · sin2(∆Long/2)

c =2 · atan
(√

a

1− a

)
d =R · c (3.14)
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3 approaches are considered as a basis for the development of the proposed navigation system:

1. Greedy Search

2. Cooperative Greedy Search

3. Dragonfly Algorithm

Each of these approaches are explained in the following sections.

3.3.1 Greedy Search as a Navigation Algorithm
As explained in Section 2.3, a greedy quest is based on following the path that maximizes my
profit. Some of the advantages of implementing this approach are:

• Its implementation is easy.

• It doesn’t usually require much computational expense.

• It is a fast algorithm it does not require much time to converge to a solution.

• The answer of a greedy search can be used as heuristics for any other optimization
algorithm.

The disadvantages of this approach are:

• The decisions it makes are optimal but at the local level.

• Due to above, in many cases they do not find a global optimum.

• A formal demonstration that the algorithm found an optimal solution is necessary.

Taking as heuristics of the algorithm the probability map shown in section 3.2.6, the next
position in the navigation is given by:

~X = (Lon(n), Lat(m)) | ∀o ∈ [0, N ] ∧ ∀p ∈ [0,M ] : α(o, p) ≤ α(n,m) (3.15)

Updated probability map, with a greedy algorithm and the characteristics develop in section
3.5, is showed in the figure 3.7. Each cell represent the Probability of locating the source in
the cell. Blue areas represent low probability and yellows areas high probability.
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Figure 3.7: Map updated by a Greedy Search algorithm

The flowchart to calculate the new position is:
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Figure 3.8: Flowchart to calculate a new position on the probabilistic map

3.3.2 Cooperative Greedy Search
In the previous section, we show in the figure 3.7 how 2 UAVs are used to find a pollution
source. The focus was on independent navigation, i.e. the status of the other UAV didn’t
influence one’s own decisions. In this section the cooperative interaction of 2 UAVs is
considered. The system’s heuristic is the probability map of section 3.2.6. If this resource can
be modified by any UAV, it is obvious that each UAV influences the other. The advantages of
this approach are:

• In theory, the probability matrix is updated at twice speed.

• The response is less likely to converge to a local maximum or minimum.

As the map can be modified at any time by any UAV, there may exist conflicts. The following
section discusses this issue.

Race Condition

The probability map is expected to be modified by any UAV. There is no priority of one
UAV or another. This is useful because any UAV can find a detection at any time. The
probability map is instantiated in one UAV and backed in the other, that is, updates will be
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made in only one of the UAVs. To avoid the race condition a mutex condition is issued,, thus
restricting the modification of the probabilistic map. A mutex in ON allows modify or read
the map. The mutex in OFF state will stop the navigation control (not the flight control) of the
requesting UAV. This means that a new position is not calculated until the map is updated. As
the probability matrix is the heuristic of the system, and the greedy search algorithm doesn’t
use any more information, the new position of a UAV is calculated with 3.15. An example
of the probability map of this approach can be seen in Figure 3.9. Each cell represent the
Probability of locating the source in the cell. Blue areas represent low probability and yellows
areas high probability.

Figure 3.9: Cooperative update of probability map.

Although the behavior of this algorithm has a good performance, it’s not efficient. Figure
3.10 shows the path of 2 UAVs with the greedy search algorithm. The area of interest is the
ellipse. On several occasions, UAVs explore areas that were explored before. Although this is
not necessarily bad, it is much better to explore new areas of the map.



CHAPTER 3. METHODOLOGY 30

-100.29 -100.288 -100.286 -100.284 -100.282

Longitude

25.635

25.64

25.645

25.65

25.655

L
a
ti
tu

d
e

UAVs Path with Cooperative Greedy Search 

UAV
1

UAV
2

P. Source

Figure 3.10: The enclosed area is visited many times by UAVs.

To avoid this behavior, the following approaches use a 2D low discrepancy sequence.

3.3.3 Dragonfly Navigation Algorithm
In section 2.4 the Dragonfly Algorithm was introduced. The original article ([22]) aims to
demonstrate the effectiveness of the algorithm by using it with various functions. The answers
of the maximums found are compared with the answers of other optimizers. In the end the
efficiency of this algorithm is justified.
The algorithm is inspired by the behavior of flying insects. Therefore, a navigation control
using this algorithm should perform well. Equations 2.1, 2.2, 2.3, 2.4 and 2.6 are the
components of the final step vector (see figure 3.11). To calculate each component the location
information of the other UAV and its step vector are essential.

Figure 3.11: The step vector is the sum of all components (Eq. 2.6).

In the previous figure: sS is the separation component, fF is the food attraction component,
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cC is the cohesion component, aA is the alignment component, w DeltaX It is a component
of inertia and DeltaX is the vector step.
There are 2 steps necessary to search and trace the source:

• Exploration

• Exploitation

The next sections will discuss this stages.

3.3.4 Exploration stage
The goal of this stage is to navigate the search area as efficiently as possible. A Scheme of
Methods used by the algorithms is shown in the figure 3.12. Since no detection has yet been
made at this stage, it is advisable that the food attraction component does not influence the
route. There is an inconvenient to using the dragonfly algorithm in the exploration stage:
The components of separation and cohesion are opposite. Under certain conditions these
components can cause a loop of oscillations of the positions of the UAVs. In order to avoid
this behavior at this stage it was decided to use low discrepancy sequences. Specifically, a
Hammesley sequence is used.

Figure 3.12: Scheme of Methods used by the algorithms

Hammersley Sequences

The Hammersley sequences (look section 2.5) have the following characteristics:

• The points generated are quasi-random.

• The sequences bases must be co-prime numbers.
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• The first sequence number be transformed into Hammersley is random.

• The bases of the sequence are randomly selected prime numbers.

Figure 3.13: 35 points from a 2D Hammersley sequence.

The Hammersley sequence points have a range of 0 to 1, but it is easy to accommodate them
on the probability map. Now, it’s necessary to select which points will run with each UAV.
A simple method is dividing the map into 2 and assign each group to an UAV. This method
isn’t always good. Random nature can generate disparate groups. To solve this problem the
k-means grouping algorithm was used.

Clustering and Traveler Salesman Problem

Grouping using the k-means technique was explained in section 2.6. In this project the
centroids will be initialized randomly. Once assigned the points that each UAV will travel,
a technique is needed that allows them to travel efficiently. This is a case of the Traveling
Salesman Problem (TSP) [10]. The original problem is: there is a salesperson who must visit
a certain number of cities. The distance between each city is known. The traveler must visit
each city once following the shortest route.
A Greedy Search was used to solve this problem. As an example, the Hammersley points in
Figure 3.13 were grouped and sorted to create the path for each UAV. The assignment can be
seen in figure 6.
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Figure 3.14: Solution of 2 Travel Salesman Problems. Each number is the Hammersley
position in each sequence.

Now, the scanning sequence of each UAV is complete. This operation will continue until a
high contaminant detection is performed, or until the simulation time is over. A Hammersley
sequence of 35 points was chosen because the time needed to traverse all points is usually 10
minutes. Figure 3.15 shows the probability map updated with the described methods. Areas
of yellow represent a high probability of locating a polluting source in the cell. Areas of blue
represent a low probability of locating a polluting source in the cell.
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Figure 3.15: Updated map using Hammersley sequences, clustering and TSP.

3.3.5 Exploitation Stage
The start of this phase may be due to 2 situations: The Hammersley sequence was either
completely run through or a high level of contaminant concentration was detected. For each
case different values of s, a, c, f and w are taken:

• At the beginning it will be required that the UAVs are separated from each other, then
s = 0.7.

• Since there was no detection f = 0.

• The alignment component can vary, in this case a random value between 0 and 1 will
be chosen.

• To maintain the separation, the cohesion component must be low, then c = 0.1.

• The value of w must be low so that the UAV is mostly influenced by the other
components, then w = 0.3.

If in this phase a high concentration of pollutants was detected in the air, then:

• We want that the UAVs to tend to the food point, then f = 0.7.

• UAVs should tend to get together, then c = 0.5.

• UAVs must not oscillate or stop at a point, they must be a certain level of separation,
then s = 0.3.

• The alignment component shouldn’t be influential at this stage, then a = 0.1.
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• To maintain a heading, the inertia must be high, but not greater than the food influence,
then w = 5 ·Random(0, 1).

The functioning of this algorithm is strongly influenced by the locations of each UAV. In figure
3.16 the flowchart of this algorithm can be described for any of the 2 states explained above.

Figure 3.16: Flowchart for Dragonfly Algorithm

3.4 Heuristic Dragonfly
The approach of this section relates the heuristics calculated in section 3.2.6 to the dragonfly
algorithm shown in section 2.4. As mentioned before, 4 components of the dragonfly
algorithm are weighted and adding them gives the new UAV location. The behavior of each
individual will depend very much on the weighting parameters. The selected parameters
described in section 3.3.4 were manually tuned. In many configurations it was the case that
the UAVs were close to the source, but before arriving they were far from it. In other cases they
began to change location and the centroid displacement was almost zero. The final parameters
make the UAVs select positions very close to the source. If a higher counting value is found in
one of these locations, there will be a displacement of the centroid. If not, the UAVs will move
from one side to the other until they find it. The inconvenient with this process is that UAVs
will repeat the same positions close to the food many times over. To avoid this, a modified
version of the algorithm uses the probability map. With this probability map it will be less
likely that UAVs will repeat a position. The implementation of this system is nothing more
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than adding a new component to the dragonfly algorithm. Then, the heuristic component will
be:

Hi = (Lat(n), Lon(m))−X (3.16)

And it will be weighted by h = 0.3. Figure 3.17 shows a flow chart of the algorithm.

Figure 3.17: Dragonfly Flow Chart that shows the Heuristic component
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Simulation and Results

This section presents results of each approach to searching and locating air pollution sources.
Real-time simulations aim to approximate the behavior of a platform with Arducopter and
Python in a search area. There are 3 takeoff zones for the UAVs: at 250 (Z1), 450 (Z2)
and more than 450 (Z3) meters from the pollutant source. Figure 4.1 shows the locations of
drones taken into account.

Figure 4.1: UAV take-off Zones. Each pair of dots of the same color symbolizes UAVs
location for take-off.

Considering that the feather has a width of 14 m, a length of 160 m, at a height of 13 m after
20 minutes of contaminant leakage, the percentage of the feather with respect to the search
area is:

14 · 160

100 · 100
· 100% = 2.24%

37
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The relation between the area of covered by the plume and the search area is shown graphically
in figure 4.2.

Figure 4.2: Plume location on the map

To better observe the feather figure 4.3 shows an area of 167x300 meters around it.

Figure 4.3: Plume simulated in an area of 167x300 meters2
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4.1 Parameters and Assumptions
The simulation requires some initial parameters to run. In addition, it is necessary to establish
conditions under which the simulation can be executed on a real platform. The parameters
and assumptions of the project are shown below:

1. The threshold for high levels of pollutants was obtained from the Mexican standard
NOM-038-ECOL-1993, for SO2.

2. The probabilistic map size is 1 km2, divided in 133× 133 squares.

3. The UAV ground speed is 8 m/sec.

4. The probabilistic map needs the dispersion parameters in x and y axis. This values are
σx = 0.3 and σy = 0.3

5. As mentioned in section 2.7.5, the wind remains in constant direction during the
simulation period, at 1.3m/s. Data from an ultrasonic anemometer were used to justify
this assumption. Measurements were taken every 10 minutes. A statistical test was
performed with the difference of the samples. A T test returned a value of p=0.9922,
which indicates that the null hypothesis (mean equals zero) cannot be rejected.

6. There are no obstacles for UAVs.

7. UAVs cannot collide due both are flying in different altitudes.

8. The sensors give good measurements, even with the turbulent air flow generated by the
UAVs propellers [26].

9. The GPS gives good measurements.

10. UAVs antennas have a range of at least 1 km.

11. The source of contaminants has been present for an indeterminate time period.

12. The battery allows 12-minutes of flight.

4.2 Detections and no Detections
This section shows the percentage of experiments which resulted in a detection. In section 4.5
the interpretation of the figures is shown. In order to carry out the subsequent analysis, it is
necessary to discard the results in which there was no detection. This is because, as explained
in the 3.3.5 section, the Dragonfly algorithm will not work until detection occurs.
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Figure 4.4: Percentages of detection of high levels of concentration of pollutants in the air

4.3 Air Pollutant Source Proximity
This section shows the distance between each UAV and the pollutant source. These results
serve to discuss the behavior of each approach.
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Figure 4.5: Proximity vs. time of the Greedy Search Algorithm
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Figure 4.6: Proximity vs. time of the Cooperative Greedy Search Algorithm
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Figure 4.7: Proximity vs. time of the Dragonfly Algorithm
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Figure 4.8: Proximity vs. time of the Heuristic Dragonfly Algorithm

4.4 Distribution of Results
This section presents data summarized by boxplots. Boxplots are a statistical tool that allows
us to analyses results distribution. The analyzed characteristics are:

• Point closest to the measured pollutant source.

• Highest level of measured pollutant concentration.

• Time elapsed until the highest detected contaminant level is measured.

• UAVs path to measure the highest contaminant level detected.
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In the figures, the acronyms are: GS for the Greedy Search algorithm, cGS for the cooperative
Greedy Search Algorithm, DA is for the Dragonfly Algorithm and HDA is for the Heuristic
Dragonfly Algorithm. The shading cells indicates the best statistical value.
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Figure 4.9: Boxplot for time dispersion of results

Table 4.1: Statistical values for time responses

GS cGS DA HDA
Median 308 343 306 245
σ 183 172 181 176

Mean 228 312 242 183
Q1 143 238 129 72
Q3 452 505 453 403
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Figure 4.10: Boxplot for proximity dispersion of results

Table 4.2: Statistical values for proximity responses

GS cGS DA HDA
Median 90 95 77 74
σ 47 47 47 47

Mean 64 71 60 55
Q1 40 46 33 41
Q3 129 131 102 117
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Figure 4.11: Boxplot for air pollutant concentration of results

Table 4.3: Statistical values for concentration
dispersion of responses

GS cGS DA HDA
Median 0.038 0.043 0.050 0.044
σ 0.017 0.017 0.019 0.021

Mean 0.037 0.039 0.047 0.042
Q1 0.034 0.032 0.043 0.029
Q3 0.046 0.054 0.062 0.062
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Figure 4.12: Boxplot for path dispersion of results

Table 4.4: Statistical values for path responses

GS cGS DA HDA
Median 3818 4841 3397 2427
σ 2793 2791 2182 1986

Mean 3274 4336 2787 2020
Q1 2044 3085 1533 934
Q3 7057 7147 5004 4358

Finally, in order to demonstrate that the results are significantly better, a single-factor ANOVA
was performed among the data obtained.

Table 4.5: Single-factor ANOVA results

Time Concentration Proximity Path
p value 0.0009 0.0005 0.1475 0

4.5 Analysis of results
The proposed strategy have specific characteristics that make it different from other works. A
quantitative comparison is not possible, therefore the table 4.6 shows a qualitative comparison
between some similar works.
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Table 4.6: Characteristics of the proposal against similar works

Characteristics Proposal Jatmico,
2007 [14]

M. Rossi,
2016 [26]

J.J. Cassano,
2016 [4]

John, A. A.
B., & Dutta,
R. 2017 [15]

J. R.
Bourne,
2019 [3]

Real time
Simulation YES NO

Real
environment

Real
environment NO NO

Large
search area YES NO NO YES NO NO

Cooperative
strategy YES YES

Only
1 UAV YES YES YES

Online plume
simulation NO YES

Real
environment

Real
environment YES YES

Continuing with the discussion of results, the next point to be discussed is the results of
figure 4.4. The percentage of detections between the dragonfly algorithm and Greedy Search
with cooperation are the same. In one of the methods, Hammersley sequences were used to
make the travel of UAVs more efficient. The efficient travel peculiarity of the Hammersley
sequences is compared to the speed at which a greedy search travels the map. This is because
with Hammersley sequences the UAV must travel over concave routes, as seen in figure 3.14,
so now the UAV must rotate in Yaw, before continuing its traveling, reducing its speed and
taking more time for the maneuver. On the other hand, in a greedy search, this behavior is not
so common. The UAV also must rotate in Yaw to change direction, but it does it less often.

The next point to discuss is the performance of each approach regarding the source proximity.
Experiments in which a high level of pollutants (concentration > 0.1 ppm) has been detected
were used. The UAVs take-off from the same location. The first figure (4.5) shows the
behavior of the greedy search using the probability map. When one of the UAVs detects a high
level of contaminants, it changes course to go to the detection point. It stays relatively close
trying to detect a new point with a high concentration of contaminants. Since no information
is shared, the other UAV continues to search without approaching any specific point.

The behavior of the Cooperative Greedy Search is a bit different. The disadvantage of this
approach is that when a detection is made, the UAVs tend to search the same paths, as can be
seen in figure 4.5. This is because in the proximity map there will be just a few points with a
high probability of being a polluting source.

The advantage of the Dragonfly Algorithm over the approaches is that, once a high
concentration of contaminants is detected, the UAVs tend to fly close to the detection point.
The key to detecting the source of contamination is the detection point and nothing else. In
Figure 4.7 one of the UAVs moves very close to the source of contamination, but does not find
a higher concentration value than the current one.

Finally, we have the behavior of the approach with the Heuristic Dragonfly algorithm. The
4.8 figure shows that, once a high concentration of contaminant was detected, the UAVs are
kept close to the detection point, but with more variance. This does not necessarily mean that
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the UAV doesn’t repeat the same destinations. For this reason, statistical analysis is necessary
in order to verify the efficiency of the proposed system.

Figures 4.9, 4.10, 4.11 and 4.12 summarize the dispersion of each set of experimental results.
Also included are the numerical data that make up the boxplots in tables that are under each
figure. In each figure it can be noticed that the median is better, except in the analysis of the
proximity to the source of contamination. The best median in this analysis is the Dragonfly
Algorithm. Finally, in order to demonstrate that the samples are significant, a single factor
ANOVA was carried out. This analysis concludes that the averages of the time, travel and
concentration level analyses are significantly different. The proposed strategy is the one
with the best statistical values. In the case of proximity to the source of contamination, it
is concluded that the averages are the same. In this field, no algorithm did better than the
others.
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Conclusions

The present work shows a strategy of search and location of polluting sources of air in a
simulated environment in a large area. The strategy is based on the Dragonfly Optimization
Algorithm. For the exploration stage, it was proposed to use Hammersley sequences, k-means
clustering and a greedy search to find the best exploration route. The use of Hammersley
sequences allowed UAVs to cover different points of the search area, avoiding the repetition
of sampling points. This work considers a single polluting plume, but the use of Hammersley
sequences broadens the probability of finding more sources of contamination.

This work has a coordination approach between the UAVs, also some features differentiate
it from similar work. The simulation is done in real time. The search area is 1 km2. The
polluting plume is simulated off-line, loaded into memory at the moment of the UAVs take-
off and then mapped in time and space. Table 4.6, from section 4.5, shows the qualitative
comparison of the proposed strategy against other similar works.

The main contribution of the work is in the exploitation stage of the Dragonfly algorithm. A
Probabilistic component is added to the Separation, Alignment, Cohesion, Attraction to food
and Inertia components of the Dragonfly algorithm. The new probabilistic component can
be considered as the memory of the algorithm. If an UAV takes a sample of contaminant
concentration at one point, the probability of relapse at this point will decrease greatly due
to the update of the probabilistic map. The algorithm will prefer, to a certain extent, to go
to places with a higher probability of finding a new food value. Another consequence of
this is that the UAVs will cover more areas around the position of the food (points with high
concentration of pollutants).

The real-time simulation allowed to take in consideration aspects such as UAVs inertia,
acceleration and deceleration to move from one point to another. These features will allow an
easy implementation in real experiments on the field.

There is enough statistical evidence to say that the results of the proposed approach are better
than those of the strategies explained in 3.3. Analyzing the detected concentration level, it was
concluded that the means do not differ significantly. So this parameter should not be taken too
much into account to measure efficiency. Figure 4.4 shows that cooperative approaches have

49
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a better rate of detection of high levels of contaminants. Because of this it can be concluded
that the cooperation of each UAV improves the detection rate. This strategy can be used in an
environmental or industrial scenario.

5.1 Future work
For the implementation of the strategy in a real platform, or for future work, is recommended:

• Use a path planning algorithm for traveling through the Hammersley points. As
mentioned in section 4.5, the advantage of Greedy Search is that it performs fewer
rotations in Yaw angle before finding a high pollutant measure. If the UAV is able
to traverse the Hammersley points without stopping, it will have much more time to
explore.

• XBee modules with high gain antennas could be used for communication. This
ensures communication in the search area between the UAVs.
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