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Submitted to the School of Engineering and Sciences in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

In

Information Technologies and Communications

Major in Microsystems

Monterrey, Nuevo León, May 20th, 2019



A mi familia. . .
Este esfuerzo no hubiera sido posible
sin su apoyo y cariño.





Bidirectional AC electroosmotic pumping by
hydrodynamic channeling using 2D and 3D
photoresist-derived carbon microelectrodes

by

Mat́ıas Vázquez Piñón

A B S T R A C T

In microfluidics, fluid movement is keystone for the correct operation of different system stages, including
convective mixing, electrochemical sensing, and affinity bonding in immunoassays. Even though the most
commonly developed microfluidic pumps are unidirectional, over the last decade, bidirectional approches have
been developed to considerably improve the overall performance of microfluidic systems. Furthermore, the
exploration of new approaches for bidirectional pumping allows the creation on fully integrated, stand-alone
systems for applications including drug delivery, clinical analyses, cell culture, among many others.

AC electroomosis is a suitable electrokinetic approach for fluid driving in microchannels. Opposite to
commonly-used microfluidic pumping approaches, in AC electroosmosis no moving elements are required, and
only a set of electrodes is used, thus fabrication of devices is remarkably simple and cost-effective as a stand-
alone pump, or for integration with other microfluidic components. In this work we propose a hydrodynamic
mechanism to reverse the flow in AC electroosmotic micropumps in order to attain bidirectional pumping.
The flow reversal mechanism involves the channeling of the vortices generated by electroosmotic manners, by
taking advantage of the microchannel geometrical properties; particularly, the microchannel height, which is
closely related to the stimulating electrodes’ width and, in consequence, to the enclosed vortices’ size.

We use the Carbon-MEMS fabrication process to develop two electrode architectures: asymmetric planar
and high-aspect-ratio microposts. The carbonaceous material obtained from this process is characterized to
validate the adecuate properties for electrokinetic applications, and the micropumps are then assembled by
bonding a PDMS microchannel. The flow development by AC electroosmotic means is profoundly studied
using a bidimensional finite element model comprehending the Poisson-Nernst-Plank-Navier-Stokes equation
set to closely emulate the vortex formation on the electrodes surface. To explore the effect of electrode
asymmetry ratio on the fluid velocity, we compare three asymmetry ratios for both, coplanar, and high-
aspect-ratio architectures.

Experimental results are presented and a fluid velocity analysis is carried out for forward and reverse flows.
An explanation of how flow reversal is achieved by hydrodynamic channeling is detailed, and experimental
test analysis provides the conditions under flow reversal is produced, such as amplitude and frequency of
the applied AC signal, and asymmetry ratio of electrodes. Furthermore, the effect of microposts on fluid
velocity and flow reversal is thoroughly discussed. Hydrodynamic channeling using AC electroomosis is a
new approach for bidirectional pumping, thus areas of opportinity are presented for future developments in
this field, such as optimization of electrode asymmetry ratio, micropost spacing and microchannel height.
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Chapter 1

Introduction

Important and exciting breakthroughs have been recently reported in scientific literature regarding diag-

nostics, treating and tracking several medical conditions such as cancer, diabetes and cholera, among many

others [1–4]. Today, for instance, is possible to quantitatively determine if an specific treatment or set of

treatments are efficiently working on a cancer patient by microfluidics analysis, in which circulating tumor

cells are detected and counted in a microliter whole blood sample by means of antigen-antibody bindings [5].

This is possible due to high-tech manufacturing processes that enable the fabrication of different materials

to biofuncionalize them with antigens, proteins, etc., and to finally process biological samples due to biocom-

patibility. Moreover, Point-of-Care (POC) assays have been also developed to be used in the poorest regions

of the world, and which, at a very low cost, are used to diagnose diverse infectious diseases, including HIV a

syphilis [6–8].

Commonly, clinical testing are carried out in animals with a similar system that the human body. Pigs,

rats, rabbits, chimps, among others, are used as subject for different medical experiments such genetics, drug

testing and toxicology tests, just to mention a few. The British Royal Society states that “from antibiotics

and insulin to blood transfusions and treatments for cancer or HIV, virtually every medical achievement in

the past century has depended directly or indirectly on research on animals1”. Thus, it is important to find

approaches to conduct research considering biomedical ethics when using animals for medical trials and to

reduce to the minimum the suffering of animals.

As human life style evolves, new food processes are applied to our daily diet, our cities are more polluted

and living is more accelerated. Diseases become more complex and takes more time to us to find their cures.

Without constant medical developments, it would be even harder for us to fight diseases or even to improve

1Statement of the Royal Society’s position on the use of animals in research.
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quality of life when cures are not yet developed. It is difficult for us to think about how our parents and

older generations dealed with their communications necessities over the last decades without cellphones and

internet and, it is similar if we think about medical and healthcare technologies. Thanks to that constant

research, today are aware of stem cells research, HIV cocktails, targeted cancer therapies, laparoscopic surgery,

Human Papillomavirus Vaccine, bionic limbs, face transplants, early detection of Parkinson’s disease, and

many other developments. Furthermore, today we are able to sense almost everything in our body in a

non-invasive manner; something that a few years ago was difficult and expensive.

The next generation research, specially that related to diagnose and treat human conditions have to be

fast enough to prevent massive human loss, low cost, efficient and reliable and without affecting other living

species, and microfluidics is a convenient candidate to achieve this.

1.1 The Role of Micropumps in Microfluidics

Microfluidics is the discipline that studies the devices and methods for driving small amounts of fluids (from

10−9 to 10−18 liters) by using channels with dimensions in the scale of micrometers (10−6−10−4meters) [9,10].

At this scale, the Reynolds number—which is the ratio of inertial forces to viscous forces, and provides the

degree of laminar or turbulent flow—is given by

Re =
ρνD

η
≪ 1 (1.1)

Here ρ, ν, and η are the density, velocity and viscosity of the fluid; and D is the hydraulic diameter

of the particle. At low Reynolds numbers, such as those commonly found in microfluidics, viscous forces

dominate over inertial forces, resulting on the observation of laminar flow, meaning that the fluid circulates

in the form of ordered sheets [11, 12]. Microfluidics brings up important capabilities for fluid analysis,

including the possibility to process samples using very low volumes of both, analytes and reagents, short

processing times, low cost of analyses, and high sensitivity. Microfluidic devices have found a broad variety

of applications on medical and health industries. Nowadays, it is possible to diagnose a wide variety of

diseases using microfluidics implemented on Lab-on-a-Chip (LoC) or micro Total Analysis Systems (µTAS)

devices, which are portable, fast and low-cost platforms used to carry out conventional laboratory analysis

in a miniaturized fashion (see Figure 1.1) [13]. LoC and µTAS devices are integrated from different essential

components, including microchannel networks where all the samples and reagents are processed, as well

as sensors and actuators, valves and pumps, among others. Microfluidic platforms allow to investigate and

develop new drugs and provide an innovative way to administer them to patients—the so called drug-delivery
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systems. Environment monitoring is other widely explored application of microfluidics, where the quality of

our environment is studied using biofunctionalized chips, for the detection of possible harmful substances in

food and water, among other possibilities.

Total Analysis System

Chemical

sensor

Metrology

Sampling

Sample 

transport

Sample

pretreatment

Separation or 

chemical reaction

Detection

Data treatment

Interpretation

Figure 1.1: Steps of a chemical analysis in a Total Analysis System.

The increasing interest for stand-alone microfluidic analysis systems, have motivated the quest for novel

fluid pumping techniques governed by low Reynolds number regimes to achieve system unification, high

performance and reliability, and low fabrication and operation costs. The overall performance of a microfluidic

system is highly determined by the accurate fluid driving in the microchannel networks, which provides

appropriate operational conditions to other system components running concurrent tasks. This encompasses

from general purpose tasks such as pumping and mixing, to extremely high-precision mechanisms, including

drug delivery systems [14], low concentration electrochemical sensors, energy generation in fuel cells, and

many others. In such systems, fluid transport is typically used for sample distribution in microchannel

networks, reagent/sample mixing and molecular separations, among many other tasks. For this, a variety

of physical phenomena is used for fluid/particle processing in microfluidics, incluidng pressure gradients,

capillary effects, gravity, Lorentz forces, centrifugal forces, and electrokinetics, among others [10].

From the conception of LoC and µTAS in the early 90’s, integration of different microfluidic elements

into a single die has become a scientific challenge to achieve stand-alone chemical/biological analysis sys-

tems [15–17]. Particularly for fluid pumping in microchannels, several mechanisms have been developed,

which include mechanical and non-mechanical approaches. On one side, mechanical micropumps are mostly

3



driven by diaphragm displacements complemented by other solid elements such as valves. On the other side,

non-mechanical approaches make use of intrinsic properties of the fluid to generate fluid movement [18].

Non-mechanical, valveless fluid driving techniques have become convenient alternatives to their mechanical

counterpart due their structural simplicity, low fabrication complexity, low cost and satisfactory performance.

These techniques include the use of electric or magnetic fields [19,20], light [21] or acoustic waves [22], as the

driving principle, among others. Figure 1.2 shows the classification of micropumps according to Laser and

Santiago, 2004 [18].

DISPLACEMENT

Rotatory

Diaphragm

drivers

- piezoelectric

  - lateral

  - axial

- thermopeumatic

- electrostatic

- pnaumatic

valves

- flap

- fixed-geometry

  - nozzle-diffuser

  - Tesla

chambers

- single

- multiple/series (peristaltic)

- multiple/parallel

Piston

Electrohydrodynamic

- injection

- induction

- conduction

Electroosmotic

- porous

- micromachined

Magnetohydrodynamic

- Direct current

- Alternating current

Miscellaneous special effect

- jet

- gas lift

- hydraulic ram

Acustic streaming/ultrasonic

CentrifugalReciprocating

DYNAMIC

Aperiodic
- pneumatic

- phase change

  - thermal

  - electrochemical

- electrowetting/thermocapillary

Figure 1.2: Classification of micropumps.

From Figure 1.2, displacement micropumps make use of pressure forces generated by a physical moving

actuator on a volume of fluid. These systems mostly include piezoelectric [23], pneumatic [24] and electrostatic

[25] micropumps. However, fabrication of these devices often requires complex and expensive micromachining

processes, and there is an inherent propensity for mechanical wearing, fatigue, and clogging that might limit
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the micropump throughput and cause premature failure.

To overcome limitations of displacement mechanisms, pumping techniques with no moving parts have

been successfully implemented in microfluidic systems, which are referred to as dynamic micropumps. Here,

various types of transmitters continuously transfer non-mechanical energy directly to the fluid to generate

momentum. The most extensively studied dynamic approaches include thermal [26], electrohydrodynamic

(EHD) [27], magnetohydrodynamic (MHD) [28], and DC and AC electroosmotic micropumps [29,30]. In this

case, the lack of moving parts significantly simplifies the micropump structural framework, generally leading

to a straightforward and cost-effective device fabrication process. EHD and DC electroosmosis (DCEO)

pumping approaches have been studied extensively; however, the extremely high operational voltages affect

the electrical properties of the fluid and require bulky external power generators [31]. Moreover, for MHD

pumping the use of external magnets/electromagnets is required [32], which limits the ability to integrate all

the elements into a single portable device.

From the dynamic standpoint, it has been recognized that AC electroosmosis (ACEO) has the advantage of

low structural complexity (commonly constituted only by an electrode array encompassed in a microchannel).

Also, due to its direct and localized actuation, ACEO allows the development of independent fluid control

mechanisms at different microchannel locations, and at different phases of the analysis process [33–37]. In

ACEO, a low-amplitude (1–10 VPP), low-frequency (10 Hz–100 kHz) AC signal is applied across electrode

pairs separated by a few micrometers gap to induce a strong, non-uniform electric field that propels ions in

the fluid adjoining the electrodes [38]. Movement of these ions and their hydrated shells is transferred to

the surrounding fluid by viscous forces [39]. In order to cause net flow (and not just re-circulation above

the electrodes), asymmetry in the electrodes geometry is introduced by having a narrow electrode EN paired

with a wider electrode, EW. In this work, the term forward flow indicates the net flow of the fluid from EN

towards EN.

Unidirectional fluid pumping is the most commonly used approach in microfluidics, and it has been

successfully implemented is most of the applications where fluid convection is required. To increase efficiency

of the overall system in applications carrying out tasks as biochemical sensing, particle separation, and in

general microfluid processing systems, bidirectional fluid driving is desirable to increasing the interaction of

molecules of interest and surfaces and/or to achieve better fluid distribution across complex microchannel

networks.

Bidirectional flow is typically achieved by commercially-available macroscale mechanical pumps—i.e. the

use moving elements to produce fluid momentum—such as syringe pumps, peristaltic pumps or even manual

pipetting. However, operation of large-scale mechanisms in microfluidic applications is not only cumbersome
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to drive micro/nanoliter volumes; also, the use of large-scale devices restrains from system integration and

portability, which are essential characteristics for stand-alone devices. However, microscale mechanical tech-

niques for bidirectional pumping have been more recently developed for portability purposes, and have been

successfully implemented in microfluidic systems. Table 1.1 summarizes in chronological order, the most rel-

evant developments on bidirectional micropumps over the last decade, particularly describing their actuation

mechanism and microchannel materials. The highlighted row corresponds to this work.

Table 1.1: Relevant publications on bidirectional microfluidic pumps, part 1.

Year Mechanism Classification Valve type Channel Media

2006 [40] Piezoelectric Displacement Active Silicon Water
2010 [41] Piezoelectric Displacement Valveless PDMS Ethanol
2011 [42] Piezoelectric Displacement Passive PMMA/SU-8 Water
2011 [43] Piezoelectric Displacement Active Silicon Water
2013 [44] Piezoelectric Displacement Active Polymeric Water
2013 [45] Electromagnetic Displacement Valveless PDMS Water
2015 [46] Perisaltic Displacement Valveless Polyimide Gas
2016 [47] Piezoelectric Displacement Valveless PMMA Water
2018 [48] Electromagnetic Dynamic Valveless PDMS Water
2018 [49] Electromagnetic Displacement Valveless Aluminum Water
2019 [50] AC Electroosmosis Dynamic Valveless PDMS Water

Then, Table 1.2 details on the flow rates achieved in those corresponding publications from Table 1.1, as

well as the operating conditions and fabrication techniques.

Table 1.2: Relevant publications on bidirectional microfluidic pumps, part 2.

Ref Forward flowrate Backward flowrate Operating condition Fabrication method

[40] 1.4 ml/min 1.4 ml/min 4.2 V @ 17 Hz CVD/photolithography/RIE
[41] 20.94 µl/min 20.94 µl/min 220 V @ 45–300 Hz Soft-lithography
[42] 16.4 ml/min 5.1 ml/min 150 V @ 355 Hz Machining/photolithography
[43] 1.64 ml/min 1.65 ml/min 45 V @ 30 Hz Silicon micromachining
[44] 4.8 ml/min 4.8 ml/min ±260 V Hot embossing
[45] 1.52 ml/min 1.48 ml/min 1–20 Hz Soft-lithography
[46] 136 µl/min 136 µl/min 60 V & 120 V @ 15 Hz Photolithography/DRIE
[47] 0.4 ml/min 0.4 ml/min 500–800 V @ 10 Hz Precision machining
[48] 67.2 µl/min 67.2 µl/min 1.4 V @ 9 Hz Soft-lithography
[49] 37 ml/min 37 ml/min 1.6–2 A @ 3.3 Hz Precision machining
[50] 0.091 µl/min 1.014 µl/min 2–20 V @ 1–200 kHz Photolithography

As can be seen from Table 1.1, displacement micropumps for bidirectional fluid driving are the most

commonly developed over the last decade, and the dynamic devices have been developed using only electro-

magnetic and AC electroosmotic mechanisms. A clear trend on discarding the use of valves in micropumps
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can also be observed. Then, from Table 1.2, the most noticeable limitation of the dynamic mechanisms

for bidirectional pumping is the low forward and backward flow rates, compared to displacement mecha-

nisms; and for the particular case of the present work, asymmetric flow rates between forward and backward

directions. However, fabrication methods are simpler for dynamic mechanism, as well as very low power

consumption, as can be deduced from the operating conditions column.

Even though ACEO is commonly employed as a unidirectional pumping mechanism, in this work we take

advantage of the geometry of the microchannel enclosing the fluid to hydrodynamically reverse the net flow

direction (i.e. force the net flow from EW towards EN). That is, we take advantage of the geometrical

characteristics of the microchannel enclosing the fluid to force the flow to reverse by preventing the vortices

to complete a swirl in the direction of the forward flow. ACEO micropumps are able to control the fluid

rate of a bulk analyte by varying the applied voltage signal parameters (amplitude, frequency, and phase in

some cases), thus avoiding the use of moving parts, prevent analyte warming, and reduce undesired chemical

reactions.

In the present work is reported the development of bidirectional ACEO pumping by means of hydrody-

namic channeling of fluid streamlines contained in a microfluidic channel. Here, we take advantage of the

wide electrochemical stability of GC to develop asymmetric coplanar and high-aspect-ratio microelectrodes

to form bidirectional micropumps. In this sense, asymmetric coplanar electrodes were fabricated using the

Carbon-MEMS technique, which consist of photolithographic patterning and pyrolysis. Alongside, microp-

osts were developed atop the planar structure using a second photolithography step to determine the effect of

high-aspect-ratio structures on the overall fluid velocity and direction. The resulting glassy carbon material

was characterized to determine its intrinsic properties by Raman and energy-dispersive X-ray (EDX) spec-

troscopies. This, to confirm that the electrode material properties (composition and graphitic/amorphous

carbon content) are appropriate for utilization of these electrodes for electrokinetic applications. Visual in-

spection was also carried out SEM and Confocal microscopies to determine the morphological characteristics

of the electrodes. A finite element model was developed to show the flow development as a result of the

applied potential to the acting electrodes. Finally, experimental tests were carried out and fluid velocities in

reverse and forward directions were computed for both, coplanar and HAR structures, and the results were

analyzed and discussed.
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1.2 Thesis Outline

Chapter 2 of this work provides a solid theoretical background on electrohydrodynamics including a detailed

electric double layer description, the electroosmotic phenomenon and the principle of fluid pumping by AC

electroosmosis. Chapter 3 describes the Finite Element analysis that was carried out to study the flow

development by ACEO means. Chapter 4 details the fabrication process of asymmetric coplanar and high-

aspect-ratio electrode arrays using the Carbon-MEMS fabrication process. In Chapter 5, experimental

results on the effect of the electrodes architecture are presented, including fluid velocities and flow reversal

conditions. Finally, in Chapter 6, concluding remarks on the presented work, as well as future works is

given.
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Chapter 2

Non-linear electrokinetic phenomena

The observation of a frequency-dependent fluid movement during a dielectrophoretic particle manipulation

experiment, gave rise to a new reseach field in electrokinetics1. The scientists who discovered and explained

this phenomenon named it AC electroosmosis [39]. Electroosmosis is defined as the relative movement of a

fluid with respect to a solid charged or conductive surface as a result of an applied electric field gradient.

In ACEO pumping, electrode arrays are placed on the channel walls very close to each other (usually a

few microns) to generate a strong electric field using low amplitudes (< 10VPP) and frequencies (1-100 kHz),

to induce an electric double layer (EDL) at the interface between the electrode and solution. The effect on

the electrode/gap and electrode/electrode ratios, as well as the fluid direction and velocity due to the signal

and microchannel characteristics have been previously verified by simulation [51], and experimentally [52,53].

However, a fully developed methodology for the fabrication of ACEO micropumps based on the required flow

characteristics and integration in LoC systems has not been formally developed yet. ACEO micropumps are

versatile enough to drive fluids from nanoliters to the microliters by applying low-amplitude AC potentials.

ACEO has been successfully implemented to drive fluids in biotechnology and medicine microsystems, such

as DNA concentrators and amplifiers [34,37], cellular analyzers [54], immunoassays [36], and chromatography

[55], among others.

This fluid movement was found to be strongly dependent on the fluid’s electric conductivity, which is

directly related to the amount of free electric charges conforming the EDL at the interface between the fluid

and the acting electrodes. During the alternance from a positive to negative cycle of the applied AC signal—

or viceversa—the electric charges conforming the EDL relax and try to reach electrostatic equilibrium as in

the bulk fluid, where the electric field has no significant influence, due to the switching on direction of the

1The first study reporting electroomosis was published in 1809 by F. F. Reuss in the Proceedings of the Imperial Society of

Naturalists of Moscow
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electric field. Under this basis, it was then determined that the observed fluid movement only occurred for

frequecies below the relaxation time of the charges during the AC signal alternance.

Viscous forces play an important role to determine new applications of AC electroomosis. Due to low

Raynold numbers found in microfluidics, diffusion-dependent fluid mixing is commonly slow. Local convection

due to AC electroosmotic flow has been proven to be an efficient solution for fast fluid mixing in microchannels.

Due to viscous forces dragging not only fluid molecules but also bigger bodies such as other molecules, cells

and particles, AC electroosmosis has also been used to drive such bodies on a controlled basis.

In order to produce ACEO bidirectional micropumps, a wide electrochemical stability of electrode mate-

rials is essential to guarantee optimal performance without electrode degradation and bubble formation. The

Carbon-MEMS (C-MEMS) process have shown to be a potential candidate to fabricate cost-effective glassy

carbon (GC) electrodes [56]. In this process, a photolithographically-patterned organic precursor is reduced

to GC at 900◦C in an oxygen-free environment [57]. The C-MEMS process for GC electrode fabrication has

been successfully implemented for ACEO pumping [58], bio-sensing [59], energy generation [60] and energy

storage [47], among others.

2.1 EDL-driven electrokinetics

Electroosmotic flow (EOF) is the electrokinetic phenomenon related to the movement of fluid caused by the

stimulation of mobile electric charges suspended in a solution. By means of viscous forces, the movement of

electric charges in the form of ions drag fluid molecules, thus forging a velocity field along the solution in

the direction of the moving charges. This movement is drawn by the electric double layer (EDL) formation

that arises at the interface between a solid surface and the solution containing the free charges. The EDL

is created due to electrostatic interactions between ions forming the outward layer of the solid and the

neighboring mobile counter-ions in the fluid. The EOF is thus strongly related to the characteristics of the

EDL such as the Debye length and electric field distribution. Figure 1 depicts the constitution of the EDL.
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Figure 2.1: Gouy-Chapman model of the Electric Double Layer

To take advantage of this phenomenon, the EDL characteristics have to be intentionally controlled. This

is accomplished by modifying its thickness by impelling an electric field into the bulk fluid by means of

an external electric potential through conductive media. Typically, metallic electrodes are used to attain

this task [38], but more recently, other materials have showed good results, such as glassy carbon [58], and

liquid metal electrodes [30]. The shape and size of the interface between the conductive structure and the

electrolyte play an important role on the control of the EDL. With the correct design and implementation

of the solid/liquid interfaces, EOF can be effectively employed to perform specific tasks in Lab-on-a-Chip

systems such as pumping and convective mixing.

For this purpose, DC and AC potentials can be employed to induce the electric field across the electrolyte.

In DC electroosmostic flow (DC-EOF), high potentials (∼500 V) are longitudinally applied across the fluid.

In response to this, an electric field is induced thus impelling the free charges to move along the field direction.

Figure 2.2(a) shows the typical DC-EOF setup. The zeta potential is a measure of the electroosmotic mobility

in volts. The slip velocity is given by the Helmholtz-Smoluchowski equation

us = −
εζ

η
Et (2.1)

where Et is the tangential electric field outside the EDL; ε and η are the permittivity and viscosity of the

electrolyte, respectively; and ζ is the zeta potential.

Alternatively, in AC electroosmotic flow (AC-EOF), low potentials are required (∼ 1 − 20 V) since the

electrodes are placed in the channel walls and commonly close enough together, and alternating signals are

used to establish the flow direction. Figure 2.2(b) depicts the typical setup for AC electroosmotic flow.

With this setup, the alternating field generates eddies that propels the bulk fluid with a net flow across

the microchannel. For the case of AC-EOC, the fluid velocity is given by the time-averaged electroosmotic
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(a) AC electroosmotic flow (b) DC electroosmotic flow

Figure 2.2: a) DC Electroosmotic Flow and b) AC Electroosmotic Flow (EDL in walls omitted in this figure).

velocity equation:

〈ν〉 =
εV 2

0 Ω
2

8ηx (1 + Ω2)2
(2.2)

where ε = εrε0 and η are the permittivity and viscosity of the fluid, respectively; V0 is the applied

potential; x is the characteristic electrode separation (i.e., distance from the center of the gap between the

electrodes to the inner electrode boundary), and Ω is the non-dimensional frequency, given by

Ω = ωx
π

2

ε

σ
κ (2.3)

where ω is the angular frequency of the established electric field, σ is the fluid conductivity, and κ is the

reciprocal of the Debye length at the EDL:

1

κ
= λD =

√

εkBT

2F 2z2ci
(2.4)

Here, kB is the Boltzmann’s constant, T is the fluid absolute temperature, F is the Faraday’s constant,

z is the valence of ions, and ci is the ionic concentration of the ith species.

Both DC- and AC-EOF are used to move fluids in the micro- and nano-scales, but the later has shown

to be easier to integrate into microfluidic systems because it requires lower operating voltages and electrodes

are easier to pattern on subtracts by means of photolithography. Additionally, AC-driven micropumps are

straightforward to change from a fluid mixing mode to fluid transport mode, or to adjust the flow magnitude

or to invert the flow direction.

AC-EOF offers certain advantages over other approaches for microfluidic pumping and mixing. The

foremost is the possibility of driving fluids without the need of mobile components within the microchannel.
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With this, some desirable benefits can be emphasized such as low cost and simplicity of fabrication, possibility

of integration with other microdevices, and the ability to drive highly programmable flows at low electric

potentials, thus low power consumption [61, 62].

2.2 Hydrodynamic channeling for flow reversal

Asymmetric-coplanar IDEAs are commonly used to generate ACEO flow in microchannels by capacitive

electrode polarization. Figure 1(a) shows the electric field distribution, E, when an AC potential is applied

across one pair of interdigitated electrodes. Here, the perpendicular component of the electric field, Ep,

draws neighboring opposite-charge ions suspended in the fluid towards the electrodes surface, establishing

an induced EDL; whereas its tangential component, Et, induces a force, F, that dispels such charges away

from the gap between the electrode pair across the diffuse layer of the EDL. Switching electrode polarization

draws opposite charges every half-cycle of the AC signal in the same direction [63]. The ionic displacement

caused by the momentum transfer from the electrodes to the neighboring charges, allows the development of

vortices above the electrodes by viscous forces exerted on the fluid molecules. These vortices sustain their

flow direction even though the polarizing signal alternates from positive to negative or vice versa, since the

drawn charges from the bulk fluid also alternate to satisfy electrostatic attraction forces. The size of vortices

is proportional to the electrode width; thus, the electrode asymmetry ratio establishes a net flow in the

direction from the weak vortex over EN (narrow electrode), towards the dominant vortex over EW (wide

electrode).

However, the net flow direction is not only electrostatically determined by the polarization of asymmetric

electrodes. Hydrodynamically, the microchannel enclosing the fluid plays a critical role for establishing flow

reversal when the dominating vortex streamlines reach the top of the channel. In the forward direction

(i.e., flowing from EN towards EW), the dominating vortex establishes the flow direction by dragging fluid

molecules neighboring the electrode surface as presented schematically in figure 1(b). As the size of the

dominant vortex increases (with an increase in the AC amplitude), it eventually reaches the top of the

microchannel. At this point, a stagnation (or transition) point is reached, where no net flow is observed,

as shown in figure 1(c), when the forward flow initiated at the bottom of the fluidic channel is completely

offset by the reversed flow at the top of the channel. Further increase in the dominant vortex size causes flow

reversal by affecting larger mass transport at the top of the fluidic channel compared to the smaller (forward)

flow at the surface of the electrode EW, as seen in figure 1(d).
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Figure 2.3: Development of fluid flow by AC electroosmosis with asymmetric coplanar microelectrodes: (a) electric
field distribution and induced EDL formation, (b) forward flow generated at the electrodes surface, (c)
transition point where flow generated at electrodes’ surface is offset completely by development of the
reversed flow at the top of the channel, and (d) reverse flow generated at the top of the channel dominating
mass transport at high AC amplitudes.
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Chapter 3

Numerical analysis of induced-charge

ACEO flow development

A 2D finite element analysis was carried out using COMSOL Multiphysics (COMSOL, Inc., Stockholm, SE)

in a two-stage study. First, a qualitative study and comparison of three different micropumps based on AC

electroosmosis was carried out. It is know that these devices are capable of reaching flows in the range

of commercially available pumps for microfluidic/nanofluidic applications. The micropumps are powered

by a single pair of electrodes with characteristic geometries. The three most commonly used electrode

geonetries, which are the asymmetric coplanar, traveling wave, and 3D or non-planar arrays), were modeled

and contrasted. The Finite Element analysis was employed to characterize the three mentioned arrays

under similar conditions. The mathematical model, consisting on the Poisson-Nernst-Planck-Navier-Stokes

equations, has been previously applied for modeling both, micropumps [64, 65] and mixers [66], but no

comparison between the mentioned electrode geometries for AC electroosmotic micropumps has bee reported

yet. On this stage of the finite element analysis, the numerical model was implemented to compare the

three different electrode geometries and their effect on pumping performance in microchannels. Operational

requirements and qualitative results on the net flow of the described electrode geometries are reported.

The second stage of the study was used to analyze the transient flow evolution and the vortex formation

during AC electroosmosis. A model that included the periodic section of the coplanar electrode array with

an asymmetry ratio of 60 µm:20 µm was used to study the forward mass transport in the system. Flow

reversal was not considered in this model. Furthermore, electrothermal effects were also neglected since

these are usually relevant at higher working frequencies and larger fluid conductivities. The numerical model
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utilizes the Poisson equation to find the electric field distribution across a pair of opposite electrodes, E; the

Nernst-Plank equation is used to determine the charge concentration at the electrodes surface as function of E

conprising the sum of the diffusive, convective, and electro-migration flux intensities of the ionic components.

Finally, the Navier-Stokes and continuity equations are employed to establish the fluid velocity and pressure

distributions in the system [35]. The electric field across the bulk fluid is given by

E = −∇ϕ (3.1)

where ϕ is the potential difference across the electrode pair. The Poisson equation relatesE and the volumetric

charge density across the electrolyte:

∇ · (−ε∇ϕ) = ρe (3.2)

Here, ε = ε0εr is the relative permittivity of the medium where ε0 is the permittivity of vacuum and εr is

the dielectric constant of the medium. For a symmetric electrolyte (1:1), the electric charge density is given

by

ρe = F
(

c+ − c−
)

(3.3)

where F = 9.6485× 104 C/mol is the Faraday’s constant, and c+ and c− are the positive and negative ionic

concentrations in the fluid, respectively, which are determined by the molar balances:

∂ci
∂t

= −∇ · Ji (3.4)

Subscript i represents either of the two species; u is the velocity field, and Ji is the ionic flux for the ith

species. The Nernst-Plank equation gives the ionic flux:

Ji = uci −Di∇ci −
ziDiFci

RT
∇ϕ (3.5)

where Di is the diffusion coefficient, u is the velocity field and zi is the ion valence of each species; R is the

gas constant and T is the fluid temperature. Finally, the velocity and pressure fields for an incompressible,

Newtonian fluid across the fluid are described by the Navier-Stokes equation:

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∇2u+ ρe∇ϕ (3.6)

∇ · u = 0 (3.7)
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where ρ, p and µ are the density, pressure and the dynamic viscosity of the fluid, respectively.

The parameters used in the developed numerical model are described in Table 3.1.

Table 3.1: Model parameters for finite element analysis.

Parameter Value Description

T 293.15 K Fluid temperature
F 96,485 C/mol Faraday Constant
Zp 1 Ionic valence of the positive species
Zn -1 Ionic valence of the negative species
C0 0.0055 mol/m3 Initial ionic concentration
D 1× 10−9 m2/s Ionic diffusion coefficient
R 8.314472 Molar gas constant
ε0 8.85418× 10−12 F/m Permittivity of free space
εr 78.4973 Dielectric constant of water
ρ 1000 kg/m3 Fluid density
µ 1002× 10−3 Pa · s Fluid dynamic viscosity

charge dens (c1 − c2)F Electric charge density

3.1 Qualitative fluid velocity comparison between different elec-

trode geometries

The geometries of the three electrode arrays are depicted in Figure 3.1. These electrodes are defined as

boundary conditions, thus no resistive losses are considered. For a precise comparison on the performance of

the micropumps, the microchannel dimensions were standardized to a transversal section of 30 µm by 10 µm,

and variations were only made on the electrode geometries. Inside the microchannel, the three electrode

sets were fit into a total length of 15 µm, which is distributed in the two inner quarters of the total channel

width. For simplicity, the gravity effects are neglected from the results and the electrolyte is defined as an

incompressible Newtonian fluid with constant relative permittivity, viscosity, density, and ionic diffusivities.
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Figure 3.1: Electrode arrays: a) traveling wave, b) asymmetric coplanar, and c) 3D or non-planar.

For the traveling wave array, a set of four symmetric electrodes was used and four different phases where

applied to the electrodes, φ = A sin(2πft+θ), where θ takes value of 0, π/2, 3π/2 and 2π for each subsequent

electrode, as shown in Figure 3.1. For the cases of the asymmetric co-planar and 3D array, the geometries

share the same electrodes and gaps lengths, and the only difference is the height of the short electrode, which

is 1 µm for the 3D array. Furthermore, similar signals were applied to the electrodes with similar lengths in

both cases. For the three cases of electrode arrays, a sinusoidal signal of 1 V amplitude with a frequency of

1000 Hz was used as stimulation signal.

The structure of each micropump was modeled as a bi-dimensional geometry. The non-equilibrium ap-

proach was implemented using three interfaces: the Electrostatics branch to solve the Poisson equation for

the definition of the electric field distribution, the Transport of Diluted Species branch to solve the Nernst-

Planck equation, and the Creeping Flow branch, which solves for the Navier-Stokes and continuity equations.

Pertinent boundary conditions were established at liquid-solid interfaces and open boundaries were defined

at the fluid inlet/outlet boundaries.

With the conditions described, vortexes are observed near the electrodes edges, as shown in Figure 3.2;

and have different sizes due to the difference in the electrodes geometries: large vortexes above the large

electrode and small ones above the small electrode. Due to this effect, a net flow is propelled on the bulk

fluid with a net flow across the microchannel.
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Figure 3.2: Velocity fields of the electrodes: a) traveling wave, b) asymmetric coplanar, and c) 3D.

There is a considerable increase in flow for the 3D array because the elevated electrode is blocking the

back-flow generated while the electrode has a positive potential. From Figure 3.3, flow variations are in one

order of magnitude.

For the same voltage signal in amplitude and frequency and the same fluid properties, the asymmetric

co-planar array showed the lowest time-averaged flow of the three arrays. Flow in one order of magnitude

higher than the asymmetric coplanar array was obtained with the traveling wave array, and the 3D array

achieved a considerably higher flow than the traveling wave array and the asymmetric co-planar array (almost

two orders of magnitude).

These results showed that the lowest fluid velocity is achieved by the asymmetric co-planar electrode array;

the traveling wave electrode array achieves one order of magnitude higher than the asymmetric co-planar

array, and the 3D electrode array is the configuration with the highest fluid flow. Both, the asymmetric co-

planar array and the 3D array of electrodes generate a small back-flow that reduces the overall performance
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Figure 3.3: Comparison of the flow of the three geometries

of the micropump, while the traveling wave array of electrodes preserve a positive flow along all the applied

signal cycles. However, the 3D electrode array implies a more complex and expensive fabrication process,

compared to the other two electrode geometries. Furthermore, the travelling wave array requires the electrode

biasing of three signals, offset by 90circ for adjacent electrodes, which is translated into the use of expensive

AC wave generators. For the case of this work, the asymmetric electrode array was chosen due to its low

fabrication complexity and reduced costs, and for its straightforward biasing using typical wave generators.

3.2 Flow development for asymmetric coplanar electrodes

The model considers one pair of opposite electrodes with the electrodes’ widths of EN = 20 µm and EW =

60 µm, a gap between the electrodes g = 100 µm, and a microchannel height h = 100 µm. A mesh with a

total of 16760 elements was created using an element size of 25 nm at the electrode surface and increasing

with the distance from this boundary. A total of 8 boundary conditions were defined in the 2D geometry,

which are depicted in Figure 3.4, as well as their dimensions.
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Figure 3.4: Geometry boundaries of the developed model. EN and EW correspond to the narrow and wide electrodes,
respectively.

Table 3.5 shows the boundary conditions defined for each boundary, as well as for the complete domain,

which comprises all the boundaries and the enclosed area.

Figure 3.5: Boundary conditions defined in the model for Electrostatics, Transport of Diluted Species and Laminar
Flow modules.

The fluid velocity development was analyzed for four different frequencies (1 kHz, 10 kHz, 100 kHz, and 1

MHz) at 2 VPP to observe the transient velocity evolution and its frequency dependence for a wide frequency

range. The net flow evolution, from rest to the first 4 signal cycles, can be observed in the normalized plot

on figure 7(a). The model suggests that for a fixed asymmetry ratio (60 µm : 20 µm), 1 kHz signal achieves

one order of magnitude higher velocities that the 10 kHz signal, while for higher frequencies (100 kHz and 1
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MHz), the net flow becomes negligible. A fast flow development can also be noticed, where the flow is fully

developed after four cycles for every case. The pulsating nature of the flow (as easily seen from the inset in

figure 7(a)) follows the magnitude of the induced electric field as the AC amplitude evolves through time.

Furthermore, the net fluid velocity development for frequencies from 1 to 10 kHz, as plotted in figure 7(b),

confirms an exponential velocity decay, even at small frequency steps.
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Figure 3.6: Fluid velocity simulation results: (a) normalized fluid velocity for four AC frequencies at 1 VPP: 1 kHz,
10 kHz, 100 kHz and 1 MHz. Inset shows net fluid velocity evolution of the 1 kHz AC signal in a linear
y-axis scale. And (b) normalized fluid velocity for frequencies from 1 kHz to 10 kHz. Fluid velocities are
shown as arbitrary units (a. u.).

The sequence of images in figure 8 shows the evolution of the vortices (numbered from 1 to 4 from

left to right) once the net flow is fully developed in the forward direction (fourth cycle from figure 7 for 1

kHz) throughout half a cycle of the applied signal. Even though the vortices direction is sustained in an

alternating electrode polarization, figure 8(a) and (b) show a slight velocity decrease as the AC magnitude

increases (this effect is also visible as a small notch in the fluid velocity plot for 1 kHz in figure 7). This is likely

caused by charge reordering at electrodes surface as the polarizing signal switches, since co-ions are dispelled,

and counter-ions are attracted to form an EDL to satisfy electrostatic equilibrium. As the maximum AC

amplitude is reached, vortex 3 becomes dominant over vortices 1, 2 and 4, thus strongly establishing a net

flow at this point (figure 8(c)). Finally, all four vortices lose strength as the AC magnitude decreases to

complete a cycle (figure 8(d) and (e)).
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Figure 3.7: Finite element analysis of vortex formation along the second half of the fourth cycle of the applied AC
signal at 1 kHz (fully developed flow): (a) 3.5 ms, (b) 3.625 ms, (c) 3.75 ms, (d) 3.875 ms, and (e) 4 ms.
Insets show the AC cycle step. Arrows’ lengths indicate the velocity magnitude and direction, whereas
the streamlines depict the vortex shape.

23



Chapter 4

Fabrication and characterization of

glassy carbon microelectrode arrays

In the semiconductor industry, different types of photoresist are used as a protective/sacrificial material to

etch silicon and metals by means of wet or dry processes to develop transistors and other microelectronics

components. In C-MEMS, photoresist is used as the carbon precursor not only for static but also for dynamic

structures [67], such as microelectrodes, suspended beams, accelerometers, among others.

The conventional Carbon-MEMS (C-MEMS) fabrication process comprises two elemental steps: pho-

tolithographic patterning of a carbon precursor, followed by its thermal decomposition—or pyrolysis—to

obtain a carbonaceous material. In photolithography, patterns from a stencil are transfered to a photo-

sensitive material deposited on a substrate. Then, the subsequent thermal decomposition of the patterned

structures at temperatures between 600-1100◦C in an oxygen-free environment allows the release of non-

carbon element to the environment, thus yielding the characteristic glassy carbon material. Two distinctive

features of this process are straightforwardness and low-costs for feature sizes down to ∼10 microns, since no

costly and difficult-to-operate equipment is required, nor specialized facilities such as high-class cleanrooms.

A wide variety of carbon precursors are available for this purpose, though the most typical are the

polymeric resins [68, 69]. The resulting material properties, mainly including volumetric shrinkage amount,

pore size and density, and electrical conductivity, are dependent on the pyrolysis conditions, that include

temperature ramp rate, maximum pyrolysis temperature and inert-gas flow rate [68]. By means of this

process setup, satisfactory chemical, electrical and mechanical properties have been demonstrated for a wide

range of applications in electrochemistry, electrokinetics, mechanical sensing, among others.
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In this work, the convenitonal photolithography process was followed to fabricate high-aspect-ratio (HAR)

microstructures on top of asymmetric coplanar interdigitated electrode arrays (IDEAs), and pyrolized all

together under conditions that have been previously studied in detail for electrokinetic applications [56]. For

this purpose, two patterning steps were followed: (i) patterning of IDEAs on a substrate and (ii) patterning

of HAR structures on top of the IDEAs. Pyrolysis was only carried out after the two-step patterning to

guarantee effective electrical contact between the two patterned layers. The complete fabrication procedure

followed for this purpose is detailed in this chapter, as well as the devices preparation for experiental testing.

4.1 Design of microelectrode arrays for ACEO pumping

The first step on fabrication of microstructures by photolithography is the 2D layout of the structures to be

fabricated—often referred to as geometries or polygons—using a computer-aided design software. There is

already specialized software for this purpose on the market such as Coventorware, IntelliSuite, ProCAETool,

MEMScap, SOLIDIS, among others for MEMS designs, but also general purpose tools such as AutoCAD

and DraftSight can be used in the case of relatively low-complexity structures, as in this work. The purpose

of using this specialized software is to optimize the development process by means of reducing the cost and

time expended on the mask design stage, but one of the main drawbacks is that these tools usually are costly

and the learning process can be slow. For highly-customized designs and with a low number of layers (≤ 3),

the photomask design process is simpler using a general purpose software—AutoCAD in this case.

The resulting photomask is an stencil with layed out polygons that block the UV light and openings that

are transparent to the light. For this reason, the photomask are designed according to the type of photoresist

(PR) to be used to pattern the structures. The type of photoresist is determined by the effect of the UV

rediation producess when the PR is exposed to it. For positive photoresist, the exposed regions become

soluble to the developer thus are subsequently removed from the substrate; whereas for negative PR, the

exposed areas are crosslinked—or polymerized—, making it difficult to dissolve and remove them.

Figure 4.1 depicts the type of photomask used for each type of PR to obtain an hypothetical interdigitated

electrode array. The desired structure to fabricate is shown in Figure 4.1(a). Then, Figure 4.1(b) shows the

type of mask used for negative PR, where white areas represent the UV-transparent areas, meaning that

the actual IDEA geometry undergoes UV esposure. In contrast, the mask shown in 4.1(c) is the negative

projection of the IDEA structure, thus the exposed areas are all the PR but the actual IDE geometry.

Both types of PR have been used to fabricate C-MEMS structures, showing acceptable results in terms

of electrical conductivity, porosity and elasticity, but besides thin films, negative PR is often preferred due
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(a) Photoresist electrodes (b) Negative photomask (c) Positive photomask

Figure 4.1: Representation of the photomasks used for photolithographycally patterning of interdigitated electrode
arrays for (a) Photoresist electrodes (yellow) developed on the substrate (purple); (b) negative photoresist
and (b) positive photoresist photomasks. White represents UV transparent film and black inked areas.

to the variety of viscosities available, which allows to obtain a wide range of structure thicknesses, ranging

from 0.5µm up to ∼200µm, for the case of the SU-8 photoresists made by MicroChem Corporation.

In this work, SU-8 negative photoresist was used to pattern the structures. The viscosity of the SU-8

was selected depending on the desired height of the structures, and the post-pyrolysis shrinkage amount

was considered for this purpose. As UV radiation is used to transfer the patterns from the photomask to

the photoresist on the substrate, the base material of the photomask has to be chosen depending on the

wavelenght of the UV radiation to be applied to the photoresist. In turn, the type of PR to be used defines

the wavelenght of the UV light. Fortunately, low-cost transparency films are suitable for this purpose and are

widely used [70] for feature sizes down to 10 microns1. The photomasks were printed out on a Fuji 0.007”-

thick transparency film on a resolution of 25,400 DPI for a minimum feature size of 0.0004”/10µm (CAD/Art

Services, Inc. Bandon, OR, USA). As SU-8 negative PR is used as carbon precursor, the geometries to be

crosslinked should be transparent in the stencil, as depicted in 4.1(b). Two different masks were designed

for the carbon structures:(i) the planar interdigitated electrode arrays, and (ii) squares and rectangules to

create the HAR structures with a thick SU-8 layer, which are lined up to the IDEAs.

4.2 Photolithographic patterting of SU-8

As mentioned before, a two-step process was employed in this work to develop: (i) planar electrodes, fol-

lowed by (ii) high-aspect-ratio microposts. All the electrode arrays were fabricated following the conventional

1Early years of last decade, Intelligent Micro Patterning System Solutions, LLC, introduced a gray-scale fabrication system
to reduce manufacturing cost and time for microfluidics and BioMEMS by means of laser patterning directly onto the surface
of the photosensitive material, thus avoiding the need of a physical mask.
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Carbon-MEMS process, which comprises photolithographic patterning of an organic carbon precursor, fol-

lowed by pyrolysis. The fabrication process was carried out inside a class 1000 cleanroom at 22◦C and 38.4%

relative humidity. All the structures were fabricated using 4-inch, P-type (boron-doped) silicon wafers 〈100〉

with a 5000 Å± 5% oxide (SiO2) layer, as the bulk material. These wafers have a sheet resistance of 40-100

Ω-cm and a thickness of 500− 550µm (NOEL Technologies, Campbell, CA, USA)2. The wafers were cleaned

using acetone, isopropyl alcohol and deionized water; then dried with N2. After clean up, the wafers were

dehydrated in an 120◦C oven for 20− 30 minutes. Figure 4.2 depicts the process followed to fabricate both,

the planar electrode and the HAR microposts.

Planar electrodes

spin coating 

UV exposure

development

pyrolysis

1st photolithography step
HAR microposts

spin coating 

2nd photolithography step

UV exposure

development

Silicon substrate Uncrosslinked PR Photomask UV-exposed PR

Crosslinked PR Glassy carbon

3 μm 160 μm

pyrolysis

1.5 μm
80 μm

a) b)

Figure 4.2: Two-step photolithography process to fabricate planar and high-aspect-ratio microstructures

4.2.1 Asymmetric coplanar electrodes

Before any PR coating, the substrates surface was cleaned to maximize adherence between PR and SiO2 layer.

Solvent remains or moisture increase the risk of photoresist to peel off the substrate during development or

2Silicon nitride (Si
3
NO

4
) wafers have been demonstrated to achieve a better performance for electrochemistry applications

when using glassy carbon electrodes; however, silicon dioxide (SiO
2
)-pasivated wafers were prefered due to their lower cost and

comparable performance [56].
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Figure 4.3: Electrode geometry and width switch.

pyrolysis. For this purpose, wafers were rinsed with acetone, isopropyl alcohol and deionized water, and then

dehydrated for 30 minutes in a convection oven at 120◦C.

Three different designs of planar electrodes were evaluated in this work, where the difference among them

relies on the asymmetry ratio between the wide and the narrow electrode widths, EW and EN, respectively.

Taking a base width of 20 µm for EN—which was also taken as the base gap distance between electrodes—EW

was set to 60 µm, 80 µm and 100 µm for each design. The inner gap, GI, and outer gap, GO, were set to

20 µm and 100 µm, respectively. At the middle of each electrode comb finger, they switch width from EW to

EN and viceversa, while keeping GI and GO constant, thus on the second half of the fingers the arrangement

of the electrodes is geometrically inverted, as depicted in Figure 4.3.

The reason of the electrode width switching is that the microfluidic channel was designed to be cyclic,

thus on the first half of the channel the fluid is pumped in one direction and on the second half, it is on the

opposite direction. With this cyclic flow, the hydrostatic pressure gradients on each side of the channel is

minimized, thus allowing the fluid to move only by the electrokinetic effect.

The planar electrodes were fabricated following the standard photolithography process to a photoresist

thickness—before pyrolysis—of 3 µm. For this purpose, SU-8 2002 photoresist was used, since it allows a

spin-coating thickness range between 2 to 3 µm. In this case, SU-8 2002 photoresist (PR) (MicroChem,

Westborough, MA, USA) was spin-coated on the substrate at 1000 rpm for 30 s to a thickness of 3 µm

using a commercial spin-coater (WS650SZ-6NPP, Laurell Technologies, North Wales, PA, USA). Wafers
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Figure 4.4: First photolithography process—planar electrodes.

were centered on the spinner chunk to allow uniform distribution of the photoresist and, to avoid bubble

formation, the resin was poured onto the surface directly from the original container. Usually, bubbles are

easy to remove when using low-viscosity resins, but for those highly viscous, this could take several minutes

and vacuuming was not considered due to the risk of uncontrolled UV exposition. The proper amount of

photoresist poured on the substrate surfaces is also important in this process because if this amount is much

greater than the recommended by the manufacturer and the photoresist is highly viscous, there is a risk of

photoresist buildups at the edges of the wafer, which will affect the final height of the structures on this area

of the substrate. Figure 4.4a shows the silicon wafer after the first spin coating step.

Right after spin coating, the wafers were placed on a hot plate at 95◦C for 2 min for soft-baking. With

this step, temperature helps the deposited photoresist to evaporate solvents, and to evenly distribute the

layer all over the substrate surface in case of build-ups; however, as experienced during previous attempts,

this only works for small accumulations of material.

After letting the wafers to cool down once soft-baked, and the photoresist had hardened up, the planar-

electrodes photomask was faced off against the resin with the inked side of the mask in direct contact with the

resin, as shown in Figures 4.4b and c. This cannot be done before the photoresist has hardened enough, since

the mask could get smeared on resin. Plastic clamps were used to firmly attach the wafer to the photomask

and then placed on the flood exposure system to expose to a dose of 90 mJ/cm2 (Figure 4.4d), using a near
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Figure 4.5: Final structures

UV light (350-450 nm) flood exposure system (AB&M Inc., Scotts Valley, CA, USA) to trigger crosslinking of

the exposed resist. Also, if the inked side of the mask is not in direct contact with the resin, light diffraction

will affect the accuracy of the feature sizes of the mask. The correct exposure time has to be calculated to

apply the right dose of radiation to the resin, depending upon its thickness and viscosity. Underexposure will

lead to undesired removal of material during development, and overexposure will cause larger features than

desired.

A post-exposure bake (PEB) was carried out to complete the crosslinking reaction started during the

exposure and improve adhesion of the crosslinked structures to the substrate. This was carried out at 95◦C

for 2 min. During this process, the transfered patterns start to be visible due to the difference in densities

between crosslinked and uncrosslinked photoresists—if this is not the case, the photoresist was likely under-

exposed.

The last step was development, where the uncrosslinked photoresist is removed from the substrate using

developer solution. For the case of the planar structures, the structures were just rested in the developer

solution for 1 min, allowing diffusive transport to act on the photoresis. Agitation—convective transport—

was an important parameter for a proper development for high aspect ratio structures. Figure 4.5a and b

shows the development step for these devices and the resulting wafer with the patterned microstructures,

respectively.

4.2.2 High-aspect-ratio microposts

Fabrication of high-aspect-ratio microposts on top of the planar electrodes is more challenging. To be able

to align both layers, a mask aligner was required before UV exposure of the second layer. In this case, to
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Table 4.1: Photolithography parameters for high-aspect-ratio microposts using SU-8 2050.

Process step Value

Spin coating velocity 500 RPM for 10 sec with 100 RPM/sec, then 1000
RPM for 30 sec with 300 RPM/sec

Soft baking 2 min at 95◦C

UV exposure energy 90mJ/cm
2

Post-exposure baking 2 min at 95◦C
Development time 1 min

pattern HAR microposts, a second layer of resist (SU-8 2050 (MicroChem, Westborough, MA, USA)) was

spin-coated directly over the recently-developed planar structures at 1000 rpm for 30 s, to a thickness of

160 µm. The second PR layer was soft-baked at 65◦C for 7 min, and then at 95◦C for 35 min. For the

second UV exposure step, the microposts photomask was aligned to the underlying PR electrode structures

using a mask aligner (MA56, Süss MicroTec, Garching, DE), and then UV exposed under energy flux of

270 mJ/cm2. Post-exposure baking was carried out at 65◦C for 5 min, and at 95◦C for 13 min. Finally, the

HAR structures were developed for 16 min with SU-8 developer (MicroChem, Westborough, MA, USA) on

an orbital shaker (3520, Labline Instruments, Maharashtra, IN) at 70 rpm to allow the developer to permeate

small gaps between adjacent microposts.

4.3 Pyrolysis

Once the planar and high-aspect ratio structures were developed, the final step: chemical decomposition—or

carbonization/pyrolysis—step was carried out to obtain the final glassy carbon material. All the structures

were pyrolyzed in an open-ended quartz tube furnace (RD-M, R.D. Webb Company, Inc., Natick, MA, USA).

Once the samples were placed in the tube, a high purity N2 gas flow was diffused across the tube for 10 min

at room temperature at a rate of 2.4 l/min to remove any oxygen trace—the N2 flow was kept constant

throughout the entire process. The tube temperature was then increased from room temperature to 300◦C

at a rate of 5◦C/min and maintained at 300◦C for 1 hour and then ramped up from 300◦C to 900◦C at a

rate of 10◦C/min and maintained at that maximum temperature for 1 hour. The furnace was then turned

off to allow the samples to passively cool down to room temperature. The N2 flow was stopped when the

tube cooled down to 150◦C.
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Inlet Outlet
Laminar flow direction

Figure 4.6: Loop microchannel design and laminar flow to avoid hydrostatic pressure effects on the fluid velocity.

4.4 Microfluidic device assembly and experimental setup

PDMSmicrofluidic channels were prepared using soft-lithography—a low-cost process widely used to fabricate

microfluidic devices [71]—to serve as testing chambers of the IDEs. Instead of the commonly-used linear

channels, a loop channel was designed in this work to prevent hydrostatic pressure differentials to perturb

the electroosmotic pumping caused by the electrodes. Ideally, the laminar nature of the fluid flow prevents

fluid from the inlet and outlet to enter the loop channel. The microfluidic channel is depicted in Figure 4.6.

To fabricate the PDMS microchannels, an SU-8 layer with a thinkess of 100µm—the desired microchannel

height—was patterned on a silicon wafer with the negative impression of the microchannel; this is, the actual

microchannel shape was crosslinked. Then, PDMS was poured over the master to pattern the positive

impression of the microchannels on the PDMS. The hardened PDMS chunk and the IDEs were exposed to

oxygen plasma treatment for two minutes at 30 W and 150 mTorr, to activate the surfaces of both, PDMS

chuck and glass substrate for irreversible bonding3. The PDMS chunks were manually lined up to the IDEs

under an optical microscope and bonded with the carbon pads exposed.

The carbon pads were designed to facilitate electrical connections to the signal generator. The pads were

first covered with a thin tin layer and then soldered to copper wires. Since tin and carbon juntions are not

strong enough—has opposite to carbon/indium juntions—attachment of the wires to the pads had to be

strengthen and protected by covering the soldered joint with a fast epoxy resin. To accelerate the hardening

of the resin, the devices were heated to 80◦C on a hot plate. The final device, ready for experimental testing,

is shown in Figure 4.7.

The experiments were carried out under an optical microscope with a CCD camera attached for video

recording. Ten-second videos were recored once the flow was fully developed and processed later using

ImageJ sorfware with a particle tracking plugin (U.S. National Institutes of Health, Bethesda, MD, USA).

The devices were electrically stimulated using a waveform generator (33210A, Agilent Technologies, Santa

Clara, CA, USA) and the applied signal was monitored by an oscilloscope (TDS 2014B, Tektronix Inc.,

Beaverton, OR, USA). The fluid velocity was determined in a frequency range from 1 kHz to 1 MHz and for

3Surface activation occurs by the creation of Si−OH groups, where the reactive −OH groups form a covalent Si−O−Si bond
when the surfaces are put in contact [72]
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Figure 4.7: Microfluidic device prepared for experimental testing.

amplitudes ranging from 2 to 20 VPP. Figure 4.8 shows the setup used for the experiments.

The fluid propulsion mechanism comprises two pumping chambers containing electrode pairs confined in

the PDMS microchannel (see figure 4.9). Three asymmetry ratios for the wide and narrow electrodes, EW/EN,

were utilized for the planar electrodes: (i) 60 µm : 20 µm, (ii) 80 µm : 20 µm, and (iii) 100 µm : 20 µm.

Furthermore, devices (iv), (v) and (vi) were fabricated by developing 80 µm-height (after pyrolysis) HAR

microposts on top of a separate set of planar electrodes with the same asymmetry ratios as those of (i), (ii)

and (iii), respectively. In all cases, the inner gap (i.e., the distance between opposite electrodes of the same

pair) is GI = 20 µm, and the outer gap (i.e., distance between consecutive electrode pairs) is GO = 100 µm.

The total length of each pumping chamber is 6 mm, thus containing 30, 27 and 25 electrode pairs for devices

(i) and (iv), (ii) and (v), and (iii) and (vi), respectively. Electrode fingers are 3.6 mm long, and each

electrode pair switches widths (EW ↔ EN) halfway from base to the outer end of the finger, while preserving

inner and outer gap lengths, as shown in the inset of figure 4.9. The flow direction is split into forward

and reverse regimes, determined by the direction of the net flow with respect to the electrode arrangement:

forward for a flow going from EN, through GO, toward EW; and reverse for a flow in the opposite direction

[35, 36], as depicted in the inset of figure 4.9.
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Figure 4.8: Experimental setup of the AC electroosmotic micropumps.

Figure 4.9: Schematic diagram of the assembled microfluidic chip. The glassy carbon interdigitated electrode array
(IDEA) is patterned on the silicon substrate, and the fluid is driven inside the cyclic microchannel by
two pumping chambers. The inset shows one pumping chamber and forward flow from EN through GO

towards EW, and the reverse flow going in the opposite direction; the electrode width switch is also shown
halfway from electrode base to tip for both combs.
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4.5 Glassy carbon structural characterization

Thickness and volumetric shrinkage of the resulting carbon structures were characterized using confocal mi-

croscopy (Axio CSM 700, Carl Zeiss AG, Oberkochen, DE). Physical inspection and imaging of microstruc-

tures were carried out by scanning electron microscopy (SEM) (EVO MA25, Carl Zeiss AG, Oberkochen,

DE). Elemental composition of the pyrolyzed material was determined by Energy Dispersive Spectroscopy

(EDS) (XFlash 6—10, Bruker Corp., Billerica, MA, USA). The electrochemical properties of the pyrolyzed

carbon depend upon the type of carbon precursor and the pyrolysis conditions. Raman spectroscopy (inVia

Raman microscope, Renishaw, UK with 514 nm Argon laser, Modu-Laser, LLC, Centerville, UT, USA) was

used to determine the graphitic (sp2) and amorphous carbon (sp3) crystallites content of the electrodes.

A testing solution of distilled water (with a conductivity of σf = 5.5 µS/cm) containing 1 µm-diameter

latex tracers was prepared for experiments. The tracer’s size was determined not only considering a favorable

visibility under a microscope with a 10× objective, but also to avoid dielectrophoretic effect that might disturb

the particle’s velocity on the proximity to the electrodes’ surface. All microfluidic devices were degassed for

15 min, and the testing solution was immediately pipetted into the fluidic chambers to avoid bubbles in the

microchannels. The electrodes were powered by a sinewave generator (33210A, Agilent Technologies, Santa

Clara, CA, USA), while an oscilloscope (TDS 2014B, Tektronix Inc., Beaverton, OR, USA) was used for

signal monitoring. Experiments were carried out at the following working frequencies, fw: 1 kHz, 2 kHz,

10 kHz, 20 kHz, 100 kHz, 200 kHz and 1 MHz. For each frequency, the signal amplitude was swept from 2

to 20 VPP in 2 VPP steps. The operation of the devices was monitored by an optical microscope (PS-888,

Seiwa Optical, Tokyo, JP) with an attached camera (Motic 3000, Motic Instruments, Xiamen, CN) to record

30 s long video clips for each test condition once the flow was fully developed. The fluid velocity was then

measured by tracking 10 tracers throughout different video frames using a particle tracking software (ImageJ,

National Institutes of Health, Bethesda, MD, USA), to later compute their average velocity.

During pyrolysis of the polymeric precursor, non-carbon elements in the material’s molecular structure are

sublimated, while the remaining carbon atoms are reconstituted, forming sp2 and sp3 carbon [37]. Carboniza-

tion leads to isometric shrinkage and considerable increase of electrical conductivity of the pyrolyzed material.

Figure 4.10 shows SEM micrographs of the coplanar and HAR microelectrodes of different asymmetry ratios

after pyrolysis.

Before pyrolysis, the height of the coplanar and HAR structures averaged 2.98 µm and 159.74 µm,

respectively. Average heights after pyrolysis are 1.28 µm and 75.09 µm for coplanar and HAR structures,

respectively, corresponding to a total vertical shrinkage of 57% and 53%. Besides pyrolysis conditions, overall

35



Figure 4.10: Scanning electron micrographs of the fabricated glassy carbon asymmetric coplanar electrodes and high-
aspect-ratio (HAR) microposts. (a) Asymmetric coplanar electrodes with HARmicroposts. Coplanar and
coplanar with HAR microposts asymmetry ratios, respectively: (b,e) 60 µm : 20 µm, (c,f) 80 µm : 20 µm
and (d,g) 100 µm : 20 µm. Scale bars = 100 µm.

shrinkage strongly relates to pre-pyrolysis geometry of the structures. For instance, for coplanar electrodes, a

larger vertical shrinkage is attained for the narrower geometry: 58% for device (i), 56% for device (ii) and 53%

for device (iii) (i.e. shrinkage percentage decreases as the electrode broadens) suggesting an increasing lateral

stress caused by the combination of high temperature and strong adhesion of the pyrolyzed structure to the

substrate. This effect is yet more evident for the case of HAR microposts, where the structures have a small

base area compared to their vertical dimensions, thus lateral and vertical shrinkages contribute considerably

to the volume reduction, averaging 77%, 83%, and 78% for devices (iv), (v) and (vi), respectively. Other

parameters, such as temperature and gas pressure fluctuations inside gas furnace can also affect the shrinkage

variations.

Elemental composition obtained from EDX analysis of the pyrolyzed structures are shown in figure 4.11(a)

and (b) for both, coplanar and HAR structures, respectively. Planar electrode samples’ composition analysis

indicates presence of Carbon (55.13 atomic %), Silicon (18.45 atomic %) and Oxygen (26.42 atomic %).

The last two elements are the components of the SiO2 film on the substrate underneath and around the

electrodes and probing of the silicon dioxide was due to the penetration depth of the electron beam used for

the measurements. No other elements were found in the pyrolyzed material.

EDX spectrum for the HAR structures, in turn, shows a prevailing presence of Carbon (96.02 atomic %),

whereas oxygen content is considerably minor (3.98 atomic %) and Silicon is absent. These results are due

to the fact that the electron beam was located on top of the micropost, thus reducing the electron beam
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Figure 4.11: Energy-dispersive X-ray (EDX) and Raman spectrums of pyrolyzed carbon structures for: (a) planar
electrodes; (b) high-aspect-ratio microposts. Si and O peaks shown on plot (a) resulted the SiO

2
film

probed due to penetration depth of the EDX electron beam (∼ 20 µm), and (c) Raman spectra of the
carbon electrodes fabricated by pyrolyzing SU-8 2002 photoresist at 900◦C for 1 h.

interaction with the substrate.

Figure 4.11(c) shows the Raman spectrum of the pyrolyzed carbon material. D- and G-bands, typically

seen in glassy carbon, were found at 1355 cm1 and 1597 cm1, respectively. The D-band indicates the

presence of sp3 amorphous carbon structures, while the G-band is characteristic of sp2 carbon networks

forming graphitic nano-crystallites. The G-band for single crystal graphite is usually found at 1575 cm1, and

the band shift is caused by an extremely small crystallite size present in the structure [73]. The intensity

ratio of the D-band to the G-band (ID/IG) defines the degree of structural disorder with respect to a perfect

graphitic crystallite, and consequently, the crystallite size is inversely proportional to this ratio: 1/La ∝

ID/IG. The ID/IG ratio of the pyrolyzed carbon in this work measured 0.96, indicating that the carbon

structure is formed by equivalent amounts of ordered (sp2) and disordered (sp3) carbon [74]. From EDX

and Raman results, it can be concluded that the carbonaceous material conforming the electrodes is glassy

carbon, which is widely used as electrode material for electrokinetic applications [56, 57].
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Chapter 5

Bidirectional fluid pumping by AC

electroosmosis

5.1 Amplitude and frequency dependence of fluid velocity

During each half period of the AC signal, 1/2(fw), opposite electrodes alternate their superficial charge,

either from positive to negative or vice versa, in response to the oscillation of the applied polarizing signal.

At low frequencies, the electrode polarization frequency is close to the characteristic double-layer relaxation

frequency, given by

fRC =
(1 + δ) ρfλD

2πεfd
= 828 Hz, (5.1)

where δ is the surface capacitance ratio, ρf is the fluid conductivity, λD is the Debye length, εf is the fluid

permittivity and d is the characteristic macroscopic length scale of the system [75–77]. In this case, the

adjoining suspended ions interact with the polarized electrode, allowing vortex formation to propel the bulk

fluid from the EDL. As the working frequency becomes fw ≫ fRC , no electrostatic interactions occur due

to an extremely short polarization time, thus vortex formation is completely inhibited. Table 5.1 shows the

parameters used to calculate the characteristic double-layer relaxation frequency.
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Table 5.1: Set of parameters and corresponding values to determine the characteristic double-layer relaxation fre-
quency.

Parameter Value Description

εf = ε0εr 6.95× 10−10 F/m Fluid permittivity
σf 5.5× 10−4S/m Fluid conductivity

λD =
√

εfRT

2F 2C0

128.04 nm Debye length of the electric double layers

Cs 0.2 F/m2 Capacitance of the Stern layer (typically used value. See reference [75])
CD =

εf
λD

0.0054 F/m2 Capacitance of the diffuse layer

δ = CD

CS
0.0271 Surface capacitance ratio

d 20 µm Characteristic macroscopic length scale of the system (width of EN))

Additionally, all devices showed higher fluid velocities for frequencies below 1 kHz at low amplitudes

(< 10 VPP), compared to flows observed at 1 kHz at the same amplitudes, which is in good concordance to

the estimated relaxation frequency; however, electrolysis and bubble formation was observed for amplitudes

above 10 VPP, leading to electrode degradation. The fluid velocity was determined using tracers moving

across an electrode-free area of the microchannel, having a reasonable distance to the pumping chambers

(>100 µm). In this sense, it was considered that dielectrophoretic effects on the tracers are negligible, thus

their movement solely depends on ACEO flow [35].

Flow direction determined by the movement of the tracers is shown in the sequence of images presented

in figure 5.1. Here, an electrode asymmetry ratio of 80 µm : 20 µm was used and EN is shown as a reference

to indicate forward flow from top to bottom on each frame. A 1 kHz AC signal was applied by sweeping

the amplitude from 2 to 20 VPP. In figure 5.1(a) through (c), three tracers are tracked moving towards EN,

while others are static due to fouling and adhesion to the substrate. In this experiment, the forward flow

is evident from 10 to 14.4 VPP. Then, at 14.6 VPP, tracers’ recirculation without net flow can be observed

on figure 5.1(d) through (f). Here, tracers 1, 2 and 3, are the farthest from the electrodes and have no

participation in the formed vortices, and show only Brownian motion; however, tracers 4 and 5, which are

closer to the electrodes, move towards the electrode surface. At this point, forward flow at the electrode

surface and reverse flow at the top of the microchannel cancel out each other, thus no net flow is produced.

Finally, tracers moving away from the electrode were tracked for signal amplitudes higher than 14.6 VPP, as

shown in figure 5.1(g) through (i).

The maximum experimental fluid velocities achieved in forward and reverse regimes, respectively, for the

asymmetry ratios (i), (ii) and (iii), over the tested working frequency range (1 kHz ≤ fw ≤ 1 MHz) are

shown in figure 5.2(a) and (b). Clearly, the highest forward (figure 5.2(a)) and reverse (figure 5.2(b)) velocities

are achieved for the lowest working frequencies (1—2 kHz) due to an electrode polarization time larger than

the charge relaxation time, and velocities decrease sharply as fw is increased. For a given device, velocity
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decreases as frequency increases for both flow regimes due to the lack of charge interaction between suspended

ions and polarized electrode surface. This effect was consistently observed on the three different devices for

both forward and reverse flows, as can be seen from figure 5.2(a) and (b), respectively. The velocity ratio of

maximum reverse flow to maximum forward flow for devices (i), (ii) and (iii) was 11.82, 11.76 and 13.90,

respectively, indicating that fluid velocity difference between reverse and forward fluid movement remains

relatively constant, independently of the electrode asymmetry ratio.

The effect of electrode asymmetry ratio on fluid velocity is also visible in figure 5.2(a) and (b), showing

that for the tested devices, the lower the asymmetry ratio, the higher the fluid velocities that can be reached.

This suggests that asEW is increased, more time is required to create uniform charge distribution on the entire

electrode surface, since the electric field is stronger across G1 than across G2 because opposite electrodes are

closer together. This increases the effective separation between adjacent electrode pairs, hence reducing the

driving forces on the bulk fluid due to weak vortex interactions.

Figure 5.2(c) shows the normalized fluid velocity evolution for the electrode systems with three asymmetry

ratios in an amplitude range of 0–20 VPP at 1 kHz. Low applied amplitudes (2–8 VPP) produce an undefined

velocity pattern due to undeveloped flow. However, at 10 VPP, a velocity pattern is established, and at

12 VPP, the maximum forward flow regime is reached. The fluid velocity is reduced as the asymmetry ratio

increases. The highlighted zone shows the transition from forward to reverse regime as the signal amplitude

is increased. This transition occurs between 14 and 16 VPP for the smaller asymmetry ratio (60 µm : 20 µm)

and between 12 and 14 VPP for larger asymmetry ratios. The same velocity pattern with respect to the

asymmetry ratio is observed for the reverse flow as well.

5.2 Effect of microposts integrated onto asymmetric-coplanar elec-

trodes

Fluid velocity for all the tested devices is mapped in figure 5.3, including velocity measurements for planar

electrodes (figure 5.3(a–c) for devices (i), (ii) and (iii), respectively), and planar electrodes with HAR

microposts (figure 5.3(d–f) for devices (iv), (v) and (vi)). Red and blue colors depict areas of forward and

reverse regimes, respectively. Hue intensity indicates the relative magnitude of the velocity.

In contrast to planar electrodes, HAR electrodes (lower row) showed a wider forward flow regime along

AC magnitude and frequency, caused by hydrodynamic channeling; however, maximum velocities are lower

than for devices with planar electrodes (without posts). Maximum velocities achieved by devices (iv), (v)

and (vi) were, respectively, 6.34 µm/s, 9.23 µm/s and 6.02 µm/s in the forward regime; and 79.71 µm/s,
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90.66 µm/s and 14.66 µm/s in the reverse regime. These velocities indicate that a higher electrode contact

surface with the fluid does not necessarily guarantee a fluid velocity increase. One possible explanation is that

closely-spaced posts create a significant drag that retards the propulsion of the flow. Another possibility is

that vertically-generated vortices on two facing micropost surfaces (i.e., developed on same electrode finger)

collide with each other before completing a full vortex, thus propelling the fluid in the opposite direction.

This suggests that micropost separation should be increased to allow complete vortex formation; however,

the amount of microposts on the electrode would be reduced in consequence, considerably decreasing the

electrode surface area in contact with the fluid for a constant microchannel width.

This effect would also explain the fluid direction switching from reverse to forward in the forward regime

(from 4 to 14 VPP and between 1 and 2 kHz, as shown in figure 5.3(d) and (e)), and the eventual fully

reverse flow in both forward and reverse regimes at low frequencies (figure 5.3(f)). We have shown that the

highest velocity for the tested planar devices is achieved by the lowest asymmetry ratio (i.e., 60 µm : 20 µm)

by achieving the largest horizontally-driven vortex formation. However, the short distance between adjacent

microposts (∼ 57 µm) and the large height (80 µm) allows vertically-driven vortices to propel fluid at low

amplitudes due to the small vortex size required to drive the fluid in the reverse direction, since two facing

electrode surfaces contribute to this task. Once the coplanar surfaces become dominant due to a higher

horizontally-driven vortex size, the fluid switches to a forward propulsion and continues until reaching the

reverse regime. This effect applies for all devices and, as the coplanar surfaces become less dominant with

the increase on asymmetry ratio, the vertically-driven vortices become dominant until only reverse flow is

achieved at low frequencies.

These results also suggest that HAR microposts can be used to produce fluid velocities of fairly similar

magnitudes in forward and reverse directions, yielding symmetric flow, by diminishing reverse flow and

amplifying forward flow. For the case of the three asymmetry ratios characterized in this work, the ratio

of maximum reverse regime velocity to the maximum forward regime velocity was reduced as the electrode

asymmetry ratio increased: 12.55, 9.81, 2.41 for devices (iv), (v) and (vi), respectively, indicating that, as

the electrode asymmetry ratio increases, forward and reverse flows become more symmetric, on the expense

of a net fluid velocity decrease. This effect can be observed on figure 5.3(f), where red and blue hues have

practically the same intensity in some points. This behavior is contrasted to that for coplanar electrodes

without posts, where the reverse/forward fluid velocity ratio remained nearly constant.

41



5.2.1 Effect of Shorter Microposts on Flow Development

On an additional analysis, a set of 40 µm-height microposts was fabricated using the same photomasks that

for the HAR microposts; however, this time, an 80 µm PR layer was spin-coated to obtain shorter microposts.

This set of microelectrodes was contrasted to planar and 80 µm-height microposts to study the effect of lower

surface area of the fluid velocity. For this experiment we set the asymmetry ratio to 20 µm:80 µm.

Velocity test results show that asymmetric coplanar electrodes (i.e., device (i)) can develop forward only

at the lower frequencies (e.g., 1 and 2 kHz), while for higher frequencies, only reverse flow is developed.

Figure 5.4 shows maximum fluid velocities in both, (a) forward and (b) backward directions achieved at

different AC frequency conditions, for the three devices. However, as can be seen in Figure 5.4b, the presence

of microposts atop of coplanar electrodes precludes the flow inversion, accompanied by the overall reduction

in fluid flow (as compared to planar electrode structure). The most pronounced flow inversion is evident for

planar electrodes where forward flow velocity is significantly lower than the backflow that takes place after

flow inversion. For 40 µm-height posts-containing electrodes, a low-magnitude backward flow is observed

only at the lowest frequencies (1, 2 and 10 kHz in Fig 5.4b), whereas a significant forward flow is observed

for these electrodes in the entire range of frequencies tested (from 1 to 200 kHz in Figure 5.4a).

Figure 5.5 shows fluid velocity development at 1 kHz with respect to the AC amplitude sweep from 2

to 20 VPP. Here, the higher fluid velocities are achieved at the higher AC amplitudes (i.e. 8 to 20 VPP),

in good concordance with the previously presented results. However, it is notable that at the highest AC

amplitudes, fluid velocities between devices (i) and (iii) become comparable in magnitude, possibly meaning

that without the action of the planar electrodes’ surface, micropost would develop even higher fluid velocities

in the forward direction. Interestingly, for device ii, whereas fluid velocity is reduced in the reverse regime,

flow becomes considerably more symmetrical in magnitude. For this particular case, maximum reverse and

forward fluid velocities are 36.61 µm/s and 14.2 µm/s, respecetively, leading to a reverse/forward ratio of

2.57, in contrast to the 10.49 ratio for the asymmectric coplanar electrodes, and the 11.64 ratio for the 80

µm-height micropost. This results suggest that microposts height with respect to the microchannel height

plays an important role on the flow symmetry of the micropumps, and has to be taken into consideration on

designing application-specific devices, where flow symmetry is more relevant than fluid velocity.
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Figure 5.1: Sequential pictures of tracers tracking during three micropump operational stages: (a), (b) and (c) forward
flow; (d), (e) and (f) recirculation of tracers with zero net flow; and (g), (h) and (i) reverse flow. Electrode
EN is shown in all pictures, indicating forward flow as tracers moving from top to bottom of the frame.
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Figure 5.2: (a) Forward and (b) reverse flow velocity measurements for devices (i), (ii) and (iii), and (c) Normalized
fluid velocity evolution for the three tested electrode asymmetry ratios. Forward and reverse flows at 1
kHz and amplitudes from 0 to 20 VPP. Highlighted area shows transition from forward to reverse flow as
the signal amplitude increases.
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Figure 5.3: Color maps of measured fluid velocity for asymmetric-coplanar electrodes: (a), (b) and (c) for devices
(i), (ii) and (iii), respectively; and asymmetric-coplanar electrodes with HAR microposts: (d), (e) and
(f) for devices (iv), (v) and (vi), depending on applied AC magnitudes and frequencies. Red and blue
colors indicate forward and reverse flow regimes, respectively; intensity of the hue indicates the relative
magnitude of the flow velocity.

Figure 5.4: Maximum (a) forward and (b) backward fluid velocities for frequency range from 1 to 200 kHz for planar
electrodes, planar electrodes with 40 µm-height microposts and planar electrodes with 80 µm-height
microposts.
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Figure 5.5: Fluid velocity development with respect to the AC amplitude sweep at 1 kHz for planar electrodes, planar
electrodes with 40 µm-height microposts and planar electrodes with 80 µm-height microposts.
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Chapter 6

Conclusions and future work

In this work, we presented results on bidirectional fluid pumping using AC electroosmosis due to hydrody-

namic channeling to control flow reversal in a microchannel using 2D and 3D glassy carbon electrodes. For

the first stage of this work, we carried out a Finite Element analysis to qualitatively contrast fluid velocity

for different electrode geometries, including asymmetric coplanar, traveling wave and 3D geometries, to then

study in more depth the flow development using asymmetric coplanar geometry, which is the implemented

geometry for experimental tests.

For the qualitative study, the three AC electroosmotic micropumps were modeled by solving the Poisson-

Nernst-Planck-Navier-Stokes set of equations. The lowest fluid velocity is achieved by the asymmetric copla-

nar electrode array; the traveling wave electrode array achieves one order of magnitude higher than the

asymmetric co-planar array, and the 3D electrode array is the configuration with the highest fluid flow.

Both, the asymmetric co-planar array and the 3D array of electrodes generate a small back-flow that reduces

the overall performance of the micropump, while the traveling wave array of electrodes preserve a positive

flow along all the applied signal cycles. However, the chosen electrode geometry was the asymmetric coplanar

array, since fabrication complexity is considerably lower that the other two geometries.

The Carbon-MEMS fabrication process allows for the efficient fabrication of glassy carbon high-surface

area structures which otherwise are difficult and/or expensive to make with other materials and fabrication

processes. In this study we demonstrated that asymmetric coplanar electrodes develop the higher fluid

velocities when contrasted to high surface area structures. However, the implementation of microposts as

vertical extensions of planar electrodes, while leading to some fluid velocity decrease, may be useful in

situations where flow reversal is not wanted.

Regargin expetimental tests, from the three asymmetry ratios evaluated in this study, the smallest ratio
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(60 µm : 20 µm) produced the highest fluid velocity, and velocity magnitude decreased as the electrode pairs’

asymmetry increased. The use of high-aspect-ratio microposts leads to a reduction of the net fluid velocity

for both, forward and reverse regimes; however, a trend for symmetric velocities was noticed as the electrode

asymmetry ratio increased, suggesting that microposts can be used if nearly identical velocity profiles for

forward and reverse fluid movements are desirable.

Furthermore, we believe that the optimization of the micropost separation developed along the surface of

the planar structures would lead to comparable velocities in both forward and backward directions. This has

a great potential in applications where tunable back and forth pumping is required. Microposts can also be

used as blockage structure for microfluidic mixing, commonly difficult to achieve at small Reynolds numbers

characteristic of the flow in microchannels.

ACEO pumping represents a potential solution for the development of LoC-integrated fluid-driving mech-

anisms as it offers an easy on-chip integration, multiple fluid pumping chambers on a single microfluidic

system, low power consumption, low fabrication costs, and bidirectional fluid pumping as demonstrated in

the present work. Further advances of AC electroosmosis pumping can be gained by utilizing more conductive

electrode materials as well as optimized electrode geometry.
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Appendix A

Joule-heating treatment for C-MEMS

microelectrode arrays

A B S T R A C T

The conventional C-MEMS fabrication process often yields undesired carbon residues that reduce the

reproducibility and performance of final structures by establishing unwanted electrical connections. In this

chapter it is proposed a straightforward method based on the application of a low direct current (DC)

to effectively remove undesired electrical connections. The DC bias causes the breakdown and removal of

short-circuiting carbon residues due to Joule heating, resulting in significantly enhanced performance and

reproducibility of the final structures.

We fabricated carbon-based asymmetric coplanar interdigitated electrode arrays (IDEAs) for alternating

current electroosmotic (ACEO) micropumps using the conventional Carbon-MEMS process. By scanning

electron microscopy (SEM); Raman, energy dispersive X-ray (EDX) spectroscopies; four-point probe resis-

tance measurements; and the combination of ion-beam etching and X-ray photoelectron spectroscopy (XPS),

we confirmed the presence of residual carbon in the gaps of the IDEAs and established its deleterious effect

on electrical properties of the structures and their performance as electrodes in micropumps.

A computational study was also conducted to estimate the temperature increase due to the DC bias

applied across a thin residual carbon. Experimentally, we found that the DC-treated IDEAs exhibited more

than double the fluid velocity in ACEO pumping compared to untreated devices; and also, the coefficient

of variation of the fluid velocity for the DC-treated ACEO micropumps was significantly smaller than that

for the untreated ones. This simple and easy-to-implement method can substantially improve the yield
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of Carbon-MEMS manufacturing, leading to a highly reproducible production of high performance carbon

electronic circuits and microstructures.

A.1 Introduction

In carbon-microelectromechanical systems (C-MEMS), polymer microstructures patterned by photolithogra-

phy on a substrate are carbonized at high temperatures (900–1100◦C) in an oxygenfree environment. During

the process, most of the non-carbon atoms from the polymer are released to the ambient, resulting in a

shrunken and electrically conductive glassy carbon (GC) material. This straightforward and cost-effective

manufacturing process has demonstrated to be versatile enough to enable a very extensive variety of carbon

based micro- and nanostructures, including interdigitated electrode arrays (IDEAs) [78], suspended nanowires

and nanomeshes [79,80], cantilever beams [81], high surface area porous carbon [82], C-MEMS-derived three

dimensional graphene structures [83], and high-aspect ratio microposts [84]. Owing to GC unique material

properties—e.g., high electric conductivity, chemical stability and biocompatibility—C-MEMS have found

several applications, such as electrochemical sensing [85], electrokinetic pumping [53], particle manipula-

tion [86, 87], and triboelectric nano-generation [60].

One key application of C-MEMS IDEAs is alternating-current electroosmotic (ACEO) pumping, used

to drive electrolytic fluids without the need of moving parts and in a controlled fashion. Here, when an

electric potential difference is applied across the electrodes, the electrode polarization establishes an electric

field which draws suspended ions from the electrolyte towards the electrode surface, resulting in an induced

electric double layer (EDL) at the electrode-electrolyte interface. The ions, in turn, drag fluid molecules

along by viscous forces—Stokes’ law. The asymmetric co-planar array is the most commonly used electrode

geometry in ACEO pumps due to their low fabrication complexity and high performance [38, 88]. In this

geometry, the electrode width of one comb, EN, is narrower than the electrode width of the opposite comb,

EW, as shown in Fig. A.1(a). When an AC electric potential bias is applied across the electrode set, the back

and forth movement of fluid molecules creates vortices on the surface of the electrodes. Due to the electrodes

asymmetry, these vortices differ in size, causing a net fluid flow in the direction of the larger vortex, as

depicted in Fig. A.1(b). The ACEO flow is mainly determined by the geometry of the electrodes and by the

frequency and amplitude of the applied signal [39].

52



Figure A.1: Schematic diagram of carbon-based interdigitated electrode arrays (IDEAs) for AC electro-osmotic
(ACEO) pumping. (a) Carbon-based asymmetric coplanar IDEAs, in which the width of one electrode,
EN, is narrower than the width of the opposite electrode, EW. (b) ACEO flow induced by the carbon
IDEAs. (c) A low direct current breaks the residual carbon layers in the gap between two electrodes,
resulting in highly reproducible fabrication of carbon electrodes-based ACEO micropumps.

IDEAs have been used not only for pumping fluids, but also for a variety of biotechnology applications

including fluid mixing [88]; concentration of nanoparticles [89], DNA molecules [37], and microalgae [54]; and

immunoreactions for detection of biomarkers [90]. Commonly, ACEO micropumps and other microstructures

are fabricated using noble metals as electrode material [38]. This practice often yields high manufacturing

costs and requires the use of specialized fabrication facilities, which are not commonly available. For these

reasons, C-MEMS-based microstructures are currently under exploration, not only as a potential alternative

to metallic electrodes for bio-applications [91], but also as an electrochemically-functionalized substrate for

biosensors, biofuel cells and cell culture [92], among others.

The formation of thin residual carbon layers has been one of well-known problems of the C-MEMS

fabrication technology. The carbon residues often connect adjacent electrodes or disturb the structures,

thus lower the reproducibility and performances of the C-MEMS devices [69]. This particularly affects the

performances of carbon electronic devices, such as electrochemical sensors and electrokinetic actuators, by

shunting the electrodes. Furthermore, as the feature size of carbon structures decrease, shunt currents become

more significant in the overall electric circuit. For the case of IDEAs, such as those employed in ACEO

micropumps, the presence of residual carbon in gaps between adjacent electrodes decreases the electrical
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resistance between opposite electrodes, thus affecting the electric field magnitude necessary to induce the

fluidic motion, reducing the performances of these C-MEMS devices in consequence.

Residual carbon found in devices fabricated using the conventional C-MEMS process has at least three

possible causes: (i) residual SU-8 photoresist due to improper development; (ii) diffusion of carbon atoms

onto the substrate during pyrolysis [83, 93]; or (iii) dust contamination during the fabrication process. To

remove these residues, the use of pressurized air to blow them away was initially proposed as a quick solution,

although there is a latent risk of detaching the complete GC structure [69]. Then, an oxygen plasma treatment

was tried to dry etch these residues [86]; however, this method has shown to be effective only for extremely

thin carbon layers [53, 93]. Although efforts have been previously made to characterize and optimize many

fabrication conditions for generation of GC [56], not enough attention has been directed to evaluate and

effectively solve the problems due to the residual carbon.

In this work, we propose a new and straightforward method to remove shunts created by residual carbon

layers in C-MEMS devices, by applying a low DC-bias treatment, which causes the material breakdown

by means of Joule heating due to the high current density distribution along the residual carbon layers.

This current-induced breakdown has been widely used to characterize different carbon allotropes in the

semiconductor industry; for example, to evaluate the current carrying capacity of different carbon-based

interconnects, such as nanotubes [94], nanoribbons [95] and nanofibers [96]; and also to test resistors [97] and

transistors [98] that could help in further miniaturization of microelectronics circuits.

To evaluate the applicability of this technique in our C-MEMS devices, we followed the standard proce-

dure to fabricate asymmetric coplanar GC IDEAs, as those depicted in Fig. A.1(a). The resulting structures

were characterized to endorse the presence of residual carbon at undesired locations—e.g. the electrode

gaps—using scanning electron microscopy (SEM), and Raman and energy-dispersive X-ray (EDX) spectro-

scopies. To estimate the thickness of the residual films, a depth profiling analysis was carried out using

ion-beam etching combined with X-ray photoelectron spectroscopy (XPS). The proposed DC treatment was

then applied for residual carbon breakdown and removal of shunts on the fabricated devices, as depicted in

Fig. A.1(c). Finally, for a quantitative assessment of this technique, electrical resistance and fluid pumping

velocities were measured for devices before and after the DC treatment. We believe that this technique will

provide a straightforward solution to address the unavoidable issues related to residual carbon layers in the

C-MEMS process, resulting in enhanced performance and reproducibility of carbon electrode-based devices

and other electrically-driven microsystems.
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A.2 Materials and methods

A.2.1 Fabrication of carbon IDEAs

Asymmetric coplanar IDEAs with a thickness of 1.5 um were fabricated by standard photolithography in

a class 1000 cleanroom at controlled 22◦C and 38.4% relative humidity, followed by pyrolysis. The narrow

electrode is EN = 20 µm-width, while the wide electrode is EW = 100 µm-width. Each pair of electrodes

has an inner separation of G1 = 20 µm and each pair is separated by G2 = 100 µm from an adjacent pair.

To pattern the polymer precursor microstructures, a silicon wafer with a 500-nm-thick SiO2 layer was used

as substrate (NOEL Technologies, Campbell, CA, USA). Negative photoresist SU-8 2002 (MicroChem Corp,

MA, USA) was spin coated on the substrate surface at 500 rpm for 10 s and then at 1000 rpm for 30 s, to a

final thickness of 3 µm, followed by a soft bake on a hot plate at 95◦C for 2 min. The photoresist was then

UV-patterned to an energy of 90 mJ/cm2 through a film photomask to selectively crosslink the interdigitated

electrode structures. After a post-exposure bake at 95◦C for 2 min, the processed wafer was immersed in SU-

8 developer solution (MicroChem Corp, MA, USA) for 1 min to remove uncrosslinked photoresist. Finally,

developer remains were rinsed off with isopropyl alcohol and deionized water, and the wafer was blow-dried

with N2.

Pyrolysis was carried out in an open-ended tube furnace (Mini #40, R.D. Webb Company, Inc., Natick,

MA, USA) in a N2 environment in a three-step process to a maximum pyrolysis temperature of 900◦C and

a gas flow rate of 2000 sccm, following the temperature profile previously reported by our group [56]. The

pyrolysis results in a considerable isotropic shrinkage of the original SU-8 structures yielding the targeted

IDEAs height of 1.5 µm. Fig. A.2 shows a scanning electron microscopy (SEM) image of the resulting

asymmetric coplanar carbon electrodes.

A.2.2 Device characterization

Physical characterization of the devices was carried out to confirm the presence of residual carbon layers

across the electrode gaps, G1 and G2. First, the IDEAs were visually examined by SEM (EVO MA25, Carl

Zeiss AG, Oberkochen, DE). Then, to determine whether the undesired features in the SEM images are

residual carbon, an elemental analysis was carried out by EDX at three different device locations: (i) carbon

electrodes, (ii) electrodes gap, and (iii) bare SiO2 substrate. The atomic percentage of carbon, silicon and

oxygen was quantified in the EDX analysis. Furthermore, Raman spectroscopy (inVia Raman microscope,

Renishaw, UK) was used to determine the graphitic (sp2) and disordered carbon (sp3) contents of the residual

layers in the electrode gap. Raman spectra were obtained using 514 nm Ar laser excitation (Modu-Laser,
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Figure A.2: SEM image of the fabricated carbon electrodes for AC electroosmotic pumping. Geometric parameters
for each electrode pair are also indicated: the width of narrow electrode, EN = 20 µm, the width of wide
electrode, EW = 100 µm, the gap distance between EN and EW , G1 = 20 µm, and the gap distance
between the electrode pairs, G2 = 100 µm. Scale bar = 100 µm

LLC, Centerville, UT, USA) at the three mentioned locations. The measured Raman scattering signals from

three different surrounding points were averaged for each location. The electrical resistance of the circuit was

measured with a digital multimeter (5491A, BK Precision, Yorba Linda, CA, USA) on untreated devices to

determine the characteristic resistance range of the residual carbon material.

To determine the thickness of the residual carbon layer, an Ar ion beam with a spot size of 100 um and an

etch rate of 0.51 nm/s was used to etch the residual carbon layers of several devices with different residual

carbon resistance values, ranging between 4 kΩ and 11 MΩ. Surface analyses were carried out by means of

XPS at the un-etched residual carbon surface and at an etching depth of 4.2 nm.

Once the presence of a carbon residual layer at the electrodes gap was verified and its thickness was deter-

mined, the un-etched devices were treated with a 4 mA DC applied through the electrode combs using a high

voltage sequencer (HVS448 6000D, LabSmith, Livermore, CA, USA) on 60 s time spans. The resistance of

the devices was measured after each time span and the process was repeated until open circuit was achieved.

A.2.3 Finite element analysis

A computational model was built using COMSOL Multiphysics (COMSOL, Inc., Stockholm, SE) to estimate

the current density and temperature increase across the residual carbon layer due to the applied DC. The

geometry employed in the model consists of a 2D representation of one pair of electrodes with a thin carbon

layer in between, as shown in Fig. A.1(c). This glassy carbon film was set to be 30 nm-thick, 20 µm-long

(inner electrode separation, G1), and 10 µm-wide, defined by the out-of-plane attribute for a 2D model in the

software, dz . For the chosen geometry, the film resistance was taken to be 200 kΩ, fitting in the measured
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resistance range of the fabricated devices. Additionally, a 500 nm-thick SiO2 layer on the Si substrate

was assumed. For this geometry, the temperature distribution T was solved using the time-dependent heat

equation:

ρcCp

∂T (r, t)

∂t
= ∇ (κ∇T (r, t)) +

J2

σ
−Q (r, t) (A.1)

where ρc is the glassy carbon density, Cp is the specific heat to a constant pressure, r is the position, κ

is the thermal conductivity of the heated material (6.3 W/m ·K for glassy carbon [99]), σ = 100S/cm is the

electrical conductivity [100], Q is the heat loss term defined by convective and radiative heat losses, and J

is the local electric current density. For the convective heat transfer coefficient in air, the standard value of

50 W/m2K was used, and for radiative losses, an emissivity of 0.820 [101]. Finally, to define J, an input

current of 4 mA was assumed, matching the experimental value.

A.2.4 Experimental setup for ACEO micropumps

To test the performance of ACEO micropumps before and after DC treatment, 100 um-height PDMS mi-

crochannels were fabricated using standard soft lithography. The PDMS mold was bonded onto the C-MEMS

device using a 2-min air plasma treatment. Copper wires were soldered to the electrode combs and the contact

zones were covered with commercially-available epoxy resin to permanently seal the electric joint. After filling

the PDMS microchannels with bi-distilled water (buffer = 1.2 S/cm) containing 1 um-diameter polystyrene

microbeads as tracer particles, a voltage amplitude sweep from 1 to 12 VPP at 1 kHz was applied to the

electrodes to induce ACEO flow. For each voltage step, a 30-s video was recorded once the flow was fully

developed.

The mean velocity of the microbeads (assumed as the velocity of the fluid) was measured using particle-

tracking software (ImageJ, National Institutes of Health, Bethesda, MD, USA). For this purpose, the particles

velocity was measured on an electrode-free area of the microchannel to avoid contributions of the local vortices

and only considering the movement of the bulk fluid. The microscope was focused approximately halfway

the microchannel height, where the particles showed a stable horizontal movement. A demonstration video

showing the generated electroosmotic flow is available in the supplementary material section.

A.3 Results and discussion

The SEM image in Fig. A.3(a) shows a residual layer of material across the gap of IDEAs. For a better

comparison, carbon microposts were additionally developed on top of the planar electrodes by the second

57



photolithographic patterning step and then peeled off using a micromanipulator (Model 525, Micromanipu-

lator, Carson City, NA, USA) to expose the SiO2 substrate and contrast it against residual carbon. When

using a backscattered electron (BSE) detector for SEM imaging, as in the case of Fig. A.3(a), electrodes and

microposts are darker than the silicon dioxide surface due to the lower atomic number of carbon compared

to silicon [102]—post sidewalls are charged due to the electron beam incidence angle. An intensity analysis

across the electrode gap was measured along the profile shown in Fig. A.3(a) to differentiate between SiO2

and residual carbon. The intensity plot in Fig. A.3(b) shows a clear intensity drop across the electrode

gap, suggesting a material layer with lower atomic number compared to the SiO2 substrate, such as carbon.

Carbon layers in the gap might be formed by carbon diffusion during pyrolysis or by improper development;

for this specific case, dust contamination is unlikely to be the cause due to the uniformity of the residue.

Figure A.3: Physical characterization of interdigitated electrodes and carbon residues. (a) Backscattered-electron
image showing carbon electrodes with microposts, residual carbon, and SiO

2
substrate. The dashed line

between A and B marks denote the line profile for the intensity analysis. (b) The intensity profile along
A–B in (a), where a clear intensity drop is noticed across the electrodes gap. Scale bar = 100 µm

For elemental analysis, the measurement locations are marked on the SEM image in Fig. A.4(a), where

(i) the carbon electrode, (ii) residual carbon across the electrodes gap, and (iii) the bare SiO2 substrate (from

the peeled-off microposts) are shown. The EDX spectra for the corresponding locations are shown in Figs.

A.4(b) and (c). As expected, a high-count carbon peak was found for the electrodes, representing 54.1% of
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the atomic percentage (27.9% silicon and 18% oxygen). Across the small electrode gap, presence of carbon

atoms was also detected, although the peak is considerably lower than for the electrodes. In this case, the

carbon atomic percentage is 17%, whereas for silicon it is 40.8% and it is 42.2% for oxygen, suggesting a thin

residual carbon layer in the electrode gaps. Finally, on the bare SiO2 substrate, a carbon atomic percentage of

4.6% was found, and a 42.9% for silicon and 47.9% for oxygen. The presence of carbon on the bare substrate

could be due to a small amount of carbon atoms diffused onto the SiO2 caused by the high temperatures

reached during pyrolysis. Fig. A.4(c) shows a close view of the carbon peaks from Fig. A.4(b), where a

considerable decrease in the amplitude of carbon peak (at 0.277 keV) is observed as the spectra move from

the (i) carbon electrode to (ii) residual carbon, and to (iii) the SiO2 substrate, where it becomes essentially

null. Silicon peak amplitudes (at 1.739 keV) are constant throughout the three locations, whereas the oxygen

presence (at 0.525 keV) increases from (i) through (iii), as the amount of carbon is reduced, meaning that

more SiO2 is detected instead.

Raman spectroscopy analysis was carried out on the same device locations shown in Fig. A.4(a). Par-

ticularly at the electrode gap, three measurements were taken across the gap width and averaged for a

comprehensive characterization. The characteristic D (1350 cm−1) and G (1590 cm−1) bands, indicating the

presence of amorphous (sp3) and graphitic (sp2) carbon crystallite formations, respectively, were detected not

only at the electrodes, but also across the electrodes gap, as shown in Fig. A.5. The intensity ratio between

the D and G bands, ID/IG, close to 1, and a broad D-band suggest an equivalent amount of amorphous and

graphitic contents in both locations, which is in good agreement with previously reported studies on pyrolytic

carbon using SU-8 as a polymeric precursor [103]. On the SiO2 substrate, no presence of D or G bands was

observed.

XPS analysis of the devices with different electrical resistance was also conducted. Here, an Ar-ion beam

was utilized to investigate changes in the chemical composition across the depth of the residual carbon layer.

Results before and after etching to a depth of 4.2 nm are compared in Fig. A.6. The results of the four

devices were consistent. O1s (532.9 eV) and Si2p (103.5 eV) peaks were found, corresponding to SiO2, in

all cases. C1s peaks are present for all the four devices at a binding energy of 284 eV before etching. After

etching, the peak corresponding to carbon became negligible, meaning that the residual carbon layer was

removed at an etching depth of 4.2 nm or less. Small C1s peaks remained for some devices (not shown in

Fig. A.6), suggesting that the residual carbon is non-uniform along different devices. A possible reason

for this is an uneven spincoated photoresist layer during photolithography, possibly caused by the position

of those specific devices on the wafer, even though the manufacturer recommended fabrication parameters

were followed. Surface analyses were carried out for further etching depths, but no measurable carbon peak
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Figure A.4: EDX spectrometry analysis at different locations of the interdigitated electrode arrays: (i) carbon elec-
trode, (ii) residual carbon layer and (iii) bare SiO

2
substrate. (a) SEM image of locations used for

elemental analysis. (b) EDX spectra showing peaks corresponding to carbon, oxygen, and silicon atoms,
measured at three different locations. (c) Close-up view of a peak corresponding to carbon in (b). Scale
bar = 50 µm

changes were observed.

As identified by EDX, Raman and XPS analyses, the carbon residues shunt the electrodes resulting in

a finite-resistance electric circuit, as depicted in Fig. A.1(b). These observations verify previous findings

that residual carbon layers are formed during the C-MEMS fabrication process and interfere with the normal

operation of carbon electronic circuits [53, 69, 86, 93].

Simulation results shown in Fig. A.7 indicate that with the given geometry and an applied direct current

of 4 mA, the temperature of the residual carbon layer quickly reaches the maximum temperature of 1660.6

K, which is higher than the oxidation temperature of carbon under atmospheric pressure conditions in air

(1200 K to 1600 K) [104], due to the high current density (1.33 × 106 A/cm2). Fig. A.7(a) and (b) show

the cross-sectional geometry of the electrodes gap used for the finite element analysis, and the temperature
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Figure A.5: D (1350 cm−1) and G (1590 cm−1) bands from Raman spectroscopy analysis at three different device
locations: (i) carbon electrode, (ii) residual carbon layer, and (iii) SiO

2
substrate.

Figure A.6: XPS surface analysis before and after etching a residual carbon film. (i) unetched surface and (ii) 4.2 nm
etch depth.

profiles for different time spans after the application of DC at room temperature, respectively. Our model

indicates that the maximum temperature is reached within 1 µs after the current is applied, as shown in Fig.

A.7(c). The temperature obtained from the model can be established from Eq. (A.1), where the Joule heating

term, J2/σ, is directly related to the current density of the residual carbon layer. Since the magnitude of J is

inversely proportional to the available cross-sectional area, which is defined by the nanoscale thickness of the

residual carbon layer, t, the heat generation term will grow as ∼1/t2, resulting in the extreme temperatures

reached in the thin carbon film. Particularly, it was found that for nanometric carbon films, current density

limits are in the order of 106 to 108 A/cm2, which is close to the limit current density of carbon reported

elsewhere [105]. However, it is likely that electrical shunts are open-circuited even at a lower current density

since intrinsic defects and grain quality of the carbon structure have an impact on the heat transport efficiency

and, consequently, on its maximum current density capacity [106]. In our case, the material characterization

suggests high content of amorphous carbon at the electrode gaps (See Fig. A.5), meaning decreased current
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capacity with respect to graphitic crystallites. In practice, it would take much longer to breakdown all the

short circuit points, which are non-uniformly distributed over the complete device area, thus we applied the

DC more than 60 s until open circuits were obtained.

Figure A.7: Finite element analysis of direct current (DC)-induced heating. (a) Model geometry of a 30 nm-thick
residual carbon layer on the electrode gap. (b) Temperature profiles at different time spans of the DC
treatment at room temperature (273 K). (c) Temporal temperature variation at the center of the residual
carbon layer

We measured the electrical resistance of 33 carbon IDEAs fabricated under the same conditions, and

results are shown in Fig. A.8. Surprisingly, only 9 of 33 electrodes (27%) exhibited the desired open circuit

resistance. In other words, almost three quarters of the fabricated devices revealed shunts caused by residual

carbon. Of the 33 samples, 5 (15%) showed resistances below 100 kΩ. To induce open circuits for those

devices, direct current was applied for at least 3 min. The wide resistance range can be attributed to the

particular quantity of amorphous carbon for each device, which is unpredictable during fabrication.

The performance of ACEO micropumps was experimentally evaluated. We used four devices with different

resistance values before the DC treatment: 21.5 kΩ, 236 kΩ, 3.3 MΩ, and infinite resistance (open circuit).

The first three devices were treated with a 4 mA DC, and after the treatment, all exhibited infinite resistance,
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Figure A.8: Change in electrical resistance of the IDEAs before and after the direct current treatment.

meaning that the carbon layer was broken at a random location. The mean maximum flow velocity for the

untreated devices was 12.51 µm/s, achieved with an AC signal of 12 VPP at 1 kHz; whereas that of the

DC-treated devices was 29.03 µm/s under the same conditions, as shown in Fig. A.9(a). We also calculated

the device-to-device variation in the ACEO fluid velocity to quantify the reproducibility of the devices and

the results are shown in Fig. A.9(b). The mean coefficient of variation (CV) of the DC-treated devices was

0.24, while that of the untreated devices with short circuits was 0.92. These experimental results show that

the DC-induced breakdown of residual carbon layers is a keystone method to improve the performance and

reproducibility of C-MEMS IDEAs.

A.4 Conclusions

Residual carbon layers inducing undesired electrical connections between adjacent electrodes have been one

of the critical issues in C-MEMS. Simple air blowing and plasma etching have been proposed to address

this issue, but the efficiency of these methods have not been quantitatively evaluated, and also the integrity

of the carbon structures might be affected with these approaches. In the current contribution, a low DC-

bias treatment is proposed as a novel approach to break down undesired electrical shunts due to residual

carbon layers formed in the conventional C-MEMS process. The direct current applied through the electrode

combs generates a high current density across the residual layers due to their nanometric thicknesses, inducing

dramatic increase of temperature, leading to carbon oxidation. The amorphous carbon content of each device

limits the maximum current density capacity of the material, which might cause open circuits even at lower

temperatures. The breakdown of material occurs at localized regions of the carbon residual layer where the

maximum current density is achieved, which not necessarily occurs half-way of the gap, but is mostly defined
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Figure A.9: Effect of direct current-induced breakdown of residual carbon on the performance and the reproducibility
of carbon-based AC electroosmotic micropumps: (a) fluid velocities for an AC signal ranging from 0 to
12 VPP at 1 kHz, before and after the DC treatment. Mean pm s.d. was plotted. Number of devices,
n = 4. (b) The coefficient of variation (CV) for the tested devices before and after DC treatment. The
mean CVs were indicated with dotted lines.

by the local film thickness and the location of the highest amorphous carbon concentration.

Regardless the initial resistance values, we were able to obtain open circuits with the low-bias treatment to

the carbon IDEAs. The electrodes, which were designed to induce ACEO flow, show significantly enhanced

performance and higher reproducibility after breakdown of carbon residues. However, even DC-treated

devices still exhibited small variations (mean CV = 0.24) in fluid velocity tests. These small device-to-device

variations might be caused by residual carbon that could not be completely removed across the electrodes

gap. The remaining material serves as an extension to the electrodes, thus affecting the effective EW/EN

ratio and gaps between the electrodes of the micropumps, since the electrode width increases and the gaps

decreases. We believe that this easyto-implement method for breaking down residual carbon can be widely

applicable to other carbon electronic circuits with small feature sizes, which are currently used for a wide

variety of applications.
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