

Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

School of Engineering and Sciences

Minimizing the total completion time in scheduling problems with sequence
dependent setup times.

A dissertation presented by

Sarahí Berenice Báez Viezca

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Engineering Science

Major in Industrial Engineering

Monterrey Nuevo León, May 21th, 2019

ii

Dedication

To my parents, who have been my example to follow and main teachers in life.

To my husband, with whom I share this goal, who has patiently supported me in

multiple ways, for years.

iii

Acknowledgements

First of all, I thank God in whom I have decided to trust every stage of my life and now

I can finish this thesis work.

To my thesis directors Dr. Francisco Roman Ángel-Bello and Dr. Ada Álvarez for their

direction and support to develop this project and for their incredible human quality with

which they have taught me.

To my thesis co-advisor, Dr. Belén Melián, for contributing her knowledge and

guidance, as well as receiving me warmly during my stay in Tenerife with her family.

To the Dr. Jobish Vallikavungal for being part of my thesis committee and for its

valuable analysis and contributions that allowed me to enrich this document.

Tecnológico de Monterrey and CONACyT for financial support to do my doctoral

studies.

Many thanks to my family for their deep support and unconditional love, for being so

comprehensive, never leave me alone and make me strong.

To Jorge and Adriana, for opening the doors of their home in Tenerife and teaching me

invaluable life lessons. To Dayana and Natalie, thanks for your friendship and advice

even in the distance.

Thank you, Ana, for your incredible friendship and be always present, thanks for the

laughter no matter what.

Abdiel, thank you for accompanying me at each stage and helping me to enjoy each of

them.

iv

.

Scheduling problems with sequence dependent setup times
minimizing the total completion time.

By

Sarahí Berenice Báez Viezca

Abstract

Objectives and study method: The main goal of this thesis work is to develop tools

to solve some scheduling problems obtaining quality solutions in an efficient way,

reaching improvements in the production times.

This work is dedicated to solving two kinds of scheduling problems. The first

problem consists in giving a schedule for a set of jobs that should be processed in a

set of machines. The term sequence dependent setup times means that the necessary

time to get ready all the necessary to process a certain job depends on the job just

performed. The second problem is actually four problems analyzed in two

environments, and they are the single and parallel machine scheduling problem with

learning and deterioration effects over sequence dependent setup times.

The addressed method in both cases is, firstly, developing a mathematical

formulation for each one able to obtain optimal solutions and verify its scope.

Secondly, it is designed and developed a heuristic algorithm that provides good

solutions in short periods of time, for the first problem.

Contributions and conclusions: For the first problem, the computational experiments

showed that time-dependent based formulations performed much better than the

classic formulations and for the heuristic algorithm, this one has a better

performance than the founded in the literature.

Regarding to the second problem, in this work we present the first mathematical

formulation for the case with learning and deterioration effects overs the sequence

dependent setup times.

v

Content
Abstract .. iv

Chapter 1 Introduction .. 1

1.1 Introduction .. 1

1.2 Motivation ... 2

1.3 Problem Statement and Context .. 2

1.4 Research Question .. 3

1.5 Solution overview ... 3

1.6 Dissertation Organization.. 3

Chapter 2 Literature review ... 5

2.1 Classification of scheduling problems ... 5

2.2 The 𝑷| 𝑺𝑻𝒔𝒅| 𝑻𝑪𝑻 Scheduling problems. .. 6

2.3 Mixed integer formulations ... 8

2.3.1 Assignment-based integer programming formulation 8

2.3.2 A flow-based formulation .. 9

2.3.3 The single commodity flow formulation ... 10

2.4 Scheduling with learning and deterioration effects. 10

2.5 Metaheuristic Algorithms .. 12

2.5.1 GRASP ... 13

2.5.2 VNS ... 14

2.6 Conclusions ... 15

Chapter 3 Mathematical formulations for the parallel scheduling problem with
sequence dependent setup times. .. 16

3.1 Introduction .. 16

3.2 Problem formulation ... 16

3.3 Formulations derived from 𝒎𝑻𝑺𝑷 and 𝑹| 𝑺𝑻𝒔𝒅| 𝑪𝒎𝒂𝒙 ... 17

3.3.1 Assignment-based integer programming formulation for TCT 17

3.3.2 The single commodity flow formulation for TCT....................................... 18

3.3.3 Assignation and flow-based formulation for TCT 20

3.4 Time dependent formulations.. 21

3.4.1 Time dependent formulation based on assignation and flow 22

3.4.2 Time dependent formulation based on flow ... 24

3.5 Computational experiments and Comparisons .. 25

3.5.1 Comparison of the presented formulations on small instances 26

3.5.2 Comparison between time-dependent formulations. 27

3.6 Chapter conclusions .. 29

Chapter 4 A hybrid metaheuristic algorithm for the 𝑷| 𝑺𝑻𝒔𝒅| 𝑻𝑪𝑻 problem 30

4.1 Introduction .. 30

4.2 The proposed metaheuristic solution approach ... 30

4.2.1 Constructive Phase ... 32

4.2 Improvement phase .. 34

4.2.1 Local searches and strategies for their implementation 36

4.3 Computational experiments and Comparisons .. 38

4.3.1 Benefits of hybridizing GRASP with VNS... 39

vi

4.3.2 Comparing with optimal solutions .. 40

4.3.3 Comparing with the state of the art ... 45

4.7 Chapter conclusions .. 47

Chapter 5 Study of the learning and deterioration effects on sequence-dependent
setup times in single and parallel machine scheduling problems 48

5.1. Introduction ... 48

5.2. Formulations of the problems... 49

5.3. Computational experiments ... 53

5.3.1 Single machine .. 53

5.3.2 Parallel machines .. 56

5.4. Conclusions .. 63

Chapter 6 General conclusions ... 64

6.1 Conclusions .. 64

6.2 Future works .. 65

Appendix A. Acronyms Table ... 66

Bibliography... 67

List of algorithms

Algorithm 2.1 Generic pseudo-code for GRASP .. 14

Algorithm 2.2 Generic pseudo-code for GVNS ... 15

Algorithm 4.1 Pseudo-code for the proposed Hybrid Metaheuristic Algorithm.................................... 31

Algorithm 4.2 Pseudo-code for our implementation of the constructive phase. 32

Algorithm 4.3 Pseudo-code for shaking procedure. ... 34

Algorithm 4.4 Pseudo-code for partial destruction procedure. .. 35

Algorithm 4.5 Sketch for our implementation of the RVND procedure. ... 35

List of figures

Figure 3.1 The multilevel network .. 23

Figure 5. 1 Behavior of the CPU time according to the number of jobs, setup ranges and

learning/deteriration levels. .. 55

Figure 5. 2 Averaged gaps grouped by number of jobs according to setup ranges and

learning/deterioration levels. ... 61

Figure 5. 3 Averaged gaps grouped by number of machines according to setup ranges and

learning/deterioration levels. ... 62

vii

List of tables

Table 3. 1 Summary of variables and constraints ¡Error! Marcador no definido.

Table 3. 2 Comparison between the five proposed formulations ¡Error! Marcador no definido.

Table 3. 3 Comparison between time-dependent formulations ¡Error! Marcador no definido.

Table 4. 1 Comparison between HMA and VNS .. 39

Table 4. 2 Comparison of HMA with optimal solutions for 2 and 4 machines. 40

Table 4. 3 Comparison of HMA with optimal solutions for 6 and 8 machines 41

Table 4. 4 Comparison of HMA with best known solutions for 70-job instances (2 and 4 machines) 43

Table 4. 5 Comparison of HMA with best known solutions for 70-job instances (6 and 8 machines) 44

Table 4. 6 Comparison with IGA (2 and 4 machines) .. 45

Table 4. 7 Comparison with IGA (6 and 8 machines) .. 46

Table 5. 1 Proposed models ... 53

Table 5. 2 Gaps of optimal solutions without learning/deterioration effect regarding learning and

deterioration levels for the single machine problems. ... 54

Table 5. 3 Gaps of optimal solutions without learning/deterioration effect regarding learning and

deterioration levels for the parallel machine problems with m=2. ... 56

Table 5. 4 Gaps of optimal solutions without learning/deterioration effect regarding learning and

deterioration levels for the parallel machine problems with m=4. ... 57

Table 5. 5 Gaps of optimal solutions without learning/deterioration effect regarding learning and

deterioration levels for the parallel machine problems with m=6. ... 58

Table 5. 6 Gaps of the optimal solutions without learning/deterioration effect regarding learning

and deterioration levels for the parallel machine problems with m=8. 59

Table 5. 7 Maximum and minimum CPU times (in seconds) spent by two models for parallel machine

problems solving the 30-job instances. ... 63

Table A. 1 Table of acronyms ... 66

Table A. 2 Table of classification scheme for scheduling problems. ... 66

1

Chapter 1 Introduction

1.1 Introduction

Nowadays, the problems in the industry are more complex each time. It is necessary to

develop solution methods capable of achieving high-quality solutions, in very short

computational times.

The scheduling problem is one of these industrial problems that have been extensively

studied due to the multiple applications in several manufacturing systems. For example,

steel, textile, painting, and plastic industries are the major industries requiring highly

skilled scheduling.

The scheduling problem basically consists of assigning resources (for example

machines) to a set of jobs that should be performed in such a way that the process is

optimized, in terms of time, cost or even number of resources.

Bektas (2006) gives some examples of scheduling problems in the production area like

print press scheduling and hot rolling scheduling as applications of the multi- traveling

salesman problem where the setup costs in the production sequence are equivalent to

the costs between cities.

There are many variants for the scheduling problems according to the environment of

the manufacturing or service process.

Some kinds of scheduling problems according to the environment are job shop, flow

shop, single machine, parallel machines, just to mention some.

Another distinctive feature is the objective of the system, which can be reducing costs,

time, delays, etc. And even there are many ways to address the same element to

improve. For example, when it is desired to minimize the time of production, one

approach could minimize the completion time of the final job sequenced at the schedule

(Makespan) or minimize the sum of the completion times of all the jobs (TCT).

Therefore, the problems dealt with in this work are the parallel scheduling problem with

sequence dependent setup times and the parallel and a single machine scheduling

problem with learning/deterioration effects over the sequence dependent setup times. In

both problems, the objective is to minimize the Total Completion Time.

Taking into account the areas of research opportunity obtained from the literature

review, the proposed solution strategies for the first problem are to develop mixed

integer formulations capable of solving medium-sized instances and to design and

implement efficient metaheuristic algorithms. For the second kind of problems (with

learning or deterioration effects) the strategy is to develop mixed integer formulations

that allow us to study the effects of learning and deterioration in scheduling problems

with sequence-dependent setup times.

2

1.2 Motivation

The initial objective of this research was to study the effect of learning or deterioration

on the total completion time in parallel machine problems with sequence dependent

setup times. Although the scheduling problems with sequence dependent setup times

and sequence dependent costs have been studied since the mid-sixties (Allahverdi,

Gupta, & Aldowaisan, 1999) and continue to be extensively studied (Allahverdi et al.,

2008; Allahverdi, 2015), we found that the problem of minimizing the TCT in parallel

machine scheduling with sequence dependent setup times had not been practically

addressed in the literature. For this reason, in this research we first treat the problems

without learning or deterioration effect in order to develop efficient mathematical

formulation and solution methods and then to study these problems considering learning

or deterioration effects.

1.3 Problem Statement and Context

The two addressed problems of this work are scheduling problems where all the jobs are

required to have a single operation. In the first problem, the machines work in parallel

and all of them have the same production speed. In the second problem, we studied two

machine environments, single machine and parallel machines. In both problems, setup

depends on the job to be processed and the immediately preceding job; this is sequence

dependent setup times. The objective function for the two addressed problems is

minimize the Total Completion Time.

Problem 1: Parallel machines scheduling problem with sequence dependent setup times,

minimizing the Total Completion Time.

The problem is to assign n independent jobs to m identical parallel machines and to

determine the order in which jobs should be processed by the machines in such a way

that the sum of jobs' completion time is minimized, that is, the objective is to minimize

the total completion time. Each job has associated a processing time and there are

machine setup times that depend on the order in which the jobs are processed. All the

machines are in an initial state represented by a dummy job. The dummy job does not

have processing time, but there is a setup time to prepare the machines to process a job

just after the dummy job. Each machine can process one job at a time without

preemption, that is, once the processing of a job has started, it cannot be interrupted. All

the machines must be used and they do not have availability restrictions.

Problem 2: Single and Parallel machines scheduling problem with sequence dependent

setup times, and learning and deterioration effects, minimizing the Total Completion

Time.

The second addressed problem has the characteristics of problem 1. Furthermore, it

considers deteriorating and learning effects over the sequence dependent setup times.

These effects are also studied in a single machine environment.

3

1.4 Research Question

The general objectives of this work are, firstly, contributing to the state of art for the

parallel machines scheduling problem with sequence dependent setup times minimizing

the total completion time, and for the scheduling problems with learning and

deteriorating effects over sequence dependent setup times for one and parallel

machines. Secondly, developing efficient tools to solve this kind of problems for the

industry, specifically, tools like mathematical models or heuristic algorithms.

Therefore, we derivate some questions about the solution methods proposed in this

work.

1. Will the new time-dependent integer formulations proposed here for problem

one perform better than the classic formulation based on a formulation for the

multi-Travelling Salesman Problem?

2. Will the algorithm designed for problem one be able to obtain high quality

solutions in reasonable computational?

3. Will the proposed formulation for the parallel scheduling problem with learning

and deteriorating effect over sequence dependent setup times, minimizing the

total completion time allow us to find optimal solutions through a commercial

solver for some instances?

4. Will the optimal solutions found for the first problem still be optimal for the

parallel machines environment of the second addressed problem?

1.5 Solution overview

Our approach for solving the problems tackled in this work is the following:

 For the first problem, we propose a new time-dependent integer formulation with a

better performance than other formulations developed from formulations for the multi-

Travelling Salesman Problem (m-TSP) or for minimizing the makespan in parallel

machine scheduling problems. In addition, we design and implement a hybrid

metaheuristic algorithm able to obtain high-quality solutions in reasonable

computational time for the underlying problem.

The second addressed problem considers learning and deteriorating effects. We develop

two mathematical formulations, one for the single machine problem and one for the

parallel machine problem. Using these formulations, it is possible to addressed the

learning effect and the deterioration effect on sequence dependent setup times.

1.6 Dissertation Organization

The present thesis work is structured as follows in the next chapters:

Chapter 2. It is presented a literature review considering the relevant aspects of both

problems and works related to the solution approach.

4

Chapter 3. Two formulations for minimizing the total completion time for a parallel

machine scheduling problem considering sequence dependent setup times are proposed

and compared with the classical formulation based on an m-TSP.

Chapter 4. It is proposed a metaheuristic algorithm designed to solve the parallel

machines scheduling problem with sequence dependent setup times, minimizing the

total completion time. The performance is compared with the exact method discussed in

chapter 3 for medium instances. Furthermore, it is compared with a previous work

founded in the state of art.

Chapter 5. This chapter deals with the single and parallel machines problems with

learning and deteriorating effects over sequence dependent setup times. Two

mathematical formulations are proposed and the computational analysis is presented

here.

Chapter 6. Mention the general conclusions made throughout this research. Moreover, it

is presented some of the possible practical applications and future research

opportunities to the works introduced in this research.

5

Chapter 2 Literature review

Scheduling is a decision-making process that is used on a regular basis in many

manufacturing and services industries. It deals with the allocation of resources to jobs

over given time periods and its goal is to optimize one or more objectives (Pinedo,

2016).

The different kinds of environments and the variety of constraints involved with the

necessary resources or with the jobs make that the scheduling problem has several

variants. Because of this, this chapter presents a summary of the research developed in

parallel scheduling problem considering sequence dependent setup times minimizing

the Total Completion Time (TCT) and the case when the setup times increase as the

number of sequenced jobs increases (deterioration effect) and decrease as the number of

sequenced jobs decreases (learning effect).

In section 2.1 we present the classification of scheduling problems and their respective

notation proposed by Graham, Lawler, Lenstra, and Kan, (1979). In section 2.2, we

discuss some works related to the problem one, while in section 2.3 we present some

adaptations of mixed integer formulations from the literature that are related to that

problem. In section 2.4 we review some works related to scheduling problem with

learning and/or deteriorating effects. Finally, in section 2.5 we describe some works

related to the metaheuristics procedures used in this research.

2.1 Classification of scheduling problems

Scheduling problems are classified based on a number of factors including the number

of jobs’ stages to process them, the number of machines at each stage, job processing

requirements, setup time/cost requirements, and the performance measure to be

optimized. To be able to refer to the scheduling problems in a concise way, Graham,

Lawler, Lenstra, and Kan, (1979) proposed the following notation. This notation was

adapted by Allahverdi et al., (1999) in the first of his three scheduling surveys

(Allahverdi, 2015; Allahverdi et al., 1999; Allahverdi, Ng, Cheng, and Kovalyov,

2008). The notation consists of three fields 𝛼 |𝛽|𝛾, where 𝛼 denotes the machine

environment, 𝛽 describes the job and machine characteristics and 𝛾 represents the

performance measure to be optimized.

For the first field (𝛼), some kinds of shop environments are:

• Single machine (1)

• Identical machines in parallel (𝑃)

• Machines in parallel with different speeds (𝑄)

• Unrelated machines in parallel (𝑅)

• Job shop (𝐽)

• Flow shop (𝐹)

The field (𝛽) could have more than one entry according to the specifications of the

particular problem. For example, if the problem considers sequence dependent setup

times (𝑆𝑇𝑠𝑑) and release times for the jobs (𝑟𝑗), then the second term is 𝛼 | 𝑆𝑇𝑠𝑑, 𝑟𝑗 | 𝛾

6

Examples of the job and machine characteristics that can be in 𝛽 fielf of the

classification:

• Sequence dependent setup cost (𝑆𝐶𝑠𝑑),

• Sequence dependent setup times (𝑆𝑇𝑠𝑑),

• Release date (𝑟𝑗),

• Precedence constraints (𝑃𝑟𝑒𝑐),

• Due dates (𝑑𝑗).

The last field (𝛾) is the used to describe the objective of the problem, this could be:

• Maximum completion time (𝐶𝑚𝑎𝑥),

• Total completion time (∑𝐶𝑗 𝑜𝑟 𝑇𝐶𝑇),

• Maximum Lateness (𝐿𝑚𝑎𝑥),

• Number of tardy jobs (∑𝑈𝑗).

Using this classification scheme, the first problem addressed in this research is referred

as 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇.

2.2 The 𝑷| 𝑺𝑻𝒔𝒅| 𝑻𝑪𝑻 Scheduling problems.

From the literature review we observed that there are few works dealing with

scheduling problems that simultaneously consider parallel machines, sequence

dependent setup times and the minimization of the total completion time or total flow

time. We will see each of these characteristics in this section in detail.

When the workshop contains more than one machine to perform the same operation, it

is said that the machines are working in parallel. This set of machines is classified as

identical (𝑃), when all the machines have the same speed; as uniform (𝑄), when have

different speed or completely unrelated (𝑅).

A setup time is the time required to prepare the necessary resources (people, machines)

to perform a job (Allahverdi and Soroush, 2008). In different situations, the setup time

varies depending on the sequence of jobs performed in a machine. Chou, Wang, and

Chang (2009) provide some examples of this fact, such as in the chemical,

pharmaceutical and metal processing industries, where cleaning or fixing tasks should

be performed to get ready the equipment to perform the next job.

There are several performance criteria to measure the quality of a scheduling. The most

broadly used criteria is the minimization of the maximum completion time (makespan),

the minimization of the sum of all completion times (TCT) and the minimization of

some kind of tardiness. In particular, the minimization of the TCT is a criterion that

contributes to the maximization of the production flow, the minimization of the work-in

process inventories and balanced usage of resources.

Guinet (1991) is one of the first researchers that proposed heuristic algorithms for

minimizing the mean flow time and the mean tardiness in parallel machine scheduling

problems with sequence dependent setup times. In this research, he studied different

problems of sequencing jobs in parallel processor shops of a textile company with

sequence dependent machine changeover times.

7

There are many researches that considered parallel machines problem with sequence

dependent setup times and the objective of minimizing the Total Weighted Completion

Time (TWCT). Fan and Tang (2006) studied a scheduling problem of minimizing the

TWCT on identical parallel machines considering sequence dependent setup times.

They developed a column generation algorithm that can solve problems up to 10

machines and 60 jobs. Weng, Lu, and Ren (2001) addressed the problem of scheduling

a set of independent jobs on unrelated parallel machines with sequence dependent setup

times to minimize a weighted mean completion time. They proposed and tested seven

heuristic algorithms. Fowler, Horng, and Cochran (2003) studied parallel machine

scheduling problems with sequence dependent setup times considering as objective

function the makespan, the TWCT and the Total Weighted Tardiness (TWT). They

developed a genetic algorithm to assign jobs to machines and applied single machine

dispatching rules to each machine to obtain the sequences.

A related objective to TWCT is the Total Weighted Tardiness (TWT). Driessel and

Mönch (2011) proposed a Variable Neighborhood Search (VNS) to solve a parallel

machines scheduling problem with sequence dependent setup times with precedence

constraints and ready times, minimizing the TWT. The initial solution is constructed

using the rule of apparent tardiness cost with setups and ready times and in cases where

different schedules with the same TWT value are obtained, they used the makespan as a

tie breaker. Schaller (2014) considered the problem of scheduling on parallel machines

with family setup times to minimize total tardiness (TT). They proposed solution

methods based on tabu search and genetic algorithms for that problem.

Many researchers considered TCT as the objective function along with additional

constraints like job release dates, precedence constraints or machine eligibility

constraints. Nessah, Chu, and Yalaoui (2007) addressed an identical parallel machine

scheduling problem to minimize TCT with sequence dependent setup times and release

dates. For this problem, they proved a dominance theorem, developed a lower bound

and proposed an efficient heuristic procedure that is incorporated in a branch and bound

algorithm (B&B). Their computational experiments showed that the B&B algorithm

solved instances up to 40 jobs and 2 machines. Gacias, Artigues, and Lopez (2010)

studied a parallel machine scheduling problem with sequence dependent setup times

and precedence constraints with the objective of minimizing the TCT. They proposed

dominance conditions, defined an exact B&B procedure and a climbing discrepancy

search heuristic.

To solve the identical parallel machine scheduling problem with job deadlines and

machine eligibility constraints minimizing the TCT, Su (2009) designed a B&B

algorithm and a heuristic algorithm. The heuristic algorithm assigns jobs to available

machines one-by-one combining the shortest processing time rule and the minimum

slackness rule to do the assignment. The heuristic is used as an initial upper bound to

the B&B algorithm. Lee, Liao, and Chao (2014) addressed a real-life scheduling

problem in the manufacturing industry. They modelled the problem considering parallel

machines, sequence-dependent setup times, dedicated machines constraints and a

common deadline for all jobs, and developed heuristic methods to solve it. Joo and Kim

(2015) considered an unrelated parallel machine scheduling problem with sequence and

machine dependent setup times, machine dependent processing times, and production

availability constraints. They proposed a mathematical model to find an optimal

solution and a hybrid genetic algorithm.

8

For parallel scheduling problems with sequence dependent setup times and the objective

function of minimizing the TCT, we only found one work reported in the literature.

Morales, M. F. (2015) developed a first metaheuristic algorithm for the addressed

problem. She implemented an Iterated Greedy Algorithm (IGA) that used as

diversification generator which consists of a destructive-constructive process and as

improvement phase a composited local search procedure based on intra-machine and

inter-machine moves by means of relocation and interchange of jobs.

2.3 Mixed integer formulations

It is known that the Asymmetric Travelling Salesman Problem (ATSP) is a general case

of a scheduling problem where the asymmetric matrix of sequence dependent setup

times 𝑠𝑖𝑗 is equivalent to the asymmetric distance matrix and the job processing times

𝑝𝑗 are equivalent to the client service times. For that reason, in this section, we show

some mixed integer formulations related to the multiple ATSP that can be modified to

represent the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem.

2.3.1 Assignment-based integer programming formulation

Bektas (2006) presented an assignment based double-index integer linear programming

formulation for the multiple-Traveling Salesmen Problem (m-TSP) using the Miller-

Tucker-Zemlin Subtour Elimination Constraints (Miller, Tucker, and Zemlin, 1960) and

defining binary variables 𝑥𝑖𝑗:

𝑥𝑖𝑗 = {
1, if the arc (𝑖, 𝑗)is used in the path
0, otherwise

The model is:

𝒎𝒊𝒏 𝒛 =∑∑𝒄𝒊𝒋𝒙𝒊𝒋 (𝟐. 𝟏)

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐:

∑𝒙𝟏𝒋 = 𝒎 (𝟐. 𝟐)

𝒏

𝒋=𝟐

∑𝒙𝒋𝟏 = 𝒎 (𝟐. 𝟑)

𝒏

𝒋=𝟐

∑ 𝒙𝒊𝒋 = 𝟏 (𝒋 = 𝟐,… , 𝒏) (𝟐. 𝟒)

𝒏

𝒊=𝟎,𝒊≠𝒋

∑𝒙𝒊𝒋 = 𝟏 (𝒊 = 𝟐,… , 𝒏) (𝟐. 𝟓)

𝒏

𝒋=𝟏

 𝒖𝒋 − 𝒖𝒋 + 𝒑𝒙𝒊𝒋 ≤ 𝒑 − 𝟏 (𝟐 ≤ 𝒊 ≠ 𝒋 ≤ 𝒏) (𝟐. 𝟔)

 𝒙𝒊𝒋 ∈ {𝟎, 𝟏} (∀𝒊, 𝒋 ∈ 𝑨) (𝟐. 𝟕)

9

The objective function (2.1) minimizes the total travelled distance. Constraints (2.2) and

(2.3) ensure that exactly m salesmen depart from and return back to node 1. Constraints

(2.4) and (2.5) maintain the flow of the route, while constraints (2.5) are the subtour

elimination constraints (SECs) developed by (Miller et al., 1960). In these constraints,

the continuous variables 𝒖𝒊 that indicates the order of the node i in the tour, and 𝑝 is a

parameter to limit the number of nodes that can be visited by any salesman.

2.3.2 A flow-based formulation
Another mixed integer formulation presented in Bektas, (2006) is the adaption for the

m-TSP to the three-index formulation proposed by Christofides, Mingozzi, and Toth

(1981) for Vehicle Routing Problem (VRP) and based on the Miller-Tucker-Zemlin

Subtour Elimination Constraints (MTZ-SECs).

𝑥𝑖𝑗𝑘 = {
1, if the vehicle 𝑘 visits the node 𝑗 immediately after node 𝑖
0, otherwise

𝒎𝒊𝒏 𝒛 =∑∑𝒄𝒊𝒋∑𝒙𝒊𝒋𝒌

𝒎

𝒌=𝟏

 (𝟐. 𝟖)

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐:

 ∑∑𝒙𝟏𝒋𝒌 = 𝟏

𝒎

𝒌=𝟏

 (𝒋 = 𝟏,… , 𝒏) (𝟐. 𝟗)

𝒏

𝒊=𝟏

 ∑𝒙𝒊𝒑𝒌

𝒏

𝒊=𝟏

− ∑𝒙𝒑𝒋𝒌 = 𝟎 (𝒌 = 𝟏,… ,𝒎, 𝒑 = 𝟏,… , 𝒏) (𝟐. 𝟏𝟎)

𝒏

𝒋=𝟏

∑𝒙𝟏𝒋𝒌 = 𝟏 (𝒌 = 𝟏,… ,𝒎) (𝟐. 𝟏𝟏)

𝒏

𝒋=𝟏

 𝒖𝒊 − 𝒖𝒋 + 𝒏∑ 𝒙𝒊𝒋

𝒎
𝒌=𝟏 ≤ 𝒏 − 𝟏 (𝒊 ≠ 𝒋 = 𝟐,… , 𝒏) (𝟐. 𝟏𝟐)

 𝒙𝒊𝒋𝒌 ∈ {𝟎, 𝟏} (∀𝒊, 𝒋, 𝒌) (𝟐. 𝟏𝟑)

The objective function (2.8) minimizes the sum of distances travelled by the salesmen.

Constraints (2.9) assure that each node is visited exactly once. Constraints (2.10) are the

flow conservation constraints and they ensure that once a salesman visits a customer,

then he must also depart from the same customer. Constraints (2.11) verify that each

vehicle is used exactly once, while constraints (2.12) represent the adaption of the

MTZ-SECs for a three- index model.

10

2.3.3 The single commodity flow formulation

Gavish and Graves (1978) extended the formulation of Miller et al., (1960) for the

Travelling Salesman Problem (TSP) to the Multi-Travelling Salesman problem. In this

formulation, the next variables are defined:

𝑥𝑖𝑗 = {
1, if the arc (𝑖, 𝑗)is used in the route
0, otherwise

𝑦𝑖𝑗: the location of the arc (𝑖, 𝑗) in the tour

𝒎𝒊𝒏 𝒛 =∑∑𝒄𝒊𝒋𝒙𝒊𝒋 (𝟐. 𝟏𝟒)

𝒏

𝒋=𝟎

𝒏

𝒊=𝟎

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐:

∑𝒙𝒊𝒋 = 𝟏 (𝒋 = 𝟏,… , 𝒏) (𝟐. 𝟏𝟓)

𝒏

𝒊=𝟎

∑𝒙𝒊𝒋 = 𝟏 (𝒊 = 𝟏,… , 𝒏) (𝟐. 𝟏𝟔)

𝒏

𝒋=𝟎

∑𝒙𝒊𝟎 = 𝒎 (𝟐. 𝟏𝟕)

𝒏

𝒊=𝟎

∑𝒙𝟎𝒋 = 𝒎 (𝟐. 𝟏𝟖)

𝒏

𝒋=𝟎

 ∑𝒚𝒊𝒋

𝒏

𝒋=𝟎

− ∑𝒚𝒋𝒊 = 𝟏 (𝒊 = 𝟏,… , 𝒏) (𝟐. 𝟏𝟗)

𝒏

𝒋=𝟎

 𝒚𝒊𝒋 ≤ (𝒏 −𝒎+ 𝟏)𝒙𝒊𝒋 (𝟐 ≤ 𝒊 ≠ 𝒋 ≤ 𝒏) (𝟐. 𝟐𝟎)

 𝒙𝒊𝒋 ∈ {𝟎, 𝟏} , 𝒚𝒊𝒋 ≥ 𝟎 (∀𝒊, 𝒋 ∈ 𝑨) (𝟐. 𝟐𝟏)

In this formulation, the objective function (2.14) minimizes the total travel costs.

Constraints (2.15) and (2.16) ensure that at each node only arrives and depart one path,

while (2.17) and (2.18) verify that exactly 𝑚 paths depart and return to the node 0

(depot). Constraints (2.19) are the flow restrictions for each node 𝑖. Constraints (2.20)

establish that if the arc (𝑖, 𝑗) is in one path, then it will be at most in the 𝑛 − 𝑚 + 1

position, where the value of 𝑛 −𝑚 + 1 force to have exactly 𝑚 paths.

All the above formulations can be modified to model the 𝑃| 𝑆𝑇𝑠𝑑|𝑇𝐶𝑇 problem. The

adaptation process is shown later in Chapter 3.

2.4 Scheduling with learning and deterioration effects.

Time variations due to frequent repetition of operations are well known in scheduling

literature as learning or deterioration effects. To the best of our knowledge, the concept

11

of learning effect in scheduling problems was introduced by Biskup (1999). After that, a

large number of works has published the effects of learning and/or deterioration on

processing times in scheduling problems.

In general, the theory of learning effects states that the time needed to produce a single

unit continuously decreases with the processing of additional units and that due to the

declining processing times the costs per unit also decline (Biskup, 1999). Also, there are

many situations in which a job that is processed later in a machine sequence consumes

more time than the same job when it is processed earlier (Wu and Lee, 2008), this is

known as deterioration effect.

1 In the position-dependent approach, the time needed to produce a unit decreases

(increases) as the number of repetitions of job (Biskup, 1999). The processing time 𝒑𝒋𝒓

of job j in position r is calculated as 𝑝𝑗𝑟 = 𝑝𝑗𝑓(𝑎, 𝑟), where 𝑝𝑗 is the processing time

without learning effect (normal processing time), 𝑓 is a decreasing (increasing) function

with respect to r and a is a constant learning factor.

Some related researches are: Chen, Wu, and Lee (2006) and Wang, Wang, and Ji

(2012), where the learning and deterioration effects over the processing times are

defined by a function of their starting times. A more recent published work is Ji, Tang,

Zhang, and Cheng (2016). The authors considered the minimization of the total

completion time (TCT) and the makespan on a parallel-machine scheduling problem

with deteriorating jobs and DeJongs learning effect (DeJong, 1957) for overcoming the

drawback associated with the log-linear learning model. They showed that minimizing

the TCT is polynomially solvable, while the minimization of the makespan is NP - hard.

Under group technology considerations, Xingong, Yong, and Shikun (2016) proposed a

model for addressing deteriorating and learning effects in a single machine

environment. They showed that the total completion time problem can be solved in

polynomial time.

The processing times of the already processed jobs are important when human

interactions are significant during the processing of the jobs. For those situations it

might be more appropriate to consider a time-dependent learning/deterioration effect,

due to the learning rate of the operator or the deterioration rate in the cases when

deterioration affect the operator performance.

In the time-dependent approach of the processing times, the time needed to produce a

unit decreases (increases) depending on the sum of the processing times of the all

already scheduled jobs (Kuo and Yang, 2006). The processing time 𝑝𝑗𝑟 is calculated as

𝑝𝑗𝑟 = 𝑝𝑗𝑓(𝑎, ∑ 𝑝[𝑘]
𝑟
𝑘=1), where 𝑝[𝑘] means the normal processing time of job in position

k and f decreases (increases) as the sum ∑ 𝑝[𝑘]
𝑟
𝑘=1 increases.

Kuo and Yang (2006), introduced the time-dependent learning effect. They considered

that the factor, affecting the normal processing time of the job, is modified by the

inclusion of the sum of the processing times of the all already scheduled jobs in the

following way:

12

𝒑𝒋𝒓 = 𝒑𝒋 (𝟏 −∑ 𝒑[𝒌]
𝒓

𝒌=𝟏
)
𝒂

Gawiejnowicz (2008) presented a detailed survey of scheduling problems involving

time-dependent learning effects on processing times of the jobs.

Another kind of learning effect over processing times is the so-called past-sequence-

dependent (p-s-d) setup times introduced by Koulamas and Kyparisis (2008). In the p-s-

d setup time approach, the processing time 𝑝𝑗𝑟 is obtained by the normal processing

time plus a value that depends on the sum of the processing times of the all already

scheduled jobs that is, 𝑝𝑗𝑟 = 𝑠[𝑟] + 𝑝𝑗, where 𝑠[0] = 0 and 𝑠[𝑟] = 𝑏
𝑟 ∑ 𝑝[𝑘]

𝑟
𝑘=1 for 𝑟 =

2,3, … , 𝑛 and b is a constant. The value 𝑠[𝑟] could be interpreted as a setup time that

depends upon the sum of the processing times of the all already scheduled jobs.

Wang and Wang (2013) and Lee (2014) studied a single machine scheduling problem

with p-s-d setups and general effects of deterioration and learning that is, the actual job

processing time is a general function of the processing times of the already processed

jobs and its scheduled position. They showed that the problems of minimizing the

makespan, the total lateness, and the total completion time are polynomially solvable.

Salehi Mir and Rezaeian (2016) addressed the problem of scheduling on identical

parallel machines with past-sequence-dependent (p-s-d) setup times and effects of

deterioration and learning to minimize the total completion time of all jobs. They

proposed two metaheuristic algorithms, based on artificial immune system and ant

colony optimization, showing the second one the better performance of both.

For a recent review on learning and/or deterioration effects for the past sequence-

dependent setup times, an interested reader is referred to Allahverdi (2015).

All the published works mentioned above do not consider setup times for the machines

or that the setup times depend only on the job that is going to be processed and

therefore they can be included in the job processing times. It is known that in several

practical applications the setup times must be explicitly considered, for example in food

processing, chemical, printing or metal processing industries, among others (Allahverdi

et al., 1999).

On one hand, the explicit consideration of sequence dependent setup times in

scheduling problems substantially increases the problem complexity and changes the

structure of the solution process, making the adaptations of the existing methods for

problems without setup times (Avalos-Rosales et al., 2018). Alternatively, it is known

that tremendous savings can be achieved when setup times/costs have been explicitly

included in scheduling decisions in various real world industrial/service environments

(Allahverdi and Soroush, 2008).

2.5 Metaheuristic Algorithms

To solve the 𝑃| 𝑆𝑇𝑠𝑑|𝑇𝐶𝑇 problem for large instances we designed and implemented a

hybrid metaheuristic algorithm. The proposed algorithm is a hybridization of three well

known metaheuristic algorithms: Greedy Randomized Adaptive Search Procedure

(GRASP), Variable Neighborhood Search (VNS) and Iterated Greedy Algorithm (IGA).

13

The VNS is embedded into a multi-start strategy which is GRASP, to give more

diversity to the hybrid algorithm and the shaking procedure in VNS is performed by

applying systematically an IGA. Next we give a brief description of each of these

metaheuristics.

2.5.1 GRASP

Greedy Randomized Adaptive Search Procedure is a multistart algorithm that was first

introduced by Feo and Resende (1989). The GRASP consists of a constructive phase

and an improvement phase. The best local optimum found over all GRASP iterations is

saved as the best found solution (Feo and Resende, 1995).

Solution construction consists of inclusion of one element at a time in an iterative way

to a partial solution under construction until a solution has been completed. At each

iteration the constructive phase, the selection of the next element to be included in the

partial solution is determined by the evaluation of all feasible candidate elements

(candidate list) depending on the greedy evaluation function. A Restricted Candidate

List (RCL) is formed with the best elements from candidate list (according to a

parameter 𝛼, 0 ≤ 𝛼 ≤ 1) and the element to be incorporated into the partial solution is

randomly selected from RCL. When the selected element is incorporated to the partial

solution, the candidate list is updated. This process is repeated until all the elements

have been included in the solution.

The solution obtained in the constructive phase is used as starting solution for the

improvement phase. In early versions of GRASP the improvement phase was made up

of a local search. Later, metaheuristics like tabu search, iterated local search, VND or

VNS, have been implemented as an improvement phase. For more details about GRASP

see the survey by Resende and Ribeiro (2010). A generic pseudo-code for GRASP is

shown in Algorithm 2.1.

Many works have used the GRASP to solve optimization problems. In the third survey

by Allahverdi (2015) it can be found some works that applied the GRASP to solve the

parallel scheduling problems with sequence dependent setup times. Kampke, Arroyo

and Santos (2009) minimizes an objective function that combines the total completion

time and the total number of resources assigned to the parallel unrelated machines with

a reactive GRASP and incorporate a path relinking technique. Park and Seo (2013) deal

with a transporter scheduling problem of ship assembly block operations management

as a parallel machine scheduling with sequence-dependent setup times and precedence

constraints due to their easy transformation of one on another. The objective is to

maximize the workload balance among transporters. They develop a metaheuristic

based on GRASP and conclude that this metaheuristic is promising for transporter

scheduling problems. Armentano and de França Filho, (2007) minimize the total

tardiness relative to the job due dates and the machine environment is uniform parallel

machines. They incorporate adaptive memory principles into their GRASP to solve this

problem.

14

Algorithm 2.1 Generic pseudo-code for GRASP

More recently, Bierwirth and Kuhpfahl (2017) has built a competitive algorithm based

on GRASP that outperforms the state of the art algorithms for the job shop problem, and

Molina-Sánchez and González-Neira (2016) incorporated two utility functions called

Weighted Modified Due Date (WMDD) and apparent tardiness cost to solve the

permutation flow shop.

2.5.2 VNS

The Variable Neighborhood Search (VNS) is based on the idea of a systematic change

of neighborhood both in a descent phase to find a local optimum and in a perturbation

phase to get out of the corresponding valley (Mladenović and Hansen, 1997).

According to Hansen, Mladenović, and Pérez (2008), VNS is based on three facts:

1) A local minimum with respect to one neighborhood structure is not necessarily a

local minimum for another neighborhood structure.

2) A global minimum is a local minimum with respect to all possible neighborhood

structures.

3) For many problems, local minima with respect to one or several neighborhoods are

relatively close to each other.

The General Variable Neighborhood Search (GVNS) consists of three phases, shaking,

local search and move or not. In the shaking, a neighbor solution from the incumbent

solution is randomly chosen. After, the local search step is applied to this neighbor and

the "move or not" step is performed as follows: if the neighbor solution found in the

local search is better than the incumbent solution, then, this neighbor solution becomes

the incumbent solution and the search continue in the first neighborhood; if the

neighbor is not better than the incumbent, the search advances to the next

neighborhood. This procedure is repeated until a stopping criterion is met. A generic

pseudo-code for GVNS is shown in Algorithm 2.2.

15

Algorithm 2.2 Generic pseudo-code for GVNS

To solve the parallel machines scheduling problem with sequence dependent setup

times by applying VNS we have found two works that apply the VNS metaheuristic.

Behnamian and Fatemi Ghomi (2011) presented a min-max bi-objective procedure for

minimizing the makespan and the sum of the earliness and tardiness of jobs in due

window machine scheduling problems, simultaneously. Driessel and Mönch, (2009)

developed a procedure based on VNS to minimize the total weighted tardiness

considering ready times of the jobs and precedence constraints.

Other work that deals with the parallel scheduling problem with sequence dependent

setup times using VNS is Paula et al. (2007). The performance of their VNS algorithm

is compared with three versions of a greedy randomized adaptive search procedure

algorithm.

2.6 Conclusions

In this chapter we have presented some works related to the parallel scheduling problem

with sequence dependent setup times and the scheduling problems with learning and

deterioration effects. Also, we gave some highlights of the two metaheuristic

procedures proposed in this research to solve the addressed problems.

16

Chapter 3 Mathematical formulations for the parallel scheduling
problem with sequence dependent setup times.

3.1 Introduction

The problem addressed in this chapter is classified as 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 using the

classification scheme explained in Chapter 2.1, where P in the alpha field stands for

Parallel machine environment, STsd is for sequence dependent Setup Times, and TCT is

the acronym for Total Completion Time, that is the performance measure.

From the literature review, we observed that this problem has received very little

attention in the specialized literature and that there are no reported mathematical

formulations capable of solving medium-sized data instances. For this reason, in this

chapter we addressed five mixed integer formulations of 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem. First

three models are obtained by adapting the existing ones of related problems and the last

two are developed based on the problem as a variant of the Time Dependent multiple

Traveling Salesmen Problem (TDmTSP).

First, we modify two classical formulations for the multiple Travelling Salesmen

Problem (mTSP) adapting them to parallel scheduling problem with sequence

dependent setup times. The first formulation is formulated from the classical two-index

formulations for the mTSP (Bektas, 2006) by expressing the objective function and the

sub-tour elimination constraints in terms of the TCT. The second formulation is

obtained from a flow-based formulation to the mTSP (Gavish & Graves, 1978) by

modifying the objective function to evaluate the TCT. To obtain the third one, we adapt

a three-index formulation for minimizing the makespan in an unrelated parallel machine

scheduling problem with sequence dependent setup times (𝑅| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥). This

formulation is an adapted version of the best formulation reported in the literature for

the problem (Avalos-Rosales, Angel-Bello, and Alvarez, 2015). Finally, we propose

two new formulations based on time dependent travelling salesman problem. These

formulations are obtained as generalizations of time dependent formulations to the

minimum latency problem (Angel-Bello, Alvarez, and García, 2013).

3.2 Problem formulation

The characteristics and the parameters involved in the problem addressed is presented

below:

• There are 𝑚 identical parallel machines, without preemption or availability

restrictions.

• There are 𝑛 independent jobs to be scheduled in the machines. All jobs are

available at time zero.

• Each job 𝑗 has an associated processing time 𝑝𝑗.

• There are machine setup times 𝑠𝑖𝑗 for processing a job j just after job i, with 𝑠𝑖𝑗 ≠

 𝑠𝑗𝑖, in general. There is a setup time 𝑠0𝑗 for processing the first job on each

machine.

17

The problem consists of assigning n jobs to m machines and determining the order in

which the jobs should be processed on the machines in such a way that the sum of the

jobs’ completion times is minimized, this is, to minimize the TCT.

The problem can be defined on a complete graph 𝐺 = (𝑉, 𝐴), where 𝑉 =
 {0, 1, 2, … , 𝑛} is the nodes set and 𝐴 is the arcs set. The node 0 represents the initial

state of the machines (dummy job) and the nodes in the set 𝐼 = {1, 2, … , 𝑛} correspond

to the jobs. For each pair of nodes {i, j} in 𝑉 there are two arcs {(𝑖, 𝑗), (𝑗, 𝑖)} ∈ 𝐴 that

have associated the setup times 𝑠𝑖𝑗 and 𝑠𝑗𝑖, respectively. Each node 𝑗 ∈ 𝑉 has associated

a processing time, 𝑝𝑗. Since 0 represents the dummy job, the corresponding processing

time is set to 0 (i.e., 𝑝0 = 0). Using the setup times 𝑠𝑖𝑗 and the processing times 𝑝𝑗, we

associate to each arc (𝑖, 𝑗) ∈ 𝐴 the sum of the time required to prepare the machine and

to process the job j just after the job 𝑖, this is the value 𝑡𝑖𝑗 = 𝑠𝑖𝑗 + 𝑝𝑗, (𝑖 ∈ 𝑉, 𝑗 ∈ 𝐼).

Let 𝑃𝑟 = {0, 1𝑟 , 2𝑟 , … , 𝑘𝑟} denote a sequence with 𝑘𝑟 + 1 jobs in machine r containing

the dummy job 0 in the position zero of 𝑃𝑟. We use the notation [𝑖𝑟] to represent the 𝑖-th

job in the sequence 𝑟. Then, the value 𝑡[𝑖][𝑗] is the sum of the time required to prepare

the machine and to process the job in the j-th position just after the job in the 𝑖-th

position. The completion time 𝐶[𝑖𝑟] of the job in the position 𝑖𝑟 is calculated as 𝐶[𝑖𝑟] =

 ∑ 𝑡[𝑗 − 1][𝑗]
𝑖𝑟
𝑗=1 . Note that, on the graph 𝐺 it represents the length of the path from

node 0 to node [𝑖𝑟]. Then, the 𝑇𝐶𝑇 of the sequence 𝑃𝑟 is calculated as 𝑇𝐶𝑇(𝑃𝑟) =

∑ 𝐶[𝑗]
𝑘𝑟
𝑗=1𝑟

= 𝐶[1𝑟] + 𝐶[2𝑟] + ⋯+ 𝐶[𝑘𝑟].

Thus, the problem is formulated as to find 𝑚 disjoint simple paths in 𝐺 starting at

source node 0 that together cover all the nodes in 𝐼 and minimize the objective function,

that can be stated as:

𝒎𝒊𝒏 𝒛 =∑𝑻𝑪𝑻(𝑷𝒓)

𝒎

𝒓=𝟏

=∑∑ 𝑪[𝒋]

𝒌𝒓

𝒋=𝟏𝒓

𝒎

𝒓=𝟏

 (𝟑. 𝟏)

That is, the problem is to find 𝑚 disjoint job sequences (a sequence for each machine)

with dummy jobs at the position zero that together contain all the jobs and minimize the

sum of the jobs’ completion times.

3.3 Formulations derived from 𝒎𝑻𝑺𝑷 and 𝑹| 𝑺𝑻𝒔𝒅| 𝑪𝒎𝒂𝒙

3.3.1 Assignment-based integer programming formulation for TCT

The first formulation is adapted from a formulation for the 𝑃| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 problem

that is obtained directly from the two-index formulation of the mTSP presented in

Bektas (2006). Our fundamental modification to the 𝑃| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 formulation is to

express the objective function and the sub-tour elimination constraints in terms of the

completion times.

To do that, we define the following variables:

18

𝑥𝑖𝑗 = {
1, if the job j is processed just after job i
0, otherwise

𝐶𝑖: the completion time of job 𝑖

Then, the formulation for the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem is as follows:

Model 1

Minimize 𝒛, where:

𝒎𝒊𝒏 𝒛 =∑𝑪𝒊 (𝟑. 𝟐)

𝒏

𝒊=𝟏

Subject to:

∑𝒙𝟎𝒋 = 𝒎 (𝟑. 𝟑)

𝒏

𝒋=𝟏

∑𝒙𝒋𝟎 = 𝒎 (𝟑. 𝟒)

𝒏

𝒋=𝟏

∑ 𝒙𝒊𝒋 = 𝟏 (𝒋 = 𝟏,… , 𝒏) (𝟑. 𝟓)

𝒏

𝒊=𝟎,𝒊≠𝒋

∑ 𝒙𝒊𝒋 = 𝟏 (𝒊 = 𝟏,… , 𝒏) (𝟑. 𝟔)

𝒏

𝒋=𝟎,𝒋≠𝒊

𝒕𝟎𝒊𝒙𝟎𝒊 ≤ 𝑪𝒊 ≤ 𝒕𝟎𝒊𝒙𝟎𝒊 + 𝑻(𝟏 − 𝒙𝟎𝒊) (𝒊 = 𝟏, 𝟐, . . , 𝒏) (𝟑. 𝟕)

𝑪𝒊 − 𝑪𝒋 + (𝑻 + 𝒕𝒊𝒋)𝒙𝒊𝒋 + (𝑻 − 𝒕𝒋𝒊)𝒙𝒋𝒊 ≤ 𝑻 (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊) (𝟑. 𝟖)

𝒙𝒊𝒋𝝐{𝟎, 𝟏} ∀(𝒊, 𝒋) ∈ 𝑨 , 𝑪𝒊 ≥ 𝟎 (𝒊 = 𝟏,… , 𝒏) (𝟑. 𝟗)

Constraints (3.3) and (3.4) establish that there must be 𝒎 initial and 𝒎 final jobs

scheduled according to the number of machines. Constraints (3.5) and (3.6) are the

assignment constrains and they guarantee that each job has a single predecessor and a

single successor in the sequences. Constraints (3.7) initialize the value of 𝐶𝑖 equal to 𝑡0𝑖
when the job 𝑖 is the first job in a sequence and otherwise they are redundant.

Constraints (3.8) are the sub-tour elimination constraints in terms of the completion

times. They calculate the value of 𝐶𝑗 = 𝐶𝑖 + 𝑡𝑖𝑗 when 𝑥𝑖𝑗 = 1, 𝑥𝑗𝑖 = 0 or 𝐶𝑖 = 𝐶𝑗 + 𝑡𝑗𝑖

when 𝑥𝑖𝑗 = 0, 𝑥𝑗𝑖 = 1. If 𝑥𝑖𝑗 = 0, 𝑥𝑗𝑖 = 0 they are redundant. Constraints (3.9) define

the nature of the variables.

3.3.2 The single commodity flow formulation for TCT

Before giving the second formulation, it is represented an expression to evaluate the

𝑇𝐶𝑇 of a sequence of jobs in terms of the position they occupy in the sequence. The

19

completion time of the jobs for each position in any sequence 𝑃𝑟 with 𝑘 jobs is given

by:

 𝑪[𝟏] = 𝒕[𝟎][𝟏]

 𝑪[𝟐] = 𝒕[𝟎][𝟏] + 𝒕[𝟏][𝟐]

 …
 𝑪[𝒌−𝟏] = 𝒕[𝟎][𝟏] + 𝒕[𝟏][𝟐] +⋯+ 𝒕[𝒌−𝟐][𝒌−𝟏]

 𝑪[𝒌] = 𝒕[𝟎][𝟏] + 𝒕[𝟏][𝟐] +⋯+ 𝒕[𝒌−𝟐][𝒌−𝟏] + 𝒕[𝒌−𝟏][𝒌]

Adding the above expressions, we obtain the 𝑇𝐶𝑇 for the sequence 𝑃𝑟 which can be

expressed as:

𝑻𝑪𝑻(𝑷𝒓) = ∑𝑪[𝒊]

𝒌

𝒊=𝟏

= 𝒌𝒕[𝟎][𝟏] + (𝒌 − 𝟏)𝒕[𝟏][𝟐] +⋯+ 𝟐𝒕[𝒌−𝟐][𝒌−𝟏] + 𝒕[𝒌−𝟏][𝒌]

This is:

 𝑻𝑪𝑻(𝑷𝒓) =∑(𝒌 − 𝒊 + 𝟏)𝒕[𝒊−𝟏][𝒊]

𝒌

𝒊=𝟏

 (𝟑. 𝟏𝟎)

From equation (3.10) it can be seen that the contribution to the 𝑇𝐶𝑇 of the job in the

position 𝑞 is equal to (𝑘 − 𝑞 + 1)𝑡[𝑞−1][𝑞], that is, it is equal to the number of jobs in

the sequence from the job in the position 𝑞 multiplied by the value of time 𝑡[𝑞−1][𝑞] =

𝑠[𝑞−1][𝑞] + 𝑝[𝑞] (the setup time of the machine to process the job [𝑞] just after the job

[𝑞 − 1] plus the processing time of job [𝑞]). Using (3.10) the objective function (3.1)

can be expressed as:

𝐦𝐢𝐧 𝒛 =∑𝑻𝑪𝑻(𝑷𝒓)

𝒎

𝒓=𝟏

=∑∑ 𝑪[𝒋]

𝒌𝒓

𝒋=𝟏𝒓

𝒎

𝒓=𝟏

=∑∑(𝒌𝒓 − 𝒋 + 𝟏)𝒕[𝒋−𝟏][𝒋]

𝒌𝒓

𝒋=𝟏𝒓

𝒎

𝒓=𝟏

 (𝟑. 𝟏𝟏)

The second model for the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem is adapted from the single commodity

flow formulation of Gavish and Graves (1978) for mTSP. This formulation uses the

binary variables 𝑥𝑖𝑗 defined for the first formulation and, new integer variables:

𝑓𝑖𝑗 = {
number of jobs in a machine after job i, if xij = 1

0, if xij = 0

 Using these variables, we define the next valid formulation for the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇

problem.

Model 2

𝒎𝒊𝒏 𝒛 =∑ ∑ 𝒕𝒊𝒋𝒇𝒊𝒋 (𝟑. 𝟏𝟐)

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟎

Subject to:

∑𝒙𝟎𝒋 = 𝒎 (𝟑. 𝟏𝟑)

𝒏

𝒋=𝟏

20

∑𝒙𝒊𝟎 = 𝒎 (𝟑. 𝟏𝟒)

𝒏

𝒋=𝟏

∑ 𝒙𝒊𝒋 = 𝟏 (𝒋 = 𝟏,… , 𝒏) (𝟑. 𝟏𝟓)

𝒏

𝒊=𝟎,𝒊≠𝒋

∑ 𝒙𝒊𝒋 = 𝟏 (𝒊 = 𝟏,… , 𝒏) (𝟑. 𝟏𝟔)

𝒏

𝒋=𝟎,𝒋≠𝒊

𝒇𝟎𝒋 ≤ (𝒏 −𝒎+ 𝟏)𝒙𝟎𝒋 (𝒋 = 𝟏, 𝟐, . . , 𝒏) (𝟑. 𝟏𝟕)

𝒇𝒊𝒋 ≤ (𝒏 −𝒎)𝒙𝒊𝒋 (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊) (𝟑. 𝟏𝟖)

∑𝒇𝟎𝒋 = 𝒏 (𝟑. 𝟏𝟗)

𝒏

𝒋=𝟏

𝒇𝟎𝒋 + ∑ (𝒇𝒊𝒋 − 𝒇𝒋𝒊) = 𝟏 (𝒋 = 𝟏,… , 𝒏) (𝟑. 𝟐𝟎)

𝒏

𝒊=𝟏,𝒊≠𝒋

𝒙𝒊𝒋 ≥ 𝒇𝒊𝒋 (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊) (𝟑. 𝟐𝟏)

𝒙𝒊𝒋 ∈ {𝟎, 𝟏} (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊); 𝒇𝒊𝒋 ≥ 𝟎 (𝒊 = 𝟎, 𝟏, . . , 𝒏; 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊) (𝟑. 𝟐𝟐)

Constraints (3.13)-(3.16) are the same that constraints (3.3)-(3.6) in the first

formulation. Constraints (3.17) and (3.18) force 𝑓𝑖𝑗 to be equal to zero when 𝑥𝑖𝑗 = 0

and they provide an upper bound for these variables when 𝑥𝑖𝑗 = 1. Here, 𝑛 −𝑚 + 1 is

the maximum number of jobs that may be processed by a machine, excluding the

dummy jobs. Constraint (3.19) ensures that all the jobs are processed. Constraints

(3.17), (3.18) and (3.20) are the sub-tours elimination constraints and allow calculating

the positions of jobs on the sequences. Constraints (3.21) are valid inequalities proposed

by Godinho, Gouveia, and Magnanti (2008) for the 𝑚𝑇𝑆𝑃. Finally, constraints (3.22)

define the nature of the variables. Note that although the variables 𝑓𝑖𝑗 are defined as

integer variables, they can be considered as real variables in this formulation because

the sense of the objective function, the binary nature of the variables 𝑥𝑖𝑗 and constraints

(3.17) and (3.20) force them to be integer variables. In addition, these facts enable the

variables 𝑓𝑖𝑗 to measure the number of jobs in a sequence after job 𝑖. Therefore, in the

expression (3.12) used to evaluate the 𝑇𝐶𝑇, the variable 𝑓𝑖𝑗 play the same role as the

coefficients (𝑘 − 𝑗 + 1) in the expression (3.10).

3.3.3 Assignation and flow-based formulation for TCT

The third formulation for 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 is an adapted version of the best formulation

reported in the literature for the 𝑅| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 problem (Avalos-Rosales, Angel-

Bello, and Alvarez, 2015). This formulation uses three-index arc binary variables 𝑥𝑖𝑗𝑘

and the two-index assignment binary variables 𝑦𝑖𝑘.

𝑥𝑖𝑗𝑘 = {
1, if the job 𝑗 is processed just after job 𝑖 in machine 𝑘
0, otherwise

21

𝑦𝑖𝑘 = {
1, if the job 𝑗 is processed in machine 𝑘
0, otherwise

𝐶𝑖: is the completion time of job 𝑖

To obtain a valid formulation for our problem, we do not consider the constraints

related to 𝐶𝑚𝑎𝑥 from the original formulation. Using the defined variable, the third

model for 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 can be formulated as follows:

Model 3

𝒎𝒊𝒏 𝒛 =∑𝑪𝒊 (𝟑. 𝟐𝟑)

𝒏

𝒊=𝟏

Subject to:

∑𝒚𝒊𝒌 = 𝟏 (𝒊 = 𝟏, 𝟐, … , 𝒏) (𝟑. 𝟐𝟒)

𝒎

𝒌=𝟏

∑ 𝒙𝒊𝒋𝒌 = 𝒚𝒊𝒌 (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒌 = 𝟏, 𝟐, … ,𝒎) (𝟑. 𝟐𝟓)

𝒏

𝒋=𝟎,𝒋≠𝒊

∑ 𝒙𝒊𝒋𝒌 = 𝒚𝒋𝒌 (𝒋 = 𝟏, 𝟐,… , 𝒏; 𝒌 = 𝟏, 𝟐, … ,𝒎) (𝟑. 𝟐𝟔)

𝒏

𝒊=𝟎,𝒊≠𝒋

∑𝒙𝟎𝒋𝒌 ≤ 𝟏 (𝒌 = 𝟏, 𝟐,… ,𝒎) (𝟑. 𝟐𝟕)

𝒏

𝒋=𝟏

𝑪𝒋 − 𝑪𝒊 + 𝑻(𝟏 − 𝒙𝒊𝒋𝒌) ≥ 𝒙𝒊𝒋𝒌 + 𝒚𝒋𝒌

 (𝒊 = 𝟎, 𝟏, … , 𝒏; 𝒋 = 𝟏, 𝟐, … , 𝒏; 𝒋 ≠ 𝒊; 𝒌 = 𝟏, 𝟐,… ,𝒎) (𝟑. 𝟐𝟖)
𝑪𝟎 = 𝟎 (𝟑. 𝟐𝟗)
𝒙𝒊𝒋𝒌 ∈ {𝟎, 𝟏}, 𝒚𝒊𝒌 ≥ 𝟎, 𝑪𝒊 ≥ 𝟎 (𝒊, 𝒋 = 𝟎, 𝟏, … , 𝒏; 𝒋 ≠ 𝒊; 𝒌 = 𝟏, 𝟐,… ,𝒎) (𝟑. 𝟑𝟎)

Constraints (3.24) ensure that each job is assigned exactly to one machine. Constraints

(3.25) guarantee that every job has exactly one successor in the assigned machine.

Constraints (3.26) establish that every job has exactly one predecessor in the assigned

machine. The predecessor and successor can be either the dummy job or any of the

remaining jobs. Constraints (3.27) ensure that one job, at most, is scheduled as the first

on each machine after the dummy job. Constraints (3.28) break sub-tours and provide a

right processing order allowing the calculation of the completion times of the jobs. The

restriction (3.29) sets the completion times of the dummy jobs to zero. Finally,

constraints (3.30) define the nature of the variables. Note that in previous formulation

the variables 𝒚𝒊𝒌 are stated as non-negative real variables even when they were defined

as binary variables. This is because constraints (3.25) and (3.26) force them to be binary

variables. Constraints (3.28) and (3.29) together allow to calculate the objective

function which is to minimize the value of TCT.

3.4 Time dependent formulations

From expressions (3.10) and (3.11), it can be observed that the sequencing problem is a

particular case of a time-dependent mTSP, given that the contribution of each job to the

objective function depends on its position in the machine sequence. This property will

22

be used for providing two time-dependent mixed integer models for the underlying

problem, which generalize formulations for the Minimum Latency Problem (MLP)

discussed in (Angel-Bello, Alvarez, & García, 2013). The first formulation that we

propose is adapted from the k-Travelling Repairmen Problem (k-TRP) formulation

(Nucamendi-Guillén, Martínez-Salazar, Angel-Bello, and Moreno-Vega, 2016). The

second one can also be seen as a generalization of the formulation proposed by Picard

and Queyranne (1978) for the minimization of the 𝑇𝐶𝑇 in a single machine scheduling

problem with sequence dependent setup times.

3.4.1 Time dependent formulation based on assignation and flow

To get the following formulation let us define the following decision variables.

𝑥𝑖
𝑘 = {

1, if there are (𝑘 − 1) jobs after job i in the sequence
0, otherwise

𝑦𝑖𝑗
𝑘 = {

1, if 𝑗 is sequenced just after job 𝑖 in any machine,
and there are 𝑘 remaininig jobs in the sequence

0, otherwise

The parameter 𝑁 = 𝑛 − 𝑚 + 1 is the maximum number of jobs that can be processed

on a machine.

Using these variables, the first-time dependent model is presented below.

Model 4

𝐦𝐢𝐧𝒛 = ∑𝒄𝟎𝒋

𝒏

𝒋=𝟏

∑𝒌𝒚𝟎𝒋
𝒌

𝑵

𝒌=𝟏

+∑ ∑ 𝒄𝒊𝒋

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

∑𝒌𝒚𝒊𝒋
𝒌

𝑵−𝟏

𝒌=𝟏

 (𝟑. 𝟑𝟏)

Subject to:

∑𝒙𝒊
𝒌 = 𝟏

𝑵

𝒌=𝟏

 (∀𝒊𝝐 𝑰) (𝟑. 𝟑𝟐)

∑𝒙𝒊
𝟏 = 𝒎

𝒏

𝒊=𝟏

 (𝟑. 𝟑𝟑)

∑∑𝒚𝟎𝒋
𝒌

𝒏

𝒋=𝟏

= 𝒎

𝑵

𝒌=𝟏

 (𝟑. 𝟑𝟒)

∑ 𝒚𝒊𝒋
𝒌 = 𝒙𝒊

𝒌+𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

 (∀𝒊𝝐𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏) (𝟑. 𝟑𝟓)

𝒚𝟎𝒋
𝒌 + ∑ 𝒚𝒊𝒋

𝒌 = 𝒙𝒋
𝒌

𝒏

𝒊=𝟏,𝒊≠𝒋

 (∀𝒊𝝐𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏) (𝟑. 𝟑𝟔)

𝒚𝟎𝒋
𝑵 = 𝒙𝒋

𝑵 (∀𝒋𝝐𝑰) (𝟑. 𝟑𝟕)

23

𝒙𝒊
𝒌 𝝐 {𝟎, 𝟏} (∀𝒊𝝐 𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵) (𝟑. 𝟑𝟖)

𝒚𝟎𝒋
𝒌 ≥ 𝟎 (∀𝒊𝝐 𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵)

𝒚𝒊𝒋
𝒌 ≥ 𝟎 (∀𝒊𝝐 𝑰; 𝒋 ≠ 𝒊; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏)

The objective function (3.31) minimizes the total completion time. When 𝑦𝑖𝑗
𝑘 = 1 there

are 𝑘 nodes after node 𝑖 in the sequence and for this reason the variables 𝑦𝑖𝑗
𝑘 have been

multiplied by 𝑘 in (3.31), making the objective function to correspond with the formula

(3.11) and thus, being able to evaluate the 𝑇𝐶𝑇 of any feasible solution. Constraints

(3.32) guarantee that each job is processed by a single machine. Constraint (3.33)

ensures that every machine has assigned at least one job, while constraint (3.34) ensures

that exactly 𝑚 machines are used. These two constraints together ensure that there are

an initial and a final job on each machine. Constraints (3.35) guarantee that every job

has exactly one successor in the assigned machine. This successor can be any other job.

Constraints (3.36) establish that every job has exactly one predecessor in the assigned

machine. This predecessor can be the dummy job or any other job. Constraints (3.37)

are used when there is a sequence with exactly 𝑁 jobs, in other case they are redundant.

Constrains (3.35), (3.36) and (3.37) are the connectivity constraints and guarantee the

continuity of the sequences. Finally, constraints (3.38) establish the nature of the

variables.

To the better understanding of the next time-dependent mathematical model, it is

presented a multi-level network shown in Figure 3.1

Figure 3.1 The multilevel network

In Figure 3.1, each node represents a job and each level represents the position of the

job 𝑖 in the sequence. Then, a sequence is represented by a path that links the dummy

job in any level to the jobs in the lower levels until level 1. The nodes of a same level

cannot be connected due to two or more jobs cannot be processed at the same time on a

same machine and as well there is no arcs between same nodes in different levels due to

a job cannot be processed two or more times.

Level 1 consists of a copy of nodes associated with jobs, levels 2, 3, … ,𝑁 are composed

of a copy of nodes associated with every job plus a dummy job representing the

machines' initial states, while the 𝑁 + 1 level contains a copy of node 0 associated with

the initial state of machines. Each sequence is represented in this network by a path that

24

starts at node 0 (associated with the initial states of machines), visits nodes in lower

levels and ends at a node in level 1. It is said that a node is active at a certain level when

it is visited by a path at that level.

The contribution of each arc (𝑖, 𝑗) used in the solution to the 𝑇𝐶𝑇 depends on the levels

that this arc connects in the network. If arc (𝑖, 𝑗) connects level 𝑘 + 1 with level 𝑘, then

its contribution to the objective function is 𝑘𝑡𝑖𝑗.

Using the multilevel network of Figure 3.1, the underlaying problem consists on finding

𝑚 disjoint paths on the multi-level network. Each path starts from a node 0 in any level

from level 2 to 𝑁 + 1 and ending at nodes in level 1 in such a way that the sum of the

lengths of the paths is minimized. For example, a path can start from node 0 at level 3,

and connect it with the node 2 at level 2 and connect this one with the node 1 at level 1

to finish the sequence. This path follows the order 0-2-1, and contains 2 jobs. The arc

(0,2) connects level 3 with level 2 and this implies that there are 2 more nodes in the

path, after node 0.

3.4.2 Time dependent formulation based on flow
The next model can be obtained from the previous one by expressing all the constraints

in terms of the previously defined binary variables 𝑦𝑖𝑗
𝑘 or also from the multi-level

network (shown in Figure 3.1) redefining the binary variables 𝑦𝑖𝑗
𝑘 for this network.

𝑦𝑖𝑗
𝑘 = {

1, if the arc (𝑖, 𝑗) is used to link the node i in level 𝑘 + 1
with node 𝑗 in level 𝑘

0, otherwise

The second time-dependent model is shown below.

Model 5

𝐦𝐢𝐧𝒛 = ∑𝒄𝟎𝒋

𝒏

𝒋=𝟏

∑𝒌𝒚𝟎𝒋
𝒌

𝑵

𝒌=𝟏

+∑ ∑ 𝒄𝒊𝒋

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

∑𝒌𝒚𝒊𝒋
𝒌

𝑵−𝟏

𝒌=𝟏

 (𝟑. 𝟑𝟗)

Subject to:

∑𝒚𝟎𝒋
𝒌 + ∑ ∑ 𝒚𝒊𝒋

𝒌

𝒏

𝒊=𝟏,𝒊≠𝒋

𝑵−𝟏

𝒌=𝟏

= 𝟏

𝑵

𝒌=𝟏

 (∀𝒋𝝐 𝑰) (𝟑. 𝟒𝟎)

∑𝒚𝟎𝒋
𝟏 + ∑ ∑ 𝒚𝒊𝒋

𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟏

= 𝒎

𝑵

𝒋=𝟏

 (∀𝒊𝝐 𝑰) (𝟑. 𝟒𝟏)

∑∑𝒚𝟎𝒋
𝒌 = 𝒎

𝒏

𝒋=𝟏

𝑵

𝒌=𝟏

 (𝟑. 𝟒𝟐)

𝒚𝟎𝒋
𝒌+𝟏 + ∑ 𝒚𝒊𝒋

𝒌+𝟏 = ∑ 𝒚𝒋𝒊
𝒌

𝒏

𝒊=𝟏,𝒊≠𝒋

𝒏

𝒊=𝟏,𝒊≠𝒋

 (∀𝒊𝝐𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟐) (𝟑. 𝟒𝟑)

𝒚𝟎𝒋
𝑵 = ∑ 𝒚𝒋𝒊

𝑵−𝟏

𝒏

𝒊=𝟏,𝒊≠𝒋

 (∀𝒋𝝐𝑰) (𝟑. 𝟒𝟒)

25

𝒚𝟎𝒋
𝒌 𝝐 {𝟎, 𝟏} (∀𝒊𝝐 𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵) (𝟑. 𝟒𝟓)

 𝒚𝒊𝒋
𝒌 𝝐 {𝟎, 𝟏} (∀𝒊𝝐 𝑰; 𝒋 ≠ 𝒊; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏)

The objective function (3.39) uses the same expression to evaluate the 𝑇𝐶𝑇 that the

previous model. Constraints (3.40) are similar to (3.32) and they ensure that each job is

processed by a single machine. Constraints (3.41) and (3.42) are equivalent to

constraints (3.33) and (3.34) and together they ensure that there are an initial and a final

job on each machine. Constraints (3.43) are the flow conservation constraints and they

guarantee the continuity of the paths. Constraints (3.44) are used when there are

sequences that contain exactly N jobs, otherwise they are redundant. Finally, constraints

(3.45) establish the nature of the variables.

From now on we will refer to the previous formulations to as Model1, Model2, Model3,

Model4 and Model5 according to the order in which they were presented. A summary

with the number of binary variables, real variables and constraints contained in each

formulation is shown in table 3.1

Table 3.1 Summary of variables and constraints

 Binary variables Real variables Constraints

Model1 𝒏𝟐 + 𝒏 𝒏 𝒏𝟐 + 𝟐𝒏 + 𝟐

Model2 𝒏𝟐 + 𝒏 𝒏𝟐 𝒏𝟐 + 𝟐𝒏 + 𝟑

Model3 (𝒏𝟐 + 𝒏)𝒎 𝒏𝒎+ 𝟏 𝒏𝟐 + 𝟐𝒏𝒎+ 𝒏 +𝒎+ 𝟏

Model4 𝒏(𝒏 −𝒎+ 𝟏) 𝒏𝟐(𝒏 −𝒎+ 𝟏) 𝟐𝒏(𝒏 −𝒎+ 𝟏) + 𝟐

Model5 𝒏𝟐(𝒏 −𝒎) + 𝒏 - 𝒏(𝒏 −𝒎+ 𝟏) + 𝟐

3.5 Computational experiments and Comparisons

In order to analyze the effectiveness of the proposed formulations we conducted two

types of experiments. First, we compare the results obtained by all the formulation for

small instances. Second, for larger instances we compare results obtained by the two

time-dependent formulations regarding the size of instances that they can solve

optimality and the computational time to reach the optimal solution.

All experiments described in this section were performed on an Intel Core 2 Duo CPU

at 3.00 GHz and 3.21 GB of RAM under Windows OS. The formulations are

implemented in C++ using concert technology of professional solver CPLEX 12.6.

To conduct the experiments, we took two groups of instances from literature and

generated one more group. The first group involves small instances proposed by

Vallada and Ruiz (2011). In these instances, combinations of number of jobs 𝑛 =
 {6,8,10,12} and number of machines 𝑚 = {2,3,4,5} were considered. The setup times

𝑠𝑖𝑗 and the processing times 𝑝𝑗 were generated using the uniform distribution. For setup

times there are three intervals: 𝑆1: [1-49], 𝑆2: [1-99] and 𝑆3: [1-124] and for processing

times only one interval which is [1-99]. There are 10 replicates for each possible

combination of number of machines, number of jobs and range of setup times, obtaining

a total of 480 small instances.

26

The second group was generated by Avalos Rosales (2014) using the same instance

configuration described in Vallada and Ruiz (2011) with 𝑛 = {15,20,25,30} and 𝑚 =
 {2,4,6,8} and the same intervals to generate setup and processing times. Finally, we

complement the set of instances by generating a third group with 𝑛 = {40, 50,60} and

the same parameters for setup and processing times used in Avalos Rosales (2014).

There are 5 replicates for each possible combination of number of machines, number of

jobs and range of setup times, obtaining a total of 420 medium instances.

Note that the instances took from literature were generated for unrelated parallel

machines. Then, since we are working with identical machines, we have taken the data

of the first machine in each instance.

3.5.1 Comparison of the presented formulations on small instances

The purpose of this first experiment is to evaluate the behavior of all the formulations

regarding to the size of solved instances and the CPU time to reach the optimal

solutions. To perform this assessment, we will use small instances grouped according to

size (𝑛,𝑚) and the setup time range (𝑆).

In table 3.21, columns 1 and 2 refer to the size of the instances in terms of number of

jobs and number of machines, respectively, while column 3 indicates the setup time

ranges. Entries in columns 4, 6, 7, 9 and 10 exhibit the CPU time (in seconds) elapsed

by the solver using each model, respectively. Columns 5 and 8 display the number of

optimal solutions found by model1 and model3, respectively. For the other models these

values are not shown because the solver using these formulations was able to reach all

the optimal solutions. Values of the CPU times in table 3.1 are averaged over 10

instances and the solver was allowed to run a maximum time of one hour (3600 sec.) for

each instance.

Table 3.2 Comparison between the five proposed formulations

 Model1 Model2 Model3 Model4 Model5

n m S CPU

time (s)

nbOpt CPU

time (s)

CPU

time (s)

nbOpt CPU

time (s)

CPU

time (s)

6 2 S1 0.29 10 0.41 0.39 10 0.16 0.14
 S2 0.37 10 0.41 0.42 10 0.16 0.15
 S3 0.30 10 0.34 0.32 10 0.15 0.15

 3 S1 0.27 10 0.33 0.36 10 0.15 0.15
 S2 0.32 10 0.28 0.45 10 0.15 0.15
 S3 0.29 10 0.30 0.39 10 0.15 0.15

 4 S1 0.25 10 0.28 0.44 10 0.15 0.14
 S2 0.27 10 0.27 0.37 10 0.13 0.14
 S3 0.25 10 0.26 0.34 10 0.14 0.15

 5 S1 0.21 10 0.23 0.27 10 0.14 0.14
 S2 0.21 10 0.22 0.26 10 0.14 0.15
 S3 0.19 10 0.22 0.26 10 0.13 0.15

8 2 S1 3.48 10 0.82 8.82 10 0.20 0.20
 S2 2.07 10 0.62 5.81 10 0.18 0.18
 S3 1.53 10 0.60 3.76 10 0.19 0.17

27

From table 3.2 it can be observed that Model2, Model4 and Model5 obtained optimal

solutions for all instances up to several orders of magnitude faster than Model1 and

Model3 and that these last two models begin to fail in instances of 12 jobs. Note that

model2 was able to obtain all the optimal solutions but spending significantly more

computational time than model4 and model5. Another fact that is observed is that as the

number of machines and the range of setup times decrease, instances are more difficult

to solve for Model1, Model2 and Model3 while this fact does not seem to affect Model4

and Model5. The latter is expected because when there are fewer machines the job

sequences are longer. In summary, we can conclude that the winners in this experiment

are the time-dependent based formulation model4 and model5.

3.5.2 Comparison between time-dependent formulations.

Taking into account that both time-dependent formulations reached optimal solutions

for all instances and that they spent significantly less CPU time than model2, in the

second experiment we compare these two formulations regarding the CPU time needed

to reach the optimal solutions.

 3 S1 1.12 10 0.56 3.37 10 0.20 0.17
 S2 1.09 10 0.42 2.67 10 0.19 0.17
 S3 0.69 10 0.51 2.17 10 0.19 0.16
 4 S1 0.45 10 0.49 1.55 10 0.17 0.15
 S2 0.48 10 0.31 0.70 10 0.17 0.15
 S3 0.41 10 0.35 0.63 10 0.17 0.15
 5 S1 0.39 10 0.32 1.22 10 0.16 0.16
 S2 0.31 10 0.30 1.11 10 0.16 0.16
 S3 0.33 10 0.28 1.02 10 0.16 0.15

10 2 S1 133.31 10 3.63 435.99 10 0.21 0.17
 S2 48.84 10 1.42 178.96 10 0.21 0.16
 S3 28.05 10 1.18 110.53 10 0.22 0.17
 3 S1 12.21 10 1.85 79.60 10 0.22 0.18
 S2 10.52 10 1.16 63.38 10 0.23 0.23
 S3 2.72 10 0.66 10.81 10 0.21 0.17
 4 S1 3.61 10 0.78 7.55 10 0.19 0.16
 S2 2.44 10 0.69 4.85 10 0.18 0.16
 S3 1.22 10 0.55 3.38 10 0.20 0.18
 5 S1 1.78 10 0.60 3.59 10 0.20 0.16
 S2 0.97 10 0.51 2.55 10 0.20 0.16
 S3 0.64 10 0.39 2.05 10 0.20 0.16

12 2 S1 3564.90 1 196.75 - 0 0.31 0.27
 S2 1240.83 2 17.97 4268.82 1 0.26 0.22
 S3 1232.67 9 7.05 2896.41 3 0.30 0.25
 3 S1 1216.24 7 10.56 2005.77 2 0.23 0.22
 S2 809.55 9 6.08 858.97 4 0.27 0.24
 S3 36.94 10 1.70 881.58 10 0.27 0.25
 4 S1 280.83 10 4.00 1295.10 10 0.22 0.19
 S2 28.12 10 1.92 199.54 10 0.23 0.21
 S3 3.26 10 1.14 45.80 10 0.23 0.22
 5 S1 9.76 10 1.68 40.72 10 0.24 0.22
 S2 1.61 10 0.81 12.58 10 0.22 0.19
 S3 1.03 10 0.65 9.92 10 0.22 0.17

28

To carry out the next experiment we group the instances according to the values of 𝑛

and 𝑚. We do not show the results according the different setup time ranges we did not

find significant differences in the computational time for the different ranges.

In Table 3.3 only CPU times are shown because both formulations reached all the

optimal solutions. Columns 1 and 2 refer to the size of instances. Columns from 3 to 6

show the CPU times (in seconds) spent by the solver to achieve optimal solution.

Columns 3 and 4 are associated with Model4 while Columns 5 and 6 with Model5.

Values in columns 3 and 5 are related to the instance that consumed more

computational time to reach the optimum solution while values in columns 4 and 6 are

to the instance that was solved faster within the 15-instance group.

Table 3.3 Comparison between time-dependent formulations

 Model4 Model5

n m Max CPU time(s) Min CPU time(s) Max CPU time(s) Min CPU time(s)

15 2 0.989 0.218 0.965 0.252

4 0.533 0.220 0.530 0.207

6 0.432 0.180 0.382 0.197

8 0.212 0.156 0.264 0.193

20 2 1.985 0.407 2.723 0.489

4 0.780 0.304 1.090 0.399

6 0.554 0.261 0.746 0.368

8 0.363 0.210 0.642 0.317

25 2 6.862 0.877 5.571 1.135

4 2.500 0.516 4.688 0.784

6 1.120 0.420 1.603 0.724

8 0.802 0.339 1.387 0.631

30 2 161.905 1.572 22.267 2.045

4 4.575 1.106 6.854 1.616

6 2.197 0.748 3.777 1.365

8 1.825 0.587 2.270 1.198

40 2 1036.240 67.582 147.227 22.032

4 295.470 4.401 35.676 6.105

6 9.218 2.578 11.422 3.265

8 5.188 1.359 10.563 2.390

50 2 12579.500 359.672 897.584 32.938

4 1886.590 31.159 212.862 29.715

6 334.063 11.109 27.500 14.078

8 22.406 10.281 39.235 12.890

60 2 49411.9* 8048.04 7212.420 846.912

4 6827.35 481.74 766.593 370.487

6 2829.81 79.615 355.856 84.222

8 1031.44 45.229 127.082 49.571

From this table it can be seen that formulations have a similar performance up to 30

jobs. From 40-job instances Model5 begins to have better performance than Model4,

with a significant difference for the hardest instances, i.e. for instances with fewer

machines. The symbol “*” means that the solver using model 4 could not solve 4 of the

29

15 instances with 60 jobs and 2 machines. For unresolved instances the maximum gap

was 0.7552%.

3.6 Chapter conclusions

In this chapter we studied a scheduling problem for minimizing total completion time in

identical parallel machines with sequence dependent setup times. We derived three

mixed integer formulation from known formulation for the 𝑚𝑇𝑆𝑃 and for

𝑅| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 problem and presented two time-dependent formulations for the

addressed problem.

In computational experiments we showed that time-dependent based formulations

performed much better than the others formulations in terms of computational time and

quality of the results. To the best of authors’ knowledge, the time-dependent

formulations for this problem have not been presented previously in the operations

research literature.

Both time-dependent based formulations, implemented in a commercial solver, could

solve instances up to 60 jobs in a reasonable computation time. Particularly, the model5

showed better performance when there are many jobs and few machines.

As future researches, on the one hand, it would be interesting to investigate the scope of

the models, that is, to investigate how large may be the instances that they can optimally

solve, and on the other hand, in order to accelerate the solution process could be

considered to obtain valid inequalities and to develop heuristic methods to provide good

initial solutions to formulations.

30

Chapter 4 A hybrid metaheuristic algorithm for the 𝑷| 𝑺𝑻𝒔𝒅| 𝑻𝑪𝑻
problem

4.1 Introduction

In parallel machine scheduling literature, we found that many authors have studied

problems those are close to the one that we address in this research. For instance,

problems with same characteristics as the minimization of the total weighted

completion time or other related objective functions with extra features or the

minimization of the 𝑇𝐶𝑇 with additional constraints like job release dates, precedence

constraints or machine eligibility constraints.

However, for the specific problem of minimizing the 𝑇𝐶𝑇 in an identical parallel

machine scheduling problem with sequence dependent setup, we only found two works

reported in the literature. Baez, Angel-Bello and Alvarez (2016) proposed two time-

dependent mathematical formulations that solved to optimality instances up to 60 jobs.

They compared the time-dependent formulations with a modified formulation based on

the classical m-Travelling Salesman Problem, showing that the time-dependent

formulaions have a better performance than the modified formulation, consuming less

computational time and solving to optimality more than five times larger instances.

Morales, Acosta and Socarrás (2016) developed a first metaheuristic algorithm for the

addressed problem. They implemented an Iterated Greedy Algorithm that used as

diversification generator a destructive-constructive process and as improvement phase a

composited local search procedure based on intra-machine and inter-machine moves by

means of relocation and interchange of jobs.

Taking into account that the mathematical models are developed in Chapter 3 can solve

optimality limited-size instances. In this work we propose a hybrid metaheuristic

algorithm (𝐻𝑀𝐴) which is composed of 𝐺𝑅𝐴𝑆𝑃 and 𝑉𝑁𝑆 as the improvement

procedure. In addition, in the shaking phase of VNS, it uses the destructive-constructive

strategy of the Iterated Greedy Algorithms. The proposed algorithm outperforms the

results obtained by the current state of the art methodology.

4.2 The proposed metaheuristic solution approach

In this section we describe the proposed metaheuristic algorithm. It is a hybrid

algorithm based on 𝐺𝑅𝐴𝑆𝑃 that uses in the improvement phase a 𝐺𝑉𝑁𝑆 with random

selection of neighborhood and with a systematic application of an iterated greedy in

shaking phase.

Each 𝐺𝑅𝐴𝑆𝑃 iteration is composed of a constructive phase and an improvement phase.

The best local optimum found over all 𝐺𝑅𝐴𝑆𝑃 iterations is saved as the best found

solution (Feo & Resende, 1995). In this chapter we consider a hybrid local search

scheme, that is, the basic local search scheme has been extended in order to explore

multiple neighborhoods. The rationale behind this is, since a global minimum is a local

minimum with respect to all neighborhoods, it should be easier to find global minimum

if more neighborhoods are explored.

A pseudocode for the proposed hybrid metaheuristic algorithm is showed in Algorithm

4.1.

31

Algorithm 4.1 Pseudo-code for the proposed Hybrid Metaheuristic Algorithm

The HMA receives inputs of the problem data, the maximum number of iterations

(𝐾𝑚𝑎𝑥) that a solution is perturbed without improvement, the neighborhood structures

of the solution (𝑁𝑙, 𝑙 = 1,2, … , 𝐾𝑚𝑎𝑥) used in the Random Variable Neighborhood

Descent (RVND) method and the stopping criteria (maximum number of 𝐺𝑅𝐴𝑆𝑃

iterations and maximum number of 𝐺𝑉𝑁𝑆 iterations). The objective function value is

initialized as +∞ in line 1 of the algorithm and the procedure goes into a loop in line 2

that finishes in line 16 reporting the best global found solution 𝑆(∗) and its objective

function value 𝑓(𝑆(∗)).

An initial solution 𝑆(0) is generated using a GRASP in line 3 and it is improved in line 4

by a VND procedure with random selection of neighborhoods (RVND). The improved

solution and its objective value are saved as the best solution 𝑆(𝑏𝑒𝑠𝑡) and the best

solution value 𝑓(𝑆(𝑏𝑒𝑠𝑡)) of the current GRASP iteration. Then, procedure goes into the

GVNS loop in line 6 receiving as input 𝑆(𝑏𝑒𝑠𝑡) and 𝑓(𝑆(𝑏𝑒𝑠𝑡)). In line 7 the value of 𝑘

is initialized (the 𝑘 value is associated with the percentage of destruction of the given

solution) and the procedure goes into a loop in line 8. In line 9 the current solution is

partially destroyed depending on the value of 𝑘 and then it is reconstructed and then

apply the improvement procedure (line 10). If the solution found is better than 𝑆(𝑏𝑒𝑠𝑡)
then 𝑆(𝑏𝑒𝑠𝑡) and its objective function value are updated and the 𝑘 value is reset to 1

(line 11). If not, the value of k is increased by a unit (line 11). Note that line 9-12 within

32

the loop represent the systematic application of a iterated greedy strategy. Finally, in

line 15 the best global solution and its value are updated.

4.2.1 Constructive Phase

In the implementation 𝑆𝑎 denotes the set of unassigned jobs and by 𝑆𝑃 = {𝑆𝑃1, 𝑆𝑃2, . . .,
𝑆𝑃𝑚} a partial solution under construction. 𝑆𝑃𝑟 is the partial sequence under

construction associated to machine 𝑟, (𝑟 = 1,2, . . . , 𝑚). A partial sequence that has 𝑘

occupied positions, refers to the positions 1 to 𝑘. The position 0 is always occupied by

the dummy job 0. At the beginning of the constructive phase 𝑆𝑃𝑟 = {0}, (𝑟 =
 1,2, . . . , 𝑚) and 𝑆𝑎 = {1,2, . . . , 𝑛}.

A pseudo-code for the constructive procedure implemented for the constructive phase is

shown in Algorithm 4.2.

Algorithm 4.2 Pseudo-code for our implementation of the constructive phase.

The constructive phase receives the problem data and the value of 𝜶, then the set 𝑺𝒂 of

unassigned jobs, the partial sequences 𝑆𝑃𝑟 and 𝑇𝐶𝑇 are initialized (line 1). The 𝑚 jobs

with lowest values of 𝑡0𝑗 are selected and they are assigned to the machines, one per

machine (line 2). Then, 𝑆𝑎 and 𝑇𝐶𝑇 are updated. In line 4 the procedure enters to a

loop that finishes when all the jobs have been assigned to machines. First, the machine

with the shortest span (the completion time of the last job assigned to the machine) is

selected (line 5). Then, for each unassigned job, its best insertion point in the selected

machine and the corresponding insertion value are calculated (lines 6-8). The best

insertion point is the position in the machine sequence where the machine 𝑇𝐶𝑇 is less

increased and the insertion value is the variation in the machine 𝑇𝐶𝑇 if the job would be

inserted in that position. In the lines 9 to 11, the jobs that will be included in the

restricted candidate list RCL are determined. A job is randomly selected from RCL

33

(line 12) and it is inserted in the selected machine in its best insertion point (line 13).

𝑇𝐶𝑇 and 𝑆𝑎 are updated.

The output of the procedure is a feasible solution 𝑆𝑜𝑙 and its objective value 𝑇𝐶𝑇.

The greedy function, used in lines 6 to 8 for evaluating the candidate jobs to be inserted

in the partial solution, is based on a process of searching for the best insertion point.

Let's analyze the insertion of a new job into a sequence under construction. It is easy to

implement that local moves in any sequence affect the contribution of several jobs to

the objective function. Suppose we have to insert a new job 𝑗 into a position 𝑞 of a

sequence under construction with 𝑘 jobs

𝑷 = {𝟎, [𝟏], [𝟐], … , [𝒒 − 𝟏], [𝒒], [𝒒 + 𝟏], … , [𝒌]}

On the one hand, if we use the Formula 3.1 of Chapter 3 for a sequence of 𝑘 jobs

𝑇𝐶𝑇(𝑃) = ∑ 𝐶[𝑗]𝑘
𝑗=1 = 𝐶[1] + 𝐶[2] + ⋯+ 𝐶[𝑘], where 𝐶[𝑖] = ∑ 𝑡[𝑗 − 1][𝑗]𝑖

𝑗=1 =

𝐶[𝑖 − 1] + 𝑡[𝑖 − 1][𝑖], it is easy to see that the insertion of a new job affects the

completion times of all jobs in sequence after the insertion point.

On the other hand, if we use the Formula 3.10 of Chapter 3 to evaluate the 𝑇𝐶𝑇 of a

sequence 𝑃 (𝑇𝐶𝑇(𝑃) = 𝑘𝑡[0][1] + (𝑘 − 1)𝑡[1][2] +⋯+ 2𝑡[𝑘−2][𝑘−1] + 𝑡[𝑘−1][𝑘]), then the insertion

of a new job affects the contributions of all jobs that are before the insertion point.

Since this process is very time-consuming, we propose an efficient insertion strategy to

implement this approach using the formula 3.10 in Chapter 3. Given a partial sequence

𝑆𝑃𝑟 with 𝑘 occupied positions and the set of unassigned jobs 𝑆𝑎, find the best insertion

point in the sequence under construction for each job 𝑖 𝜖 𝑆𝑎, we propose the following

procedure.

First, the insertion values ∆𝑖𝑞 in positions 𝑞, (𝑞 = 1,2, . . . , 𝑘 + 1) of 𝑆𝑃𝑟 are calculated

starting from the first position (𝑞 = 1) using the next expression:

∆𝒊𝒒=

{

(𝒌 + 𝟏)𝒕𝒐𝟏 + 𝒌(𝒕𝒊[𝟏] − 𝒕𝟎𝟏) , 𝒊𝒇 𝒒 = 𝟏

 ∑ 𝒕[𝒍−𝟏][𝒍] + (𝒌 − 𝒒 + 𝟐)𝒕[𝒒−𝟏]𝒊 + (𝒌 − 𝒒 + 𝟏)(𝒕𝒊[𝒒] − 𝒕[𝒒−𝟏][𝒒]), 𝒊𝒇 𝟐 ≤ 𝒒 ≤ 𝒌 (𝟒. 𝟏)

𝒒−𝟏

𝒍=𝟏

∑𝒕[𝒍−𝟏][𝒍] + 𝒕[𝒌]𝒊 𝒊𝒇 𝒒 = 𝒌 + 𝟏

𝒌

𝒍=𝟏

Then the best insertion value ∆𝑖 and the best insertion point 𝑏𝑒𝑠𝑡𝑞𝑖 in 𝑆𝑃𝑟 for job 𝑖 are

calculated as:

∆𝒊= 𝐦𝐢𝐧
𝟏≤𝒒≤𝒌+𝟏

{∆𝒊𝒒} (𝟒. 𝟐)

𝒃𝒆𝒔𝒕𝒒𝒊 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝟏≤𝒒≤𝒌+𝟏

{∆𝒊𝒒} (𝟒. 𝟑)

34

Note that the value of the sum ∑ 𝑡[𝑙−1][𝑙]
𝑞−1
𝑙=1 increases as the value of 𝑞 increases, then

using the formula (4.1) in an iterative way starting from 𝑞 = 1, it is guaranteed to

perform 𝑂(1) elementary operations to evaluate each insertion point.

4.2 Improvement phase

Improvement phase is the second phase of the VNS, which is composed of lines 6 to 14

of the pseudocode shown in Algorithm 4.1. Next, we will then describe its main

components referring to the lines of that Algorithm.

As shaking procedure (line 9) we use a destructive-constructive process where a partial

destruction procedure and a reconstruction procedure are applied to a given solution.

The percentage of the solution destruction is related to the number of the actual iteration

𝑘, (𝑘 = {1, . . . , 𝑘𝑚𝑎𝑥}).

In Algorithm 4.3, a pseudo-code for the shaking procedure is shown.

Algorithm 4.3 Pseudo-code for shaking procedure.

The shaking procedure receives a solution and the value of 𝑘 to determine the

percentage of destruction. First, ⌊10𝑘%⌋ of jobs are randomly eliminated from the

solution and the remaining jobs are arranged to the beginning of the sequences. Then,

the solution is rebuilt using a method similar to the constructive procedure described

above. The difference is that a totally greedy strategy is now used, that is, the job to be

inserted is that with the lowest insertion value.

Algorithm 4.4 shows a pseudo-code for the proposed partial destruction procedure. This

consists of removing a number (𝑟) of jobs from a given solution. At the beginning, all

the sequences are candidate to be chosen for the destruction procedure (i.e., they are

active sequences). A sequence is deactivated when it no longer contains jobs. In line 2,

the number of removed jobs is calculated. Note that the value of 𝑘 must be less than 10.

In the line 3, the procedure goes into a loop where jobs are removed from active

machines one by one, until 𝑟 jobs are removed. They are placed into the set of

unassigned nodes. Then, the remaining jobs in the sequences are sequenced at the

beginning and they are assigned to partial solution 𝑆𝑃 in the same order.

35

Algorithm 4.4 Pseudo-code for partial destruction procedure.

The reconstruction procedure receives a partial solution 𝑆𝑃 and a set of unassigned jobs

𝑆𝑎. First, it is chosen the machine sequence 𝑆𝑃𝑟 with lowest value of 𝑇𝐶𝑇, then for each

job in 𝑆𝑎 it calculates the best insertion point in 𝑆𝑃𝑟. The job less increasing the 𝑇𝐶𝑇 of

𝑆𝑃𝑟 is deleted from 𝑆𝑎, it is inserted in its best insertion point in 𝑆𝑃𝑟 and the 𝑇𝐶𝑇 of 𝑆𝑃𝑟

is updated. This process is repeated until all jobs in 𝑆𝑎 have been assigned to the

machines. The best insertion point is found using the formulas (4.1), (4.2) and (4.3).

In the implementation of GVNS for the improvement phase of the hybrid algorithm, it

is used RVND (line 10 in Algorithm 4.1) instead of VND for improving a solution. It is

also used it for improving the starting solution (line 4, Algorithm 4.1). We investigated

the appropriate execution order of the neighborhoods and experimentally concluded that

a stochastic order for exploring the neighborhoods yields better solutions than a

deterministic order. For this reason, we decided to implement a RVND procedure inside

GVNS.

Algorithm 4.5 shows a sketch of our implementation of RVND. In this procedure, each

local search is repeats until it reaches a local minimum.

Algorithm 4.5 Sketch for our implementation of the RVND procedure.

36

In line 1, all neighborhoods are activated so that all candidates to be selected for the

local search. In line 2 the procedure enters a loop that culminates when there are no

longer active neighborhoods. An active neighborhood is selected (line 3) and a local

search is applied to the current solution until a local minimum is reach (line 4). If found

neighbor solution is better than the current solution, it is updated and all the

neighborhoods are activated (lines 5-8). As the local search repeats until reaching a

local minimum, it makes no sense to explore this neighborhood until the solution is

modified again. For this reason, the neighborhood is deactivated in line 9 regardless of

whether or not it has improved the current solution.

4.2.1 Local searches and strategies for their implementation

In the proposed RVND procedure we use four local searches based on intra-machine

and inter-machine movements:

 Exchange move between two non-adjacent jobs in the same sequence: Two jobs 𝑖
and 𝑗 in non-adjacent positions 𝑖 and 𝑗 interchange their positions.

𝑃 = {0, [1], [2], … , [𝑖 − 1], [𝒊], [𝑖 + 1], … , [𝑗 − 1], [𝒋], [𝑗 + 1], … , [𝑘]}

𝑃 = {0, [1], [2], … , [𝑖 − 1], [𝒋], [𝑖 + 1], … , [𝑗 − 1], [𝒊], [𝑗 + 1], … , [𝑘]}

Fixing the position 𝑖, its sub-neighborhood is defined by all the jobs [𝑗] in positions 𝑗 ≥
𝑖 + 2 that can interchange their positions with job [𝑖]. Since in this case only jobs [𝑖]
and [𝑗] change their positions, using the formula (3.10) it is possible to obtain the

following expression 4.4 to evaluate the variation ∆𝑖𝑗 in the TCT of the given sequence.

∆𝒊,𝒋= (𝒌 − 𝒊 + 𝟏)(𝒕[𝒊−𝟏][𝒋] − 𝒕[𝒊−𝟏][𝒊]) + (𝒌 − 𝒊)(𝒕[𝒋][𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) + (𝒌 − 𝒋 + 𝟏)(𝒕[𝒋−𝟏][𝒊] −

𝒕[𝒋−𝟏][𝒋]) + (𝒌 − 𝒋)(𝒕[𝒊][𝒋+𝟏] − 𝒕[𝒋][𝒋+𝟏]) (𝟒. 𝟒)

 Relocation move of a job to a different position in the same sequence: The job [𝑖] is

removed from its position 𝑖 and inserted into another position 𝑗.

𝑷 = {𝟎, [𝟏], [𝟐], … , [𝒊 − 𝟏], [𝒊], [𝒊 + 𝟏], … , [𝒋 − 𝟏], [𝒋], [𝒋 + 𝟏], … , [𝒌]}

𝑷 = {𝟎, [𝟏], [𝟐], … , [𝒊 − 𝟏], [𝒊 + 𝟏], … , [𝒋 − 𝟏], [𝒊], [𝒋], [𝒋 + 𝟏], … , [𝒌]}

The sub-neighborhood of job [𝑖] is composed of all the positions 𝑗 in which it can be

inserted. In this case, formulas can also be obtained to evaluate the movement through

an iterative process to obtain an efficient procedure to explore the sub-neighborhood.

An efficient way, used in this work, to explore the sub-neighborhood is through

successive swaps between jobs in adjacent positions and calculate the move values in an

incremental way. This idea was taken from Schiavinotto and Stützle (2004), who

successfully implemented a similar strategy in the linear ordering problem context. The

37

formula (4.5) is used to evaluate the swap movements between jobs in adjacent

positions.

∆𝒊,𝒊+𝟏= (𝒌 − 𝒊 + 𝟏)(𝒕[𝒊−𝟏][𝒊+𝟏] − 𝒕[𝒊−𝟏][𝒊]) + (𝒌 − 𝒊)(𝒕[𝒊+𝟏][𝒊] − 𝒕[𝒊][𝒊+𝟏]) + (𝒌 − 𝒊 +

𝟏)(𝒕[𝒊][𝒊+𝟐] − 𝒕[𝒊+𝟏][𝒊+𝟐]) (𝟒. 𝟓)

• Exchange move between two jobs in different sequences: Two jobs [𝑖] and [𝑗] in

positions 𝑖 and 𝑗 of different sequences interchange their positions.

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [𝒊𝟏], [(𝑖 + 1)1], … , [𝑘1]}
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝒋𝟐], [(𝑗 + 1)2], … , [𝑘2]}

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [𝒋𝟐], [(𝑖 + 1)1], … , [𝑘1]}
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝒊𝟏], [(𝒋 + 𝟏)𝟐], … , [𝒌𝟐]}

Fixing the position 𝑖 in the first sequence, the sub-neighborhood of job [𝑖] is defined by

all the jobs [𝑗] in the second sequence that can interchange their positions with job [𝑖].

Suppose that the first machine contains 𝑘1 jobs and the second machine contains

𝑘2 jobs. Then, as only jobs [𝑖] and [𝑗] change their positions, is obtained a simple

expression (4.6) to evaluate the variation ∆𝑖𝑗 in the TCT of the solution.

∆𝒊,𝒋= (𝒌𝟏 − 𝒊 + 𝟏)(𝒕[𝒊−𝟏][𝒋] − 𝒕[𝒊−𝟏][𝒊]) + (𝒌𝟏 − 𝒊)(𝒕[𝒋][𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) + (𝒌𝟐 − 𝒋 −

𝟏)(𝒕[𝒋−𝟏][𝒊] − 𝒕[𝒋−𝟏][𝒋]) + (𝒌𝟐 − 𝒋)(𝒕[𝒊][𝒋+𝟏] − 𝒕[𝒋][𝒊+𝟏]) (𝟒. 𝟔)

• Relocation move of a job to a different sequence: The job [𝑖] is removed from its

position 𝑖 in a sequence and inserted into position 𝑗 of another sequence.

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [𝒊𝟏], [(𝑖 + 1)1], … , [𝑘1]}
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝑗2], [(𝑗 + 1)2], … , [𝑘2]}

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [(𝑖 + 1)1], … , [𝑘1]}
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝒊𝟏], [𝑗2], [(𝑗 + 1)2], … , [𝑘2]}

When the job [𝑖] is extracted from the first sequence, the variation ∆𝑖 in 𝑇𝐶𝑇 is

calculated using the expression (4.7). The positions 𝑖 in the sequence are chosen in a

sequential way starting by 𝑖 = 1 in order to guarantee 𝑂(1) elementary operations in

this evaluation.

∆𝒊=

{

(𝒌𝟏 − 𝟏)(𝒕𝟎[𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) − 𝒌𝟏𝒕𝟎[𝒊] 𝒊𝒇 𝒊 = 𝟏

(𝒌𝟏 − 𝒊)(𝒕[𝒊−𝟏][𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) − (𝒌𝟏 − 𝒊 + 𝟏)𝒕[𝒊−𝟏][𝒊] −∑ 𝒕[𝒍−𝟏][𝒍], 𝒊𝒇 𝟐 ≤ 𝒊 ≤ 𝒌𝟏 − 𝟏
𝒊−𝟏

𝒍=𝟏

−∑ 𝒕[𝒍−𝟏][𝒍], 𝒊𝒇 𝒊 = 𝒌𝟏
𝒊

𝒍=𝟏

(𝟒. 𝟕)

38

Fixing the position 𝑖 in the first sequence, the sub-neighborhood of job [𝑖] is defined by

all the positions 𝑗 in the second sequence where it can be inserted. The positions 𝑗 in the

second sequence are explored in a sequential way starting by the first position and

variation ∆𝑗 in the 𝑇𝐶𝑇 of the second sequence is calculated by expression (4.1).

The value of a move, that is, the variation ∆𝑖𝑗 in the solution 𝑇𝐶𝑇 when the job [𝑖] is

removed from a sequence and it is inserted in position 𝑗 of another sequence is

calculated as ∆𝑖𝑗= ∆𝑖 + ∆𝑗 .

In addition, the implementation of the RVND algorithm includes a memory structure

with the purpose of reducing the computational time. The reasoning behind this is to

avoid re-exploring sequences that did not reach any improvement during the last

execution of the considered neighborhood structure.

 4.3 Computational experiments and Comparisons

The goals of the computational addressed conducted in this thesis work are the

following:

• Corroborating the effectiveness of providing to a VNS algorithm several

different initial solutions obtained through a constructive GRASP.

• Comparing the results yielded by the proposed hybrid metaheuristic algorithm

with the optimal solutions found for small and medium-sized instances.

• Assessing the performance of the hybrid algorithm, comparing its results with

those published in the literature.

The experiments were performed on an Intel® Core(TM) i5-2410M CPU @ 2.30GHz

and 4.00GB of RAM processor. The proposed algorithm was coded in C++ and, to

obtain the optimal solutions, the mathematical model was solved using the Concert

Technology of Professional Solver Cplex 12.6.

For the computational experiments we used two sets of instances. The first set contains

the instances generated by Avalos-Rosales et al. (2015) the procedure described in

Vallada and Ruiz (2011) with 𝑛 = {20, 30, 40, 50, 60} and 𝑚 = {2, 4, 6, 8}. The

processing times (𝑝𝑗) were uniformly generated between [1-99], and the setup times

were uniformly generated in the ranges [1-49], [1-99] and [1-124], denoted by S1, S2

and S3, respectively. In a similar way, we generated the second group of instances with

70 and 80 jobs. For each combination of number of machines, number of jobs and range

of setup times, there are 5 replicates for each set of instances.

Taking into account that the instances taken from the literature are for unrelated parallel

machines and in this work, we are considering identical machines, we have taken the

data of the first machine in each instance.

The stopping criterion in GRASP (number of iterations) and the parameter α to restrict

the candidate list in the constructive procedure were statistically set to 𝑛2and 0.3,

respectively. The hybrid algorithm was run one time.

39

4.3.1 Benefits of hybridizing GRASP with VNS

This section is devoted to corroborate the good performance of the combination of

GRASP and Variable Neighborhood Search (VNS) to solve the problem tackled in this

work. That is, the results obtained using VNS starting from an initial solution

constructed in a greedy way were compared with the results obtained with the proposed

hybrid algorithm. Table 4.1 shows this comparison. Column 1 indicate the number of

machines, while column 2 indicate the number of jobs. Column 3 display the objective

values obtained by the VNS, while column 4 display the objective values obtained by

the hybrid algorithm. In column 5 the improvement percentage (𝐼𝑚𝑝𝑟𝑜𝑣%) of the

proposed algorithm (HMA) in relation to VNS is shown. It is calculated as

𝑰𝒎𝒑𝒓𝒐𝒗% = 𝟏𝟎𝟎 ∗
𝑽𝑵𝑺𝒗𝒂𝒍 −𝑯𝑴𝑨𝒗𝒂𝒍

𝑽𝑵𝑺𝒗𝒂𝒍
 (𝟒. 𝟖)

Where, VNS𝑣𝑎𝑙 is the best solution value reported by the VNS algorithm, and 𝐻𝑀𝐴𝑣𝑎𝑙
is the best solution value obtained by the proposed Hybrid Metaheuristic Algorithm.

The experimental results of VNS and HMA are summarized in Table 4.1, in which, the

first column (m) represents the number of machines and the second column (n) stands

for the number of jobs. The objective values obtained with both metaheuristics are

presented in next two columns and the percentage improvement is represented in las

column using the formula (4.8). The values displayed have been averaged over 15

instances with the same number of jobs and the same number of machines.

Table 4. 1 Comparison between HMA and VNS

Objective values Improvement

m n VNS HMA (%)

2 20 5205.87 5105.13 1.82

 30 11783.53 11347.13 3.73

 40 18386.67 17687.6 3.73

 50 29967.33 28838.8 3.74

 60 41437.07 39881.27 3.74

 70 53206.4 51210.53 3.71

 80 70183.93 67409.2 3.89

4 20 3439.93 3406.87 0.97

 30 6201.53 6029.2 2.73

 40 9990.87 9633.6 3.51

 50 16103.4 15453.47 3.95

 60 21913.13 21065.8 3.84

 70 27964 26935.4 3.66

 80 36566.4 35267.67 3.5

6 20 2548.27 2522.27 0.99

 30 4707.38 4560.44 2.91

 40 7237.73 7001.6 3.23

 50 11402.8 11016.93 3.36

 60 15471.8 14890.93 3.68

40

 70 19637.67 18914.2 3.65

 80 2509.07 24560.73 3.25

8 20 2058.93 2040.8 0.9

 30 3865.2 3783.87 2.09

 40 5916.6 5729.8 3.08

 50 9119.07 8857.27 2.75

 60 12248.33 11884.4 2.91

 70 15455.73 14918 3.44

 80 19969.73 19253.67 3.51

In order to assess the statistical differences between the hybrid algorithm, HMA,

proposed here and VNS, the Wilcoxon non-parametric test for comparing two samples

has been used. As the computed p-value is lower than the significance level α = 0.05,

the null hypothesis is rejected. Therefore, we conclude that the two algorithms are

statistically different and the proposed hybrid metaheuristic outperforms VNS for the

problem at hand.

4.3.2 Comparing with optimal solutions

Tables 4.2 and 4.3 shows, for the first set of instances, the comparison between the

results obtained by the hybrid algorithm and the optimal solutions found using the

mathematical model described in Chapter 3. Column 1 indicate the number of machines

and column 2 the number of jobs (n) while column 3 indicate the setup time range (S).

Column 4 display the CPU time elapsed by the solver (Model) and by the proposed

hybrid metaheuristic algorithm (HMA), respectively. Columns 5 and 6 shows the

relative gap of the results obtained by the proposed heuristic algorithm with respect to

the optimal solutions. Results in columns 4 to 7 are averaged over 5 instances. For each

instance, the relative gap is computed as

𝒈𝒂𝒑% = 𝟏𝟎𝟎 ∗
𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝒗𝒂𝒍 −𝑯𝑴𝑨𝒗𝒂𝒍

𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝒗𝒂𝒍
 (𝟒. 𝟗)

where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑣𝑎𝑙 is the optimal solution value reported by the solver, and 𝐻𝑀𝐴𝑣𝑎𝑙 is
the best solution value obtained by the proposed algorithm.

Table 4. 2 Comparison of HMA with optimal solutions for 2 and 4 machines.

Exact GRASP-VNS

m n S CPU time avg.

(s)

CPU time avg. (s) Gap(%) Avg

2 20 S1 1.2452 0.1474 0.0000

S2 1.558 0.1506 0.0000

S3 0.9966 0.1376 0.0000

30 S1 4.1556 0.7428 0.0417

S2 5.7202 0.7344 0.4020

S3 9.7134 0.7512 0.2985

40 S1 38.7090 2.3724 0.1826

41

S2 79.0626 2.2996 1.0319

S3 65.9272 2.3206 1.3818

50 S1 264.6488 5.8488 0.6781

S2 495.0716 5.4884 1.6836

S3 414.6172 5.7984 2.2219

60 S1 1990.3574 12.2584 1.3669

S2 1735.8160 12.4860 2.7307

S3 3095.3104 12.2986 3.1924

4 20 S1 0.7966 0.1592 0.0000

S2 0.7312 0.164 0.0000

S3 0.6066 0.1568 0.0000

30 S1 2.8056 0.782 0.0233

S2 4.9328 0.7954 0.0217

S3 4.4154 0.8154 0.4767

40 S1 10.9486 2.4908 0.4909

S2 15.5674 2.4484 1.1894

S3 14.8664 2.5692 0.9717

50 S1 59.8036 6.2078 1.0346

S2 106.7918 5.9144 1.8820

S3 150.3252 6.2 2.3391

60 S1 435.2174 12.7238 1.4991

S2 268.6436 12.8032 2.7891

S3 520.8954 12.363 2.9586

Table 4. 3 Comparison of HMA with optimal solutions for 6 and 8 machines

Exact GRASP-VNS

m n S CPU time avg.

(s)

 CPU time avg

(s)

 Gap(%) Avg

6 20 S1 0.4834 0.1714 0.0000

S2 0.4930 0.1632 0.0000

S3 0.4182 0.1658 0.0000

30 S1 1.9396 0.7886 0.1150

S2 2.4296 0.8038 0.0368

S3 2.1300 0.8042 0.3345

40 S1 7.0128 2.4804 0.5836

S2 7.2686 2.4228 0.8618

S3 6.4342 2.5294 1.4935

50 S1 16.8280 6.1636 0.9250

S2 18.4654 6.0264 1.9028

S3 21.9032 6.1806 2.0629

60 S1 128.7410 12.8940 1.4603

S2 177.5666 12.4320 2.5590

S3 224.3990 12.7454 2.8931

8 20 S1 0.4156 0.1888 0.0000

42

S2 0.3546 0.1850 0.0000

S3 0.3536 0.1898 0.0000

30 S1 1.5400 0.8064 0.0703

S2 1.5842 0.8104 0.1026

S3 1.5634 0.8350 0.0706

40 S1 5.4998 2.4788 0.4117

S2 8.9498 2.2996 0.6888

S3 5.5682 2.5446 1.2025

50 S1 18.7624 6.0826 1.0218

S2 14.3340 5.9290 1.7616

S3 14.5778 6.2482 1.8145

60 S1 55.0242 12.742 1.4804

S2 88.4128 13.1630 2.4190

S3 59.4282 12.9518 2.8943

First of all, from Table 4.2 and 4.3, it is observed that the Gap values are below 3.19 in

all cases and increase as the number of jobs increases. However, it is not noticed any

tendency with respect to the increment of the number of machines, yielding the highest

gap values for 4 and 6 machines. Moreover, given a number of machines and jobs, the

gap increases as the setup (S1 to S3) increases, especially for more than 40 jobs.

Finally, notice that for each range, the gaps are kept very close regardless of the number

of machines, especially for a higher number of jobs (50 and 60).

If we pay attention to the CPU time, it increases as the size of the instance increases,

especially when the number of jobs grows. For the mathematical model, the CPU time

decreases as the number of machines increases. This means that long sequences in the

machines are more difficult to deal for the model. Furthermore, for higher number of

jobs, the CPU time increases as the setup time range increase. For the hybrid heuristic,

the time also increases with the number of jobs, but contrary to the model occurs. The

shorter CPU time correspond to a small number of machines with longer sequences. In

any case, the variability is very small with respect to the number of machines.

With the purpose of evaluating the performance of the algorithm in larger instances we

tried to solve to optimality, using the time dependent formulation based on flow

(model5), the instances with 70 and 80 jobs. However, the solver could not find any

feasible solution for instances with 80 jobs.

In Tables 4.4 and 4.5 we show the comparison between the results obtained by the

hybrid algorithm HMA and the optimal solutions or best integer solutions found by the

solver for 70-jobs instances. For both tables, column 1 indicates the setup range (S),

while columns 2 indicate the number of machines (m). Columns 3, 4 and 5 refer to the

model. Specifically, columns 3 show the objective value, columns 4 the CPU time in

seconds, while columns 5 the gap reported by the solver. The symbol (-) in columns 4

means that the solver could not reach the optimal solutions and stopped reporting “out

of memory”. Columns 6, 7, 8 refer to the hybrid algorithm (HMA). Specifically,

columns 6 indicate the value of the objective function; columns 7 indicate the elapsed

CPU time in seconds, while columns 8 display the gap of HMA related to the best

solution found by the solver.

43

Table 4. 4 Comparison of HMA with best known solutions for 70-job instances (2

and 4 machines)

 Model HMA

m S Obj. Val. Time (s) Gap Obj. Val. Time

(s)

Gap

2 S1 40999 (-) 1.33 40958 23.17 -0.10

45037 (-) 0.63 45648 23.90 1.36

47313 2820.02 0.00 47735 24.34 0.89

49947 (-) 1.05 49834 23.90 -0.23

52095 (-) 0.76 52587 23.12 0.94

 S2 50705 (-) 0.24 51531 22.16 1.63

50908 (-) 0.59 51871 22.42 1.89

49947 (-) 1.48 50206 21.91 0.52

53089 (-) 0.88 53760 23.32 1.26

56208 (-) 1.07 57107 22.19 1.60

 S3 54798 (-) 0.68 55592 25.17 1.45

49193 (-) 0.77 50883 22.80 3.44

46169 (-) 2.09 46750 23.74 1.26

55716 (-) 0.83 56564 24.55 1.52

46629 (-) 2.36 47161 23.92 1.14

4 S1 21285 (-) 0.20 21639 24.83 1.66

23582 879.38 0.00 23626 25.66 0.19

24932 (-) 0.11 25143 25.31 0.85

25953 (-) 0.53 26083 25.45 0.50

26978 1182.25 0.00 27428 23.66 1.67
S2 26772 1191.39 0.00 27368 23.91 2.23

26512 968.86 0.00 26954 22.91 1.67

26037 (-) 0.32 26451 24.46 1.59

27785 (-) 0.52 28251 25.28 1.68

29220 710.57 0.00 30145 23.34 3.17
S3 28745 996.79 0.00 29324 26.26 2.01

26003 (-) 0.78 26606 24.15 2.32

24427 (-) 1.71 24504 24.09 0.32

29143 (-) 0.74 29644 24.95 1.72

24315 2714.33 0.00 24732 27.49 1.71

44

Table 4. 5 Comparison of HMA with best known solutions for 70-job instances (6

and 8 machines)

 Model HMA

m S Obj. Val. Time (s) Gap Obj. Val. Time (s) Gap

6 S1 14948 (-) 0.12 15127 24.41 1.20

16605 815.13 0.00 16792 25.15 1.13

17502 (-) 0.16 17652 24.85 0.86

18149 97.94 0.00 18401 23.65 1.39

18737 506.96 0.00 18895 23.69 0.84
S2 18827 875.52 0.00 19208 22.99 2.02

18589 543,621 0.00 19035 26.10 2.40

17502 (-) 0.17 18622 25.04 6.40

19526 (-) 0.29 19770 23.9 1.25

20527 957.41 0.00 20933 23.65 1.98
S3 20243 757.81 0.00 20560 26.95 1.57

18212 636,341 0.00 18527 25.79 1.73

17077 965.80 0.00 17494 25.02 2.44

20245 606.28 0.00 20720 24.83 2.35

17196 794.99 0.00 17487 28 1.69

8 S1 11839 91.57 0.00 11940 23.90 0.85

13119 105.62 0.00 13271 24.52 1.16

13821 207.24 0.00 13865 24.61 0.32

14326 236.38 0.00 14418 24.67 0.64

14685 124.48 0.00 14786 23.22 0.69
S2 14873 289.35 0.00 15015 23.14 0.95

14675 271.94 0.00 14939 24.75 1.80

14590 84.44 0.00 14778 25.62 1.29

15417 727.74 0.00 15582 23.83 1.07

16241 493.92 0.00 16465 22.87 1.38
S3 16003 96.30 0.00 16303 26.99 1.87

14437 (-) 0.34 14736 25.11 2.07

13618 559.13 0.00 13965 24.78 2.55

15936 105.34 0.00 16213 24.76 1.74

13702 (-) 0.35 14122 26.99 3.07

From both tables, it can be conclude that even though we have no guarantee that the

solver could find always the optimal solutions, the gaps reported by the solver are quite

small, indicating that the solutions reported by the solver are really close to the optimal

solutions, in the case that they are not already the optimal ones.

As we have seen in the comparisons, the results obtained with the proposed hybrid

algorithm are very good, since the deviation from optimal or almost optimal solutions

are very small in all cases. Moreover, in two instances with 2 machines and setups in

the range S1, the algorithm obtains better solutions than those found by the solver.

45

4.3.3 Comparing with the state of the art

As we mentioned in chapter 2, Morales et al., (2015) developed an IGA for the same

problem addressed here. For this reason, we present a comparison between two

algorithms. To ensure fair comparisons, both metaheuristic algorithms were run on the

same computer for each instance. The computer code for IGA was kindly provided by

their authors.

Table 4.6 and 4.7 show the results of this comparison. The structure of the tables:

column 1 indicates the number of jobs (n), column 2 the setup range (S). The columns 3

and 6 show the CPU time in seconds for the IGA for 2, 4, 6 and 9 machines

respectively, and in the same way the columns 4 and 7 for the HMA. We present the

percentage improvement (Improv%) of our proposed algorithm in relation to IGA in the

columns 5 and 8.

𝑰𝒎𝒑𝒓𝒐𝒗% = 𝟏𝟎𝟎 ∗
𝑰𝑮𝑨𝒗𝒂𝒍 −𝑯𝑴𝑨𝒗𝒂𝒍

𝑰𝑮𝑨𝒗𝒂𝒍
 (𝟒. 𝟏𝟎)

where 𝐼𝐺𝐴𝑣𝑎𝑙 is the best solution value reported by the Iterated Greedy algorithm, and

𝐻𝑀𝐴𝑣𝑎𝑙 is the best solution value obtained by the proposed HMA.

Table 4. 6 Comparison with IGA (2 and 4 machines)

m=2 m=4

 CPU Time (s) Improv CPU Time (s) Improv

n S IGA HMA % IGA HM

A

%

20 S1 0.12 0.15 0.00 0.17 0.16 0.04
S2 0.12 0.15 0.00 0.17 0.16 0.00

 S3 0.12 0.14 0.00 0.16 0.16 0.00

30 S1 0.63 0.74 0.19 0.79 0.78 0.30
S2 0.62 0.73 0.58 0.78 0.80 0.72

 S3 0.61 0.75 1.01 0.77 0.82 0.69

40 S1 2.10 2.37 0.45 2.64 2.49 0.55
S2 2.03 2.30 0.84 2.51 2.45 0.80

 S3 2.01 2.32 1.13 2.47 2.57 1.08

50 S1 5.41 5.85 0.98 6.47 6.21 0.57
S2 5.23 5.49 1.91 6.25 5.91 1.37

 S3 5.10 5.80 1.91 6.18 6.20 1.49

60 S1 12.07 12.26 0.60 14.37 12.72 0.69
S2 11.63 12.49 1.73 13.63 12.80 1.30

 S3 11.38 12.30 1.98 13.22 12.36 1.64

70 S1 18.95 23.69 2.20 22.37 24.98 2.10
S2 18.61 22.40 3.37 21.33 23.98 2.89

 S3 18.23 24.04 3.73 21.28 25.39 3.63

80 S1 35.25 40.97 2.10 41.10 43.09 2.21
S2 33.68 40.77 3.91 40.44 41.40 2.88

 S3 31.99 42.23 3.93 39.31 42.08 4.26

46

Table 4. 7 Comparison with IGA (6 and 8 machines)

 m=6 m=8

 CPU Time (s) Improv CPU Time (s) Improv

n S IGA HMA % IGA HMA %

20 S1 0.22 0.17 0.00 0.30 0.19 0.00
 S2 0.21 0.16 0.00 0.31 0.19 0.00

 S3 0.22 0.17 0.00 0.31 0.19 0.00

30 S1 0.97 0.79 0.10 1.17 0.81 0.03
 S2 0.93 0.80 0.27 1.13 0.81 0.04

 S3 0.94 0.80 0.31 1.12 0.84 0.29

40 S1 3.00 2.48 0.36 3.48 2.48 0.53
 S2 2.84 2.42 0.81 3.27 2.30 0.34

 S3 2.86 2.53 0.79 3.29 2.54 0.41

50 S1 7.01 6.16 0.38 7.99 6.08 0.40
 S2 6.82 6.03 1.06 7.84 5.93 0.78

 S3 6.90 6.18 1.11 7.79 6.25 0.92

60 S1 15.17 12.89 0.64 17.16 12.74 0.46
 S2 14.73 12.43 1.38 16.63 13.16 0.62

 S3 14.43 12.75 1.30 16.33 12.95 0.96

70 S1 23.6 24.35 0.60 25.64 24.19 1.90
 S2 22.72 24.34 2.70 26.90 24.04 3.13

 S3 23.25 26.12 2.71 27.96 25.73 2.35

80 S1 43.04 43.06 2.12 49.32 42.06 1.57
 S2 41.80 41.27 3.28 47.72 41.07 2.99

 S3 44.56 41.75 3.42 43.32 43.26 3.48

On analyzing the solution quality, both the algorithms perform similarity for the small

instances. As the number of jobs increases, the HMA yields better results than IGA.

This difference becomes bigger for the same number of jobs as the setup time increases.

For the same number of jobs, the largest improvements correspond to longer sequences

with fewer machines.

In order to assess the statistical differences between both algorithms, the Wilcoxon non-

parametric test for comparing two samples has been used. In the first test carried out in

this section, the whole set of data has been considered. As the computed p-value is

lower than the significance level 𝛼 = 0.05, the null hypothesis is rejected. Therefore,

we conclude that the two algorithms are statistically different, and the proposed hybrid

metaheuristic outperforms the best algorithm from the literature. Given the fact that the

differences between both algorithms are not large, we have also conducted statistical

tests for each instance size, i.e. number of jobs n, from n = 20 up to n = 80. In the case

of n = 20, the computed p-value is greater than the significance level 𝛼 = 0.05.

Therefore, the null hypothesis cannot be rejected, meaning that there are not statistical

differences between the samples corresponding to IGA and HMA for n = 20. However,

47

for n = 30 up to n = 80, the Wilcoxon non-parametric test for comparing two samples

finds statistical differences between both algorithms, obtaining p-values lower than the

significance level 𝛼 = 0.05. Therefore, we may conclude that HMA statistically

outperforms IGA.

Finally, it is concluded that for the small instances with 2 machines, the CPU time

required by IGA is slightly smaller than the time required by HMA. However, HMA is

faster as the number of machines increases.

4.7 Chapter conclusions

In this chapter we propose a hybrid algorithm that combines the GRASP and VNS

metaheuristics for the parallel machine scheduling problem with sequence dependent

setup times and the goal of minimize the TCT. The basic structure of the algorithm is

divided in two phases, constructive and improvement. For the construction of initial

solutions, several procedures were tested, and the best results were achieved by the

constructive procedure described in Algorithm 4.2. Then, the improvement phase is

implemented by means of a GVNS, with a destructive and reconstructive procedure as

shaking process.

The computational results achieved in this work, corroborated through statistical tests,

show the effectiveness of the proposed hybrid algorithm when compared with optimal

solutions or best integer solutions found using a mathematical model, and with results

of the best heuristic from the literature. We have proved that the hybrid algorithm

statistically outperforms the state of the art for the problem.

48

Chapter 5 Study of the learning and deterioration effects on
sequence dependent setup times in single and parallel machine
scheduling problems

5.1. Introduction

In this chapter we deal with single and parallel machine scheduling problem with

sequence dependent setup times for minimizing the sum of completion time of all jobs.

In these problems we consider that the setup time of the machine and the jobs

processing time can be affected by the learning or fatigue of the operators in carrying

out the activities.

Time variations due to frequent repetition of operations are known in scheduling

literature as learning or deterioration effects. From the literature review, we find that in

all published works on problems with learning and deterioration effects, the setup times

of the machines have been ignored or have been considered independent of the order in

which the jobs are processed.

Most of the published papers, addressing the scheduling problems with learning and/or

deterioration effects, assumed these effects over the processing times of the jobs

(Biskup, 2008). The researches found in the literature can be grouped into two main

categories: position-dependent and time-dependent effects. In both categories the

processing time of a job is affected by a factor depending the jobs processed before it.

In the first one, the learning/deterioration factor depends on the number of the all

already scheduled jobs, while in the second one, it depends on the sum of the processing

times of the all already scheduled jobs.

Another kind of learning/deterioration effect over processing times is past-sequence-

dependent (p-s-d) setup times introduced by Koulamas and Kyparisis (2008). In the p-s-

d setup time approach, the processing time 𝑝𝑗𝑟 of job j scheduled in position r is

obtained as the normal processing time 𝑝𝑗 plus a value that depends on the sum of the

processing times of all already scheduled jobs, that is, 𝑝𝑗𝑟 = 𝑠[𝑟] + 𝑝𝑗, where 𝑠[1] =

 0, 𝑠[𝑟] = 𝑏
𝑟−1 ∑ 𝑝[𝑘]

𝑟−1
𝑘=1 for 𝑟 = 1, 2,· · · , 𝑛 and 𝑏 is constant associated with the

learning/deterioration factor. They interpreted the value 𝑠[𝑟] as a setup time that depends

on the sum of the processing time of the all already scheduled jobs. For more details

about scheduling problems with p-s-d setup times refer the recent survey done by

Allahverdi (2015).

All published works that have studied the types of learning/deterioration effects

described above considered that the setup time depends only on the job about to start.

It is true that in some practical applications the setup (or changeover) time may be

ignored considering them as part of the processing time of the jobs. However, there also

exist several applications in which they must be explicitly considered, since otherwise

the costs and times would rise considerably (Allahverdi et al., 1999).

In this chapter, we consider a manufacturing environment where jobs are processed

automatically and the machine settings between different types of jobs should be

49

executed manually. Here, the impact of human factor becomes significant for the whole

production time. Therefore, from the repeated application of operations, the setup time

may decrease because of some kind of learning, but they also may increase due to the

fatigue of the operators (deterioration).

A first effort in the address of these kind of problems is presented in Expósito-Izquierdo

et al.,(2019). They consider an identical parallel machine environment and addressed

the learning and the deterioration effects on the setup times. In this work, first, an elite

set of high-quality and diverse solutions ignoring the learning and the deterioration

effects is generated through a modification of the hybrid algorithm proposed in Chapter

4. To assess how robust the solutions obtained are in the presence of deterioration and

learning effects on setup times, a multi-agent simulation approach is applied.

In this chapter, first, we addressed the scheduling problems for a single machine in the

manufacturing environment described above and propose four mixed integer

formulations for each kind of effect. Then, we generalize these formulations for

scheduling problems on identical parallel machines. All the formulations are assessed

using test data instances.

To the best of our knowledge, this is the first time that:

 Propose mathematical formulations for scheduling problems where the

learning/deterioration effects on sequence dependent setup times are considered.

 Conduct a study to determine how solutions are affected by learning or

deterioration effects when setup times are sequence dependent.

5.2. Formulations of the problems

Consider a set of 𝑛 independent jobs to be processed on the machines. We addressed

two machine settings: a single machine and 𝑚 identical parallel machines. Each job 𝑗
has an associated processing time 𝑝𝑗 and there are machine setup times 𝑠𝑖𝑗 for

processing job 𝑗 just after job 𝑖. In general, 𝑠𝑖𝑗 ≠ 𝑠𝑗𝑖. All the machines are at an initial

state 0 (dummy job 0), and there is a setup time 𝑠0𝑗 for processing the first job on each

machine. All the jobs are available at time zero and each job should be continually

processed on the same machine, i.e., preemption is not allowed.

As in the previous chapters, a sequence of 𝑘 jobs for a given machine is represented by
𝑃 = {0, [1], [2], … , [𝑟 − 1], [𝑟], [𝑟 + 1], … , [𝑘]} where [𝑟] denotes the job in the position

𝑟 in the sequence 𝑃.

We assume that the setup times are affected by learning effect or by deterioration effect,

which depend on the number of setups that have already been done in the machine.

Then, the total time required for processing the job 𝑗 in position 𝑟 just after job 𝑖 in

position 𝑟 − 1 is defined as:

𝒕𝒊𝒋
𝒓 = 𝒔𝒊𝒋

𝒓 + 𝒑𝒋 = 𝒇(𝒃, 𝒓, 𝒌)𝒔𝒊𝒋 + 𝒑𝒋 (𝟓. 𝟏)

where 𝑏 ∈ (0,1) is a parameter associated with the learning/deterioration rate and 𝑘 is

the number of jobs in the sequence. When the values of 𝑏 and 𝑘 are fixed, 𝑦 = 𝑓(𝑟) is

50

a monotonic non-increasing function for learning or a monotonic non-decreasing

function for deterioration.

The objective is to find a schedule that minimizes the sum of the job completion times

on the available machines; i.e., the Total Completion Time (𝑇𝐶𝑇).

Given the function 𝑓 and a sequence 𝑃, the 𝑇𝐶𝑇 of 𝑃 can be calculated as:

𝑻𝑪𝑻(𝑷) = 𝒌𝒕𝟎[𝟏]
𝟏 + (𝒌 − 𝟏)𝒕[𝟏][𝟐]

𝟐 +⋯+ 𝟐𝒕[𝒌−𝟐][𝒌−𝟏]
𝒌−𝟏 + 𝒕[𝒌−𝟏][𝒌]

𝒌 (𝟓. 𝟑)

where the values of 𝑡[𝑖−1][𝑖]
𝑟 (𝑟 = 1,2, … , 𝑘) are calculated using expression (5.1).

For the single machine scheduling problem, the objective is to find a sequence with the

𝑛 jobs that minimizes the 𝑇𝐶𝑇. For the parallel machine scheduling problem, the

objective is to find 𝑚 disjoint sequences 𝑃𝑟 (𝑟 = 1, 2, … ,𝑚) in such a way that the

following function is minimized

𝒛 =∑𝑻𝑪𝑻(𝑷𝒓)

𝒎

𝒓=𝟏

 (𝟓. 𝟒)

In this research, we use the following functions (5.5) and (5.6) to model the learning

effect and the deterioration effect, respectively.

𝒇(𝒃, 𝒓, 𝒌) = 𝒃𝒓−𝟏 (𝟓. 𝟓)
𝒇(𝒃, 𝒓, 𝒌) = 𝒃𝒌−𝒓 (𝟓. 𝟔)

where 𝑘 = 𝑛 for the single machine problems.

The values of the 𝑡𝑖𝑗
𝑟 are calculated depending on the considered effect. That is,

𝒕𝒊𝒋
𝒓 = 𝒃𝒓−𝟏𝒔𝒊𝒋 + 𝒑𝒋 (𝟓. 𝟕)

for the learning effect, and

𝒕𝒊𝒋
𝒓 = 𝒃𝒌−𝒓𝒔𝒊𝒋 + 𝒑𝒋 (𝟓. 𝟖)

for the deterioration effect.

5.2.1. Mathematical formulations for the single machine scheduling problems

with learning and deterioration effects.

In this section we adapt a formulation developed in Angel Bello et al. (2013) for the

Minimum Latency Problem (MLP). In that paper, they developed two improved

formulations for the MLP and assessed them using routing and scheduling instances.

We select the second formulation (Model B) because it had a better performance on the

scheduling instances.

To adapt that formulation to the problem with learning and deterioration effects, let us

define the following decision variables.

𝑦𝑖𝑗
𝑟 = {

1, there are 𝑛 − 𝑟 jobs in the sequence after job 𝑖
0, otherwise

51

Then the adapted formulation is shown below.

𝐦𝐢𝐧 𝒛 = 𝒏∑𝒕𝟎𝒊
𝟏

𝒏

𝒊=𝟏

∑ 𝒚𝒊𝒋
𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

+∑∑ ∑ (𝒏 − 𝒓)𝒕𝒊𝒋
𝒓 𝒚𝒊𝒋

𝒓

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟏

𝒏−𝟏

𝒓=𝟏

 (𝟓. 𝟗)

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨:

∑ ∑ 𝒚𝒊𝒋
𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟏

𝒏

𝒊=𝟏

 (𝟓. 𝟏𝟎)

∑ (𝒚𝒊𝒋
𝒓 − 𝒚𝒋𝒊

𝒓−𝟏)

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟎 (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒓 = 𝟐, 𝟑,… , 𝒏 − 𝟏) (𝟓. 𝟏𝟏)

∑ ∑ 𝒚𝒋𝒊
𝒏−𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟏

𝒏

𝒊=𝟏

 (𝟓. 𝟏𝟐)

∑ 𝒚𝒊𝒋
𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

+∑ ∑ 𝒚𝒋𝒊
𝒓

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟏

𝒏−𝟏

𝒓=𝟏

 (𝒊 = 𝟏, 𝟐, … , 𝒏) (𝟓. 𝟏𝟑)

𝒚𝒊𝒋
𝒓 ∈ {𝟎, 𝟏} (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒋 = 𝟏, 𝟐, … , 𝒏; 𝒋 ≠ 𝒊; 𝒓 = 𝟐, 𝟑, … , 𝒏 − 𝟏) (𝟓. 𝟏𝟒)

The objective function (5.9) is to minimize the 𝑇𝐶𝑇 of a given sequence. The variables

𝑦𝑖𝑗
1 are multiplied by 𝑛 in (5.9) because 𝑦𝑖𝑗

1 = 1 means that the job 𝑖 occupies the

position 1 in the sequence. In general, 𝑦𝑖𝑗
𝑟 = 1 means that the job 𝑖 occupies the position

𝑟 − 1 and the job 𝑗 occupies the position 𝑟 in the sequence. This fact is equivalent to

that after job 𝑖 there are 𝑛 − 𝑟 jobs in the sequence and hence the variables 𝑦𝑖𝑗
𝑟 are

multiplied by 𝑛 − 𝑟.

Constraint (5.10) guarantees that a single job occupies position 1 in the sequence, while

constraint (5.12) guarantees that a single job occupies the last position in the sequence.

Constraints (5.11) are the flow conservation restrictions and they establish the sequence

continuity. Constraints (5.13) force each job to occupy only one position in the

sequence. Finally, constraints (5.14) establish the binary nature of the 𝑦𝑖𝑗
𝑟 variables.

5.2.2. Mathematical formulations for the parallel machine scheduling problems

with learning and deterioration effects.

For the parallel machine scheduling problems, we generalize the model 3.5 developed

in Chapter 3. In a parallel machine setting it is not known in advance how many jobs

will be assigned to each machine, we only have an upper bound 𝑁 = 𝑛 − 𝑚 + 1 that

represents the maximum number of jobs that can be assigned to a machine. For that

reason, in model5 the definition of variables 𝑦𝑖𝑗
𝑟 had to be modified. In this case, 𝑦𝑖𝑗

𝑟 is a

binary variable that is equal to 1 if and only if there are 𝑟 jobs after job 𝑖 in the sequence

to which the job 𝑖 belongs. Note that now 𝑦𝑖𝑗
1 = 1 means that job 𝑗 occupies the last

position in some sequence. This fact caused that developing the formulation for the

deterioration effect is practically straight, while for the learning effect it is much more

complicated.

52

In fact, for the deterioration effect, the objective function coefficients for the variables

𝑦𝑖𝑗
1 are 𝑠𝑖𝑗 + 𝑝𝑗, for 𝑦𝑖𝑗

2 are 2(𝑏𝑠𝑖𝑗 + 𝑝𝑗) and, in general, for 𝑦𝑖𝑗
𝑟 are 𝑟(𝑏𝑟−1𝑠𝑖𝑗 + 𝑝𝑗),

then the objective function can be written as:

𝐦𝐢𝐧 𝒛 = ∑∑𝒓(𝒃
𝒓−𝟏
𝒔𝟎𝒋+𝒑𝒋)𝒚𝟎𝒋

𝒓

𝑵

𝒓=𝟏

𝒏

𝒋=𝟏

+∑ ∑ ∑ 𝒓(𝒃
𝒓−𝟏
𝒔𝒊𝒋+𝒑𝒋)𝒚𝒊𝒋

𝒓

𝑵−𝟏

𝒓=𝟏

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

 (𝟓. 𝟏𝟓)

In the learning effect situation, 𝑦𝑖𝑗
1 = 1 also means that job 𝑗 occupies the last position

in some sequence and the variables 𝑦𝑖𝑗
1 should be multiplied in the objective function by

𝑏𝑘−1𝑠𝑖𝑗 + 𝑝𝑗, where 𝑘 is the number of jobs in the sequence to which the job 𝑗 belongs.

However, as the values of 𝑘 for each sequence are not known until the problem is

solved, we have to substitute the value of 𝑘 by 𝑁 to obtain the objective function

coefficients. Then, the objective functions can be written as follow:

𝐦𝐢𝐧 𝒛 = ∑∑𝒓(𝒃
𝑵−𝒓

𝒔𝟎𝒋+𝒑𝒋)𝒚𝟎𝒋
𝒓

𝑵

𝒓=𝟏

𝒏

𝒋=𝟏

+∑ ∑ ∑ 𝒓(𝒃
𝑵−𝒓

𝒔𝒊𝒋+𝒑𝒋)𝒚𝒊𝒋
𝒓

𝑵−𝟏

𝒓=𝟏

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

 (𝟓. 𝟏𝟔)

The fact that the variables in the objective function are not multiplied by the correct

coefficients could affect the optimal solution and it should be verified in computational

experimentation.

For both problems, the set of constraints is the same as for model 3.5 and we rewrite it

below

∑𝒚𝟎𝒋
𝒓 + ∑ ∑ 𝒚𝒊𝒋

𝒓

𝒏

𝒊=𝟏,𝒊≠𝒋

𝑵−𝟏

𝒓=𝟏

= 𝟏

𝑵

𝒓=𝟏

 (𝒊 = 𝟏, 𝟐, … , 𝒏) (𝟓. 𝟏𝟕)

∑𝒚𝟎𝒋
𝟏 + ∑ ∑ 𝒚𝒊𝒋

𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟏

= 𝒎

𝑵

𝒋=𝟏

 (𝒊 = 𝟏, 𝟐, … , 𝒏) (𝟓. 𝟏𝟖)

∑∑𝒚𝟎𝒋
𝒓 = 𝒎

𝒏

𝒋=𝟏

𝑵

𝒓=𝟏

 (𝟓. 𝟏𝟗)

𝒚𝟎𝒋
𝒓+𝟏 + ∑ 𝒚𝒊𝒋

𝒓+𝟏 = ∑ 𝒚𝒋𝒊
𝒓

𝒏

𝒊=𝟏,𝒊≠𝒋

𝒏

𝒊=𝟏,𝒊≠𝒋

 (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒓 = 𝟏, 𝟐,… ,𝑵 − 𝟐) (𝟓. 𝟐𝟎)

𝒚𝟎𝒋
𝑵 = ∑ 𝒚𝒋𝒊

𝑵−𝟏

𝒏

𝒊=𝟏,𝒊≠𝒋

 (𝒊 = 𝟏, 𝟐, … , 𝒏) (𝟓. 𝟐𝟏)

𝒚𝟎𝒋
𝒓 𝝐 {𝟎, 𝟏} (𝒊 = 𝟏, 𝟐,… , 𝒏; 𝒓 = 𝟏, 𝟐, … ,𝑵) (𝟓. 𝟐𝟐)

 𝒚𝒊𝒋
𝒓 𝝐 {𝟎, 𝟏} (𝒊, 𝒋 = 𝟏, 𝟐, … , 𝒏; 𝒋 ≠ 𝒊; 𝒓 = 𝟏, 𝟐, … ,𝑵 − 𝟏)

Constraints (5.17) ensure that each job is processed by a single machine. Constraints

(5.18) and (5.19) together ensure that there are an initial and a final job on each

machine. Constraints (5.20) are the flow conservation constraints and they guarantee the

continuity of the sequences. Constraints (5.21) are used when there are sequences

containing exactly 𝑁 jobs, otherwise they are redundant. Finally, constraints (5.22)

establish the binary nature of the variables.

Considering the nature of effect and the machine environment we have 4 models, that

are summarized in Table 5.1.

53

Table 5. 1 Proposed models

 Learning effect Deterioration effect

Single Machine Problem Model 1 Model 2

Parallel Machine Problem Model 3 Model 4

5.3. Computational experiments

The objective of the experiments is to show the advantages of including the learning

effect or the deterioration effect in the production programming process. To assess the

impact of the learning/deterioration effect on the quality of the solutions, we first take

the optimal solution without considering the learning/deterioration effect and evaluate it

for each value of the learning/deterioration factor b. Then the obtained objective

function values are compared with the values of the optimal solution with learning or

deterioration effect for the corresponding b value. That is, the gap value for each b

value is calculated as:

𝑮𝒂𝒑(𝒃)% = 𝟏𝟎𝟎 ∗
𝑺𝒐𝒍𝑽𝒂𝒍𝒘𝒊𝒕𝒐𝒖𝒕𝑬𝒇𝒇𝒆𝒄𝒕(𝒃) − 𝑶𝒑𝒕𝑽𝒂𝒍(𝒃)

𝑶𝒑𝒕𝑽𝒂𝒍(𝒃)
 (𝟓. 𝟐𝟑)

where 𝑂𝑝𝑡𝑉𝑎𝑙(𝑏) is the optimal solution value obtained for a given value of b and

𝑆𝑜𝑙𝑉𝑎𝑙𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐸𝑓𝑓𝑒𝑐𝑡(𝑏) is the value of the solution without learning/deterioration effect

when it is evaluated for the same b value. Note that, these gaps represent a measure of

how good a solution is (obtained without considering the learning/deterioration effects)

when it is evaluated for the different values of the learning/deterioration factor.

The experiments for single machine environment were performed on an Intel Core 2

Duo CPU at 3.00 GHz and 3.21 GB of RAM under Windows OS. The formulations

were implemented in C++ using the Gurobi Optimizer 8.1 solver. While the

experiments for the parallel machine environment were performed on an Intel Core i5-

5200U CPU at 2.20 GHz and 8 GB of RAM Windows 10 Enterprise 64 bits, also were

implemented in C++ using the Gurobi Optimizer 8.1 solver.

To carry out the computational experiments we use a subset of instances used in

Chapters 3 and 4. Specifically, we use the instances with 𝑛 = {15,20,25,30} for the

single machine problems and the instances with 𝑛 = {20,30,40,50,60}, 𝑚 = {2,4,6,8}
for the parallel machine problems. We take instances of the three setup ranges 𝑆1, 𝑆2,

and 𝑆3. The values of the learning/deterioration factor b vary between 0.1 and 0.9 with a

step of 0.1. In addition, we set 𝑏 = 1 to obtain the optimal solutions without

learning/deterioration effect.

5.3.1 Single machine

The Table 5.2 shows the gaps for the single machine problems with learning effects and

with deterioration effect. In Table 5.2, column 1 (n) indicates the number of jobs, while

column 2 (m) shows the different values of 𝑏. Columns 3 to 5 are associated to model 1

while columns 6 to 8 are related to Model 2. These columns show the gap values for

54

setup ranges 𝑆1, 𝑆2, and 𝑆3, respectively. The gap values are calculated using the

expression (5.23), the obtained values are grouped in subset of 20 values according to

number of jobs (n), setup range (S) and level of learning factor (b) and then the average

of each group is calculated. The gaps shown in columns 3 to 8 of Table 5.2 are averaged

over 20 instances.

Table 5. 2 Gaps of optimal solutions without learning/deterioration effect regarding learning

and deterioration levels for the single machine problems.

 Gap (%) for 𝒎 = 𝟏

 Learning effect Deterioration effect

n b S1 S2 S3 S1 S2 S3

15 0.1 6.1103 11.339 9.4763 6.8019 12.5440 12.7163

 0.2 5.7949 10.691 8.8852 6.7091 12.3841 12.4956

 0.3 5.4789 9.9187 8.1433 6.5977 12.1735 12.1770

 0.4 5.1246 9.0211 7.1655 6.4317 11.9149 11.7583

 0.5 4.7052 8.0269 6.1133 6.1151 11.5098 11.1551

 0.6 4.0679 6.7245 4.9972 5.5805 10.8178 10.1572

 0.7 3.1224 4.9213 3.7362 4.6928 9.5542 8.6373

 0.8 2.0394 2.8022 2.0618 3.2233 7.1155 6.2352

 0.9 0.8367 0.8288 0.5609 1.1919 2.9711 2.5838

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1 6.4371 8.8005 10.8290 6.8348 10.5417 12.3654

 0.2 6.1681 8.3507 10.3060 6.7931 10.4496 12.2257

 0.3 5.8133 7.9582 9.7336 6.7405 10.3302 12.1039

 0.4 5.4159 7.5540 9.1023 6.6667 10.1620 11.9066

 0.5 5.0203 7.0093 8.2665 6.5207 9.9132 11.5929

 0.6 4.5118 6.1175 7.0491 6.2235 9.4573 10.9642

 0.7 3.7495 4.8691 5.5179 5.6995 8.6112 9.75419

 0.8 2.5826 3.1717 3.6202 4.6171 6.8644 7.4269

 0.9 1.0175 1.0446 1.3362 2.2317 3.2501 3.1813

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1 4.7195 9.2083 10.9102 5.0703 10.0593 11.7052

 0.2 4.5470 8.9036 10.6019 5.0438 10.0068 11.6461

 0.3 4.3534 8.5460 10.2314 5.0034 9.9529 11.5582

 0.4 4.1317 8.1890 9.7719 4.9503 9.8646 11.4203

 0.5 3.8501 7.6828 9.1469 4.8598 9.7080 11.1913

 0.6 3.4658 6.9167 8.2511 4.6989 9.4203 10.7742

 0.7 2.9227 5.6916 7.0393 4.3941 8.7735 10.0016

 0.8 2.0447 3.9916 5.2446 3.6531 7.2732 8.2702

 0.9 0.7964 1.8524 2.4622 2.0458 3.8755 4.4306

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.1 4.5748 7.5836 8.6234 5.0546 8.3731 9.4431

 0.2 4.4401 7.3500 8.3754 5.0360 8.3436 9.4079

 0.3 4.3107 7.1037 8.1304 5.0133 8.3032 9.3651

 0.4 4.1544 6.8147 7.8632 4.9809 8.2367 9.2962

 0.5 3.9541 6.4499 7.5415 4.9179 8.1243 9.1871

 0.6 3.6682 5.9232 7.0117 4.8007 7.9376 8.9802

 0.7 3.2200 5.0920 6.0973 4.5437 7.5644 8.5153

 0.8 2.5077 3.7320 4.5605 3.9407 6.5939 7.4593

 0.9 1.1902 1.7558 2.0321 2.3221 3.9631 4.4050

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

From the results shown in this table we can conclude that the behaviors of gaps are

similar for the two types of effects, having slightly higher values when the deterioration

effect is considered. For both effects, it is possible to observe that the gaps increase as

the values of b decrease and the solutions without learning effect is degraded when the

55

range of variation of the setup times is greater than the range of variation of the

processing times (S3) for all levels of the learning factor. It can also be seen that the

values of the gaps decrease as the n value decreases.

In summary, taking into account the values of gaps, we can conclude that the quality of

the solution without learning and deterioration effects is not very low, but if we want

better quality solutions, we should consider the learning or deterioration factors in the

process of production programming.

The following set of graphics shows the performance of Model 1 (left column) and

Model 2 (right column) regarding the CPU time spent to find the optimal solution

according to the number of jobs and 𝒃 values. Notice that that for all the instances the

optimal solution was reached in shorter times to 13 seconds.

Figure 5. 1 Behavior of the CPU time according to the number of jobs, setup ranges and

learning/deteriration levels.

56

5.3.2 Parallel machines

Next, we present in Tables 5.3 to 5.6 the results corresponding to the experiments

carried out for the parallel machine environment. These tables have the same structure

as Table 5.2.

Table 5. 3 Gaps of optimal solutions without learning/deterioration effect regarding learning

and deterioration levels for the parallel machine problems with m=2.

Gap (%) for 𝒎 = 𝟐

 Learning effect Deterioration effect

n b S1 S2 S3 S1 S2 S3

15 0.1 65.8988 117.2618 148.6121 33.3592 46.1247 63.9454

 0.2 57.3466 107.7226 136.0523 27.1017 45.2606 58.8916

 0.3 56.1139 106.0798 131.4117 25.7830 41.2723 52.4629

 0.4 56.0213 105.8713 105.8713 23.3960 35.1890 42.4357

 0.5 55.6336 107.0921 115.6978 19.7490 31.6181 36.9881

 0.6 49.1218 73.7468 110.9999 15.9645 25.9787 30.1112

 0.7 37.9911 65.3583 82.9784 12.9309 16.5068 23.3729

 0.8 27.2916 49.2469 58.8745 6.4501 12.6451 17.1958

 0.9 12.4260 21.1823 28.3144 2.8846 5.3367 7.5704

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1 29.6845 68.6843 84.6869 21.6347 54.0124 68.2221

 0.2 26.7749 63.6888 81.9099 20.6611 53.5653 65.6686

 0.3 23.2158 57.5764 74.8439 19.3790 50.9691 64.6102

 0.4 22.2430 56.7814 72.4027 19.0240 41.3628 55.3676

 0.5 22.2271 56.6599 72.2982 17.8828 32.3678 46.7920

 0.6 22.1307 50.9155 66.7791 16.0312 28.5667 36.8245

 0.7 21.0984 37.5212 47.6667 12.9085 21.0555 26.9554

 0.8 15.6957 24.6936 28.6338 8.1278 12.6731 15.4265

 0.9 8.1613 12.3744 15.0748 4.1578 6.0318 6.3887

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1 29.6696 81.7450 91.3666 31.9133 65.2400 77.8600

 0.2 33.0030 79.3130 98.6707 24.5021 62.3570 66.6925

 0.3 28.1908 70.6129 79.4901 24.3533 57.4285 64.3315

 0.4 26.2815 67.6637 73.4072 24.0074 54.5968 63.2773

 0.5 25.1486 66.5166 71.0886 22.3531 43.0495 54.5477

 0.6 25.1133 62.6190 67.4367 17.1659 37.5331 39.9620

 0.7 21.8149 52.9193 55.0600 11.4410 26.2520 29.4972

 0.8 16.4713 34.4326 38.7127 8.4438 17.8491 18.3941

 0.9 8.8682 17.0180 18.9507 4.6076 8.7182 9.3480

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.1 34.3000 74.1058 89.8460 41.0862 61.0444 78.2396

 0.2 34.5677 78.7809 89.6706 35.0853 58.7093 69.3125

 0.3 33.5672 71.3780 82.9029 34.6978 56.3957 66.1241

 0.4 29.3800 63.8376 76.0297 25.4373 52.4543 64.9755

57

 0.5 28.2502 60.9628 72.2329 23.9223 47.1869 59.1499

 0.6 27.8092 60.8676 71.9826 18.7011 39.8884 45.5328

 0.7 24.4392 55.0765 62.0507 14.8001 25.8324 30.8978

 0.8 19.3490 33.6296 41.9418 10.9380 16.3639 18.3497

 0.9 8.5936 14.8366 18.1533 4.8082 7.4153 8.6056

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5. 4 Gaps of optimal solutions without learning/deterioration effect regarding learning

and deterioration levels for the parallel machine problems with m=4.

Gap (%) for 𝒎 = 𝟒

 Learning effect Deterioration effect

n b S1 S2 S3 S1 S2 S3

15 0.1 40.4618 103.2302 176.3518 12.4581 30.7029 46.2300

 0.2 32.7598 80.97617 130.6997 11.4328 26.5718 42.6540

 0.3 32.7425 80.9713 130.5875 9.5744 23.5422 37.3594

 0.4 32.7285 80.9200 130.4706 8.3646 19.9142 34.0003

 0.5 32.6416 80.6098 129.7798 6.4721 17.5761 27.8860

 0.6 30.0632 71.7061 123.5713 5.5512 11.2310 24.4680

 0.7 28.8458 62.8895 105.5198 4.0505 8.2168 19.7222

 0.8 21.1277 41.6441 69.1655 2.8349 5.4365 12.4457

 0.9 11.2809 20.4470 29.9021 1.5011 2.8247 4.0382

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1 26.6037 62.6921 79.4990 18.0655 40.5917 48.7050

 0.2 30.8962 60.8647 75.2225 17.6185 35.9406 44.1168

 0.3 22.2829 47.8193 55.1943 15.3851 30.7262 38.8545

 0.4 20.9139 46.3679 54.4119 13.6839 27.5846 33.8624

 0.5 20.9097 46.3542 54.3939 10.9735 21.4982 26.7768

 0.6 20.8708 46.2294 54.2313 9.4616 18.3370 21.7896

 0.7 20.0615 38.9195 50.2908 6.8382 11.6825 17.9493

 0.8 15.5362 29.8057 39.4851 4.5725 7.75103 8.6549

 0.9 9.2875 14.6785 15.4480 2.3104 3.5232 3.34533

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1 32.0063 78.8046 86.4863 18.8724 45.9892 51.8287

 0.2 33.4189 71.5805 87.6163 18.5183 42.4285 47.9878

 0.3 30.8917 67.3468 79.0594 17.1827 37.3564 44.4969

 0.4 21.2725 47.7717 54.6499 15.5603 31.6937 37.1436

 0.5 20.2155 47.7523 54.6353 13.1534 28.5494 33.4884

 0.6 20.2102 47.7347 54.6095 10.7361 25.5196 25.3628

 0.7 20.1455 47.5204 54.3116 8.81491 18.5784 18.3022

 0.8 18.7261 39.6577 42.0300 5.2076 11.3142 11.9980

58

 0.9 11.3925 20.4205 19.5406 2.4506 5.7076 4.2022

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.1 35.1008 79.2002 92.7947 21.1632 45.6224 51.3321

 0.2 35.5886 78.8567 89.0508 20.6299 43.1693 50.2063

 0.3 35.0116 78.3900 87.4945 19.7945 38.8619 43.7551

 0.4 28.9291 62.0848 67.1610 17.8032 34.5329 35.0348

 0.5 21.6587 48.4375 55.1640 15.7991 28.1976 26.3221

 0.6 21.6578 48.0011 55.1552 13.1217 19.9469 22.0825

 0.7 21.6385 47.9437 55.0781 9.6380 14.4200 18.2064

 0.8 20.3540 38.1562 39.7184 6.5157 8.9205 11.3348

 0.9 12.3513 19.0112 21.5025 3.2246 4.6473 5.0021

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5. 5 Gaps of optimal solutions without learning/deterioration effect regarding learning

and deterioration levels for the parallel machine problems with m=6.

Gap (%) for 𝒎 = 𝟔

 Learning effect Deterioration effect

n b S1 S2 S3 S1 S2 S3

15 0.1 49.7343 123.0367 100.2296 17.1926 37.4436 37.11881

 0.2 44.2389 103.0189 93.6742 15.5637 35.2860 33.51412

 0.3 44.2305 102.9935 93.6529 13.6654 28.2435 29.53765

 0.4 44.1693 102.7983 93.4896 11.8256 23.8679 24.98431

 0.5 43.8824 101.8756 92.7110 9.5995 17.0013 18.78135

 0.6 42.8792 98.4092 88.8095 7.5033 11.4890 13.72476

 0.7 38.8980 88.5730 76.5489 5.8341 8.1432 9.122875

 0.8 30.3067 58.9317 54.9975 3.6608 4.9148 4.803582

 0.9 17.7898 26.7920 25.5195 1.7386 2.3516 1.85242

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1 31.9935 60.8220 74.0027 18.6296 36.2645 37.8881

 0.2 34.1885 54.8085 64.4170 16.6657 34.0065 33.5824

 0.3 22.5084 45.2000 48.6505 15.4161 29.5191 29.1725

 0.4 22.5077 45.1981 48.6484 13.2256 24.8835 23.6151

 0.5 22.4990 45.1750 48.6240 11.9441 20.5652 19.9242

 0.6 22.2758 44.9923 48.4289 9.7804 17.0327 14.6506

 0.7 21.8833 43.2677 45.4381 6.3988 11.0739 10.5056

 0.8 19.0285 34.4068 33.1484 4.3334 5.9063 6.4146

 0.9 10.3476 18.1288 18.0198 1.9345 2.7431 2.9016

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1 34.5739 77.4411 82.5544 19.8370 41.8353 38.4771

 0.2 36.5830 77.5399 76.2059 18.4703 38.1728 36.0883

 0.3 35.6394 70.2485 63.6900 16.0151 34.6811 29.9502

 0.4 22.3436 49.9653 44.9373 14.4244 29.4165 26.5812

 0.5 22.2663 49.8369 44.9362 12.0316 26.6913 22.3191

59

 0.6 22.2589 49.8119 44.9157 9.0006 22.1702 16.7435

 0.7 22.1726 49.5290 44.6827 7.4514 15.2087 12.2421

 0.8 20.6150 45.4081 38.8568 4.9241 10.4084 7.4332

 0.9 11.3171 25.2039 21.2901 2.4048 4.4015 3.0274

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.1 42.3898 65.2722 93.8534 20.5196 32.6962 48.1899

 0.2 43.0621 68.7697 88.0670 18.8980 30.9766 45.1150

 0.3 38.6824 66.3541 93.7071 17.3083 26.8549 38.7134

 0.4 35.6265 55.0134 78.8586 15.7349 21.7282 32.6064

 0.5 22.0939 34.8728 56.4391 13.1781 18.2902 27.0093

 0.6 21.9972 34.8713 56.4247 10.6114 13.6287 19.6891

 0.7 21.9413 34.8369 54.5981 8.1384 10.6295 15.6506

 0.8 21.1410 32.5453 46.85765 5.4018 6.6405 9.1559

 0.9 14.9692 19.91788 23.6965 2.7393 3.4431 4.1513

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5. 6 Gaps of the optimal solutions without learning/deterioration effect regarding

learning and deterioration levels for the parallel machine problems with m=8.

Gap (%) for 𝒎 = 𝟖

 Learning effect Deterioration effect

n b S1 S2 S3 S1 S2 S3

15 0.1 52.7623 104.2262 156.6708 17.4082 32.4524 47.2652

 0.2 52.6186 104.2135 156.6469 15.2727 28.5345 40.5772

 0.3 52.5703 104.0810 156.3926 12.9972 23.5191 33.1791

 0.4 52.3209 103.4011 155.0943 10.5609 18.0583 30.0564

 0.5 51.4585 98.5534 145.5622 9.3000 14.5030 26.8735

 0.6 48.4558 89.0032 121.9466 7.2243 11.7905 21.2234

 0.7 42.0989 73.4573 93.4003 5.6085 8.0415 10.2784

 0.8 29.2866 49.8121 60.8760 3.2127 4.0337 4.2018

 0.9 14.9518 22.0382 27.2192 1.2953 1.6648 1.7997

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.1 34.7787 56.7727 87.2121 18.1559 37.7481 45.2558

 0.2 27.09493 50.5254 65.7982 16.0685 34.0296 42.2353

 0.3 23.5867 48.1117 65.4784 14.5181 27.7716 34.7221

 0.4 23.5844 48.1046 65.4683 12.7573 24.4758 29.2031

 0.5 23.5633 48.0376 65.3695 11.1994 21.0284 22.3429

 0.6 23.4306 47.6272 64.7564 8.8281 17.8985 17.0213

 0.7 22.8047 45.7704 58.2615 5.8635 12.1982 11.0231

 0.8 19.2400 36.2163 42.5169 3.7966 5.8459 6.5749

 0.9 12.6680 18.2417 20.8710 1.7842 2.6675 2.6858

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.1 31.7761 65.50086 98.14790 18.8883 36.1262 48.8618

 0.2 29.8942 62.6424 87.9887 16.6552 31.6017 41.3085

 0.3 30.2406 51.5729 82.6668 14.7066 28.3205 38.5461

 0.4 22.1495 42.8867 60.7120 12.4363 24.1303 30.9397

 0.5 22.0632 42.8841 60.7077 10.2518 20.7899 25.0552

60

 0.6 22.0498 42.8481 60.6485 8.3121 16.5171 18.9872

 0.7 21.9186 34.8061 60.0769 5.5229 11.8317 12.2774

 0.8 19.7894 38.8769 52.7319 3.7454 6.7694 7.7745

 0.9 12.2690 22.5368 25.0521 1.9056 3.2156 3.3734

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.1 35.1544 61.4239 76.1796 17.3623 28.6382 37.4824

 0.2 34.9034 47.8662 80.0278 16.7950 26.8772 32.7563

 0.3 35.1788 57.7330 85.0620 14.7610 24.3255 30.5952

 0.4 28.9754 46.9167 55.0123 12.9955 21.5691 24.1574

 0.5 19.8248 36.1781 44.7360 11.7649 17.5587 19.5592

 0.6 19.8235 36.1753 44.7318 8.9368 12.2319 14.3471

 0.7 19.7987 36.1200 44.6539 6.4861 9.1863 10.4738

 0.8 19.4747 32.8107 40.3748 3.6400 5.9428 7.0332

 0.9 13.7196 20.0552 24.5484 1.7923 2.8541 3.5046

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

From the results shown in Tables 5.3 to 5.6 we can conclude that the behaviors of gaps

for learning effect are worse than for deterioration effect. This behavior is observable

for all combination of (𝑛,𝑚, 𝑏, 𝑆). For both effects, it is possible to detect that the gaps

increase as the values of b decrease and the solutions without learning effect degrade as

the time range grows, always having worse values for S3 for all levels of the learning

factor.

In summary, we conclude that in parallel machine problems, when the learning or

deterioration effects are not considered in the production programming process, it can

lead us to obtain solutions of very poor quality. We also want to emphasize that it is

essential to bear in mind the learning effect in the production programming process, if

we want to get high quality solutions.

With the figures shown below we intend to reinforce the previous comments. Figures

5.2 and 5.3 are graphic illustrations of the gaps behavior (on average) for each level of

learning factor and each setup range. Th gaps calculated by the expression (5.23) have

been grouped into subsets. To obtain the column charts in Figure 5.2 the gaps are

averaged for each n value, while in Figure 5.3 they are averaged for each m value.

61

Figure 5. 2 Averaged gaps grouped by number of jobs according to setup ranges and

learning/deterioration levels.

62

Figure 5. 3 Averaged gaps grouped by number of machines according to setup ranges and

learning/deterioration levels.

Table 5.7 shows the range of variation for the CPU time spent by Model 3 (with

learning effect) and Model 4 (with deterioration effect) solving the 30-job instances

with 2, 4, 6 and 8 machines. Column 1 displays the machine number while column 2

indicates the setup time range. Columns 3 to 6 are related to Model 3 while columns 7

to 10 are related to Model 4. Columns 3 and 7 show the minimum values of CPU time

while 5 and 9 show the maximum values of CPU time spent by models to obtain the

optimal solutions. Columns 4, 6, 8 and 10 exhibit the b value for which those maximum

and minimum values of CPU time are reached.

63

Table 5. 7 Maximum and minimum CPU times (in seconds) spent by two models for

parallel machine problems solving the 30-job instances.

 Learning effect Deterioration effect

m S Min b Max b Min b Max b

2 S1 0.64 0.6 1.921 0.9 0.597 0.3 308.499 0.8

 S2 0.601 0.6 2.29 0.9 0.695 0.1 41.227 0.9

 S3 0.65 0.4 1.96 0.9 1.093 0.2 21.37 0.9

4 S1 0.365 0.6 1.033 0.9 2.864 0.1 24.596 0.8

 S2 0.354 0.7 0.818 0.9 7.014 0.3 76.337 0.9

 S3 0.386 0.3 1.059 0.9 14.998 0.8 71.278 0.7

6 S1 0.283 0.1 0.569 0.9 16.905 0.2 55.322 0.6

 S2 0.267 0.7 0.592 0.9 7.502 0.5 58.616 0.8

 S3 0.284 0.8 0.837 0.9 5.304 0.2 23.511 0.5

8 S1 0.238 0.7 0.65 0.9 2.039 0.7 12.246 0.3

 S2 0.248 0.6 0.801 0.9 1.606 0.3 8.976 0.7

 S3 0.247 0.7 0.528 0.9 0.358 0.1 4.978 0.4

From the results in the table it is seen that the CPU times are relatively small and that

the largest values are obtained for m = 2. This is somewhat reasonable because having

fewer machines the sequences of jobs are longer.

5.4. Conclusions

In this chapter, we studied how total completion time is affected by learning effect or by

deterioration effect over sequence-dependent setup times in single and the parallel

machine scheduling problem. To model the learning or deterioration effects we used

functions depending on the number of machine setups already completed and, on a

learning, or deterioration factor.

From the experiments carried out for single machine problems, we can conclude that the

solutions obtained without considering the learning/deterioration effects could be

considered of acceptable quality for the different levels of b, although higher quality

solutions could be obtained if these effects on the sequence dependent setup times are

considered in the process of production planning.

For parallel machines problems the situation is different. For both types of effects, the

solutions obtained without considering learning and deterioration effects are of very

poor quality, deteriorating further as the b value decreases. For parallel machines

problems we recommend to always take into account the learning and deterioration

effects in the process of production planning. In addition, it is essential to consider the

learning effect if we want to get high quality solutions.

Using the proposed formulations, we are able to solve optimality of up to 30 jobs. Then,

interesting research avenues could be the addressed of the scope of formulations for

parallel machine problems and the design of heuristic and metaheuristic algorithms to

determine quality solutions for larger instances considering learning effect or

deterioration effect in the production programming process.

64

Chapter 6 General conclusions

In this thesis work, we approach two kinds of scheduling problems and in both of them,

the goal is to minimize the total completion time. The first problem is the parallel

scheduling problem with sequence-dependent setup times. In the second addressed

problem, we incorporate learning and deteriorating effects over the sequence-dependent

setup times according to the position, and the approach was for a single machine and

parallel machines environments.

6.1 Conclusions

From the first problem, the parallel scheduling problem with sequence-dependent setup

times, we conclude the following:

▪ We presented two new time-dependent formulations for the addressed problem.

▪ We showed that time-dependent based formulations performed much better than

the others formulations for the parallel machines scheduling problem with

sequence-dependent setup times.

▪ In the case with many jobs and few machines, model 5 showed a better

performance.

▪ For the same problem, propose a hybrid algorithm that combines the GRASP

and Variable Neighborhood Search metaheuristics.

▪ After tested several orders of the neighborhoods for the improvement phase, the

best results were achieved by selecting randomly the order of the neighborhoods

sequence.

▪ Comparing with optimal solutions or best integer solutions found using a

mathematical model, and with results of the best heuristic from the literature we

show the effectiveness of the proposed hybrid algorithm.

From the second problem, the parallel scheduling problem with sequence-dependent

setup times with learning and deteriorating effects, we conclude:

▪ We presented mixed integer formulations for the environments of a single and

parallel machines with learning and with deterioration effects for the case when

these effects act just over the setup times.

▪ The experiments for parallel machines environment obtained the bigger gaps

percentages regarding the optimal solution without effects than the experiments

for single machine environment.

▪ The function implemented to describe the deterioration effect presents a widely

decreases in setup times for sequences with more processed jobs.

65

▪ We noticed that for these two kinds of problems (single and parallel machines),

an optimal solution with learning or deterioration effects does not remain to be

the optimal solution when these effects are not considered.

6.2 Future works

In this research, the learning and the deterioration effects were considered just over the

sequence dependent setup times. Another research line could include these effects over

the setup times and over the processing times. Also, the generalization of this addressed

to other manufacturing environment with sequence dependent setup times could also be

another interesting research direction.

66

Appendix A. Acronyms Table

Table A. 1 Table of acronyms

TCT Total Completion Time
Makespan (Cmax) The completion time of the final job sequenced at a schedule

m-TSP m-Travelling Salesman Problem

TWT Total Weighted Tardiness

TWCT Total Weighted Completion Time

B&B Branch-and-Bound algorithm

ATSP Asymmetric Travelling Salesman Problem

VRP Vehicle Routing Problem

TSP Travelling Salesman Problem

P-s-d Past-sequence-dependent

GRASP Greedy Randomized Adaptive Search Procedure

VNS Variable Neighborhood Search

VND Variable Neighborhood Descent

RVND Random Variable Neighborhood Descent

IGA Iterated Greedy Algorithm

RCL Restricted Candidate List

WMDD Weighted Modified Due Date

HMA Hybrid Metaheuristic Algorithm

Table A. 2 Table of classification scheme for scheduling problems.

P|STsd|TCT Parallel machine Scheduling Problem with sequence dependent

Setup Times, minimizing TCT

R|STsd|Cmax

Unrelated parallel machine scheduling problem with sequence

dependent Setup Times, minimizing the makespan

67

Bibliography

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with

setup times/costs. European Journal of Operational Research, 246(2), 345–

378. https://doi.org/10.1016/j.ejor.2015.04.004

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of scheduling

research involving setup considerations. Omega, 27(2), 219–239.

https://doi.org/10.1016/S0305-0483(98)00042-5

Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of

scheduling problems with setup times or costs. European Journal of

Operational Research, 187(3), 985–1032.

https://doi.org/10.1016/j.ejor.2006.06.060

Allahverdi, A., & Soroush, H. M. (2008). The significance of reducing setup

times/setup costs. European Journal of Operational Research, 187(3), 978-

984.

Angel-Bello, F., Alvarez, A., & García, I. (2013). Two improved formulations for the

minimum latency problem. Applied Mathematical Modelling, 37(4), 2257–

2266.

Armentano, V. A., & de França Filho, M. F. (2007). Minimizing total tardiness in

parallel machine scheduling with setup times: An adaptive memory-based

GRASP approach. European Journal of Operational Research, 183(1), 100–

114. https://doi.org/10.1016/j.ejor.2006.09.077

Avalos Rosales, O. (2014). Secuenciación en máquinas paralelas no relacionadas

con tiempos de preparación y tareas de mantenimiento preventivo (PhD

Thesis). Universidad Autónoma de Nuevo León.

Avalos-Rosales, O., Angel-Bello, F., & Alvarez, A. (2015). Efficient metaheuristic

algorithm and re-formulations for the unrelated parallel machine scheduling

problem with sequence and machine-dependent setup times. The

International Journal of Advanced Manufacturing Technology, 76(9–12),

1705–1718. https://doi.org/10.1007/s00170-014-6390-6

Baez, S., Angel-Bello, F., & Alvarez, A. (2016). Time-dependent formulations for

minimizing total completion time in a parallel machine scheduling problem

with dependent setup times. IFAC-PapersOnLine, 49(12), 857–862.

68

Behnamian, J., & Fatemi Ghomi, S. M. T. (2011). Hybrid flowshop scheduling with

machine and resource-dependent processing times. Applied Mathematical

Modelling, 35(3), 1107–1123. https://doi.org/10.1016/j.apm.2010.07.057

Bektas, T. (2006). The multiple traveling salesman problem: an overview of

formulations and solution procedures. Omega, 34(3), 209–219.

Bettayeb, B., Kacem, I., & Adjallah, K. H. (2008). An improved branch-and-bound

algorithm to minimize the weighted flowtime on identical parallel machines

with family setup times. Journal of Systems Science and Systems

Engineering, 17(4), 446–459. https://doi.org/10.1007/s11518-008-5065-y

Bierwirth, C., & Kuhpfahl, J. (2017). Extended GRASP for the job shop scheduling

problem with total weighted tardiness objective. European Journal of

Operational Research, 261(3), 835–848.

https://doi.org/10.1016/j.ejor.2017.03.030

Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects.

European Journal of Operational Research, 188(2), 315–329.

BRIMBERG, J. (1996). A variable neighborhood algorithm for solving the

continuous location-allocation problem. Studies in Locational Analysis, 10,

1–12.

Chen, P., Wu, C. C., & Lee, W. C. (2006). A bi-criteria two-machine flowshop

scheduling problem with a learning effect. Journal of the Operational

Research Society, 57(9), 1113-1125.

Chou, F.-D., Wang, H.-M., & Chang, T.-Y. (2009). Algorithms for the single machine

total weighted completion time scheduling problem with release times and

sequence-dependent setups. The International Journal of Advanced

Manufacturing Technology, 43(7–8), 810. https://doi.org/10.1007/s00170-

008-1762-4

Christofides, N., Mingozzi, A., & Toth, P. (1981). Exact algorithms for the vehicle

routing problem, based on spanning tree and shortest path relaxations.

Mathematical Programming, 20(1), 255–282.

De Jong, J. R. (1957). The effects of increasing skill on cycle time and its

consequences for time standards. Ergonomics, 1(1), 51-60.

Driessel, R., & Moench, L. (2009). Scheduling jobs on parallel machines with

sequence-dependent setup times, precedence constraints, and ready times

using variable neighborhood search. In 2009 International Conference on

69

Computers Industrial Engineering (pp. 273–278).

https://doi.org/10.1109/ICCIE.2009.5223515

Expósito-Izquierdo, C., Angel-Bello, F., Melián-Batista, B., Alvarez, A., & Báez, S.

(2019). A metaheuristic algorithm and simulation to addressed the effect of

learning or tiredness on sequence-dependent setup times in a parallel

machine scheduling problem. Expert Systems with Applications, 117, 62–74.

Fan, B., & Tang, G. (2006). A column generation for a parallel machine scheduling

with sequence-dependent setup times. Tongji Daxue Xuebao/ Journal of

Tongji University(Natural Science), 34(5), 680-683.

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a

computationally difficult set covering problem. Operations Research Letters,

8(2), 67–71. https://doi.org/10.1016/0167-6377(89)90002-3

Feo, T. A., & Resende, M. G. C. (1995). Greedy Randomized Adaptive Search

Procedures. Journal of Global Optimization, 6(2), 109–133.

https://doi.org/10.1007/BF01096763

Fowler, J., Horng, S. M., & Cochran, J. K. (2003). A hybridized genetic algorithm to

solve parallel machine scheduling problems with sequence dependent

setups. International Journal of Industrial Engineering: Theory Applications

and Practice, 10(3), 232-243.

Gacias, B., Artigues, C., & Lopez, P. (2010). Parallel machine scheduling with

precedence constraints and setup times. Computers & Operations Research,

37(12), 2141–2151. https://doi.org/10.1016/j.cor.2010.03.003

Gavish, B., & Graves, S. C. (1978). The travelling salesman problem and related

problems.

Godinho, M. T., Gouveia, L., & Magnanti, T. L. (2008). Combined route capacity and

route length models for unit demand vehicle routing problems. Discrete

Optimization, 5(2), 350–372.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization

and Approximation in Deterministic Sequencing and Scheduling: a Survey.

In P. L. Hammer, E. L. Johnson, & B. H. Korte (Eds.), Annals of Discrete

Mathematics (Vol. 5, pp. 287–326). Elsevier.

https://doi.org/10.1016/S0167-5060(08)70356-X

Guinet, A. (1991). Textile production systems: a succession of non-identical

70

parallel processor shops. Journal of the Operational Research

Society, 42(8), 655-671.

Hansen, P., Mladenović, N., & Pérez, J. A. M. (2008). Variable neighbourhood

search: methods and applications. 4OR, 6(4), 319–360.

https://doi.org/10.1007/s10288-008-0089-1

Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for

unrelated parallel machine scheduling with setup time and production

availability. Computers & Industrial Engineering, 85, 102-109.

Kampke, E. H., Arroyo, J. E. C., & Santos, A. G. dos. (2009). Reactive GRASP with

path relinking for solving parallel machines scheduling problem with

resource-assignable sequence dependent setup times. In 2009 World

Congress on Nature Biologically Inspired Computing (NaBIC) (pp. 924–

929). https://doi.org/10.1109/NABIC.2009.5393873

Koulamas, C., & Kyparisis, G. J. (2008). Single-machine scheduling problems with

past-sequence-dependent setup times. European Journal of Operational

Research, 187(3), 1045–1049.

Lee, C. H., Liao, C. J., & Chao, C. W. (2014). Unrelated parallel machine scheduling

with dedicated machines and common deadline. Computers & Industrial

Engineering, 74, 161-168.

Lee, W. C. (2014). Single-machine scheduling with past-sequence-dependent setup

times and general effects of deterioration and learning. Optimization

Letters, 8(1), 135-144.

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer Programming

Formulation of Traveling Salesman Problems. J. ACM, 7(4), 326–329.

https://doi.org/10.1145/321043.321046

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24(11), 1097–1100. https://doi.org/10.1016/S0305-

0548(97)00031-2

Molina-Sánchez, L., & González-Neira, E. (2016). GRASP to minimize total weighted

tardiness in a permutation flow shop environment. International Journal of

Industrial Engineering Computations, 7(1), 161–176.

Morales, M. F., Acosta, F. A. B., & Socarrás, A. A. (2016). An Iterated Greedy

Algorithm for Minimizing the Total Completion Time in a Parallel Machine

Scheduling Problem with Dependent Se. Retrieved June 28, 2018, from

71

http://scholar.googleusercontent.com/scholar?q=cache:EHMKYqLClMcJ:sch

olar.google.com/+Morales+et+al.+(2016)++scheduling&hl=es&as_sdt=0,5

Mustu, S., & Eren, T. (2018). The single machine scheduling problem with

sequence-dependent setup times and a learning effect on processing times.

Applied Soft Computing, 71, 291–306.

https://doi.org/10.1016/j.asoc.2018.06.051

Nessah, R., Chu, C., & Yalaoui, F. (2007). An exact method for Pm/sds,ri/∑i=1nCi

problem. Computers & Operations Research, 34(9), 2840–2848.

https://doi.org/10.1016/j.cor.2005.10.017

Nucamendi-Guillén, S., Martínez-Salazar, I., Angel-Bello, F., & Moreno-Vega, J. M.

(2016). A mixed integer formulation and an efficient metaheuristic

procedure for the k-Travelling Repairmen Problem. Journal of the

Operational Research Society, 67(8), 1121–1134.

Pacheco, J., Ángel-Bello, F., & Álvarez, A. (2013). A multi-start tabu search method

for a single-machine scheduling problem with periodic maintenance and

sequence-dependent set-up times. Journal of Scheduling, 16(6), 661–673.

https://doi.org/10.1007/s10951-012-0280-2

Park, C., & Seo, J. (2013). A GRASP approach to transporter scheduling for ship

assembly block operations management. European Journal of Industrial

Engineering, 7(3), 312–332. https://doi.org/10.1504/EJIE.2013.054133

Paula, D., Rocha, M., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2007). Solving

parallel machines scheduling problems with sequence-dependent setup

times using variable neighbourhood search. IMA Journal of Management

Mathematics, 18(2), 101–115. https://doi.org/10.1093/imaman/dpm016

Picard, J.-C., & Queyranne, M. (1978). The time-dependent traveling salesman

problem and its application to the tardiness problem in one-machine

scheduling. Operations Research, 26(1), 86–110.

Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems. Springer.

Resende, M. G., & Ribeiro, C. C. (2010). Grasp. Search Methodologies, 2nd ed., EK

 Burke and G. Kendall, Eds. Springer (to appear).

Ruiz, R., & Andres, C. (2007). Unrelated Parallel Machines Scheduling with

Resource-Assignable Sequence Dependent Setup Times, 8.

72

Schiavinotto, T., & Stützle, T. (2004). The Linear Ordering Problem: Instances,

Search Space Analysis and Algorithms. Journal of Mathematical Modelling

and Algorithms, 3(4), 367–402.

https://doi.org/10.1023/B:JMMA.0000049426.06305.d8

Su, L. H. (2009). Scheduling on identical parallel machines to minimize total

completion time with deadline and machine eligibility constraints. The

International Journal of Advanced Manufacturing Technology, 40(5-6), 572-

581.

Tavakkoli-Moghaddam, R., Taheri, F., & Bazzazi, M. (2008). MULTI-OBJECTIVE

UNRELATED PARALLEL MACHINES SCHEDULING WITH SEQUENCE-

DEPENDENT SETUP TIMES AND PRECEDENCE CONSTRAINTS, 10.

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel

machine scheduling problem with sequence dependent setup times.

European Journal of Operational Research, 211(3), 612–622.

https://doi.org/10.1016/j.ejor.2011.01.011

Wang, J. B., Wang, M. Z., & Ji, P. (2012). Single machine total completion time

minimization scheduling with a time-dependent learning effect and

deteriorating jobs. International Journal of Systems Science, 43(5), 861-

868.

Wang, X.-Y., & Wang, J.-J. (2013). Scheduling problems with past-sequence-

dependent setup times and general effects of deterioration and learning.

Applied Mathematical Modelling, 37(7), 4905–4914.

https://doi.org/10.1016/j.apm.2012.09.044

Weng, M. X., Lu, J., & Ren, H. (2001). Unrelated parallel machine scheduling with

setup consideration and a total weighted completion time objective.

International Journal of Production Economics, 70(3), 215–226.

https://doi.org/10.1016/S0925-5273(00)00066-9

Wu, C.-C., & Lee, W.-C. (2008). Single-machine group-scheduling problems with

deteriorating setup times and job-processing times. International Journal of

Production Economics, 115(1), 128–133.

https://doi.org/10.1016/j.ijpe.2008.05.004

Xingong, Z., Yong, W., & Shikun, B. (2016). Single-machine group scheduling

problems with deteriorating and learning effect. International Journal of

Systems Science, 47(10), 2402-2410.

73

Yang, S.-J. (2011). Group scheduling problems with simultaneous considerations of

learning and deterioration effects on a single-machine. Applied

Mathematical Modelling, 35(8), 4008–4016.

https://doi.org/10.1016/j.apm.2011.02.024

