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Scheduling problems with sequence dependent setup times 
minimizing the total completion time. 

 
By 

 
Sarahí Berenice Báez Viezca 

 

Abstract 
 

Objectives and study method: The main goal of this thesis work is to develop tools 

to solve some scheduling problems obtaining quality solutions in an efficient way, 

reaching improvements in the production times. 

This work is dedicated to solving two kinds of scheduling problems. The first 

problem consists in giving a schedule for a set of jobs that should be processed in a 

set of machines. The term sequence dependent setup times means that the necessary 

time to get ready all the necessary to process a certain job depends on the job just 

performed. The second problem is actually four problems analyzed in two 

environments, and they are the single and parallel machine scheduling problem with 

learning and deterioration effects over sequence dependent setup times. 

 

The addressed method in both cases is, firstly, developing a mathematical 

formulation for each one able to obtain optimal solutions and verify its scope. 

Secondly, it is designed and developed a heuristic algorithm that provides good 

solutions in short periods of time, for the first problem. 

 

Contributions and conclusions: For the first problem, the computational experiments 

showed that time-dependent based formulations performed much better than the 

classic formulations and for the heuristic algorithm, this one has a better 

performance than the founded in the literature. 

 

Regarding to the second problem, in this work we present the first mathematical 

formulation for the case with learning and deterioration effects overs the sequence 

dependent setup times. 
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Chapter 1  Introduction 
 

1.1 Introduction 
 

Nowadays, the problems in the industry are more complex each time. It is necessary to 

develop solution methods capable of achieving high-quality solutions, in very short 

computational times. 

 

The scheduling problem is one of these industrial problems that have been extensively 

studied due to the multiple applications in several manufacturing systems. For example, 

steel, textile, painting, and plastic industries are the major industries requiring highly 

skilled scheduling. 

 

The scheduling problem basically consists of assigning resources (for example 

machines) to a set of jobs that should be performed in such a way that the process is 

optimized, in terms of time, cost or even number of resources. 

 

Bektas (2006) gives some examples of scheduling problems in the production area like 

print press scheduling and hot rolling scheduling as applications of the multi- traveling 

salesman problem where the setup costs in the production sequence are equivalent to 

the costs between cities. 

 

There are many variants for the scheduling problems according to the environment of 

the manufacturing or service process. 

 

Some kinds of scheduling problems according to the environment are job shop, flow 

shop, single machine, parallel machines, just to mention some. 

 

Another distinctive feature is the objective of the system, which can be reducing costs, 

time, delays, etc. And even there are many ways to address the same element to 

improve. For example, when it is desired to minimize the time of production, one 

approach could minimize the completion time of the final job sequenced at the schedule 

(Makespan) or minimize the sum of the completion times of all the jobs (TCT). 

 

Therefore, the problems dealt with in this work are the parallel scheduling problem with 

sequence dependent setup times and the parallel and a single machine scheduling 

problem with learning/deterioration effects over the sequence dependent setup times. In 

both problems, the objective is to minimize the Total Completion Time.  

 

Taking into account the areas of research opportunity obtained from the literature 

review, the proposed solution strategies for the first problem are to develop mixed 

integer formulations capable of solving medium-sized instances and to design and 

implement efficient metaheuristic algorithms. For the second kind of problems (with 

learning or deterioration effects) the strategy is to develop mixed integer formulations 

that allow us to study the effects of learning and deterioration in scheduling problems 

with sequence-dependent setup times. 
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1.2 Motivation 
 
The initial objective of this research was to study the effect of learning or deterioration 

on the total completion time in parallel machine problems with sequence dependent 

setup times. Although the scheduling problems with sequence dependent setup times 

and sequence dependent costs have been studied since the mid-sixties (Allahverdi, 

Gupta, & Aldowaisan, 1999) and continue to be extensively studied (Allahverdi et al., 

2008; Allahverdi, 2015), we found that the problem of minimizing the TCT in parallel 

machine scheduling with sequence dependent setup times had not been practically 

addressed in the literature. For this reason, in this research we first treat the problems 

without learning or deterioration effect in order to develop efficient mathematical 

formulation and solution methods and then to study these problems considering learning 

or deterioration effects. 
 

 

 

1.3 Problem Statement and Context 
 

The two addressed problems of this work are scheduling problems where all the jobs are 

required to have a single operation. In the first problem, the machines work in parallel 

and all of them have the same production speed.  In the second problem, we studied two 

machine environments, single machine and parallel machines. In both problems, setup 

depends on the job to be processed and the immediately preceding job; this is sequence 

dependent setup times. The objective function for the two addressed problems is 

minimize the Total Completion Time. 

Problem 1: Parallel machines scheduling problem with sequence dependent setup times, 

minimizing the Total Completion Time. 

 

The problem is to assign n independent jobs to m identical parallel machines and to 

determine the order in which jobs should be processed by the machines in such a way 

that the sum of jobs' completion time is minimized, that is, the objective is to minimize 

the total completion time. Each job has associated a processing time and there are 

machine setup times that depend on the order in which the jobs are processed. All the 

machines are in an initial state represented by a dummy job. The dummy job does not 

have processing time, but there is a setup time to prepare the machines to process a job 

just after the dummy job. Each machine can process one job at a time without 

preemption, that is, once the processing of a job has started, it cannot be interrupted. All 

the machines must be used and they do not have availability restrictions. 

 

Problem 2: Single and Parallel machines scheduling problem with sequence dependent 

setup times, and learning and deterioration effects, minimizing the Total Completion 

Time. 

 

The second addressed problem has the characteristics of problem 1. Furthermore, it 

considers deteriorating and learning effects over the sequence dependent setup times. 

These effects are also studied in a single machine environment. 
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1.4 Research Question 
 

The general objectives of this work are, firstly, contributing to the state of art for the 

parallel machines scheduling problem with sequence dependent setup times minimizing 

the total completion time, and for the scheduling problems with learning and 

deteriorating effects over sequence dependent setup times for one and parallel 

machines. Secondly, developing efficient tools to solve this kind of problems for the 

industry, specifically, tools like mathematical models or heuristic algorithms.  

 

Therefore, we derivate some questions about the solution methods proposed in this 

work. 

 

1. Will the new time-dependent integer formulations proposed here for problem 

one perform better than the classic formulation based on a formulation for the 

multi-Travelling Salesman Problem? 

2. Will the algorithm designed for problem one be able to obtain high quality 

solutions in reasonable computational? 

3. Will the proposed formulation for the parallel scheduling problem with learning 

and deteriorating effect over sequence dependent setup times, minimizing the 

total completion time allow us to find optimal solutions through a commercial 

solver for some instances? 

4. Will the optimal solutions found for the first problem still be optimal for the 

parallel machines environment of the second addressed problem? 

 

 

1.5 Solution overview 
 

Our approach for solving the problems tackled in this work is the following: 

 

    For the first problem, we propose a new time-dependent integer formulation with a 

better performance than other formulations developed from formulations for the multi-

Travelling Salesman Problem (m-TSP) or for minimizing the makespan in parallel 

machine scheduling problems. In addition, we design and implement a hybrid 

metaheuristic algorithm able to obtain high-quality solutions in reasonable 

computational time for the underlying problem. 

 

The second addressed problem considers learning and deteriorating effects. We develop 

two mathematical formulations, one for the single machine problem and one for the 

parallel machine problem. Using these formulations, it is possible to addressed the 

learning effect and the deterioration effect on sequence dependent setup times. 

 

1.6 Dissertation Organization 
  

The present thesis work is structured as follows in the next chapters: 

 

Chapter 2. It is presented a literature review considering the relevant aspects of both 

problems and works related to the solution approach. 
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Chapter 3. Two formulations for minimizing the total completion time for a parallel 

machine scheduling problem considering sequence dependent setup times are proposed 

and compared with the classical formulation based on an m-TSP. 

 

Chapter 4. It is proposed a metaheuristic algorithm designed to solve the parallel 

machines scheduling problem with sequence dependent setup times, minimizing the 

total completion time. The performance is compared with the exact method discussed in 

chapter 3 for medium instances. Furthermore, it is compared with a previous work 

founded in the state of art. 

 

Chapter 5. This chapter deals with the single and parallel machines problems with 

learning and deteriorating effects over sequence dependent setup times. Two 

mathematical formulations are proposed and the computational analysis is presented 

here. 

 

Chapter 6. Mention the general conclusions made throughout this research. Moreover, it 

is presented some of the possible practical applications and future research 

opportunities to the works introduced in this research.  
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Chapter 2 Literature review 
 

Scheduling is a decision-making process that is used on a regular basis in many 

manufacturing and services industries. It deals with the allocation of resources to jobs 

over given time periods and its goal is to optimize one or more objectives (Pinedo, 

2016). 

 

The different kinds of environments and the variety of constraints involved with the 

necessary resources or with the jobs make that the scheduling problem has several 

variants. Because of this, this chapter presents a summary of the research developed in 

parallel scheduling problem considering sequence dependent setup times minimizing 

the Total Completion Time (TCT) and the case when the setup times increase as the 

number of sequenced jobs increases (deterioration effect) and decrease as the number of 

sequenced jobs decreases (learning effect). 

 

In section 2.1 we present the classification of scheduling problems and their respective 

notation proposed by Graham, Lawler, Lenstra, and Kan, (1979). In section 2.2, we 

discuss some works related to the problem one, while in section 2.3 we present some 

adaptations of mixed integer formulations from the literature that are related to that 

problem. In section 2.4 we review some works related to scheduling problem with 

learning and/or deteriorating effects. Finally, in section 2.5 we describe some works 

related to the metaheuristics procedures used in this research. 

 

 

2.1 Classification of scheduling problems 
 

Scheduling problems are classified based on a number of factors including the number 

of jobs’ stages to process them, the number of machines at each stage, job processing 

requirements, setup time/cost requirements, and the performance measure to be 

optimized. To be able to refer to the scheduling problems in a concise way, Graham, 

Lawler, Lenstra, and Kan, (1979) proposed the following notation. This notation was 

adapted by Allahverdi et al., (1999) in the first of his three scheduling surveys  

(Allahverdi, 2015; Allahverdi et al., 1999; Allahverdi, Ng, Cheng, and Kovalyov, 

2008). The notation consists of three fields 𝛼 |𝛽|𝛾, where 𝛼 denotes the machine 

environment, 𝛽 describes the job and machine characteristics and 𝛾  represents the 

performance measure to be optimized. 

 

For the first field (𝛼), some kinds of shop environments are: 

• Single machine (1) 

• Identical machines in parallel (𝑃) 

• Machines in parallel with different speeds (𝑄) 

• Unrelated machines in parallel (𝑅) 

• Job shop (𝐽) 

• Flow shop (𝐹) 

The field (𝛽) could have more than one entry according to the specifications of the 

particular problem. For example, if the problem considers sequence dependent setup 

times (𝑆𝑇𝑠𝑑) and release times for the jobs (𝑟𝑗), then the second term is 𝛼 | 𝑆𝑇𝑠𝑑, 𝑟𝑗  | 𝛾 
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Examples of the job and machine characteristics that can be in 𝛽 fielf of the 

classification: 

• Sequence dependent setup cost (𝑆𝐶𝑠𝑑), 

• Sequence dependent setup times (𝑆𝑇𝑠𝑑), 

• Release date (𝑟𝑗), 

• Precedence constraints (𝑃𝑟𝑒𝑐), 

• Due dates (𝑑𝑗). 

The last field (𝛾) is the used to describe the objective of the problem, this could be: 

• Maximum completion time (𝐶𝑚𝑎𝑥), 

• Total completion time (∑𝐶𝑗  𝑜𝑟 𝑇𝐶𝑇), 

• Maximum Lateness (𝐿𝑚𝑎𝑥), 

• Number of tardy jobs (∑𝑈𝑗). 

Using this classification scheme, the first problem addressed in this research is referred 

as 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇. 

 

2.2 The 𝑷| 𝑺𝑻𝒔𝒅| 𝑻𝑪𝑻 Scheduling problems. 
 

From the literature review we observed that there are few works dealing with 

scheduling problems that simultaneously consider parallel machines, sequence 

dependent setup times and the minimization of the total completion time or total flow 

time. We will see each of these characteristics in this section in detail. 

 

When the workshop contains more than one machine to perform the same operation, it 

is said that the machines are working in parallel. This set of machines is classified as 

identical (𝑃), when all the machines have the same speed; as uniform (𝑄), when have 

different speed or completely unrelated (𝑅). 

 

A setup time is the time required to prepare the necessary resources (people, machines) 

to perform a job (Allahverdi and Soroush, 2008). In different situations, the setup time 

varies depending on the sequence of jobs performed in a machine. Chou, Wang, and 

Chang (2009) provide some examples of this fact, such as in the chemical, 

pharmaceutical and metal processing industries, where cleaning or fixing tasks should 

be performed to get ready the equipment to perform the next job. 

 

There are several performance criteria to measure the quality of a scheduling. The most 

broadly used criteria is the minimization of the maximum completion time (makespan), 

the minimization of the sum of all completion times (TCT) and the minimization of 

some kind of tardiness. In particular, the minimization of the TCT is a criterion that 

contributes to the maximization of the production flow, the minimization of the work-in 

process inventories and balanced usage of resources. 

 

Guinet (1991) is one of the first researchers that proposed heuristic algorithms for 

minimizing the mean flow time and the mean tardiness in parallel machine scheduling 

problems with sequence dependent setup times. In this research, he studied different 

problems of sequencing jobs in parallel processor shops of a textile company with 

sequence dependent machine changeover times. 
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There are many researches that considered parallel machines problem with sequence 

dependent setup times and the objective of minimizing the Total Weighted Completion 

Time (TWCT). Fan and Tang (2006) studied a scheduling problem of minimizing the 

TWCT on identical parallel machines considering sequence dependent setup times. 

They developed a column generation algorithm that can solve problems up to 10 

machines and 60 jobs. Weng, Lu, and Ren (2001) addressed the problem of scheduling 

a set of independent jobs on unrelated parallel machines with sequence dependent setup 

times to minimize a weighted mean completion time. They proposed and tested seven 

heuristic algorithms. Fowler, Horng, and Cochran (2003) studied parallel machine 

scheduling problems with sequence dependent setup times considering as objective 

function the makespan, the TWCT and the Total Weighted Tardiness (TWT). They 

developed a genetic algorithm to assign jobs to machines and applied single machine 

dispatching rules to each machine to obtain the sequences.  

 

A related objective to TWCT is the Total Weighted Tardiness (TWT). Driessel and 

Mönch (2011) proposed a Variable Neighborhood Search (VNS) to solve a parallel 

machines scheduling problem with sequence dependent setup times with precedence 

constraints and ready times, minimizing the TWT. The initial solution is constructed 

using the rule of apparent tardiness cost with setups and ready times and in cases where 

different schedules with the same TWT value are obtained, they used the makespan as a 

tie breaker. Schaller (2014) considered the problem of scheduling on parallel machines 

with family setup times to minimize total tardiness (TT). They proposed solution 

methods based on tabu search and genetic algorithms for that problem. 

 

Many researchers considered TCT as the objective function along with additional 

constraints like job release dates, precedence constraints or machine eligibility 

constraints. Nessah, Chu, and Yalaoui (2007) addressed an identical parallel machine 

scheduling problem to minimize TCT with sequence dependent setup times and release 

dates. For this problem, they proved a dominance theorem, developed a lower bound 

and proposed an efficient heuristic procedure that is incorporated in a branch and bound 

algorithm (B&B). Their computational experiments showed that the B&B algorithm 

solved instances up to 40 jobs and 2 machines. Gacias, Artigues, and Lopez (2010) 

studied a parallel machine scheduling problem with sequence dependent setup times 

and precedence constraints with the objective of minimizing the TCT. They proposed 

dominance conditions, defined an exact B&B procedure and a climbing discrepancy 

search heuristic.  

 

To solve the identical parallel machine scheduling problem with job deadlines and 

machine eligibility constraints minimizing the TCT, Su (2009) designed a B&B 

algorithm and a heuristic algorithm. The heuristic algorithm assigns jobs to available 

machines one-by-one combining the shortest processing time rule and the minimum 

slackness rule to do the assignment. The heuristic is used as an initial upper bound to 

the B&B algorithm. Lee, Liao, and Chao (2014) addressed a real-life scheduling 

problem in the manufacturing industry. They modelled the problem considering parallel 

machines, sequence-dependent setup times, dedicated machines constraints and a 

common deadline for all jobs, and developed heuristic methods to solve it. Joo and Kim 

(2015) considered an unrelated parallel machine scheduling problem with sequence and 

machine dependent setup times, machine dependent processing times, and production 

availability constraints. They proposed a mathematical model to find an optimal 

solution and a hybrid genetic algorithm. 
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For parallel scheduling problems with sequence dependent setup times and the objective 

function of minimizing the TCT, we only found one work reported in the literature. 

Morales, M. F. (2015) developed a first metaheuristic algorithm for the addressed 

problem. She implemented an Iterated Greedy Algorithm (IGA) that used as 

diversification generator which consists of a destructive-constructive process and as 

improvement phase a composited local search procedure based on intra-machine and 

inter-machine moves by means of relocation and interchange of jobs.  

 

2.3 Mixed integer formulations 
 

It is known that the Asymmetric Travelling Salesman Problem (ATSP) is a general case 

of a scheduling problem where the asymmetric matrix of sequence dependent setup 

times 𝑠𝑖𝑗 is equivalent to the asymmetric distance matrix and the job processing times 

𝑝𝑗 are equivalent to the client service times. For that reason, in this section, we show 

some mixed integer formulations related to the multiple ATSP that can be modified to 

represent the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem.  

 

2.3.1 Assignment-based integer programming formulation 

Bektas (2006) presented an assignment based double-index integer linear programming 

formulation for the multiple-Traveling Salesmen Problem (m-TSP) using the Miller-

Tucker-Zemlin Subtour Elimination Constraints (Miller, Tucker, and Zemlin, 1960) and 

defining binary variables 𝑥𝑖𝑗: 

 

𝑥𝑖𝑗 = {
1,     if the arc (𝑖, 𝑗)is used in the path   
0,                             otherwise                      

 

  

 

The model is: 

 

𝒎𝒊𝒏 𝒛 =∑∑𝒄𝒊𝒋𝒙𝒊𝒋                                                                                                           (𝟐. 𝟏)

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 
 

∑𝒙𝟏𝒋 = 𝒎                                                                                                                                (𝟐. 𝟐)

𝒏

𝒋=𝟐

 

 

∑𝒙𝒋𝟏 = 𝒎                                                                                                                                (𝟐. 𝟑)

𝒏

𝒋=𝟐

 

∑ 𝒙𝒊𝒋 = 𝟏            (𝒋 = 𝟐,… , 𝒏)                                                                                            (𝟐. 𝟒)

𝒏

𝒊=𝟎,𝒊≠𝒋

 

 

∑𝒙𝒊𝒋 = 𝟏            (𝒊 = 𝟐,… , 𝒏)                                                                                              (𝟐. 𝟓)

𝒏

𝒋=𝟏

 

    
                𝒖𝒋 − 𝒖𝒋 + 𝒑𝒙𝒊𝒋  ≤ 𝒑 − 𝟏          (𝟐 ≤ 𝒊 ≠ 𝒋 ≤ 𝒏)                                                                (𝟐. 𝟔)    

       

               𝒙𝒊𝒋 ∈ {𝟎, 𝟏}              (∀𝒊, 𝒋 ∈ 𝑨)                                                                                                (𝟐. 𝟕)   
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The objective function (2.1) minimizes the total travelled distance. Constraints (2.2) and 

(2.3) ensure that exactly m salesmen depart from and return back to node 1. Constraints 

(2.4) and (2.5) maintain the flow of the route, while constraints (2.5) are the subtour 

elimination constraints (SECs) developed by (Miller et al., 1960). In these constraints, 

the continuous variables 𝒖𝒊 that indicates the order of the node i in the tour, and 𝑝 is a 

parameter to limit the number of nodes that can be visited by any salesman. 

 

2.3.2 A flow-based formulation 
Another mixed integer formulation presented in Bektas, (2006) is the adaption for the 

m-TSP to the three-index formulation proposed by Christofides, Mingozzi, and Toth 

(1981) for Vehicle Routing Problem (VRP) and based on the Miller-Tucker-Zemlin 

Subtour Elimination Constraints (MTZ-SECs). 

 

𝑥𝑖𝑗𝑘 = {
1,     if the vehicle 𝑘 visits the node 𝑗 immediately after node 𝑖
0,                                                 otherwise                                              

 

 

 

 

𝒎𝒊𝒏 𝒛 =∑∑𝒄𝒊𝒋∑𝒙𝒊𝒋𝒌

𝒎

𝒌=𝟏

                                                                                                       (𝟐. 𝟖)

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 
 

 ∑∑𝒙𝟏𝒋𝒌 = 𝟏

𝒎

𝒌=𝟏

        (𝒋 = 𝟏,… , 𝒏)                                                                                         (𝟐. 𝟗)

𝒏

𝒊=𝟏

 

 

            ∑𝒙𝒊𝒑𝒌

𝒏

𝒊=𝟏

− ∑𝒙𝒑𝒋𝒌 = 𝟎           (𝒌 = 𝟏,… ,𝒎, 𝒑 = 𝟏,… , 𝒏)                                                 (𝟐. 𝟏𝟎)

𝒏

𝒋=𝟏

 

 

∑𝒙𝟏𝒋𝒌 = 𝟏            (𝒌 = 𝟏,… ,𝒎)                                                                                            (𝟐. 𝟏𝟏)

𝒏

𝒋=𝟏

 

 

    
              𝒖𝒊 − 𝒖𝒋 + 𝒏∑ 𝒙𝒊𝒋

𝒎
𝒌=𝟏   ≤ 𝒏 − 𝟏          (𝒊 ≠ 𝒋 = 𝟐,… , 𝒏)                                                      (𝟐. 𝟏𝟐)    

 

       

               𝒙𝒊𝒋𝒌 ∈ {𝟎, 𝟏}              (∀𝒊, 𝒋, 𝒌)                                                                                                 (𝟐. 𝟏𝟑)   

 

 

The objective function (2.8) minimizes the sum of distances travelled by the salesmen. 

Constraints (2.9) assure that each node is visited exactly once. Constraints (2.10) are the 

flow conservation constraints and they ensure that once a salesman visits a customer, 

then he must also depart from the same customer. Constraints (2.11) verify that each 

vehicle is used exactly once, while constraints (2.12) represent the adaption of the 

MTZ-SECs for a three- index model. 
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2.3.3 The single commodity flow formulation 

Gavish and Graves (1978) extended the formulation of Miller et al., (1960) for the 

Travelling Salesman Problem (TSP) to the Multi-Travelling Salesman problem. In this 

formulation, the next variables are defined: 

 

𝑥𝑖𝑗 = {
1,     if the arc (𝑖, 𝑗)is used in the route  
0,                      otherwise                             

 

 

𝑦𝑖𝑗: the location of the arc (𝑖, 𝑗) in the tour 

 

 

𝒎𝒊𝒏 𝒛 =∑∑𝒄𝒊𝒋𝒙𝒊𝒋                                                                                                           (𝟐. 𝟏𝟒)

𝒏

𝒋=𝟎

𝒏

𝒊=𝟎

 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 
 

∑𝒙𝒊𝒋 = 𝟏                  (𝒋 = 𝟏,… , 𝒏)                                                                                       (𝟐. 𝟏𝟓)

𝒏

𝒊=𝟎

 

∑𝒙𝒊𝒋 = 𝟏                  (𝒊 = 𝟏,… , 𝒏)                                                                                       (𝟐. 𝟏𝟔)

𝒏

𝒋=𝟎

 

∑𝒙𝒊𝟎 = 𝒎                                                                                                                               (𝟐. 𝟏𝟕)

𝒏

𝒊=𝟎

 

 

∑𝒙𝟎𝒋 = 𝒎                                                                                                                               (𝟐. 𝟏𝟖)

𝒏

𝒋=𝟎

 

 

  ∑𝒚𝒊𝒋

𝒏

𝒋=𝟎

− ∑𝒚𝒋𝒊 = 𝟏            (𝒊 = 𝟏,… , 𝒏)                                                                         (𝟐. 𝟏𝟗)  

𝒏

𝒋=𝟎

 

    
                𝒚𝒊𝒋  ≤ (𝒏 −𝒎+ 𝟏)𝒙𝒊𝒋           (𝟐 ≤ 𝒊 ≠ 𝒋 ≤ 𝒏)                                                                (𝟐. 𝟐𝟎)    

       

               𝒙𝒊𝒋 ∈ {𝟎, 𝟏} ,  𝒚𝒊𝒋 ≥ 𝟎              (∀𝒊, 𝒋 ∈ 𝑨)                                                                             (𝟐. 𝟐𝟏)   

 

 

In this formulation, the objective function (2.14) minimizes the total travel costs. 

Constraints (2.15) and (2.16) ensure that at each node only arrives and depart one path, 

while (2.17) and (2.18) verify that exactly 𝑚 paths depart and return to the node 0 

(depot). Constraints (2.19) are the flow restrictions for each node 𝑖. Constraints (2.20) 

establish that if the arc (𝑖, 𝑗) is in one path, then it will be at most in the 𝑛 − 𝑚 + 1 

position, where the value of 𝑛 −𝑚 + 1 force to have exactly 𝑚 paths. 
 

All the above formulations can be modified to model the 𝑃| 𝑆𝑇𝑠𝑑|𝑇𝐶𝑇 problem. The 

adaptation process is shown later in Chapter 3.  
 

 

2.4 Scheduling with learning and deterioration effects. 
 

Time variations due to frequent repetition of operations are well known in scheduling 

literature as learning or deterioration effects. To the best of our knowledge, the concept 
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of learning effect in scheduling problems was introduced by Biskup (1999). After that, a 

large number of works has published the effects of learning and/or deterioration on 

processing times in scheduling problems. 

 

In general, the theory of learning effects states that the time needed to produce a single 

unit continuously decreases with the processing of additional units and that due to the 

declining processing times the costs per unit also decline (Biskup, 1999). Also, there are 

many situations in which a job that is processed later in a machine sequence consumes 

more time than the same job when it is processed earlier (Wu and Lee, 2008), this is 

known as deterioration effect. 

 

1 In the position-dependent approach, the time needed to produce a unit decreases 

(increases) as the number of repetitions of job (Biskup, 1999). The processing time 𝒑𝒋𝒓 

of job j in position r is calculated as 𝑝𝑗𝑟 = 𝑝𝑗𝑓(𝑎, 𝑟), where 𝑝𝑗 is the processing time 

without learning effect (normal processing time), 𝑓 is a decreasing (increasing) function 

with respect to r and a is a constant learning factor.  

 

Some related researches are: Chen, Wu, and Lee (2006) and Wang, Wang, and Ji 

(2012), where the learning and deterioration effects over the processing times are 

defined by a function of their starting times. A more recent published work is Ji, Tang, 

Zhang, and Cheng (2016). The authors considered the minimization of the total 

completion time (TCT) and the makespan on a parallel-machine scheduling problem 

with deteriorating jobs and DeJongs learning effect (DeJong, 1957) for overcoming the 

drawback associated with the log-linear learning model. They showed that minimizing 

the TCT is polynomially solvable, while the minimization of the makespan is NP - hard.  

 

Under group technology considerations, Xingong, Yong, and Shikun (2016) proposed a 

model for addressing deteriorating and learning effects in a single machine 

environment. They showed that the total completion time problem can be solved in 

polynomial time. 

 

The processing times of the already processed jobs are important when human 

interactions are significant during the processing of the jobs. For those situations it 

might be more appropriate to consider a time-dependent learning/deterioration effect, 

due to the learning rate of the operator or the deterioration rate in the cases when 

deterioration affect the operator performance. 

 

In the time-dependent approach of the processing times, the time needed to produce a 

unit decreases (increases) depending on the sum of the processing times of the all 

already scheduled jobs (Kuo and Yang, 2006). The processing time 𝑝𝑗𝑟 is calculated as 

𝑝𝑗𝑟 = 𝑝𝑗𝑓(𝑎, ∑ 𝑝[𝑘]
𝑟
𝑘=1 ), where 𝑝[𝑘] means the normal processing time of job in position 

k and f decreases (increases) as the sum ∑ 𝑝[𝑘]
𝑟
𝑘=1  increases. 

 

Kuo and Yang (2006), introduced the time-dependent learning effect. They considered 

that the factor, affecting the normal processing time of the job, is modified by the 

inclusion of the sum of the processing times of the all already scheduled jobs in the 

following way: 
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𝒑𝒋𝒓 = 𝒑𝒋 (𝟏 −∑ 𝒑[𝒌]
𝒓

𝒌=𝟏
)
𝒂

 

 

Gawiejnowicz (2008) presented a detailed survey of scheduling problems involving 

time-dependent learning effects on processing times of the jobs. 

 

Another kind of learning effect over processing times is the so-called past-sequence-

dependent (p-s-d) setup times introduced by Koulamas and Kyparisis (2008). In the p-s-

d setup time approach, the processing time 𝑝𝑗𝑟 is obtained by the normal processing 

time plus a value that depends on the sum of the processing times of the all already 

scheduled jobs that is, 𝑝𝑗𝑟 = 𝑠[𝑟] + 𝑝𝑗, where 𝑠[0] = 0 and 𝑠[𝑟] = 𝑏
𝑟 ∑ 𝑝[𝑘]

𝑟
𝑘=1  for 𝑟 =

2,3, … , 𝑛 and b is a constant. The value 𝑠[𝑟] could be interpreted as a setup time that 

depends upon the sum of the processing times of the all already scheduled jobs.  

 

Wang and Wang (2013) and Lee (2014) studied a single machine scheduling problem 

with p-s-d setups and general effects of deterioration and learning that is, the actual job 

processing time is a general function of the processing times of the already processed 

jobs and its scheduled position. They showed that the problems of minimizing the 

makespan, the total lateness, and the total completion time are polynomially solvable. 

Salehi Mir and Rezaeian (2016) addressed the problem of scheduling on identical 

parallel machines with past-sequence-dependent (p-s-d) setup times and effects of 

deterioration and learning to minimize the total completion time of all jobs. They 

proposed two metaheuristic algorithms, based on artificial immune system and ant 

colony optimization, showing the second one the better performance of both. 

 

For a recent review on learning and/or deterioration effects for the past sequence-

dependent setup times, an interested reader is referred to Allahverdi (2015). 

 

All the published works mentioned above do not consider setup times for the machines 

or that the setup times depend only on the job that is going to be processed and 

therefore they can be included in the job processing times.  It is known that in several 

practical applications the setup times must be explicitly considered, for example in food 

processing, chemical, printing or metal processing industries, among others (Allahverdi 

et al., 1999). 

 

On one hand, the explicit consideration of sequence dependent setup times in 

scheduling problems substantially increases the problem complexity and changes the 

structure of the solution process, making the adaptations of the existing methods for 

problems without setup times (Avalos-Rosales et al., 2018). Alternatively, it is known 

that tremendous savings can be achieved when setup times/costs have been explicitly 

included in scheduling decisions in various real world industrial/service environments 

(Allahverdi and Soroush, 2008).  

 

2.5 Metaheuristic Algorithms 
 

To solve the 𝑃| 𝑆𝑇𝑠𝑑|𝑇𝐶𝑇 problem for large instances we designed and implemented a 

hybrid metaheuristic algorithm. The proposed algorithm is a hybridization of three well 

known metaheuristic algorithms: Greedy Randomized Adaptive Search Procedure 

(GRASP), Variable Neighborhood Search (VNS) and Iterated Greedy Algorithm (IGA). 
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The VNS is embedded into a multi-start strategy which is GRASP, to give more 

diversity to the hybrid algorithm and the shaking procedure in VNS is performed by 

applying systematically an IGA. Next we give a brief description of each of these 

metaheuristics. 

 
2.5.1 GRASP 

Greedy Randomized Adaptive Search Procedure is a multistart algorithm that was first 

introduced by Feo and Resende (1989). The GRASP consists of a constructive phase 

and an improvement phase. The best local optimum found over all GRASP iterations is 

saved as the best found solution (Feo and Resende, 1995). 

 

Solution construction consists of inclusion of one element at a time in an iterative way 

to a partial solution under construction until a solution has been completed. At each 

iteration the constructive phase, the selection of the next element to be included in the 

partial solution is determined by the evaluation of all feasible candidate elements 

(candidate list) depending on the greedy evaluation function. A Restricted Candidate 

List (RCL) is formed with the best elements from candidate list (according to a 

parameter 𝛼, 0 ≤ 𝛼 ≤ 1) and the element to be incorporated into the partial solution is 

randomly selected from RCL. When the selected element is incorporated to the partial 

solution, the candidate list is updated. This process is repeated until all the elements 

have been included in the solution. 

 

The solution obtained in the constructive phase is used as starting solution for the 

improvement phase. In early versions of GRASP the improvement phase was made up 

of a local search. Later, metaheuristics like tabu search, iterated local search, VND or 

VNS, have been implemented as an improvement phase. For more details about GRASP 

see the survey by Resende and Ribeiro (2010). A generic pseudo-code for GRASP is 

shown in Algorithm 2.1. 
 

Many works have used the GRASP to solve optimization problems. In the third survey 

by Allahverdi (2015) it can be found some works that applied the GRASP to solve the 

parallel scheduling problems with sequence dependent setup times. Kampke, Arroyo 

and Santos (2009) minimizes an objective function that combines the total completion 

time and the total number of resources assigned to the parallel unrelated machines with 

a reactive GRASP and incorporate a path relinking technique. Park and Seo (2013) deal 

with a transporter scheduling problem of ship assembly block operations management 

as a parallel machine scheduling with sequence-dependent setup times and precedence 

constraints due to their easy transformation of one on another. The objective is to 

maximize the workload balance among transporters. They develop a metaheuristic 

based on GRASP and conclude that this metaheuristic is promising for transporter 

scheduling problems. Armentano and de França Filho, (2007) minimize the total 

tardiness relative to the job due dates and the machine environment is uniform parallel 

machines. They incorporate adaptive memory principles into their GRASP to solve this 

problem. 
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Algorithm 2.1 Generic pseudo-code for GRASP 

More recently, Bierwirth and Kuhpfahl (2017) has built a competitive algorithm based 

on GRASP that outperforms the state of the art algorithms for the job shop problem, and 

Molina-Sánchez and González-Neira (2016) incorporated two utility functions called 

Weighted Modified Due Date (WMDD) and apparent tardiness cost to solve the 

permutation flow shop. 

 

2.5.2 VNS 

The Variable Neighborhood Search (VNS) is based on the idea of a systematic change 

of neighborhood both in a descent phase to find a local optimum and in a perturbation 

phase to get out of the corresponding valley (Mladenović and Hansen, 1997). 

 

According to Hansen, Mladenović, and Pérez (2008), VNS is based on three facts: 

 

1) A local minimum with respect to one neighborhood structure is not necessarily a 

local minimum for another neighborhood structure. 

2) A global minimum is a local minimum with respect to all possible neighborhood 

structures. 

3) For many problems, local minima with respect to one or several neighborhoods are 

relatively close to each other. 

 

The General Variable Neighborhood Search (GVNS) consists of three phases, shaking, 

local search and move or not. In the shaking, a neighbor solution from the incumbent 

solution is randomly chosen. After, the local search step is applied to this neighbor and 

the "move or not" step is performed as follows: if the neighbor solution found in the 

local search is better than the incumbent solution, then, this neighbor solution becomes 

the incumbent solution and the search continue in the first neighborhood; if the 

neighbor is not better than the incumbent, the search advances to the next 

neighborhood. This procedure is repeated until a stopping criterion is met. A generic 

pseudo-code for GVNS is shown in Algorithm 2.2. 
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Algorithm 2.2 Generic pseudo-code for GVNS 

To solve the parallel machines scheduling problem with sequence dependent setup 

times by applying VNS we have found two works that apply the VNS metaheuristic. 

Behnamian and Fatemi Ghomi (2011) presented a min-max bi-objective procedure for 

minimizing the makespan and the sum of the earliness and tardiness of jobs in due 

window machine scheduling problems, simultaneously. Driessel and Mönch, (2009) 

developed a procedure based on VNS to minimize the total weighted tardiness 

considering ready times of the jobs and precedence constraints. 

 

Other work that deals with the parallel scheduling problem with sequence dependent 

setup times using VNS is Paula et al. (2007). The performance of their VNS algorithm 

is compared with three versions of a greedy randomized adaptive search procedure 

algorithm. 

 

2.6 Conclusions 
 

In this chapter we have presented some works related to the parallel scheduling problem 

with sequence dependent setup times and the scheduling problems with learning and 

deterioration effects. Also, we gave some highlights of the two metaheuristic 

procedures proposed in this research to solve the addressed problems.  
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Chapter 3 Mathematical formulations for the parallel scheduling 
problem with sequence dependent setup times. 
 

3.1 Introduction 
 

The problem addressed in this chapter is classified as 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 using the  

classification scheme explained in Chapter 2.1, where P in the alpha field stands for 

Parallel machine environment, STsd is for sequence dependent Setup Times, and TCT is 

the acronym for Total Completion Time, that is the performance measure. 

 

From the literature review, we observed that this problem has received very little 

attention in the specialized literature and that there are no reported mathematical 

formulations capable of solving medium-sized data instances. For this reason, in this 

chapter we addressed five mixed integer formulations of 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem. First 

three models are obtained by adapting the existing ones of related problems and the last 

two are developed based on the problem as a variant of the Time Dependent multiple 

Traveling Salesmen Problem (TDmTSP). 

 

First, we modify two classical formulations for the multiple Travelling Salesmen 

Problem (mTSP) adapting them to parallel scheduling problem with sequence 

dependent setup times. The first formulation is formulated from the classical two-index 

formulations for the mTSP (Bektas, 2006) by expressing the objective function and the 

sub-tour elimination constraints in terms of the TCT. The second formulation is 

obtained from a flow-based formulation to the mTSP (Gavish & Graves, 1978) by 

modifying the objective function to evaluate the TCT. To obtain the third one, we adapt 

a three-index formulation for minimizing the makespan in an unrelated parallel machine 

scheduling problem with sequence dependent setup times (𝑅| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥). This 

formulation is an adapted version of the best formulation reported in the literature for 

the problem (Avalos-Rosales, Angel-Bello, and Alvarez, 2015). Finally, we propose 

two new formulations based on time dependent travelling salesman problem. These 

formulations are obtained as generalizations of time dependent formulations to the 

minimum latency problem (Angel-Bello, Alvarez, and García, 2013).  

 

 

 

3.2 Problem formulation 
 

The characteristics and the parameters involved in the problem addressed is presented 

below: 

• There are 𝑚 identical parallel machines, without preemption or availability 

restrictions. 

• There are 𝑛 independent jobs to be scheduled in the machines. All jobs are 

available at time zero. 

• Each job 𝑗 has an associated processing time 𝑝𝑗. 

• There are machine setup times 𝑠𝑖𝑗 for processing a job j just after job i, with 𝑠𝑖𝑗  ≠

 𝑠𝑗𝑖, in general. There is a setup time 𝑠0𝑗 for processing the first job on each 

machine. 
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The problem consists of assigning n jobs to m machines and determining the order in 

which the jobs should be processed on the machines in such a way that the sum of the 

jobs’ completion times is minimized, this is, to minimize the TCT. 

 

The problem can be defined on a complete graph 𝐺 =  (𝑉, 𝐴), where 𝑉 =
 {0, 1, 2, … , 𝑛} is the nodes set and 𝐴 is the arcs set. The node 0 represents the initial 

state of the machines (dummy job) and the nodes in the set 𝐼 =  {1, 2, … , 𝑛} correspond 

to the jobs. For each pair of nodes {i, j} in 𝑉 there are two arcs {(𝑖, 𝑗), (𝑗, 𝑖)} ∈ 𝐴 that 

have associated the setup times 𝑠𝑖𝑗 and 𝑠𝑗𝑖, respectively. Each node 𝑗 ∈ 𝑉 has associated 

a processing time, 𝑝𝑗. Since 0 represents the dummy job, the corresponding processing 

time is set to 0 (i.e., 𝑝0  =  0). Using the setup times 𝑠𝑖𝑗 and the processing times 𝑝𝑗, we 

associate to each arc (𝑖, 𝑗) ∈ 𝐴 the sum of the time required to prepare the machine and 

to process the job j just after the job 𝑖, this is the value 𝑡𝑖𝑗  =  𝑠𝑖𝑗  +  𝑝𝑗, (𝑖 ∈  𝑉, 𝑗 ∈  𝐼). 

 

Let 𝑃𝑟 = {0, 1𝑟 , 2𝑟 , … , 𝑘𝑟} denote a sequence with 𝑘𝑟 + 1 jobs in machine r containing 

the dummy job 0 in the position zero of 𝑃𝑟. We use the notation [𝑖𝑟] to represent the 𝑖-th 

job in the sequence 𝑟. Then, the value 𝑡[𝑖][𝑗] is the sum of the time required to prepare 

the machine and to process the job in the j-th position just after the job in the 𝑖-th 

position. The completion time 𝐶[𝑖𝑟] of the job in the position 𝑖𝑟 is calculated as 𝐶[𝑖𝑟]  =

 ∑ 𝑡[𝑗 − 1][𝑗]
𝑖𝑟
𝑗=1  . Note that, on the graph 𝐺 it represents the length of the path from 

node 0 to node [𝑖𝑟]. Then, the 𝑇𝐶𝑇 of the sequence 𝑃𝑟 is calculated as 𝑇𝐶𝑇(𝑃𝑟) =

∑ 𝐶[𝑗]
𝑘𝑟
𝑗=1𝑟

= 𝐶[1𝑟] + 𝐶[2𝑟] + ⋯+ 𝐶[𝑘𝑟]. 

 

Thus, the problem is formulated as to find 𝑚 disjoint simple paths in 𝐺 starting at 

source node 0 that together cover all the nodes in 𝐼 and minimize the objective function, 

that can be stated as: 

𝒎𝒊𝒏 𝒛 =∑𝑻𝑪𝑻(𝑷𝒓)

𝒎

𝒓=𝟏

=∑∑ 𝑪[𝒋]

𝒌𝒓

𝒋=𝟏𝒓

𝒎

𝒓=𝟏

                                                                          (𝟑. 𝟏) 

 

That is, the problem is to find 𝑚 disjoint job sequences (a sequence for each machine) 

with dummy jobs at the position zero that together contain all the jobs and minimize the 

sum of the jobs’ completion times. 

 

3.3 Formulations derived from 𝒎𝑻𝑺𝑷 and 𝑹| 𝑺𝑻𝒔𝒅| 𝑪𝒎𝒂𝒙 
 

3.3.1 Assignment-based integer programming formulation for TCT 

The first formulation is adapted from a formulation for the 𝑃| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 problem 

that is obtained directly from the two-index formulation of the mTSP presented in 

Bektas (2006). Our fundamental modification to the 𝑃| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 formulation is to 

express the objective function and the sub-tour elimination constraints in terms of the 

completion times.  

 

To do that, we define the following variables: 
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𝑥𝑖𝑗 = {
1,      if the job j is processed just after job i               
0,                                otherwise                                          

 

 

𝐶𝑖: the completion time of job 𝑖                                                                  
 

 

Then, the formulation for the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem is as follows: 
 
Model 1 

Minimize 𝒛, where: 

 

𝒎𝒊𝒏 𝒛 =∑𝑪𝒊                                                                                                               (𝟑. 𝟐)

𝒏

𝒊=𝟏

 

Subject to: 

 

∑𝒙𝟎𝒋 = 𝒎                                                                                                                      (𝟑. 𝟑)

𝒏

𝒋=𝟏

 

 

∑𝒙𝒋𝟎 = 𝒎                                                                                                                      (𝟑. 𝟒)

𝒏

𝒋=𝟏

 

 

∑ 𝒙𝒊𝒋 = 𝟏            (𝒋 = 𝟏,… , 𝒏)                                                                                  (𝟑. 𝟓)

𝒏

𝒊=𝟎,𝒊≠𝒋

 

 

∑ 𝒙𝒊𝒋 = 𝟏            (𝒊 = 𝟏,… , 𝒏)                                                                                    (𝟑. 𝟔)

𝒏

𝒋=𝟎,𝒋≠𝒊

 

 
𝒕𝟎𝒊𝒙𝟎𝒊 ≤ 𝑪𝒊 ≤  𝒕𝟎𝒊𝒙𝟎𝒊 + 𝑻(𝟏 − 𝒙𝟎𝒊)             (𝒊 = 𝟏, 𝟐, . . , 𝒏)                                      (𝟑. 𝟕) 

 

𝑪𝒊 − 𝑪𝒋 + (𝑻 + 𝒕𝒊𝒋)𝒙𝒊𝒋  + (𝑻 − 𝒕𝒋𝒊)𝒙𝒋𝒊 ≤ 𝑻         (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊)                (𝟑. 𝟖) 

 
𝒙𝒊𝒋𝝐{𝟎, 𝟏}   ∀(𝒊, 𝒋) ∈ 𝑨 , 𝑪𝒊 ≥ 𝟎    (𝒊 = 𝟏,… , 𝒏)                                                               (𝟑. 𝟗) 

 

Constraints (3.3) and (3.4) establish that there must be 𝒎 initial and 𝒎 final jobs 

scheduled according to the number of machines. Constraints (3.5) and (3.6) are the 

assignment constrains and they guarantee that each job has a single predecessor and a 

single successor in the sequences. Constraints (3.7) initialize the value of 𝐶𝑖 equal to 𝑡0𝑖 
when the job 𝑖 is the first job in a sequence and otherwise they are redundant. 

Constraints (3.8) are the sub-tour elimination constraints in terms of the completion 

times. They calculate the value of 𝐶𝑗 = 𝐶𝑖 + 𝑡𝑖𝑗 when 𝑥𝑖𝑗 = 1, 𝑥𝑗𝑖 = 0 or 𝐶𝑖 = 𝐶𝑗 + 𝑡𝑗𝑖 

when 𝑥𝑖𝑗 = 0, 𝑥𝑗𝑖 = 1. If 𝑥𝑖𝑗 = 0, 𝑥𝑗𝑖 = 0  they are redundant. Constraints (3.9) define 

the nature of the variables.  

 

 

3.3.2 The single commodity flow formulation for TCT 
 

Before giving the second formulation, it is represented an expression to evaluate the 

𝑇𝐶𝑇 of a sequence of jobs in terms of the position they occupy in the sequence. The 
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completion time of the jobs for each position in any sequence 𝑃𝑟 with 𝑘 jobs is given 

by: 

 

 𝑪[𝟏] = 𝒕[𝟎][𝟏] 

 𝑪[𝟐] = 𝒕[𝟎][𝟏] + 𝒕[𝟏][𝟐] 

      … 
 𝑪[𝒌−𝟏] = 𝒕[𝟎][𝟏] + 𝒕[𝟏][𝟐] +⋯+ 𝒕[𝒌−𝟐][𝒌−𝟏] 

 𝑪[𝒌] = 𝒕[𝟎][𝟏] + 𝒕[𝟏][𝟐] +⋯+ 𝒕[𝒌−𝟐][𝒌−𝟏] + 𝒕[𝒌−𝟏][𝒌] 
 

Adding the above expressions, we obtain the 𝑇𝐶𝑇 for the sequence 𝑃𝑟 which can be 

expressed as: 

 

𝑻𝑪𝑻(𝑷𝒓) = ∑𝑪[𝒊]

𝒌

𝒊=𝟏

= 𝒌𝒕[𝟎][𝟏] + (𝒌 − 𝟏)𝒕[𝟏][𝟐] +⋯+ 𝟐𝒕[𝒌−𝟐][𝒌−𝟏] + 𝒕[𝒌−𝟏][𝒌] 

This is: 

 𝑻𝑪𝑻(𝑷𝒓) =∑(𝒌 − 𝒊 + 𝟏)𝒕[𝒊−𝟏][𝒊]

𝒌

𝒊=𝟏

                                                                                     (𝟑. 𝟏𝟎) 

 

From equation (3.10) it can be seen that the contribution to the 𝑇𝐶𝑇 of the job in the 

position 𝑞 is equal to (𝑘 − 𝑞 + 1)𝑡[𝑞−1][𝑞], that is, it is equal to the number of jobs in 

the sequence from the job in the position 𝑞 multiplied by the value of time 𝑡[𝑞−1][𝑞] =

𝑠[𝑞−1][𝑞] + 𝑝[𝑞] (the setup time of the machine to process the job [𝑞] just after the job 

[𝑞 − 1] plus the processing time of job [𝑞]). Using (3.10) the objective function (3.1) 

can be expressed as:  

 

𝐦𝐢𝐧 𝒛 =∑𝑻𝑪𝑻(𝑷𝒓)

𝒎

𝒓=𝟏

=∑∑ 𝑪[𝒋]

𝒌𝒓

𝒋=𝟏𝒓

𝒎

𝒓=𝟏

=∑∑(𝒌𝒓 − 𝒋 + 𝟏)𝒕[𝒋−𝟏][𝒋]

𝒌𝒓

𝒋=𝟏𝒓

𝒎

𝒓=𝟏

                                        (𝟑. 𝟏𝟏) 

 

 

The second model for the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 problem is adapted from the single commodity 

flow formulation of Gavish and Graves (1978) for mTSP. This formulation uses the 

binary variables 𝑥𝑖𝑗 defined for the first formulation and, new integer variables: 

 

𝑓𝑖𝑗 = {
number of jobs in  a machine after job i,      if  xij = 1    

0,                                              if xij = 0                                 
 

 

  Using these variables, we define the next valid formulation for the 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 

problem.  

 
Model 2 

𝒎𝒊𝒏 𝒛 =∑ ∑ 𝒕𝒊𝒋𝒇𝒊𝒋                                                                                                           (𝟑. 𝟏𝟐)

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟎

 

Subject to: 

 

∑𝒙𝟎𝒋 = 𝒎                                                                                                                                (𝟑. 𝟏𝟑)

𝒏

𝒋=𝟏
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∑𝒙𝒊𝟎 = 𝒎                                                                                                                                (𝟑. 𝟏𝟒)

𝒏

𝒋=𝟏

 

 

∑ 𝒙𝒊𝒋 = 𝟏            (𝒋 = 𝟏,… , 𝒏)                                                                                            (𝟑. 𝟏𝟓)

𝒏

𝒊=𝟎,𝒊≠𝒋

 

 

∑ 𝒙𝒊𝒋 = 𝟏            (𝒊 = 𝟏,… , 𝒏)                                                                                              (𝟑. 𝟏𝟔)

𝒏

𝒋=𝟎,𝒋≠𝒊

 

 
𝒇𝟎𝒋 ≤ (𝒏 −𝒎+ 𝟏)𝒙𝟎𝒋         (𝒋 = 𝟏, 𝟐, . . , 𝒏)                                                                              (𝟑. 𝟏𝟕)  

 

𝒇𝒊𝒋 ≤ (𝒏 −𝒎)𝒙𝒊𝒋         (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊)                                                                        (𝟑. 𝟏𝟖) 

 

∑𝒇𝟎𝒋 = 𝒏                                                                                                                                      (𝟑. 𝟏𝟗)

𝒏

𝒋=𝟏

 

 

𝒇𝟎𝒋 + ∑ (𝒇𝒊𝒋 − 𝒇𝒋𝒊) = 𝟏            (𝒋 = 𝟏,… , 𝒏)                                                                         (𝟑. 𝟐𝟎)

𝒏

𝒊=𝟏,𝒊≠𝒋

 

 
𝒙𝒊𝒋 ≥ 𝒇𝒊𝒋         (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊)                                                                                           (𝟑. 𝟐𝟏) 

 
𝒙𝒊𝒋 ∈ {𝟎, 𝟏}  (𝒊, 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊);  𝒇𝒊𝒋 ≥ 𝟎 (𝒊 = 𝟎, 𝟏, . . , 𝒏; 𝒋 = 𝟏, 𝟐, . . , 𝒏; 𝒋 ≠ 𝒊)         (𝟑. 𝟐𝟐) 

 

Constraints (3.13)-(3.16) are the same that constraints (3.3)-(3.6) in the first 

formulation. Constraints (3.17) and (3.18) force 𝑓𝑖𝑗 to be equal to zero when  𝑥𝑖𝑗 = 0 

and they provide an upper bound for these variables when 𝑥𝑖𝑗 = 1. Here, 𝑛 −𝑚 + 1 is 

the maximum number of jobs that may be processed by a machine, excluding the 

dummy jobs. Constraint (3.19) ensures that all the jobs are processed. Constraints 

(3.17), (3.18) and (3.20) are the sub-tours elimination constraints and allow calculating 

the positions of jobs on the sequences. Constraints (3.21) are valid inequalities proposed 

by Godinho, Gouveia, and Magnanti (2008) for the 𝑚𝑇𝑆𝑃. Finally, constraints (3.22) 

define the nature of the variables. Note that although the variables 𝑓𝑖𝑗 are defined as 

integer variables, they can be considered as real variables in this formulation because 

the sense of the objective function, the binary nature of the variables 𝑥𝑖𝑗 and constraints 

(3.17) and (3.20) force them to be integer variables. In addition, these facts enable the 

variables 𝑓𝑖𝑗 to measure the number of jobs in a sequence after job 𝑖. Therefore, in the 

expression (3.12) used to evaluate the 𝑇𝐶𝑇, the variable 𝑓𝑖𝑗 play the same role as the 

coefficients (𝑘 − 𝑗 + 1) in the expression (3.10). 

 

3.3.3 Assignation and flow-based formulation for TCT 
 

The third formulation for 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 is an adapted version of the best formulation 

reported in the literature for the 𝑅| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 problem (Avalos-Rosales, Angel-

Bello, and Alvarez, 2015). This formulation uses three-index arc binary variables 𝑥𝑖𝑗𝑘 

and the two-index assignment binary variables 𝑦𝑖𝑘. 

 

𝑥𝑖𝑗𝑘 = {
1,      if the job 𝑗 is processed just after job 𝑖 in machine 𝑘        
0,                               otherwise                                                              
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𝑦𝑖𝑘 = {
1,        if the job 𝑗 is processed in machine 𝑘                                 
0,                               otherwise                                                             

 

 

𝐶𝑖: is the completion time of job 𝑖                                                             
 

To obtain a valid formulation for our problem, we do not consider the constraints 

related to 𝐶𝑚𝑎𝑥 from the original formulation. Using the defined variable, the third 

model for 𝑃| 𝑆𝑇𝑠𝑑| 𝑇𝐶𝑇 can be formulated as follows: 

 
Model 3 

𝒎𝒊𝒏 𝒛 =∑𝑪𝒊                                                                                                                           (𝟑. 𝟐𝟑)

𝒏

𝒊=𝟏

 

Subject to: 

 

∑𝒚𝒊𝒌 = 𝟏            (𝒊 = 𝟏, 𝟐, … , 𝒏)                                                                                           (𝟑. 𝟐𝟒)

𝒎

𝒌=𝟏

 

∑ 𝒙𝒊𝒋𝒌  = 𝒚𝒊𝒌          (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒌 = 𝟏, 𝟐, … ,𝒎)                                                        (𝟑. 𝟐𝟓)

𝒏

𝒋=𝟎,𝒋≠𝒊

 

∑ 𝒙𝒊𝒋𝒌   = 𝒚𝒋𝒌         (𝒋 = 𝟏, 𝟐,… , 𝒏; 𝒌 = 𝟏, 𝟐, … ,𝒎)                                                        (𝟑. 𝟐𝟔)

𝒏

𝒊=𝟎,𝒊≠𝒋

 

∑𝒙𝟎𝒋𝒌 ≤ 𝟏             (𝒌 = 𝟏, 𝟐,… ,𝒎)                                                                                     (𝟑. 𝟐𝟕)

𝒏

𝒋=𝟏

 

𝑪𝒋 − 𝑪𝒊 + 𝑻(𝟏 − 𝒙𝒊𝒋𝒌) ≥ 𝒙𝒊𝒋𝒌 + 𝒚𝒋𝒌                                                                                                    

  (𝒊 = 𝟎, 𝟏, … , 𝒏;  𝒋 = 𝟏, 𝟐, … , 𝒏; 𝒋 ≠ 𝒊; 𝒌 = 𝟏, 𝟐,… ,𝒎)                                                     (𝟑. 𝟐𝟖) 
𝑪𝟎 = 𝟎                                                                                                                                            (𝟑. 𝟐𝟗) 
𝒙𝒊𝒋𝒌 ∈ {𝟎, 𝟏}, 𝒚𝒊𝒌 ≥ 𝟎,  𝑪𝒊 ≥ 𝟎    (𝒊, 𝒋 = 𝟎, 𝟏, … , 𝒏;  𝒋 ≠ 𝒊; 𝒌 = 𝟏, 𝟐,… ,𝒎)           (𝟑. 𝟑𝟎) 

 

Constraints (3.24) ensure that each job is assigned exactly to one machine. Constraints 

(3.25) guarantee that every job has exactly one successor in the assigned machine. 

Constraints (3.26) establish that every job has exactly one predecessor in the assigned 

machine. The predecessor and successor can be either the dummy job or any of the 

remaining jobs. Constraints (3.27) ensure that one job, at most, is scheduled as the first 

on each machine after the dummy job. Constraints (3.28) break sub-tours and provide a 

right processing order allowing the calculation of the completion times of the jobs. The 

restriction (3.29) sets the completion times of the dummy jobs to zero. Finally, 

constraints (3.30) define the nature of the variables. Note that in previous formulation 

the variables 𝒚𝒊𝒌 are stated as non-negative real variables even when they were defined 

as binary variables. This is because constraints (3.25) and (3.26) force them to be binary 

variables. Constraints (3.28) and (3.29) together allow to calculate the objective 

function which is to minimize the value of TCT. 

 

 

3.4 Time dependent formulations  
 

From expressions (3.10) and (3.11), it can be observed that the sequencing problem is a 

particular case of a time-dependent mTSP, given that the contribution of each job to the 

objective function depends on its position in the machine sequence. This property will 
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be used for providing two time-dependent mixed integer models for the underlying 

problem, which generalize formulations for the Minimum Latency Problem (MLP) 

discussed in (Angel-Bello, Alvarez, & García, 2013). The first formulation that we 

propose is adapted from the k-Travelling Repairmen Problem (k-TRP) formulation 

(Nucamendi-Guillén, Martínez-Salazar, Angel-Bello, and Moreno-Vega, 2016). The 

second one can also be seen as a generalization of the formulation proposed by Picard 

and Queyranne (1978) for the minimization of the 𝑇𝐶𝑇 in a single machine scheduling 

problem with sequence dependent setup times. 

 

3.4.1 Time dependent formulation based on assignation and flow 
 

To get the following formulation let us define the following decision variables.  

 

𝑥𝑖
𝑘 = {

1,        if there are (𝑘 − 1) jobs after job i in the sequence         
0,                                       otherwise                                                       

 

 

𝑦𝑖𝑗
𝑘 = {

1,       if 𝑗 is sequenced just after job 𝑖 in any machine,                
and there are 𝑘 remaininig jobs in the sequence      

0,                                       otherwise                                                       
 

 

The parameter 𝑁 =  𝑛 − 𝑚 + 1 is the maximum number of jobs that can be processed 

on a machine. 

 

Using these variables, the first-time dependent model is presented below. 

 
Model 4 

𝐦𝐢𝐧𝒛 =  ∑𝒄𝟎𝒋

𝒏

𝒋=𝟏

∑𝒌𝒚𝟎𝒋
𝒌

𝑵

𝒌=𝟏

+∑ ∑ 𝒄𝒊𝒋

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

∑𝒌𝒚𝒊𝒋
𝒌

𝑵−𝟏

𝒌=𝟏

                  (𝟑. 𝟑𝟏) 

Subject to: 
 

∑𝒙𝒊
𝒌 = 𝟏

𝑵

𝒌=𝟏

                   (∀𝒊𝝐 𝑰)                                                          (𝟑. 𝟑𝟐) 

 

∑𝒙𝒊
𝟏 = 𝒎

𝒏

𝒊=𝟏

                                                                                          (𝟑. 𝟑𝟑) 

 

∑∑𝒚𝟎𝒋
𝒌

𝒏

𝒋=𝟏

= 𝒎

𝑵

𝒌=𝟏

                                                                                 (𝟑. 𝟑𝟒) 

 

∑ 𝒚𝒊𝒋
𝒌 = 𝒙𝒊

𝒌+𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

       (∀𝒊𝝐𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏)                       (𝟑. 𝟑𝟓) 

 

𝒚𝟎𝒋
𝒌 + ∑ 𝒚𝒊𝒋

𝒌 = 𝒙𝒋
𝒌

𝒏

𝒊=𝟏,𝒊≠𝒋

       (∀𝒊𝝐𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏)                (𝟑. 𝟑𝟔) 

 
 

𝒚𝟎𝒋
𝑵 = 𝒙𝒋

𝑵                        (∀𝒋𝝐𝑰)                                                          (𝟑. 𝟑𝟕) 
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𝒙𝒊
𝒌 𝝐 {𝟎, 𝟏}                     (∀𝒊𝝐 𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵)                             (𝟑. 𝟑𝟖) 

 

𝒚𝟎𝒋
𝒌  ≥ 𝟎                         (∀𝒊𝝐 𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵)                                          

 

𝒚𝒊𝒋
𝒌  ≥ 𝟎                         (∀𝒊𝝐 𝑰; 𝒋 ≠ 𝒊;  𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏)                     

 
 

The objective function (3.31) minimizes the total completion time. When 𝑦𝑖𝑗
𝑘 = 1 there 

are 𝑘 nodes after node 𝑖 in the sequence and for this reason the variables 𝑦𝑖𝑗
𝑘  have been 

multiplied by 𝑘 in (3.31), making the objective function to correspond with the formula 

(3.11) and thus, being able to evaluate the 𝑇𝐶𝑇 of any feasible solution. Constraints 

(3.32) guarantee that each job is processed by a single machine. Constraint (3.33) 

ensures that every machine has assigned at least one job, while constraint (3.34) ensures 

that exactly 𝑚 machines are used. These two constraints together ensure that there are 

an initial and a final job on each machine. Constraints (3.35) guarantee that every job 

has exactly one successor in the assigned machine. This successor can be any other job. 

Constraints (3.36) establish that every job has exactly one predecessor in the assigned 

machine. This predecessor can be the dummy job or any other job. Constraints (3.37) 

are used when there is a sequence with exactly 𝑁 jobs, in other case they are redundant. 

Constrains (3.35), (3.36) and (3.37) are the connectivity constraints and guarantee the 

continuity of the sequences. Finally, constraints (3.38) establish the nature of the 

variables. 

 

To the better understanding of the next time-dependent mathematical model, it is 

presented a multi-level network shown in Figure 3.1  

 

 

Figure 3.1 The multilevel network 

In Figure 3.1, each node represents a job and each level represents the position of the 

job 𝑖 in the sequence. Then, a sequence is represented by a path that links the dummy 

job in any level to the jobs in the lower levels until level 1. The nodes of a same level 

cannot be connected due to two or more jobs cannot be processed at the same time on a 

same machine and as well there is no arcs between same nodes in different levels due to 

a job cannot be processed two or more times. 

 

Level 1 consists of a copy of nodes associated with jobs, levels 2, 3, … ,𝑁 are composed 

of a copy of nodes associated with every job plus a dummy job representing the 

machines' initial states, while the 𝑁 + 1 level contains a copy of node 0 associated with 

the initial state of machines. Each sequence is represented in this network by a path that 
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starts at node 0 (associated with the initial states of machines), visits nodes in lower 

levels and ends at a node in level 1. It is said that a node is active at a certain level when 

it is visited by a path at that level. 

 

The contribution of each arc (𝑖, 𝑗) used in the solution to the 𝑇𝐶𝑇 depends on the levels 

that this arc connects in the network. If arc (𝑖, 𝑗) connects level 𝑘 + 1 with level 𝑘, then 

its contribution to the objective function is 𝑘𝑡𝑖𝑗.  

 

Using the multilevel network of Figure 3.1, the underlaying problem consists on finding 

𝑚 disjoint paths on the multi-level network. Each path starts from a node 0 in any level 

from level 2 to 𝑁 + 1 and ending at nodes in level 1 in such a way that the sum of the 

lengths of the paths is minimized. For example, a path can start from node 0 at level 3, 

and connect it with the node 2 at level 2 and connect this one with the node 1 at level 1 

to finish the sequence. This path follows the order 0-2-1, and contains 2 jobs. The arc 

(0,2) connects level 3 with level 2 and this implies that there are 2 more nodes in the 

path, after node 0.   

 

 

3.4.2 Time dependent formulation based on flow  
The next model can be obtained from the previous one by expressing all the constraints 

in terms of the previously defined binary variables 𝑦𝑖𝑗
𝑘  or also from the multi-level 

network (shown in Figure 3.1) redefining the binary variables 𝑦𝑖𝑗
𝑘  for this network.  

 

𝑦𝑖𝑗
𝑘 = {

1,       if the arc (𝑖, 𝑗) is used to link the node i in level 𝑘 + 1 
with node 𝑗 in level 𝑘                                                  

0,                                  otherwise                                                       

 

 

The second time-dependent model is shown below.   
 

Model 5 

𝐦𝐢𝐧𝒛 =  ∑𝒄𝟎𝒋

𝒏

𝒋=𝟏

∑𝒌𝒚𝟎𝒋
𝒌

𝑵

𝒌=𝟏

+∑ ∑ 𝒄𝒊𝒋

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

∑𝒌𝒚𝒊𝒋
𝒌

𝑵−𝟏

𝒌=𝟏

                                  (𝟑. 𝟑𝟗) 

Subject to: 
 

∑𝒚𝟎𝒋
𝒌   +  ∑ ∑ 𝒚𝒊𝒋

𝒌

𝒏

𝒊=𝟏,𝒊≠𝒋

𝑵−𝟏

𝒌=𝟏

= 𝟏

𝑵

𝒌=𝟏

                   (∀𝒋𝝐 𝑰)                                         (𝟑. 𝟒𝟎) 

∑𝒚𝟎𝒋
𝟏   +  ∑ ∑ 𝒚𝒊𝒋

𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟏

= 𝒎

𝑵

𝒋=𝟏

                   (∀𝒊𝝐 𝑰)                                        (𝟑. 𝟒𝟏) 

 

∑∑𝒚𝟎𝒋
𝒌 = 𝒎

𝒏

𝒋=𝟏

 

𝑵

𝒌=𝟏

                                                                                                  (𝟑. 𝟒𝟐) 

 

𝒚𝟎𝒋
𝒌+𝟏 + ∑ 𝒚𝒊𝒋

𝒌+𝟏 = ∑ 𝒚𝒋𝒊
𝒌

𝒏

𝒊=𝟏,𝒊≠𝒋

𝒏

𝒊=𝟏,𝒊≠𝒋

       (∀𝒊𝝐𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟐)             (𝟑. 𝟒𝟑) 

 

𝒚𝟎𝒋
𝑵 = ∑ 𝒚𝒋𝒊

𝑵−𝟏

𝒏

𝒊=𝟏,𝒊≠𝒋

       (∀𝒋𝝐𝑰)                                                                            (𝟑. 𝟒𝟒) 
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𝒚𝟎𝒋
𝒌  𝝐 {𝟎, 𝟏}                        (∀𝒊𝝐 𝑰; 𝒌 = 𝟏, 𝟐, … ,𝑵)                                           (𝟑. 𝟒𝟓)  

                     𝒚𝒊𝒋
𝒌 𝝐 {𝟎, 𝟏}                       (∀𝒊𝝐 𝑰; 𝒋 ≠ 𝒊;  𝒌 = 𝟏, 𝟐, … ,𝑵 − 𝟏)          

 
 

The objective function (3.39) uses the same expression to evaluate the 𝑇𝐶𝑇 that the 

previous model. Constraints (3.40) are similar to (3.32) and they ensure that each job is 

processed by a single machine. Constraints (3.41) and (3.42) are equivalent to 

constraints (3.33) and (3.34) and together they ensure that there are an initial and a final 

job on each machine. Constraints (3.43) are the flow conservation constraints and they 

guarantee the continuity of the paths. Constraints (3.44) are used when there are 

sequences that contain exactly N jobs, otherwise they are redundant. Finally, constraints 

(3.45) establish the nature of the variables. 

 

From now on we will refer to the previous formulations to as Model1, Model2, Model3, 

Model4 and Model5 according to the order in which they were presented. A summary 

with the number of binary variables, real variables and constraints contained in each 

formulation is shown in table 3.1  
 
Table 3.1 Summary of variables and constraints 

 Binary variables Real variables Constraints 

Model1 𝒏𝟐 + 𝒏 𝒏 𝒏𝟐 + 𝟐𝒏 + 𝟐 

Model2 𝒏𝟐 + 𝒏 𝒏𝟐 𝒏𝟐 + 𝟐𝒏 + 𝟑 

Model3 (𝒏𝟐 + 𝒏)𝒎 𝒏𝒎+ 𝟏 𝒏𝟐 + 𝟐𝒏𝒎+ 𝒏 +𝒎+ 𝟏 

Model4 𝒏(𝒏 −𝒎+ 𝟏) 𝒏𝟐(𝒏 −𝒎+ 𝟏) 𝟐𝒏(𝒏 −𝒎+ 𝟏) + 𝟐 

Model5 𝒏𝟐(𝒏 −𝒎) + 𝒏 - 𝒏(𝒏 −𝒎+ 𝟏) + 𝟐 

 

 

3.5 Computational experiments and Comparisons 
 

In order to analyze the effectiveness of the proposed formulations we conducted two 

types of experiments. First, we compare the results obtained by all the formulation for 

small instances. Second, for larger instances we compare results obtained by the two 

time-dependent formulations regarding the size of instances that they can solve 

optimality and the computational time to reach the optimal solution. 

 

All experiments described in this section were performed on an Intel Core 2 Duo CPU 

at 3.00 GHz and 3.21 GB of RAM under Windows OS. The formulations are 

implemented in C++ using concert technology of professional solver CPLEX 12.6. 

 

To conduct the experiments, we took two groups of instances from literature and 

generated one more group. The first group involves small instances proposed by 

Vallada and Ruiz (2011). In these instances, combinations of number of jobs 𝑛 =
 {6,8,10,12} and number of machines 𝑚 =  {2,3,4,5} were considered. The setup times 

𝑠𝑖𝑗 and the processing times 𝑝𝑗 were generated using the uniform distribution. For setup 

times there are three intervals: 𝑆1: [1-49], 𝑆2: [1-99] and 𝑆3: [1-124] and for processing 

times only one interval which is [1-99]. There are 10 replicates for each possible 

combination of number of machines, number of jobs and range of setup times, obtaining 

a total of 480 small instances. 
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The second group was generated by Avalos Rosales (2014) using the same instance 

configuration described in Vallada and Ruiz (2011) with 𝑛 =  {15,20,25,30} and 𝑚 =
 {2,4,6,8} and the same intervals to generate setup and processing times. Finally, we 

complement the set of instances by generating a third group with 𝑛 =  {40, 50,60} and 

the same parameters for setup and processing times used in Avalos Rosales (2014). 

There are 5 replicates for each possible combination of number of machines, number of 

jobs and range of setup times, obtaining a total of 420 medium instances. 

 

Note that the instances took from literature were generated for unrelated parallel 

machines. Then, since we are working with identical machines, we have taken the data 

of the first machine in each instance. 

 

3.5.1 Comparison of the presented formulations on small instances 
 

The purpose of this first experiment is to evaluate the behavior of all the formulations 

regarding to the size of solved instances and the CPU time to reach the optimal 

solutions. To perform this assessment, we will use small instances grouped according to 

size (𝑛,𝑚) and the setup time range (𝑆).  
 

In table 3.21, columns 1 and 2 refer to the size of the instances in terms of number of 

jobs and number of machines, respectively, while column 3 indicates the setup time 

ranges. Entries in columns 4, 6, 7, 9 and 10 exhibit the CPU time (in seconds) elapsed 

by the solver using each model, respectively. Columns 5 and 8 display the number of 

optimal solutions found by model1 and model3, respectively. For the other models these 

values are not shown because the solver using these formulations was able to reach all 

the optimal solutions. Values of the CPU times in table 3.1 are averaged over 10 

instances and the solver was allowed to run a maximum time of one hour (3600 sec.) for 

each instance. 

 

Table 3.2 Comparison between the five proposed formulations 

   Model1 Model2 Model3 Model4 Model5 

n m S CPU 

time (s) 

nbOpt CPU 

time (s) 

CPU 

time (s) 

nbOpt CPU 

time (s)  

CPU 

time (s) 

6 2 S1 0.29 10 0.41 0.39 10 0.16 0.14 
  S2 0.37 10 0.41 0.42 10 0.16 0.15 
  S3 0.30 10 0.34 0.32 10 0.15 0.15 

 3 S1 0.27 10 0.33 0.36 10 0.15 0.15 
  S2 0.32 10 0.28 0.45 10 0.15 0.15 
  S3 0.29 10 0.30 0.39 10 0.15 0.15 

 4 S1 0.25 10 0.28 0.44 10 0.15 0.14 
  S2 0.27 10 0.27 0.37 10 0.13 0.14 
  S3 0.25 10 0.26 0.34 10 0.14 0.15 

 5 S1 0.21 10 0.23 0.27 10 0.14 0.14 
  S2 0.21 10 0.22 0.26 10 0.14 0.15 
  S3 0.19 10 0.22 0.26 10 0.13 0.15 

8 2 S1 3.48 10 0.82 8.82 10 0.20 0.20 
  S2 2.07 10 0.62 5.81 10 0.18 0.18 
  S3 1.53 10 0.60 3.76 10 0.19 0.17 



 

27 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From table 3.2 it can be observed that Model2, Model4 and Model5 obtained optimal 

solutions for all instances up to several orders of magnitude faster than Model1 and 

Model3 and that these last two models begin to fail in instances of 12 jobs. Note that 

model2 was able to obtain all the optimal solutions but spending significantly more 

computational time than model4 and model5. Another fact that is observed is that as the 

number of machines and the range of setup times decrease, instances are more difficult 

to solve for Model1, Model2 and Model3 while this fact does not seem to affect Model4 

and Model5. The latter is expected because when there are fewer machines the job 

sequences are longer. In summary, we can conclude that the winners in this experiment 

are the time-dependent based formulation model4 and model5. 

 

3.5.2 Comparison between time-dependent formulations. 
 

Taking into account that both time-dependent formulations reached optimal solutions 

for all instances and that they spent significantly less CPU time than model2, in the 

second experiment we compare these two formulations regarding the CPU time needed 

to reach the optimal solutions. 

 

 3 S1 1.12 10 0.56 3.37 10 0.20 0.17 
  S2 1.09 10 0.42 2.67 10 0.19 0.17 
  S3 0.69 10 0.51 2.17 10 0.19 0.16 
 4 S1 0.45 10 0.49 1.55 10 0.17 0.15 
  S2 0.48 10 0.31 0.70 10 0.17 0.15 
  S3 0.41 10 0.35 0.63 10 0.17 0.15 
 5 S1 0.39 10 0.32 1.22 10 0.16 0.16 
  S2 0.31 10 0.30 1.11 10 0.16 0.16 
  S3 0.33 10 0.28 1.02 10 0.16 0.15 

10 2 S1 133.31 10 3.63 435.99 10 0.21 0.17 
  S2 48.84 10 1.42 178.96 10 0.21 0.16 
  S3 28.05 10 1.18 110.53 10 0.22 0.17 
 3 S1 12.21 10 1.85 79.60 10 0.22 0.18 
  S2 10.52 10 1.16 63.38 10 0.23 0.23 
  S3 2.72 10 0.66 10.81 10 0.21 0.17 
 4 S1 3.61 10 0.78 7.55 10 0.19 0.16 
  S2 2.44 10 0.69 4.85 10 0.18 0.16 
  S3 1.22 10 0.55 3.38 10 0.20 0.18 
 5 S1 1.78 10 0.60 3.59 10 0.20 0.16 
  S2 0.97 10 0.51 2.55 10 0.20 0.16 
  S3 0.64 10 0.39 2.05 10 0.20 0.16 

12 2 S1 3564.90 1 196.75 - 0 0.31 0.27 
  S2 1240.83 2 17.97 4268.82 1 0.26 0.22 
  S3 1232.67 9 7.05 2896.41 3 0.30 0.25 
 3 S1 1216.24 7 10.56 2005.77 2 0.23 0.22 
  S2 809.55 9 6.08 858.97 4 0.27 0.24 
  S3 36.94 10 1.70 881.58 10 0.27 0.25 
 4 S1 280.83 10 4.00 1295.10 10 0.22 0.19 
  S2 28.12 10 1.92 199.54 10 0.23 0.21 
  S3 3.26 10 1.14 45.80 10 0.23 0.22 
 5 S1 9.76 10 1.68 40.72 10 0.24 0.22 
  S2 1.61 10 0.81 12.58 10 0.22 0.19 
  S3 1.03 10 0.65 9.92 10 0.22 0.17 
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To carry out the next experiment we group the instances according to the values of 𝑛 

and 𝑚. We do not show the results according the different setup time ranges we did not 

find significant differences in the computational time for the different ranges. 

 

In Table 3.3 only CPU times are shown because both formulations reached all the 

optimal solutions. Columns 1 and 2 refer to the size of instances. Columns from 3 to 6 

show the CPU times (in seconds) spent by the solver to achieve optimal solution. 

Columns 3 and 4 are associated with Model4 while Columns 5 and 6 with Model5. 

Values in columns 3 and 5 are related to the instance that consumed more 

computational time to reach the optimum solution while values in columns 4 and 6 are 

to the instance that was solved faster within the 15-instance group.  
 

Table 3.3 Comparison between time-dependent formulations 

  Model4 Model5 

n m Max CPU time(s) Min CPU time(s) Max CPU time(s) Min CPU time(s) 

15 2 0.989 0.218 0.965 0.252 

4 0.533 0.220 0.530 0.207 

6 0.432 0.180 0.382 0.197 

8 0.212 0.156 0.264 0.193 

20 2 1.985 0.407 2.723 0.489 

4 0.780 0.304 1.090 0.399 

6 0.554 0.261 0.746 0.368 

8 0.363 0.210 0.642 0.317 

25 2 6.862 0.877 5.571 1.135 

4 2.500 0.516 4.688 0.784 

6 1.120 0.420 1.603 0.724 

8 0.802 0.339 1.387 0.631 

30 2 161.905 1.572 22.267 2.045 

4 4.575 1.106 6.854 1.616 

6 2.197 0.748 3.777 1.365 

8 1.825 0.587 2.270 1.198 

40 2 1036.240 67.582 147.227 22.032 

4 295.470 4.401 35.676 6.105 

6 9.218 2.578 11.422 3.265 

8 5.188 1.359 10.563 2.390 

50 2 12579.500 359.672 897.584 32.938 

4 1886.590 31.159 212.862 29.715 

6 334.063 11.109 27.500 14.078 

8 22.406 10.281 39.235 12.890 

60 2 49411.9* 8048.04 7212.420 846.912 

4 6827.35 481.74 766.593 370.487 

6 2829.81 79.615 355.856 84.222 

8 1031.44 45.229 127.082 49.571 
 

From this table it can be seen that formulations have a similar performance up to 30 

jobs. From 40-job instances Model5 begins to have better performance than Model4, 

with a significant difference for the hardest instances, i.e. for instances with fewer 

machines. The symbol “*” means that the solver using model 4 could not solve 4 of the 
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15 instances with 60 jobs and 2 machines. For unresolved instances the maximum gap 

was 0.7552%.  

 

3.6 Chapter conclusions 
 

In this chapter we studied a scheduling problem for minimizing total completion time in 

identical parallel machines with sequence dependent setup times. We derived three 

mixed integer formulation from known formulation for the 𝑚𝑇𝑆𝑃 and for 

𝑅| 𝑆𝑇𝑠𝑑| 𝐶𝑚𝑎𝑥 problem and presented two time-dependent formulations for the 

addressed problem.  

 

In computational experiments we showed that time-dependent based formulations 

performed much better than the others formulations in terms of computational time and 

quality of the results. To the best of authors’ knowledge, the time-dependent 

formulations for this problem have not been presented previously in the operations 

research literature. 

 

Both time-dependent based formulations, implemented in a commercial solver, could 

solve instances up to 60 jobs in a reasonable computation time. Particularly, the model5 

showed better performance when there are many jobs and few machines. 

 

As future researches, on the one hand, it would be interesting to investigate the scope of 

the models, that is, to investigate how large may be the instances that they can optimally 

solve, and on the other hand, in order to accelerate the solution process could be 

considered to obtain valid inequalities and to develop heuristic methods to provide good 

initial solutions to formulations. 
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Chapter 4 A hybrid metaheuristic algorithm for the 𝑷| 𝑺𝑻𝒔𝒅| 𝑻𝑪𝑻 
problem 
 

4.1 Introduction 
 

In parallel machine scheduling literature, we found that many authors have studied 

problems those are close to the one that we address in this research. For instance, 

problems with same characteristics as the minimization of the total weighted 

completion time or other related objective functions with extra features or the 

minimization of the 𝑇𝐶𝑇 with additional constraints like job release dates, precedence 

constraints or machine eligibility constraints.  

 

However, for the specific problem of minimizing the 𝑇𝐶𝑇 in an identical parallel 

machine scheduling problem with sequence dependent setup, we only found two works 

reported in the literature. Baez, Angel-Bello and Alvarez (2016) proposed two time-

dependent mathematical formulations that solved to optimality instances up to 60 jobs. 

They compared the time-dependent formulations with a modified formulation based on 

the classical m-Travelling Salesman Problem, showing that the time-dependent 

formulaions have a better performance than the modified formulation, consuming less 

computational time and solving to optimality more than five times larger instances. 

Morales, Acosta and Socarrás (2016) developed a first metaheuristic algorithm for the 

addressed problem. They implemented an Iterated Greedy Algorithm that used as 

diversification generator a destructive-constructive process and as improvement phase a 

composited local search procedure based on intra-machine and inter-machine moves by 

means of relocation and interchange of jobs. 

 

Taking into account that the mathematical models are developed in Chapter 3 can solve 

optimality limited-size instances. In this work we propose a hybrid metaheuristic 

algorithm (𝐻𝑀𝐴) which is composed of 𝐺𝑅𝐴𝑆𝑃 and 𝑉𝑁𝑆 as the improvement 

procedure. In addition, in the shaking phase of VNS, it uses the destructive-constructive 

strategy of the Iterated Greedy Algorithms. The proposed algorithm outperforms the 

results obtained by the current state of the art methodology. 

 

4.2 The proposed metaheuristic solution approach 
 

In this section we describe the proposed metaheuristic algorithm. It is a hybrid 

algorithm based on 𝐺𝑅𝐴𝑆𝑃 that uses in the improvement phase a 𝐺𝑉𝑁𝑆 with random 

selection of neighborhood and with a systematic application of an iterated greedy in 

shaking phase. 

 

Each 𝐺𝑅𝐴𝑆𝑃 iteration is composed of a constructive phase and an improvement phase. 

The best local optimum found over all 𝐺𝑅𝐴𝑆𝑃 iterations is saved as the best found 

solution (Feo & Resende, 1995). In this chapter we consider a hybrid local search 

scheme, that is, the basic local search scheme has been extended in order to explore 

multiple neighborhoods. The rationale behind this is, since a global minimum is a local 

minimum with respect to all neighborhoods, it should be easier to find global minimum 

if more neighborhoods are explored. 

A pseudocode for the proposed hybrid metaheuristic algorithm is showed in Algorithm 

4.1. 



 

31 

 

 

 
Algorithm 4.1 Pseudo-code for the proposed Hybrid Metaheuristic Algorithm 

The HMA receives inputs of the problem data, the maximum number of iterations 

(𝐾𝑚𝑎𝑥) that a solution is perturbed without improvement, the neighborhood structures 

of the solution (𝑁𝑙, 𝑙 = 1,2, … , 𝐾𝑚𝑎𝑥) used in the Random Variable Neighborhood 

Descent (RVND) method and the stopping criteria (maximum number of 𝐺𝑅𝐴𝑆𝑃 

iterations and maximum number of 𝐺𝑉𝑁𝑆 iterations). The objective function value is 

initialized as +∞ in line 1 of the algorithm and the procedure goes into a loop in line 2 

that finishes in line 16 reporting the best global found solution 𝑆(∗)  and its objective 

function value 𝑓(𝑆(∗)). 
 

An initial solution 𝑆(0) is generated using a GRASP in line 3 and it is improved in line 4 

by a VND procedure with random selection of neighborhoods (RVND). The improved 

solution and its objective value are saved as the best solution 𝑆(𝑏𝑒𝑠𝑡) and the best 

solution value 𝑓(𝑆(𝑏𝑒𝑠𝑡)) of the current GRASP iteration. Then, procedure goes into the 

GVNS loop in line 6 receiving as input 𝑆(𝑏𝑒𝑠𝑡) and  𝑓(𝑆(𝑏𝑒𝑠𝑡)). In line 7 the value of 𝑘 

is initialized (the 𝑘 value is associated with the percentage of destruction of the given 

solution) and the procedure goes into a loop in line 8. In line 9 the current solution is 

partially destroyed depending on the value of 𝑘 and then it is reconstructed and then 

apply the improvement procedure (line 10). If the solution found is better than 𝑆(𝑏𝑒𝑠𝑡) 
then 𝑆(𝑏𝑒𝑠𝑡) and its objective function value are updated and the 𝑘 value is reset to 1 

(line 11). If not, the value of k is increased by a unit (line 11). Note that line 9-12 within 
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the loop represent the systematic application of a iterated greedy strategy. Finally, in 

line 15 the best global solution and its value are updated. 

 

 

4.2.1 Constructive Phase 
 

In the implementation 𝑆𝑎 denotes the set of unassigned jobs and by 𝑆𝑃 = {𝑆𝑃1, 𝑆𝑃2, . . .,
𝑆𝑃𝑚} a partial solution under construction. 𝑆𝑃𝑟 is the partial sequence under 

construction associated to machine 𝑟, (𝑟 =  1,2, . . . , 𝑚). A partial sequence that has 𝑘 

occupied positions, refers to the positions 1 to 𝑘. The position 0 is always occupied by 

the dummy job 0. At the beginning of the constructive phase 𝑆𝑃𝑟 = {0}, (𝑟 =
 1,2, . . . , 𝑚) and 𝑆𝑎 = {1,2, . . . , 𝑛}. 
 

A pseudo-code for the constructive procedure implemented for the constructive phase is 

shown in Algorithm 4.2. 

 

 
Algorithm 4.2 Pseudo-code for our implementation of the constructive phase. 

The constructive phase receives the problem data and the value of 𝜶, then the set 𝑺𝒂 of 

unassigned jobs, the partial sequences 𝑆𝑃𝑟 and 𝑇𝐶𝑇 are initialized (line 1). The 𝑚 jobs 

with lowest values of 𝑡0𝑗 are selected and they are assigned to the machines, one per 

machine (line 2). Then, 𝑆𝑎 and  𝑇𝐶𝑇 are updated. In line 4 the procedure enters to a 

loop that finishes when all the jobs have been assigned to machines. First, the machine 

with the shortest span (the completion time of the last job assigned to the machine) is 

selected (line 5). Then, for each unassigned job, its best insertion point in the selected 

machine and the corresponding insertion value are calculated (lines 6-8). The best 

insertion point is the position in the machine sequence where the machine 𝑇𝐶𝑇 is less 

increased and the insertion value is the variation in the machine 𝑇𝐶𝑇 if the job would be 

inserted in that position. In the lines 9 to 11, the jobs that will be included in the 

restricted candidate list RCL are determined.  A job is randomly selected from RCL 
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(line 12) and it is inserted in the selected machine in its best insertion point (line 13). 

𝑇𝐶𝑇 and 𝑆𝑎 are updated. 

 

The output of the procedure is a feasible solution 𝑆𝑜𝑙 and its objective value 𝑇𝐶𝑇. 

 

The greedy function, used in lines 6 to 8 for evaluating the candidate jobs to be inserted 

in the partial solution, is based on a process of searching for the best insertion point.  

 

Let's analyze the insertion of a new job into a sequence under construction. It is easy to 

implement that local moves in any sequence affect the contribution of several jobs to 

the objective function. Suppose we have to insert a new job 𝑗 into a position 𝑞 of a 

sequence under construction with 𝑘 jobs 

 

𝑷 = {𝟎, [𝟏], [𝟐], … , [𝒒 − 𝟏], [𝒒], [𝒒 + 𝟏], … , [𝒌]} 
 

On the one hand, if we use the Formula 3.1 of Chapter 3 for a sequence of 𝑘 jobs 

𝑇𝐶𝑇(𝑃) = ∑ 𝐶[𝑗]𝑘
𝑗=1 = 𝐶[1] + 𝐶[2] + ⋯+ 𝐶[𝑘], where 𝐶[𝑖] =  ∑ 𝑡[𝑗 − 1][𝑗]𝑖

𝑗=1 =

𝐶[𝑖 − 1] + 𝑡[𝑖 − 1][𝑖], it is easy to see that the insertion of a new job affects the 

completion times of all jobs in sequence after the insertion point. 

 

On the other hand, if we use the Formula 3.10 of Chapter 3 to evaluate the 𝑇𝐶𝑇 of a 

sequence 𝑃 (𝑇𝐶𝑇(𝑃) = 𝑘𝑡[0][1] + (𝑘 − 1)𝑡[1][2] +⋯+ 2𝑡[𝑘−2][𝑘−1] + 𝑡[𝑘−1][𝑘]), then the insertion 

of a new job affects the contributions of all jobs that are before the insertion point. 

 

Since this process is very time-consuming, we propose an efficient insertion strategy to 

implement this approach using the formula 3.10 in Chapter 3. Given a partial sequence 

𝑆𝑃𝑟 with 𝑘 occupied positions and the set of unassigned jobs 𝑆𝑎, find the best insertion 

point in the sequence under construction for each job 𝑖 𝜖 𝑆𝑎, we propose the following 

procedure.  

 

First, the insertion values ∆𝑖𝑞 in positions 𝑞, (𝑞 =  1,2, . . . , 𝑘 + 1) of 𝑆𝑃𝑟  are calculated 

starting from the first position (𝑞 = 1) using the next expression: 

 
        

∆𝒊𝒒=

{
 
 
 

 
 
 

(𝒌 + 𝟏)𝒕𝒐𝟏 + 𝒌(𝒕𝒊[𝟏] − 𝒕𝟎𝟏) ,                𝒊𝒇 𝒒 = 𝟏                                                                     

   ∑ 𝒕[𝒍−𝟏][𝒍] + (𝒌 − 𝒒 + 𝟐)𝒕[𝒒−𝟏]𝒊 + (𝒌 − 𝒒 + 𝟏)(𝒕𝒊[𝒒] − 𝒕[𝒒−𝟏][𝒒]), 𝒊𝒇 𝟐 ≤ 𝒒 ≤ 𝒌 (𝟒. 𝟏 )

𝒒−𝟏

𝒍=𝟏

∑𝒕[𝒍−𝟏][𝒍] + 𝒕[𝒌]𝒊                                       𝒊𝒇 𝒒 = 𝒌 + 𝟏                                                           

𝒌

𝒍=𝟏

 

 

Then the best insertion value ∆𝑖 and the best insertion point 𝑏𝑒𝑠𝑡𝑞𝑖 in 𝑆𝑃𝑟 for job 𝑖 are 

calculated as:  

∆𝒊= 𝐦𝐢𝐧
𝟏≤𝒒≤𝒌+𝟏

{∆𝒊𝒒}                                                                                                         (𝟒. 𝟐) 

 

𝒃𝒆𝒔𝒕𝒒𝒊 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝟏≤𝒒≤𝒌+𝟏

{∆𝒊𝒒}                                                                                               (𝟒. 𝟑) 
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Note that the value of the sum ∑ 𝑡[𝑙−1][𝑙]
𝑞−1
𝑙=1  increases as the value of 𝑞 increases, then 

using the formula (4.1) in an iterative way starting from 𝑞 = 1, it is guaranteed to 

perform 𝑂(1) elementary operations to evaluate each insertion point. 

 

4.2 Improvement phase  
 

Improvement phase is the second phase of the VNS, which is composed of lines 6 to 14 

of the pseudocode shown in Algorithm 4.1. Next, we will then describe its main 

components referring to the lines of that Algorithm. 

 

As shaking procedure (line 9) we use a destructive-constructive process where a partial 

destruction procedure and a reconstruction procedure are applied to a given solution. 

The percentage of the solution destruction is related to the number of the actual iteration 

𝑘, (𝑘 =  {1, . . . , 𝑘𝑚𝑎𝑥}).  
 

In Algorithm 4.3, a pseudo-code for the shaking procedure is shown. 

 

 
Algorithm 4.3 Pseudo-code for shaking procedure. 

The shaking procedure receives a solution and the value of 𝑘 to determine the 

percentage of destruction. First, ⌊10𝑘%⌋ of jobs are randomly eliminated from the 

solution and the remaining jobs are arranged to the beginning of the sequences. Then, 

the solution is rebuilt using a method similar to the constructive procedure described 

above. The difference is that a totally greedy strategy is now used, that is, the job to be 

inserted is that with the lowest insertion value. 

 

Algorithm 4.4 shows a pseudo-code for the proposed partial destruction procedure. This 

consists of removing a number (𝑟) of jobs from a given solution. At the beginning, all 

the sequences are candidate to be chosen for the destruction procedure (i.e., they are 

active sequences). A sequence is deactivated when it no longer contains jobs. In line 2, 

the number of removed jobs is calculated. Note that the value of 𝑘 must be less than 10. 

In the line 3, the procedure goes into a loop where jobs are removed from active 

machines one by one, until 𝑟 jobs are removed. They are placed into the set of 

unassigned nodes. Then, the remaining jobs in the sequences are sequenced at the 

beginning and they are assigned to partial solution 𝑆𝑃 in the same order. 
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Algorithm 4.4 Pseudo-code for partial destruction procedure. 

 

The reconstruction procedure receives a partial solution 𝑆𝑃 and a set of unassigned jobs 

𝑆𝑎. First, it is chosen the machine sequence 𝑆𝑃𝑟 with lowest value of 𝑇𝐶𝑇, then for each 

job in 𝑆𝑎 it calculates the best insertion point in 𝑆𝑃𝑟. The job less increasing the 𝑇𝐶𝑇 of 

𝑆𝑃𝑟 is deleted from 𝑆𝑎, it is inserted in its best insertion point in 𝑆𝑃𝑟 and the 𝑇𝐶𝑇 of 𝑆𝑃𝑟 

is updated. This process is repeated until all jobs in 𝑆𝑎 have been assigned to the 

machines. The best insertion point is found using the formulas (4.1), (4.2) and (4.3). 

 

In the implementation of GVNS for the improvement phase of the hybrid algorithm, it 

is used RVND (line 10 in Algorithm 4.1) instead of VND for improving a solution. It is 

also used it for improving the starting solution (line 4, Algorithm 4.1). We investigated 

the appropriate execution order of the neighborhoods and experimentally concluded that 

a stochastic order for exploring the neighborhoods yields better solutions than a 

deterministic order. For this reason, we decided to implement a RVND procedure inside 

GVNS. 

Algorithm 4.5 shows a sketch of our implementation of RVND. In this procedure, each 

local search is repeats until it reaches a local minimum. 

 
 

 
Algorithm 4.5 Sketch for our implementation of the RVND procedure. 
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In line 1, all neighborhoods are activated so that all candidates to be selected for the 

local search. In line 2 the procedure enters a loop that culminates when there are no 

longer active neighborhoods. An active neighborhood is selected (line 3) and a local 

search is applied to the current solution until a local minimum is reach (line 4). If found 

neighbor solution is better than the current solution, it is updated and all the 

neighborhoods are activated (lines 5-8). As the local search repeats until reaching a 

local minimum, it makes no sense to explore this neighborhood until the solution is 

modified again. For this reason, the neighborhood is deactivated in line 9 regardless of 

whether or not it has improved the current solution. 

 

4.2.1 Local searches and strategies for their implementation 
 

In the proposed RVND procedure we use four local searches based on intra-machine 

and inter-machine movements: 

 

 Exchange move between two non-adjacent jobs in the same sequence: Two jobs 𝑖 
and 𝑗 in non-adjacent positions 𝑖 and 𝑗 interchange their positions.  

 

𝑃 = {0, [1], [2], … , [𝑖 − 1], [𝒊], [𝑖 + 1], … , [𝑗 − 1], [𝒋], [𝑗 + 1], … , [𝑘]} 
 

 

𝑃 = {0, [1], [2], … , [𝑖 − 1], [𝒋], [𝑖 + 1], … , [𝑗 − 1], [𝒊], [𝑗 + 1], … , [𝑘]} 
 

Fixing the position 𝑖, its sub-neighborhood is defined by all the jobs [𝑗] in positions 𝑗 ≥
𝑖 + 2 that can interchange their positions with job [𝑖]. Since in this case only jobs [𝑖] 
and [𝑗] change their positions, using the formula (3.10) it is possible to obtain the 

following expression 4.4 to evaluate the variation ∆𝑖𝑗 in the TCT of the given sequence. 

 

∆𝒊,𝒋= (𝒌 − 𝒊 + 𝟏)(𝒕[𝒊−𝟏][𝒋] − 𝒕[𝒊−𝟏][𝒊]) + (𝒌 − 𝒊)(𝒕[𝒋][𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) + (𝒌 − 𝒋 + 𝟏)(𝒕[𝒋−𝟏][𝒊] −

𝒕[𝒋−𝟏][𝒋]) + (𝒌 − 𝒋)(𝒕[𝒊][𝒋+𝟏] − 𝒕[𝒋][𝒋+𝟏])                                                                          (𝟒. 𝟒) 

 

 

 Relocation move of a job to a different position in the same sequence: The job [𝑖] is 

removed from its position 𝑖 and inserted into another position 𝑗.  
 

𝑷 = {𝟎, [𝟏], [𝟐], … , [𝒊 − 𝟏], [𝒊], [𝒊 + 𝟏], … , [𝒋 − 𝟏], [𝒋], [𝒋 + 𝟏], … , [𝒌]} 
 

 

𝑷 = {𝟎, [𝟏], [𝟐], … , [𝒊 − 𝟏], [𝒊 + 𝟏], … , [𝒋 − 𝟏], [𝒊], [𝒋], [𝒋 + 𝟏], … , [𝒌]} 
 

The sub-neighborhood of job [𝑖] is composed of all the positions 𝑗 in which it can be 

inserted. In this case, formulas can also be obtained to evaluate the movement through 

an iterative process to obtain an efficient procedure to explore the sub-neighborhood.  

 

An efficient way, used in this work, to explore the sub-neighborhood is through 

successive swaps between jobs in adjacent positions and calculate the move values in an 

incremental way. This idea was taken from Schiavinotto and Stützle (2004), who 

successfully implemented a similar strategy in the linear ordering problem context. The 
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formula (4.5) is used to evaluate the swap movements between jobs in adjacent 

positions. 

 

∆𝒊,𝒊+𝟏= (𝒌 − 𝒊 + 𝟏)(𝒕[𝒊−𝟏][𝒊+𝟏] − 𝒕[𝒊−𝟏][𝒊]) + (𝒌 − 𝒊)(𝒕[𝒊+𝟏][𝒊] − 𝒕[𝒊][𝒊+𝟏]) + (𝒌 − 𝒊 +

𝟏)(𝒕[𝒊][𝒊+𝟐] − 𝒕[𝒊+𝟏][𝒊+𝟐])                                                  (𝟒. 𝟓) 
 

 

• Exchange move between two jobs in different sequences: Two jobs [𝑖] and [𝑗] in 

positions 𝑖 and 𝑗 of different sequences interchange their positions.  

 

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [𝒊𝟏], [(𝑖 + 1)1], … , [𝑘1]} 
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝒋𝟐], [(𝑗 + 1)2], … , [𝑘2]} 

 

 

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [𝒋𝟐], [(𝑖 + 1)1], … , [𝑘1]} 
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝒊𝟏], [(𝒋 + 𝟏)𝟐], … , [𝒌𝟐]} 

 

Fixing the position 𝑖 in the first sequence, the sub-neighborhood of job [𝑖] is defined by 

all the jobs [𝑗] in the second sequence that can interchange their positions with job [𝑖].  
 

Suppose that the first machine contains 𝑘1 jobs and the second machine contains 

𝑘2 jobs. Then, as only jobs [𝑖] and [𝑗] change their positions, is obtained a simple 

expression (4.6) to evaluate the variation ∆𝑖𝑗 in the TCT of the solution. 

 
∆𝒊,𝒋= (𝒌𝟏 − 𝒊 + 𝟏)(𝒕[𝒊−𝟏][𝒋] − 𝒕[𝒊−𝟏][𝒊]) + (𝒌𝟏 − 𝒊)(𝒕[𝒋][𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) + (𝒌𝟐 − 𝒋 −

𝟏)(𝒕[𝒋−𝟏][𝒊] − 𝒕[𝒋−𝟏][𝒋]) + (𝒌𝟐 − 𝒋)(𝒕[𝒊][𝒋+𝟏] − 𝒕[𝒋][𝒊+𝟏])         (𝟒. 𝟔)  

 

• Relocation move of a job to a different sequence: The job [𝑖] is removed from its 

position 𝑖 in a sequence and inserted into position 𝑗 of another sequence. 

 

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [𝒊𝟏], [(𝑖 + 1)1], … , [𝑘1]} 
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝑗2], [(𝑗 + 1)2], … , [𝑘2]} 

 

 

𝑃1 = {0, [11], [21], … , [(𝑖 − 1)1], [(𝑖 + 1)1], … , [𝑘1]} 
𝑃2 = {0, [12], [22], … , [(𝑗 − 1)2], [𝒊𝟏], [𝑗2], [(𝑗 + 1)2], … , [𝑘2]} 

 

When the job [𝑖] is extracted from the first sequence, the variation ∆𝑖 in 𝑇𝐶𝑇 is 

calculated using the expression (4.7). The positions 𝑖 in the sequence are chosen in a 

sequential way starting by 𝑖 = 1 in order to guarantee 𝑂(1) elementary operations in 

this evaluation.    

 

∆𝒊=

{
 
 

 
 

(𝒌𝟏 − 𝟏)(𝒕𝟎[𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) − 𝒌𝟏𝒕𝟎[𝒊]       𝒊𝒇 𝒊 = 𝟏

(𝒌𝟏 − 𝒊)(𝒕[𝒊−𝟏][𝒊+𝟏] − 𝒕[𝒊][𝒊+𝟏]) − (𝒌𝟏 − 𝒊 + 𝟏)𝒕[𝒊−𝟏][𝒊] −∑ 𝒕[𝒍−𝟏][𝒍],       𝒊𝒇 𝟐 ≤  𝒊 ≤ 𝒌𝟏 − 𝟏
𝒊−𝟏

𝒍=𝟏

−∑ 𝒕[𝒍−𝟏][𝒍],                                        𝒊𝒇 𝒊 = 𝒌𝟏
𝒊

𝒍=𝟏
      

   

(𝟒. 𝟕) 
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Fixing the position 𝑖 in the first sequence, the sub-neighborhood of job [𝑖] is defined by 

all the positions 𝑗 in the second sequence where it can be inserted. The positions 𝑗 in the 

second sequence are explored in a sequential way starting by the first position and 

variation ∆𝑗 in the 𝑇𝐶𝑇 of the second sequence is calculated by expression (4.1). 

 

The value of a move, that is, the variation ∆𝑖𝑗 in the solution 𝑇𝐶𝑇 when the job [𝑖] is 

removed from a sequence and it is inserted in position 𝑗 of another sequence is 

calculated as ∆𝑖𝑗= ∆𝑖 + ∆𝑗 . 

 

In addition, the implementation of the RVND algorithm includes a memory structure 

with the purpose of reducing the computational time. The reasoning behind this is to 

avoid re-exploring sequences that did not reach any improvement during the last 

execution of the considered neighborhood structure. 

 

 4.3 Computational experiments and Comparisons 
 

The goals of the computational addressed conducted in this thesis work are the 

following:  

 

• Corroborating the effectiveness of providing to a VNS algorithm several 

different initial solutions obtained through a constructive GRASP.  

• Comparing the results yielded by the proposed hybrid metaheuristic algorithm 

with the optimal solutions found for small and medium-sized instances. 

• Assessing the performance of the hybrid algorithm, comparing its results with 

those published in the literature. 

 

The experiments were performed on an Intel® Core(TM) i5-2410M CPU @ 2.30GHz 

and 4.00GB of RAM processor. The proposed algorithm was coded in C++ and, to 

obtain the optimal solutions, the mathematical model was solved using the Concert 

Technology of Professional Solver Cplex 12.6.  

 

For the computational experiments we used two sets of instances. The first set contains 

the instances generated by Avalos-Rosales et al. (2015) the procedure described in 

Vallada and Ruiz (2011) with 𝑛 =  {20, 30, 40, 50, 60} and 𝑚 =  {2, 4, 6, 8}. The 

processing times (𝑝𝑗) were uniformly generated between [1-99], and the setup times 

were uniformly generated in the ranges [1-49], [1-99] and [1-124], denoted by S1, S2 

and S3, respectively. In a similar way, we generated the second group of instances with 

70 and 80 jobs. For each combination of number of machines, number of jobs and range 

of setup times, there are 5 replicates for each set of instances. 

 

Taking into account that the instances taken from the literature are for unrelated parallel 

machines and in this work, we are considering identical machines, we have taken the 

data of the first machine in each instance. 

 

The stopping criterion in GRASP (number of iterations) and the parameter α to restrict 

the candidate list in the constructive procedure were statistically set to 𝑛2and 0.3, 

respectively. The hybrid algorithm was run one time. 
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4.3.1 Benefits of hybridizing GRASP with VNS 
 

This section is devoted to corroborate the good performance of the combination of 

GRASP and Variable Neighborhood Search (VNS) to solve the problem tackled in this 

work. That is, the results obtained using VNS starting from an initial solution 

constructed in a greedy way were compared with the results obtained with the proposed 

hybrid algorithm. Table 4.1 shows this comparison. Column 1 indicate the number of 

machines, while column 2 indicate the number of jobs.  Column 3 display the objective 

values obtained by the VNS, while column 4 display the objective values obtained by 

the hybrid algorithm. In column 5 the improvement percentage (𝐼𝑚𝑝𝑟𝑜𝑣%) of the 

proposed algorithm (HMA) in relation to VNS is shown. It is calculated as 

 

𝑰𝒎𝒑𝒓𝒐𝒗% = 𝟏𝟎𝟎 ∗
𝑽𝑵𝑺𝒗𝒂𝒍 −𝑯𝑴𝑨𝒗𝒂𝒍

𝑽𝑵𝑺𝒗𝒂𝒍
             (𝟒. 𝟖) 

 

Where, VNS𝑣𝑎𝑙   is the best solution value reported by the VNS algorithm, and 𝐻𝑀𝐴𝑣𝑎𝑙    
is the best solution value obtained by the proposed Hybrid Metaheuristic Algorithm. 

 

The experimental results of VNS and HMA are summarized in Table 4.1, in which, the 

first column (m) represents the number of machines and the second column (n) stands 

for the number of jobs. The objective values obtained with both metaheuristics are 

presented in next two columns and the percentage improvement is represented in las 

column using the formula (4.8). The values displayed have been averaged over 15 

instances with the same number of jobs and the same number of machines.   

 
Table 4. 1 Comparison between HMA and VNS 

 
 

Objective values Improvement 

m n VNS HMA (%) 

2 20 5205.87 5105.13 1.82 

 30 11783.53 11347.13 3.73 

 40 18386.67 17687.6 3.73 

 50 29967.33 28838.8 3.74 

 60 41437.07 39881.27 3.74 

 70 53206.4 51210.53 3.71 

 80 70183.93 67409.2 3.89 

4 20 3439.93 3406.87 0.97 

 30 6201.53 6029.2 2.73 

 40 9990.87 9633.6 3.51 

 50 16103.4 15453.47 3.95 

 60 21913.13 21065.8 3.84 

 70 27964 26935.4 3.66 

 80 36566.4 35267.67 3.5 

6 20 2548.27 2522.27 0.99 

 30 4707.38 4560.44 2.91 

 40 7237.73 7001.6 3.23 

 50 11402.8 11016.93 3.36 

 60 15471.8 14890.93 3.68 
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 70 19637.67 18914.2 3.65 

 80 2509.07 24560.73 3.25 

8 20 2058.93 2040.8 0.9 

 30 3865.2 3783.87 2.09 

 40 5916.6 5729.8 3.08 

 50 9119.07 8857.27 2.75 

 60 12248.33 11884.4 2.91 

 70 15455.73 14918 3.44 

 80 19969.73 19253.67 3.51 

 

In order to assess the statistical differences between the hybrid algorithm, HMA, 

proposed here and VNS, the Wilcoxon non-parametric test for comparing two samples 

has been used. As the computed p-value is lower than the significance level α = 0.05, 

the null hypothesis is rejected. Therefore, we conclude that the two algorithms are 

statistically different and the proposed hybrid metaheuristic outperforms VNS for the 

problem at hand. 

 

4.3.2 Comparing with optimal solutions 

 

Tables 4.2 and 4.3 shows, for the first set of instances, the comparison between the 

results obtained by the hybrid algorithm and the optimal solutions found using the 

mathematical model described in Chapter 3. Column 1 indicate the number of machines 

and column 2 the number of jobs (n) while column 3 indicate the setup time range (S). 

Column 4 display the CPU time elapsed by the solver (Model) and by the proposed 

hybrid metaheuristic algorithm (HMA), respectively. Columns 5 and 6 shows the 

relative gap of the results obtained by the proposed heuristic algorithm with respect to 

the optimal solutions. Results in columns 4 to 7 are averaged over 5 instances. For each 

instance, the relative gap is computed as 

 

 

𝒈𝒂𝒑% = 𝟏𝟎𝟎 ∗
𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝒗𝒂𝒍 −𝑯𝑴𝑨𝒗𝒂𝒍

𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝒗𝒂𝒍
             (𝟒. 𝟗) 

 

where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑣𝑎𝑙 is the optimal solution value reported by the solver, and 𝐻𝑀𝐴𝑣𝑎𝑙  is 
the best solution value obtained by the proposed algorithm. 
 

Table 4. 2 Comparison of HMA with optimal solutions for 2 and 4 machines. 

   
Exact GRASP-VNS 

m n S CPU time avg. 

(s) 

CPU time avg. (s)          Gap(%) Avg 

2 20 S1 1.2452 0.1474 0.0000 

S2 1.558 0.1506 0.0000 

S3 0.9966 0.1376 0.0000 

30 S1 4.1556 0.7428 0.0417 

S2 5.7202 0.7344 0.4020 

S3 9.7134 0.7512 0.2985 

40 S1 38.7090 2.3724 0.1826 
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S2 79.0626 2.2996 1.0319 

S3 65.9272 2.3206 1.3818 

50 S1 264.6488 5.8488 0.6781 

S2 495.0716 5.4884 1.6836 

S3 414.6172 5.7984 2.2219 

60 S1 1990.3574 12.2584 1.3669 

S2 1735.8160 12.4860 2.7307 

S3 3095.3104 12.2986 3.1924 

4 20 S1 0.7966 0.1592 0.0000 

S2 0.7312 0.164 0.0000 

S3 0.6066 0.1568 0.0000 

30 S1 2.8056 0.782 0.0233 

S2 4.9328 0.7954 0.0217 

S3 4.4154 0.8154 0.4767 

40 S1 10.9486 2.4908 0.4909 

S2 15.5674 2.4484 1.1894 

S3 14.8664 2.5692 0.9717 

50 S1 59.8036 6.2078 1.0346 

S2 106.7918 5.9144 1.8820 

S3 150.3252 6.2 2.3391 

60 S1 435.2174 12.7238 1.4991 

S2 268.6436 12.8032 2.7891 

S3 520.8954 12.363 2.9586 

 
 

Table 4. 3 Comparison of HMA with optimal solutions for 6 and 8 machines 

   
Exact GRASP-VNS 

m n S CPU time avg. 

(s) 

  CPU time avg 

(s) 

           Gap(%) Avg 

6 20 S1 0.4834 0.1714 0.0000 

S2 0.4930 0.1632 0.0000 

S3 0.4182 0.1658 0.0000 

30 S1 1.9396 0.7886 0.1150 

S2 2.4296 0.8038 0.0368 

S3 2.1300 0.8042 0.3345 

40 S1 7.0128 2.4804 0.5836 

S2 7.2686 2.4228 0.8618 

S3 6.4342 2.5294 1.4935 

50 S1 16.8280 6.1636 0.9250 

S2 18.4654 6.0264 1.9028 

S3 21.9032 6.1806 2.0629 

60 S1 128.7410 12.8940 1.4603 

S2 177.5666 12.4320 2.5590 

S3 224.3990 12.7454 2.8931 

8 20 S1 0.4156 0.1888 0.0000 
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S2 0.3546 0.1850 0.0000 

S3 0.3536 0.1898 0.0000 

30 S1 1.5400 0.8064 0.0703 

S2 1.5842 0.8104 0.1026 

S3 1.5634 0.8350 0.0706 

40 S1 5.4998 2.4788 0.4117 

S2 8.9498 2.2996 0.6888 

S3 5.5682 2.5446 1.2025 

50 S1 18.7624 6.0826 1.0218 

S2 14.3340 5.9290 1.7616 

S3 14.5778 6.2482 1.8145 

60 S1 55.0242 12.742 1.4804 

S2 88.4128 13.1630 2.4190 

S3 59.4282 12.9518 2.8943 

 

 

First of all, from Table 4.2 and 4.3, it is observed that the Gap values are below 3.19 in 

all cases and increase as the number of jobs increases. However, it is not noticed any 

tendency with respect to the increment of the number of machines, yielding the highest 

gap values for 4 and 6 machines. Moreover, given a number of machines and jobs, the 

gap increases as the setup (S1 to S3) increases, especially for more than 40 jobs. 

Finally, notice that for each range, the gaps are kept very close regardless of the number 

of machines, especially for a higher number of jobs (50 and 60).  

 

If we pay attention to the CPU time, it increases as the size of the instance increases, 

especially when the number of jobs grows. For the mathematical model, the CPU time 

decreases as the number of machines increases. This means that long sequences in the 

machines are more difficult to deal for the model. Furthermore, for higher number of 

jobs, the CPU time increases as the setup time range increase. For the hybrid heuristic, 

the time also increases with the number of jobs, but contrary to the model occurs. The 

shorter CPU time correspond to a small number of machines with longer sequences. In 

any case, the variability is very small with respect to the number of machines. 

 

With the purpose of evaluating the performance of the algorithm in larger instances we 

tried to solve to optimality, using the time dependent formulation based on flow 

(model5), the instances with 70 and 80 jobs. However, the solver could not find any 

feasible solution for instances with 80 jobs. 

 

In Tables 4.4 and 4.5 we show the comparison between the results obtained by the 

hybrid algorithm HMA and the optimal solutions or best integer solutions found by the 

solver for 70-jobs instances. For both tables, column 1 indicates the setup range (S), 

while columns 2 indicate the number of machines (m). Columns 3, 4 and 5 refer to the 

model. Specifically, columns 3 show the objective value, columns 4 the CPU time in 

seconds, while columns 5 the gap reported by the solver. The symbol (-) in columns 4 

means that the solver could not reach the optimal solutions and stopped reporting “out 

of memory”. Columns 6, 7, 8 refer to the hybrid algorithm (HMA). Specifically, 

columns 6 indicate the value of the objective function; columns 7 indicate the elapsed 

CPU time in seconds, while columns 8 display the gap of HMA related to the best 

solution found by the solver. 
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Table 4. 4 Comparison of HMA with best known solutions for 70-job instances (2 

and 4 machines) 

    Model HMA 

m S Obj. Val. Time (s) Gap Obj. Val. Time 

(s) 

Gap 

2 S1 40999 (-) 1.33 40958 23.17 -0.10 

45037 (-) 0.63 45648 23.90 1.36 

47313 2820.02 0.00 47735 24.34 0.89 

49947 (-) 1.05 49834 23.90 -0.23 

52095 (-) 0.76 52587 23.12 0.94 

 S2 50705 (-) 0.24 51531 22.16 1.63 

50908 (-) 0.59 51871 22.42 1.89 

49947 (-) 1.48 50206 21.91 0.52 

53089 (-) 0.88 53760 23.32 1.26 

56208 (-) 1.07 57107 22.19 1.60 

 S3 54798 (-) 0.68 55592 25.17 1.45 

49193 (-) 0.77 50883 22.80 3.44 

46169 (-) 2.09 46750 23.74 1.26 

55716 (-) 0.83 56564 24.55 1.52 

46629 (-) 2.36 47161 23.92 1.14 

4 S1 21285 (-) 0.20 21639 24.83 1.66 

23582 879.38 0.00 23626 25.66 0.19 

24932 (-) 0.11 25143 25.31 0.85 

25953 (-) 0.53 26083 25.45 0.50 

26978 1182.25 0.00 27428 23.66 1.67  
S2 26772 1191.39 0.00 27368 23.91 2.23 

26512 968.86 0.00 26954 22.91 1.67 

26037 (-) 0.32 26451 24.46 1.59 

27785 (-) 0.52 28251 25.28 1.68 

29220 710.57 0.00 30145 23.34 3.17  
S3 28745 996.79 0.00 29324 26.26 2.01 

26003 (-) 0.78 26606 24.15 2.32 

24427 (-) 1.71 24504 24.09 0.32 

29143 (-) 0.74 29644 24.95 1.72 

24315 2714.33 0.00  24732 27.49 1.71 
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Table 4. 5 Comparison of HMA with best known solutions for 70-job instances (6 

and 8 machines) 

    Model HMA     

m S Obj. Val. Time (s) Gap Obj. Val. Time (s) Gap 

6 S1 14948 (-) 0.12 15127 24.41 1.20 

16605 815.13 0.00 16792 25.15 1.13 

17502 (-) 0.16 17652 24.85 0.86 

18149 97.94 0.00 18401 23.65 1.39 

18737 506.96 0.00 18895 23.69 0.84  
S2 18827 875.52 0.00 19208 22.99 2.02 

18589 543,621 0.00 19035 26.10 2.40 

17502 (-) 0.17 18622 25.04 6.40 

19526 (-) 0.29 19770 23.9 1.25 

20527 957.41 0.00 20933 23.65 1.98  
S3 20243 757.81 0.00 20560 26.95 1.57 

18212 636,341 0.00 18527 25.79 1.73 

17077 965.80 0.00 17494 25.02 2.44 

20245 606.28 0.00 20720 24.83 2.35 

17196 794.99 0.00 17487 28 1.69 

8 S1 11839 91.57 0.00 11940 23.90 0.85 

13119 105.62 0.00 13271 24.52 1.16 

13821 207.24 0.00 13865 24.61 0.32 

14326 236.38 0.00 14418 24.67 0.64 

14685 124.48 0.00 14786 23.22 0.69  
S2 14873 289.35 0.00 15015 23.14 0.95 

14675 271.94 0.00 14939 24.75 1.80 

14590 84.44 0.00 14778 25.62 1.29 

15417 727.74 0.00 15582 23.83 1.07 

16241 493.92 0.00 16465 22.87 1.38  
S3 16003 96.30 0.00 16303 26.99 1.87 

14437 (-) 0.34 14736 25.11 2.07 

13618 559.13 0.00 13965 24.78 2.55 

15936 105.34 0.00 16213 24.76 1.74 

13702 (-) 0.35 14122 26.99 3.07 

 

 

From both tables, it can be conclude that even though we have no guarantee that the 

solver could find always the optimal solutions, the gaps reported by the solver are quite 

small, indicating that the solutions reported by the solver are really close to the optimal 

solutions, in the case that they are not already the optimal ones. 

 

As we have seen in the comparisons, the results obtained with the proposed hybrid 

algorithm are very good, since the deviation from optimal or almost optimal solutions 

are very small in all cases. Moreover, in two instances with 2 machines and setups in 

the range S1, the algorithm obtains better solutions than those found by the solver. 
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4.3.3 Comparing with the state of the art 
 

As we mentioned in chapter 2, Morales et al., (2015) developed an IGA for the same 

problem addressed here. For this reason, we present a comparison between two 

algorithms.  To ensure fair comparisons, both metaheuristic algorithms were run on the 

same computer for each instance. The computer code for IGA was kindly provided by 

their authors. 

 

Table 4.6 and 4.7 show the results of this comparison. The structure of the tables: 

column 1 indicates the number of jobs (n), column 2 the setup range (S). The columns 3 

and 6 show the CPU time in seconds for the IGA for 2, 4, 6 and 9 machines 

respectively, and in the same way the columns 4 and 7 for the HMA. We present the 

percentage improvement (Improv%) of our proposed algorithm in relation to IGA in the 

columns 5 and 8. 

 

𝑰𝒎𝒑𝒓𝒐𝒗% = 𝟏𝟎𝟎 ∗ 
𝑰𝑮𝑨𝒗𝒂𝒍 −𝑯𝑴𝑨𝒗𝒂𝒍

𝑰𝑮𝑨𝒗𝒂𝒍
              (𝟒. 𝟏𝟎) 

 

where 𝐼𝐺𝐴𝑣𝑎𝑙 is the best solution value reported by the Iterated Greedy algorithm, and 

𝐻𝑀𝐴𝑣𝑎𝑙  is the best solution value obtained by the proposed HMA. 

 
Table 4. 6 Comparison with IGA (2 and 4 machines) 

  
m=2 m=4 

    CPU Time (s) Improv CPU Time (s) Improv 

n  S IGA HMA % IGA HM

A 

% 

20 S1 0.12 0.15 0.00 0.17 0.16 0.04  
S2 0.12 0.15 0.00 0.17 0.16 0.00 

  S3 0.12 0.14 0.00 0.16 0.16 0.00 

30 S1 0.63 0.74 0.19 0.79 0.78 0.30  
S2 0.62 0.73 0.58 0.78 0.80 0.72 

  S3 0.61 0.75 1.01 0.77 0.82 0.69 

40 S1 2.10 2.37 0.45 2.64 2.49 0.55  
S2 2.03 2.30 0.84 2.51 2.45 0.80 

  S3 2.01 2.32 1.13 2.47 2.57 1.08 

50 S1 5.41 5.85 0.98 6.47 6.21 0.57  
S2 5.23 5.49 1.91 6.25 5.91 1.37 

  S3 5.10 5.80 1.91 6.18 6.20 1.49 

60 S1 12.07 12.26 0.60 14.37 12.72 0.69  
S2 11.63 12.49 1.73 13.63 12.80 1.30 

  S3 11.38 12.30 1.98 13.22 12.36 1.64 

70 S1 18.95 23.69 2.20 22.37 24.98 2.10  
S2 18.61 22.40 3.37 21.33 23.98 2.89 

  S3 18.23 24.04 3.73 21.28 25.39 3.63 

80 S1 35.25 40.97 2.10 41.10 43.09 2.21  
S2 33.68 40.77 3.91 40.44 41.40 2.88 

  S3 31.99 42.23 3.93 39.31 42.08 4.26 
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Table 4. 7 Comparison with IGA (6 and 8 machines) 

  m=6 m=8 

    CPU Time (s) Improv CPU Time (s) Improv 

n  S IGA HMA % IGA HMA % 

20 S1 0.22 0.17 0.00 0.30 0.19 0.00 
 S2 0.21 0.16 0.00 0.31 0.19 0.00 

  S3 0.22 0.17 0.00 0.31 0.19 0.00 

30 S1 0.97 0.79 0.10 1.17 0.81 0.03 
 S2 0.93 0.80 0.27 1.13 0.81 0.04 

  S3 0.94 0.80 0.31 1.12 0.84 0.29 

40 S1 3.00 2.48 0.36 3.48 2.48 0.53 
 S2 2.84 2.42 0.81 3.27 2.30 0.34 

  S3 2.86 2.53 0.79 3.29 2.54 0.41 

50 S1 7.01 6.16 0.38 7.99 6.08 0.40 
 S2 6.82 6.03 1.06 7.84 5.93 0.78 

  S3 6.90 6.18 1.11 7.79 6.25 0.92 

60 S1 15.17 12.89 0.64 17.16 12.74 0.46 
 S2 14.73 12.43 1.38 16.63 13.16 0.62 

  S3 14.43 12.75 1.30 16.33 12.95 0.96 

70 S1 23.6 24.35 0.60 25.64 24.19 1.90 
 S2 22.72 24.34 2.70 26.90 24.04 3.13 

  S3 23.25 26.12 2.71 27.96 25.73 2.35 

80 S1 43.04 43.06 2.12 49.32 42.06 1.57 
 S2 41.80 41.27 3.28 47.72 41.07 2.99 

  S3 44.56 41.75 3.42 43.32 43.26 3.48 

 

 

On analyzing the solution quality, both the algorithms perform similarity for the small 

instances. As the number of jobs increases, the HMA yields better results than IGA. 

This difference becomes bigger for the same number of jobs as the setup time increases. 

For the same number of jobs, the largest improvements correspond to longer sequences 

with fewer machines. 

 

In order to assess the statistical differences between both algorithms, the Wilcoxon non-

parametric test for comparing two samples has been used. In the first test carried out in 

this section, the whole set of data has been considered. As the computed p-value is 

lower than the significance level 𝛼 =  0.05, the null hypothesis is rejected. Therefore, 

we conclude that the two algorithms are statistically different, and the proposed hybrid 

metaheuristic outperforms the best algorithm from the literature. Given the fact that the 

differences between both algorithms are not large, we have also conducted statistical 

tests for each instance size, i.e. number of jobs n, from n = 20 up to n = 80. In the case 

of n = 20, the computed p-value is greater than the significance level 𝛼 =  0.05. 

Therefore, the null hypothesis cannot be rejected, meaning that there are not statistical 

differences between the samples corresponding to IGA and HMA for n = 20. However, 
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for n = 30 up to n = 80, the Wilcoxon non-parametric test for comparing two samples 

finds statistical differences between both algorithms, obtaining p-values lower than the 

significance level 𝛼 =  0.05. Therefore, we may conclude that HMA statistically 

outperforms IGA. 

 

Finally, it is concluded that for the small instances with 2 machines, the CPU time 

required by IGA is slightly smaller than the time required by HMA. However, HMA is 

faster as the number of machines increases. 

 

 

4.7 Chapter conclusions 
 

In this chapter we propose a hybrid algorithm that combines the GRASP and VNS 

metaheuristics for the parallel machine scheduling problem with sequence dependent 

setup times and the goal of minimize the TCT. The basic structure of the algorithm is 

divided in two phases, constructive and improvement. For the construction of initial 

solutions, several procedures were tested, and the best results were achieved by the 

constructive procedure described in Algorithm 4.2. Then, the improvement phase is 

implemented by means of a GVNS, with a destructive and reconstructive procedure as 

shaking process. 

 

The computational results achieved in this work, corroborated through statistical tests, 

show the effectiveness of the proposed hybrid algorithm when compared with optimal 

solutions or best integer solutions found using a mathematical model, and with results 

of the best heuristic from the literature. We have proved that the hybrid algorithm 

statistically outperforms the state of the art for the problem. 
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Chapter 5 Study of the learning and deterioration effects on 
sequence dependent setup times in single and parallel machine 
scheduling problems 
 

5.1. Introduction 
 

In this chapter we deal with single and parallel machine scheduling problem with 

sequence dependent setup times for minimizing the sum of completion time of all jobs. 

In these problems we consider that the setup time of the machine and the jobs 

processing time can be affected by the learning or fatigue of the operators in carrying 

out the activities.  

 

Time variations due to frequent repetition of operations are known in scheduling 

literature as learning or deterioration effects. From the literature review, we find that in 

all published works on problems with learning and deterioration effects, the setup times 

of the machines have been ignored or have been considered independent of the order in 

which the jobs are processed.  

 

Most of the published papers, addressing the scheduling problems with learning and/or 

deterioration effects, assumed these effects over the processing times of the jobs 

(Biskup, 2008). The researches found in the literature can be grouped into two main 

categories: position-dependent and time-dependent effects. In both categories the 

processing time of a job is affected by a factor depending the jobs processed before it. 

In the first one, the learning/deterioration factor depends on the number of the all 

already scheduled jobs, while in the second one, it depends on the sum of the processing 

times of the all already scheduled jobs. 

 

Another kind of learning/deterioration effect over processing times is past-sequence-

dependent (p-s-d) setup times introduced by Koulamas and Kyparisis (2008). In the p-s-

d setup time approach, the processing time 𝑝𝑗𝑟 of job j scheduled in position r is 

obtained as the normal processing time 𝑝𝑗 plus a value that depends on the sum of the 

processing times of all already scheduled jobs, that is, 𝑝𝑗𝑟  =  𝑠[𝑟]  +  𝑝𝑗, where 𝑠[1]  =

 0, 𝑠[𝑟]  =  𝑏
𝑟−1  ∑ 𝑝[𝑘]

𝑟−1
𝑘=1  for 𝑟 =  1, 2,· · · , 𝑛 and 𝑏 is constant associated with the 

learning/deterioration factor. They interpreted the value 𝑠[𝑟] as a setup time that depends 

on the sum of the processing time of the all already scheduled jobs. For more details 

about scheduling problems with p-s-d setup times refer the recent survey done by 

Allahverdi (2015). 

 

All published works that have studied the types of learning/deterioration effects 

described above considered that the setup time depends only on the job about to start. 

 

It is true that in some practical applications the setup (or changeover) time may be 

ignored considering them as part of the processing time of the jobs. However, there also 

exist several applications in which they must be explicitly considered, since otherwise 

the costs and times would rise considerably (Allahverdi et al., 1999).  

 

In this chapter, we consider a manufacturing environment where jobs are processed 

automatically and the machine settings between different types of jobs should be 
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executed manually. Here, the impact of human factor becomes significant for the whole 

production time. Therefore, from the repeated application of operations, the setup time 

may decrease because of some kind of learning, but they also may increase due to the 

fatigue of the operators (deterioration). 

 

A first effort in the address of these kind of problems is presented in Expósito-Izquierdo 

et al.,(2019). They consider an identical parallel machine environment and addressed 

the learning and the deterioration effects on the setup times. In this work, first, an elite 

set of high-quality and diverse solutions ignoring the learning and the deterioration 

effects is generated through a modification of the hybrid algorithm proposed in Chapter 

4. To assess how robust the solutions obtained are in the presence of deterioration and 

learning effects on setup times, a multi-agent simulation approach is applied. 

 

In this chapter, first, we addressed the scheduling problems for a single machine in the 

manufacturing environment described above and propose four mixed integer 

formulations for each kind of effect. Then, we generalize these formulations for 

scheduling problems on identical parallel machines. All the formulations are assessed 

using test data instances. 

 

To the best of our knowledge, this is the first time that:  

 Propose mathematical formulations for scheduling problems where the 

learning/deterioration effects on sequence dependent setup times are considered. 

 Conduct a study to determine how solutions are affected by learning or 

deterioration effects when setup times are sequence dependent. 

 

 

5.2. Formulations of the problems 
 

Consider a set of 𝑛 independent jobs to be processed on the machines. We addressed 

two machine settings: a single machine and 𝑚 identical parallel machines. Each job 𝑗 
has an associated processing time 𝑝𝑗 and there are machine setup times 𝑠𝑖𝑗 for 

processing job 𝑗 just after job 𝑖. In general, 𝑠𝑖𝑗  ≠  𝑠𝑗𝑖. All the machines are at an initial 

state 0 (dummy job 0), and there is a setup time 𝑠0𝑗 for processing the first job on each 

machine. All the jobs are available at time zero and each job should be continually 

processed on the same machine, i.e., preemption is not allowed. 

 

As in the previous chapters, a sequence of 𝑘 jobs for a given machine is represented by  
𝑃 = {0, [1], [2], … , [𝑟 − 1], [𝑟], [𝑟 + 1], … , [𝑘]} where [𝑟] denotes the job in the position 

𝑟 in the sequence 𝑃. 

 

We assume that the setup times are affected by learning effect or by deterioration effect, 

which depend on the number of setups that have already been done in the machine. 

Then, the total time required for processing the job 𝑗 in position 𝑟 just after job 𝑖 in 

position 𝑟 − 1 is defined as: 

 

𝒕𝒊𝒋
𝒓 = 𝒔𝒊𝒋

𝒓 + 𝒑𝒋 = 𝒇(𝒃, 𝒓, 𝒌)𝒔𝒊𝒋 + 𝒑𝒋                                              (𝟓. 𝟏) 

 

where 𝑏 ∈ (0,1) is a parameter associated with the learning/deterioration rate and 𝑘 is 

the number of jobs in the sequence. When the values of 𝑏 and 𝑘 are fixed, 𝑦 =  𝑓(𝑟) is 



 

50 

 

a monotonic non-increasing function for learning or a monotonic non-decreasing 

function for deterioration. 

 

The objective is to find a schedule that minimizes the sum of the job completion times 

on the available machines; i.e., the Total Completion Time (𝑇𝐶𝑇). 

 

Given the function 𝑓 and a sequence 𝑃, the 𝑇𝐶𝑇 of 𝑃 can be calculated as: 

 

𝑻𝑪𝑻(𝑷) = 𝒌𝒕𝟎[𝟏]
𝟏 + (𝒌 − 𝟏)𝒕[𝟏][𝟐]

𝟐 +⋯+ 𝟐𝒕[𝒌−𝟐][𝒌−𝟏]
𝒌−𝟏 + 𝒕[𝒌−𝟏][𝒌]

𝒌             (𝟓. 𝟑) 

 

where the values of 𝑡[𝑖−1][𝑖]
𝑟  (𝑟 = 1,2, … , 𝑘) are calculated using expression (5.1). 

 

For the single machine scheduling problem, the objective is to find a sequence with the 

𝑛 jobs that minimizes the 𝑇𝐶𝑇. For the parallel machine scheduling problem, the 

objective is to find 𝑚 disjoint sequences 𝑃𝑟 (𝑟 =  1, 2, … ,𝑚) in such a way that the 

following function is minimized 

𝒛 =∑𝑻𝑪𝑻(𝑷𝒓)

𝒎

𝒓=𝟏

                                                                                              (𝟓. 𝟒) 

 

In this research, we use the following functions (5.5) and (5.6) to model the learning 

effect and the deterioration effect, respectively. 

 

𝒇(𝒃, 𝒓, 𝒌) = 𝒃𝒓−𝟏                                                                                                   (𝟓. 𝟓) 
𝒇(𝒃, 𝒓, 𝒌) = 𝒃𝒌−𝒓                                                                                                   (𝟓. 𝟔) 

 

where 𝑘 = 𝑛 for the single machine problems. 

 

The values of the 𝑡𝑖𝑗
𝑟  are calculated depending on the considered effect. That is,  

 

𝒕𝒊𝒋
𝒓 = 𝒃𝒓−𝟏𝒔𝒊𝒋 + 𝒑𝒋                                                                                                   (𝟓. 𝟕) 

for the learning effect, and  

𝒕𝒊𝒋
𝒓 = 𝒃𝒌−𝒓𝒔𝒊𝒋 + 𝒑𝒋                                                                                                   (𝟓. 𝟖) 

for the deterioration effect. 
 

5.2.1. Mathematical formulations for the single machine scheduling problems 

with learning and deterioration effects. 

 

In this section we adapt a formulation developed in Angel Bello et al. (2013) for the 

Minimum Latency Problem (MLP). In that paper, they developed two improved 

formulations for the MLP and assessed them using routing and scheduling instances. 

We select the second formulation (Model B) because it had a better performance on the 

scheduling instances. 

 

To adapt that formulation to the problem with learning and deterioration effects, let us 

define the following decision variables.  

 

𝑦𝑖𝑗
𝑟 = {

1,       there are 𝑛 − 𝑟 jobs in the sequence after job 𝑖      
0,                                     otherwise                                              
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Then the adapted formulation is shown below. 

 

𝐦𝐢𝐧 𝒛 =  𝒏∑𝒕𝟎𝒊
𝟏

𝒏

𝒊=𝟏

∑ 𝒚𝒊𝒋
𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

+∑∑ ∑ (𝒏 − 𝒓)𝒕𝒊𝒋
𝒓 𝒚𝒊𝒋

𝒓

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟏

𝒏−𝟏

𝒓=𝟏

                                                     (𝟓. 𝟗) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨: 
 

∑ ∑ 𝒚𝒊𝒋
𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟏

𝒏

𝒊=𝟏

                                                                                                                                 (𝟓. 𝟏𝟎) 

∑ (𝒚𝒊𝒋
𝒓 − 𝒚𝒋𝒊

𝒓−𝟏)

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟎                         (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒓 = 𝟐, 𝟑,… , 𝒏 − 𝟏)                            (𝟓. 𝟏𝟏) 

 

∑ ∑ 𝒚𝒋𝒊
𝒏−𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟏

𝒏

𝒊=𝟏

                                                                                                                         (𝟓. 𝟏𝟐) 

∑ 𝒚𝒊𝒋
𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

+∑  ∑ 𝒚𝒋𝒊
𝒓

𝒏

𝒋=𝟏,𝒋≠𝒊

= 𝟏

𝒏−𝟏

𝒓=𝟏

                (𝒊 = 𝟏, 𝟐, … , 𝒏)                                                          (𝟓. 𝟏𝟑) 

 

𝒚𝒊𝒋
𝒓 ∈ {𝟎, 𝟏}                         (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒋 = 𝟏, 𝟐, … , 𝒏; 𝒋 ≠ 𝒊; 𝒓 = 𝟐, 𝟑, … , 𝒏 − 𝟏)         (𝟓. 𝟏𝟒) 

 

The objective function (5.9) is to minimize the 𝑇𝐶𝑇 of a given sequence. The variables 

𝑦𝑖𝑗
1  are multiplied by 𝑛 in (5.9) because 𝑦𝑖𝑗

1 = 1 means that the job 𝑖 occupies the 

position 1 in the sequence. In general, 𝑦𝑖𝑗
𝑟 = 1 means that the job 𝑖 occupies the position 

𝑟 − 1 and the job 𝑗 occupies the position 𝑟 in the sequence. This fact is equivalent to 

that after job 𝑖 there are 𝑛 − 𝑟 jobs in the sequence and hence the variables 𝑦𝑖𝑗
𝑟  are 

multiplied by 𝑛 − 𝑟.  

 

Constraint (5.10) guarantees that a single job occupies position 1 in the sequence, while 

constraint (5.12) guarantees that a single job occupies the last position in the sequence. 

Constraints (5.11) are the flow conservation restrictions and they establish the sequence 

continuity. Constraints (5.13) force each job to occupy only one position in the 

sequence. Finally, constraints (5.14) establish the binary nature of the 𝑦𝑖𝑗
𝑟  variables. 

 
 

5.2.2. Mathematical formulations for the parallel machine scheduling problems 

with learning and deterioration effects. 

 

For the parallel machine scheduling problems, we generalize the model 3.5 developed 

in Chapter 3. In a parallel machine setting it is not known in advance how many jobs 

will be assigned to each machine, we only have an upper bound 𝑁 =  𝑛 − 𝑚 + 1 that 

represents the maximum number of jobs that can be assigned to a machine. For that 

reason, in model5 the definition of variables 𝑦𝑖𝑗
𝑟  had to be modified. In this case, 𝑦𝑖𝑗

𝑟  is a 

binary variable that is equal to 1 if and only if there are 𝑟 jobs after job 𝑖 in the sequence 

to which the job 𝑖 belongs. Note that now 𝑦𝑖𝑗
1 = 1 means that job 𝑗 occupies the last 

position in some sequence. This fact caused that developing the formulation for the 

deterioration effect is practically straight, while for the learning effect it is much more 

complicated. 
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In fact, for the deterioration effect, the objective function coefficients for the variables 

𝑦𝑖𝑗
1  are 𝑠𝑖𝑗 + 𝑝𝑗, for 𝑦𝑖𝑗

2  are 2(𝑏𝑠𝑖𝑗 + 𝑝𝑗) and, in general, for 𝑦𝑖𝑗
𝑟  are 𝑟(𝑏𝑟−1𝑠𝑖𝑗 + 𝑝𝑗), 

then the objective function can be written as: 

𝐦𝐢𝐧 𝒛 =  ∑∑𝒓(𝒃
𝒓−𝟏
𝒔𝟎𝒋+𝒑𝒋)𝒚𝟎𝒋

𝒓

𝑵

𝒓=𝟏

𝒏

𝒋=𝟏

+∑ ∑ ∑ 𝒓(𝒃
𝒓−𝟏
𝒔𝒊𝒋+𝒑𝒋)𝒚𝒊𝒋

𝒓

𝑵−𝟏

𝒓=𝟏

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

            (𝟓. 𝟏𝟓) 

 

In the learning effect situation, 𝑦𝑖𝑗
1 = 1 also means that job 𝑗 occupies the last position 

in some sequence and the variables 𝑦𝑖𝑗
1  should be multiplied in the objective function by  

𝑏𝑘−1𝑠𝑖𝑗 + 𝑝𝑗, where 𝑘 is the number of jobs in the sequence to which the job 𝑗 belongs. 

However, as the values of 𝑘 for each sequence are not known until the problem is 

solved, we have to substitute the value of 𝑘 by 𝑁 to obtain the objective function 

coefficients. Then, the objective functions can be written as follow: 

 

𝐦𝐢𝐧 𝒛 =  ∑∑𝒓(𝒃
𝑵−𝒓

𝒔𝟎𝒋+𝒑𝒋)𝒚𝟎𝒋
𝒓

𝑵

𝒓=𝟏

𝒏

𝒋=𝟏

+∑ ∑ ∑ 𝒓(𝒃
𝑵−𝒓

𝒔𝒊𝒋+𝒑𝒋)𝒚𝒊𝒋
𝒓

𝑵−𝟏

𝒓=𝟏

𝒏

𝒋=𝟏,𝒋≠𝟏

𝒏

𝒊=𝟏

            (𝟓. 𝟏𝟔) 

 

The fact that the variables in the objective function are not multiplied by the correct 

coefficients could affect the optimal solution and it should be verified in computational 

experimentation. 

 

For both problems, the set of constraints is the same as for model 3.5 and we rewrite it 

below 

 

∑𝒚𝟎𝒋
𝒓   +  ∑ ∑ 𝒚𝒊𝒋

𝒓

𝒏

𝒊=𝟏,𝒊≠𝒋

𝑵−𝟏

𝒓=𝟏

= 𝟏

𝑵

𝒓=𝟏

                   (𝒊 = 𝟏, 𝟐, … , 𝒏)                                                        (𝟓. 𝟏𝟕) 

∑𝒚𝟎𝒋
𝟏   +  ∑ ∑ 𝒚𝒊𝒋

𝟏

𝒏

𝒋=𝟏,𝒋≠𝒊

𝒏

𝒊=𝟏

= 𝒎

𝑵

𝒋=𝟏

                   (𝒊 = 𝟏, 𝟐, … , 𝒏)                                                        (𝟓. 𝟏𝟖) 

∑∑𝒚𝟎𝒋
𝒓 = 𝒎

𝒏

𝒋=𝟏

 

𝑵

𝒓=𝟏

                                                                                                                                (𝟓. 𝟏𝟗) 

 

𝒚𝟎𝒋
𝒓+𝟏 + ∑ 𝒚𝒊𝒋

𝒓+𝟏 = ∑ 𝒚𝒋𝒊
𝒓

𝒏

𝒊=𝟏,𝒊≠𝒋

𝒏

𝒊=𝟏,𝒊≠𝒋

       (𝒊 = 𝟏, 𝟐, … , 𝒏; 𝒓 = 𝟏, 𝟐,… ,𝑵 − 𝟐)                           (𝟓. 𝟐𝟎) 

𝒚𝟎𝒋
𝑵 = ∑ 𝒚𝒋𝒊

𝑵−𝟏

𝒏

𝒊=𝟏,𝒊≠𝒋

                                        (𝒊 = 𝟏, 𝟐, … , 𝒏)                                                       (𝟓. 𝟐𝟏) 

𝒚𝟎𝒋
𝒓  𝝐 {𝟎, 𝟏}                                         (𝒊 = 𝟏, 𝟐,… , 𝒏; 𝒓 = 𝟏, 𝟐, … ,𝑵)                                      (𝟓. 𝟐𝟐)  

             𝒚𝒊𝒋
𝒓 𝝐 {𝟎, 𝟏}                               (𝒊, 𝒋 = 𝟏, 𝟐, … , 𝒏; 𝒋 ≠ 𝒊;  𝒓 = 𝟏, 𝟐, … ,𝑵 − 𝟏)                      

 

Constraints (5.17) ensure that each job is processed by a single machine. Constraints 

(5.18) and (5.19) together ensure that there are an initial and a final job on each 

machine. Constraints (5.20) are the flow conservation constraints and they guarantee the 

continuity of the sequences. Constraints (5.21) are used when there are sequences 

containing exactly 𝑁 jobs, otherwise they are redundant. Finally, constraints (5.22) 

establish the binary nature of the variables. 

 

Considering the nature of effect and the machine environment we have 4 models, that 

are summarized in Table 5.1. 
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Table 5. 1 Proposed models 

 Learning effect Deterioration effect 

Single Machine Problem Model 1 Model 2 

Parallel Machine Problem  Model 3 Model 4 

 

 

5.3. Computational experiments 
 

The objective of the experiments is to show the advantages of including the learning 

effect or the deterioration effect in the production programming process. To assess the 

impact of the learning/deterioration effect on the quality of the solutions, we first take 

the optimal solution without considering the learning/deterioration effect and evaluate it 

for each value of the learning/deterioration factor b. Then the obtained objective 

function values are compared with the values of the optimal solution with learning or 

deterioration effect for the corresponding b value. That is, the gap value for each b 

value is calculated as: 

 

𝑮𝒂𝒑(𝒃)% = 𝟏𝟎𝟎 ∗
𝑺𝒐𝒍𝑽𝒂𝒍𝒘𝒊𝒕𝒐𝒖𝒕𝑬𝒇𝒇𝒆𝒄𝒕(𝒃) − 𝑶𝒑𝒕𝑽𝒂𝒍(𝒃)

𝑶𝒑𝒕𝑽𝒂𝒍(𝒃)
                          (𝟓. 𝟐𝟑) 

 

where 𝑂𝑝𝑡𝑉𝑎𝑙(𝑏) is the optimal solution value obtained for a given value of  b and 

𝑆𝑜𝑙𝑉𝑎𝑙𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐸𝑓𝑓𝑒𝑐𝑡(𝑏) is the value of the solution without learning/deterioration effect 

when it is evaluated for the same b value. Note that, these gaps represent a measure of 

how good a solution is (obtained without considering the learning/deterioration effects) 

when it is evaluated for the different values of the learning/deterioration factor.  

 

The experiments for single machine environment were performed on an Intel Core 2 

Duo CPU at 3.00 GHz and 3.21 GB of RAM under Windows OS. The formulations 

were implemented in C++ using the Gurobi Optimizer 8.1 solver. While the 

experiments for the parallel machine environment were performed on an Intel Core i5-

5200U CPU at 2.20 GHz and 8 GB of RAM Windows 10 Enterprise 64 bits, also were 

implemented in C++ using the Gurobi Optimizer 8.1 solver. 

 

To carry out the computational experiments we use a subset of instances used in 

Chapters 3 and 4. Specifically, we use the instances with  𝑛 = {15,20,25,30} for the 

single machine problems and the instances with 𝑛 = {20,30,40,50,60}, 𝑚 = {2,4,6,8} 
for the parallel machine problems. We take instances of the three setup ranges 𝑆1, 𝑆2, 

and 𝑆3. The values of the learning/deterioration factor b vary between 0.1 and 0.9 with a 

step of 0.1. In addition, we set 𝑏 = 1 to obtain the optimal solutions without 

learning/deterioration effect. 

 

 

5.3.1 Single machine 
 

The Table 5.2 shows the gaps for the single machine problems with learning effects and 

with deterioration effect. In Table 5.2, column 1 (n) indicates the number of jobs, while 

column 2 (m) shows the different values of 𝑏. Columns 3 to 5 are associated to model 1 

while columns 6 to 8 are related to Model 2. These columns show the gap values for 
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setup ranges 𝑆1, 𝑆2, and 𝑆3, respectively. The gap values are calculated using the 

expression (5.23), the obtained values are grouped in subset of 20 values according to 

number of jobs (n), setup range (S) and level of learning factor (b) and then the average 

of each group is calculated. The gaps shown in columns 3 to 8 of Table 5.2 are averaged 

over 20 instances. 
 

Table 5. 2 Gaps of optimal solutions without learning/deterioration effect regarding learning 

and deterioration levels for the single machine problems. 

  Gap (%) for 𝒎 = 𝟏 

  Learning effect Deterioration effect 

n b S1 S2 S3 S1 S2 S3 

15 0.1 6.1103 11.339 9.4763 6.8019 12.5440 12.7163 

 0.2 5.7949 10.691 8.8852 6.7091 12.3841 12.4956 

 0.3 5.4789 9.9187 8.1433 6.5977 12.1735 12.1770 

 0.4 5.1246 9.0211 7.1655 6.4317 11.9149 11.7583 

 0.5 4.7052 8.0269 6.1133 6.1151 11.5098 11.1551 

 0.6 4.0679 6.7245 4.9972 5.5805 10.8178 10.1572 

 0.7 3.1224 4.9213 3.7362 4.6928 9.5542 8.6373 

 0.8 2.0394 2.8022 2.0618 3.2233 7.1155 6.2352 

 0.9 0.8367 0.8288 0.5609 1.1919 2.9711 2.5838 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

20 0.1 6.4371 8.8005 10.8290 6.8348 10.5417 12.3654 

 0.2 6.1681 8.3507 10.3060 6.7931 10.4496 12.2257 

 0.3 5.8133 7.9582 9.7336 6.7405 10.3302 12.1039 

 0.4 5.4159 7.5540 9.1023 6.6667 10.1620 11.9066 

 0.5 5.0203 7.0093 8.2665 6.5207 9.9132 11.5929 

 0.6 4.5118 6.1175 7.0491 6.2235 9.4573 10.9642 

 0.7 3.7495 4.8691 5.5179 5.6995 8.6112 9.75419 

 0.8 2.5826 3.1717 3.6202 4.6171 6.8644 7.4269 

 0.9 1.0175 1.0446 1.3362 2.2317 3.2501 3.1813 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.1 4.7195 9.2083 10.9102 5.0703 10.0593 11.7052 

 0.2 4.5470 8.9036 10.6019 5.0438 10.0068 11.6461 

 0.3 4.3534 8.5460 10.2314 5.0034 9.9529 11.5582 

 0.4 4.1317 8.1890 9.7719 4.9503 9.8646 11.4203 

 0.5 3.8501 7.6828 9.1469 4.8598 9.7080 11.1913 

 0.6 3.4658 6.9167 8.2511 4.6989 9.4203 10.7742 

 0.7 2.9227 5.6916 7.0393 4.3941 8.7735 10.0016 

 0.8 2.0447 3.9916 5.2446 3.6531 7.2732 8.2702 

 0.9 0.7964 1.8524 2.4622 2.0458 3.8755 4.4306 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.1 4.5748 7.5836 8.6234 5.0546 8.3731 9.4431 

 0.2 4.4401 7.3500 8.3754 5.0360 8.3436 9.4079 

 0.3 4.3107 7.1037 8.1304 5.0133 8.3032 9.3651 

 0.4 4.1544 6.8147 7.8632 4.9809 8.2367 9.2962 

 0.5 3.9541 6.4499 7.5415 4.9179 8.1243 9.1871 

 0.6 3.6682 5.9232 7.0117 4.8007 7.9376 8.9802 

 0.7 3.2200 5.0920 6.0973 4.5437 7.5644 8.5153 

 0.8 2.5077 3.7320 4.5605 3.9407 6.5939 7.4593 

 0.9 1.1902 1.7558 2.0321 2.3221 3.9631 4.4050 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

From the results shown in this table we can conclude that the behaviors of gaps are 

similar for the two types of effects, having slightly higher values when the deterioration 

effect is considered. For both effects, it is possible to observe that the gaps increase as 

the values of b decrease and the solutions without learning effect is degraded when the 
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range of variation of the setup times is greater than the range of variation of the 

processing times (S3) for all levels of the learning factor. It can also be seen that the 

values of the gaps decrease as the n value decreases.  

 

In summary, taking into account the values of gaps, we can conclude that the quality of 

the solution without learning and deterioration effects is not very low, but if we want 

better quality solutions, we should consider the learning or deterioration factors in the 

process of production programming. 

 

The following set of graphics shows the performance of Model 1 (left column) and 

Model 2 (right column) regarding the CPU time spent to find the optimal solution 

according to the number of jobs and 𝒃 values. Notice that that for all the instances the 

optimal solution was reached in shorter times to 13 seconds.  

 

 

 

 
Figure 5. 1 Behavior of the CPU time according to the number of jobs, setup ranges and 

learning/deteriration levels. 
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5.3.2 Parallel machines 
 

Next, we present in Tables 5.3 to 5.6 the results corresponding to the experiments 

carried out for the parallel machine environment.  These tables have the same structure 

as Table 5.2. 
 

Table 5. 3 Gaps of optimal solutions without learning/deterioration effect regarding learning 

and deterioration levels for the parallel machine problems with m=2. 

Gap (%) for 𝒎 = 𝟐 

  Learning effect Deterioration effect 

n b S1 S2 S3 S1 S2 S3 

15 0.1 65.8988 117.2618 148.6121 33.3592 46.1247 63.9454 

 0.2 57.3466 107.7226 136.0523 27.1017 45.2606 58.8916 

 0.3 56.1139 106.0798 131.4117 25.7830 41.2723 52.4629 

 0.4 56.0213 105.8713 105.8713 23.3960 35.1890 42.4357 

 0.5 55.6336 107.0921 115.6978 19.7490 31.6181 36.9881 

 0.6 49.1218 73.7468 110.9999 15.9645 25.9787 30.1112 

 0.7 37.9911 65.3583 82.9784 12.9309 16.5068 23.3729 

 0.8 27.2916 49.2469 58.8745 6.4501 12.6451 17.1958 

 0.9 12.4260 21.1823 28.3144 2.8846 5.3367 7.5704 

  1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

20 0.1 29.6845 68.6843 84.6869 21.6347 54.0124 68.2221 

 0.2 26.7749 63.6888 81.9099 20.6611 53.5653 65.6686 

 0.3 23.2158 57.5764 74.8439 19.3790 50.9691 64.6102 

 0.4 22.2430 56.7814 72.4027 19.0240 41.3628 55.3676 

 0.5 22.2271 56.6599 72.2982 17.8828 32.3678 46.7920 

 0.6 22.1307 50.9155 66.7791 16.0312 28.5667 36.8245 

 0.7 21.0984 37.5212 47.6667 12.9085 21.0555 26.9554 

 0.8 15.6957 24.6936 28.6338 8.1278 12.6731 15.4265 

 0.9 8.1613 12.3744 15.0748 4.1578 6.0318 6.3887 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.1 29.6696 81.7450 91.3666 31.9133 65.2400 77.8600 

 0.2 33.0030 79.3130 98.6707 24.5021 62.3570 66.6925 

 0.3 28.1908 70.6129 79.4901 24.3533 57.4285 64.3315 

 0.4 26.2815 67.6637 73.4072 24.0074 54.5968 63.2773 

 0.5 25.1486 66.5166 71.0886 22.3531 43.0495 54.5477 

 0.6 25.1133 62.6190 67.4367 17.1659 37.5331 39.9620 

 0.7 21.8149 52.9193 55.0600 11.4410 26.2520 29.4972 

 0.8 16.4713 34.4326 38.7127 8.4438 17.8491 18.3941 

 0.9 8.8682 17.0180 18.9507 4.6076 8.7182 9.3480 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.1 34.3000 74.1058 89.8460 41.0862 61.0444 78.2396 

 0.2 34.5677 78.7809 89.6706 35.0853 58.7093 69.3125 

 0.3 33.5672 71.3780 82.9029 34.6978 56.3957 66.1241 

 0.4 29.3800 63.8376 76.0297 25.4373 52.4543 64.9755 
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 0.5 28.2502 60.9628 72.2329 23.9223 47.1869 59.1499 

 0.6 27.8092 60.8676 71.9826 18.7011 39.8884 45.5328 

 0.7 24.4392 55.0765 62.0507 14.8001 25.8324 30.8978 

 0.8 19.3490 33.6296 41.9418 10.9380 16.3639 18.3497 

 0.9 8.5936 14.8366 18.1533 4.8082 7.4153 8.6056 

  1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
 
 

 

 

 

Table 5. 4 Gaps of optimal solutions without learning/deterioration effect regarding learning 

and deterioration levels for the parallel machine problems with m=4. 

Gap (%) for 𝒎 = 𝟒 

  Learning effect Deterioration effect 

n b S1 S2 S3 S1 S2 S3 

15 0.1 40.4618 103.2302 176.3518 12.4581 30.7029 46.2300 

 0.2 32.7598 80.97617 130.6997 11.4328 26.5718 42.6540 

 0.3 32.7425 80.9713 130.5875 9.5744 23.5422 37.3594 

 0.4 32.7285 80.9200 130.4706 8.3646 19.9142 34.0003 

 0.5 32.6416 80.6098 129.7798 6.4721 17.5761 27.8860 

 0.6 30.0632 71.7061 123.5713 5.5512 11.2310 24.4680 

 0.7 28.8458 62.8895 105.5198 4.0505 8.2168 19.7222 

 0.8 21.1277 41.6441 69.1655 2.8349 5.4365 12.4457 

 0.9 11.2809 20.4470 29.9021 1.5011 2.8247 4.0382 

  1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

20 0.1 26.6037 62.6921 79.4990 18.0655 40.5917 48.7050 

 0.2 30.8962 60.8647 75.2225 17.6185 35.9406 44.1168 

 0.3 22.2829 47.8193 55.1943 15.3851 30.7262 38.8545 

 0.4 20.9139 46.3679 54.4119 13.6839 27.5846 33.8624 

 0.5 20.9097 46.3542 54.3939 10.9735 21.4982 26.7768 

 0.6 20.8708 46.2294 54.2313 9.4616 18.3370 21.7896 

 0.7 20.0615 38.9195 50.2908 6.8382 11.6825 17.9493 

 0.8 15.5362 29.8057 39.4851 4.5725 7.75103 8.6549 

 0.9 9.2875 14.6785 15.4480 2.3104 3.5232 3.34533 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.1 32.0063 78.8046 86.4863 18.8724 45.9892 51.8287 

 0.2 33.4189 71.5805 87.6163 18.5183 42.4285 47.9878 

 0.3 30.8917 67.3468 79.0594 17.1827 37.3564 44.4969 

 0.4 21.2725 47.7717 54.6499 15.5603 31.6937 37.1436 

 0.5 20.2155 47.7523 54.6353 13.1534 28.5494 33.4884 

 0.6 20.2102 47.7347 54.6095 10.7361 25.5196 25.3628 

 0.7 20.1455 47.5204 54.3116 8.81491 18.5784 18.3022 

 0.8 18.7261 39.6577 42.0300 5.2076 11.3142 11.9980 
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 0.9 11.3925 20.4205 19.5406 2.4506 5.7076 4.2022 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.1 35.1008 79.2002 92.7947 21.1632 45.6224 51.3321 

 0.2 35.5886 78.8567 89.0508 20.6299 43.1693 50.2063 

 0.3 35.0116 78.3900 87.4945 19.7945 38.8619 43.7551 

 0.4 28.9291 62.0848 67.1610 17.8032 34.5329 35.0348 

 0.5 21.6587 48.4375 55.1640 15.7991 28.1976 26.3221 

 0.6 21.6578 48.0011 55.1552 13.1217 19.9469 22.0825 

 0.7 21.6385 47.9437 55.0781 9.6380 14.4200 18.2064 

 0.8 20.3540 38.1562 39.7184 6.5157 8.9205 11.3348 

 0.9 12.3513 19.0112 21.5025 3.2246 4.6473 5.0021 

  1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

 

Table 5. 5 Gaps of optimal solutions without learning/deterioration effect regarding learning 

and deterioration levels for the parallel machine problems with m=6. 

Gap (%) for 𝒎 = 𝟔 

  Learning effect Deterioration effect 

n b S1 S2 S3 S1 S2 S3 

15 0.1 49.7343 123.0367 100.2296 17.1926 37.4436 37.11881 

 0.2 44.2389 103.0189 93.6742 15.5637 35.2860 33.51412 

 0.3 44.2305 102.9935 93.6529 13.6654 28.2435 29.53765 

 0.4 44.1693 102.7983 93.4896 11.8256 23.8679 24.98431 

 0.5 43.8824 101.8756 92.7110 9.5995 17.0013 18.78135 

 0.6 42.8792 98.4092 88.8095 7.5033 11.4890 13.72476 

 0.7 38.8980 88.5730 76.5489 5.8341 8.1432 9.122875 

 0.8 30.3067 58.9317 54.9975 3.6608 4.9148 4.803582 

 0.9 17.7898 26.7920 25.5195 1.7386 2.3516 1.85242 

  1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

20 0.1 31.9935 60.8220 74.0027 18.6296 36.2645 37.8881 

 0.2 34.1885 54.8085 64.4170 16.6657 34.0065 33.5824 

 0.3 22.5084 45.2000 48.6505 15.4161 29.5191 29.1725 

 0.4 22.5077 45.1981 48.6484 13.2256 24.8835 23.6151 

 0.5 22.4990 45.1750 48.6240 11.9441 20.5652 19.9242 

 0.6 22.2758 44.9923 48.4289 9.7804 17.0327 14.6506 

 0.7 21.8833 43.2677 45.4381 6.3988 11.0739 10.5056 

 0.8 19.0285 34.4068 33.1484 4.3334 5.9063 6.4146 

 0.9 10.3476 18.1288 18.0198 1.9345 2.7431 2.9016 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.1 34.5739 77.4411 82.5544 19.8370 41.8353 38.4771 

 0.2 36.5830 77.5399 76.2059 18.4703 38.1728 36.0883 

 0.3 35.6394 70.2485 63.6900 16.0151 34.6811 29.9502 

 0.4 22.3436 49.9653 44.9373 14.4244 29.4165 26.5812 

 0.5 22.2663 49.8369 44.9362 12.0316 26.6913 22.3191 
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 0.6 22.2589 49.8119 44.9157 9.0006 22.1702 16.7435 

 0.7 22.1726 49.5290 44.6827 7.4514 15.2087 12.2421 

 0.8 20.6150 45.4081 38.8568 4.9241 10.4084 7.4332 

 0.9 11.3171 25.2039 21.2901 2.4048 4.4015 3.0274 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.1 42.3898 65.2722 93.8534 20.5196 32.6962 48.1899 

 0.2 43.0621 68.7697 88.0670 18.8980 30.9766 45.1150 

 0.3 38.6824 66.3541 93.7071 17.3083 26.8549 38.7134 

 0.4 35.6265 55.0134 78.8586 15.7349 21.7282 32.6064 

 0.5 22.0939 34.8728 56.4391 13.1781 18.2902 27.0093 

 0.6 21.9972 34.8713 56.4247 10.6114 13.6287 19.6891 

 0.7 21.9413 34.8369 54.5981 8.1384 10.6295 15.6506 

 0.8 21.1410 32.5453 46.85765 5.4018 6.6405 9.1559 

 0.9 14.9692 19.91788 23.6965 2.7393 3.4431 4.1513 

  1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5. 6 Gaps of the optimal solutions without learning/deterioration effect regarding 

learning and deterioration levels for the parallel machine problems with m=8. 

Gap (%) for 𝒎 = 𝟖 

  Learning effect Deterioration effect 

n b S1 S2 S3 S1 S2 S3 

15 0.1 52.7623 104.2262 156.6708 17.4082 32.4524 47.2652 

 0.2 52.6186 104.2135 156.6469 15.2727 28.5345 40.5772 

 0.3 52.5703 104.0810 156.3926 12.9972 23.5191 33.1791 

 0.4 52.3209 103.4011 155.0943 10.5609 18.0583 30.0564 

 0.5 51.4585 98.5534 145.5622 9.3000 14.5030 26.8735 

 0.6 48.4558 89.0032 121.9466 7.2243 11.7905 21.2234 

 0.7 42.0989 73.4573 93.4003 5.6085 8.0415 10.2784 

 0.8 29.2866 49.8121 60.8760 3.2127 4.0337 4.2018 

 0.9 14.9518 22.0382 27.2192 1.2953 1.6648 1.7997 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

20 0.1 34.7787 56.7727 87.2121 18.1559 37.7481 45.2558 

 0.2 27.09493 50.5254 65.7982 16.0685 34.0296 42.2353 

 0.3 23.5867 48.1117 65.4784 14.5181 27.7716 34.7221 

 0.4 23.5844 48.1046 65.4683 12.7573 24.4758 29.2031 

 0.5 23.5633 48.0376 65.3695 11.1994 21.0284 22.3429 

 0.6 23.4306 47.6272 64.7564 8.8281 17.8985 17.0213 

 0.7 22.8047 45.7704 58.2615 5.8635 12.1982 11.0231 

 0.8 19.2400 36.2163 42.5169 3.7966 5.8459 6.5749 

 0.9 12.6680 18.2417 20.8710 1.7842 2.6675 2.6858 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.1 31.7761 65.50086 98.14790 18.8883 36.1262 48.8618 

 0.2 29.8942 62.6424 87.9887 16.6552 31.6017 41.3085 

 0.3 30.2406 51.5729 82.6668 14.7066 28.3205 38.5461 

 0.4 22.1495 42.8867 60.7120 12.4363 24.1303 30.9397 

 0.5 22.0632 42.8841 60.7077 10.2518 20.7899 25.0552 
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 0.6 22.0498 42.8481 60.6485 8.3121 16.5171 18.9872 

 0.7 21.9186 34.8061 60.0769 5.5229 11.8317 12.2774 

 0.8 19.7894 38.8769 52.7319 3.7454 6.7694 7.7745 

 0.9 12.2690 22.5368 25.0521 1.9056 3.2156 3.3734 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.1 35.1544 61.4239 76.1796 17.3623 28.6382 37.4824 

 0.2 34.9034 47.8662 80.0278 16.7950 26.8772 32.7563 

 0.3 35.1788 57.7330 85.0620 14.7610 24.3255 30.5952 

 0.4 28.9754 46.9167 55.0123 12.9955 21.5691 24.1574 

 0.5 19.8248 36.1781 44.7360 11.7649 17.5587 19.5592 

 0.6 19.8235 36.1753 44.7318 8.9368 12.2319 14.3471 

 0.7 19.7987 36.1200 44.6539 6.4861 9.1863 10.4738 

 0.8 19.4747 32.8107 40.3748 3.6400 5.9428 7.0332 

 0.9 13.7196 20.0552 24.5484 1.7923 2.8541 3.5046 

 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

From the results shown in Tables 5.3 to 5.6 we can conclude that the behaviors of gaps 

for learning effect are worse than for deterioration effect. This behavior is observable 

for all combination of (𝑛,𝑚, 𝑏, 𝑆). For both effects, it is possible to detect that the gaps 

increase as the values of b decrease and the solutions without learning effect degrade as 

the time range grows, always having worse values for S3 for all levels of the learning 

factor. 

 

In summary, we conclude that in parallel machine problems, when the learning or 

deterioration effects are not considered in the production programming process, it can 

lead us to obtain solutions of very poor quality. We also want to emphasize that it is 

essential to bear in mind the learning effect in the production programming process, if 

we want to get high quality solutions. 

 

With the figures shown below we intend to reinforce the previous comments.  Figures 

5.2 and 5.3 are graphic illustrations of the gaps behavior (on average) for each level of 

learning factor and each setup range. Th gaps calculated by the expression (5.23) have 

been grouped into subsets. To obtain the column charts in Figure 5.2 the gaps are 

averaged for each n value, while in Figure 5.3 they are averaged for each m value. 
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Figure 5. 2 Averaged gaps grouped by number of jobs according to setup ranges and 

learning/deterioration levels. 
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Figure 5. 3 Averaged gaps grouped by number of machines according to setup ranges and 

learning/deterioration levels. 

 

Table 5.7 shows the range of variation for the CPU time spent by Model 3 (with 

learning effect) and Model 4 (with deterioration effect) solving the 30-job instances 

with 2, 4, 6 and 8 machines. Column 1 displays the machine number while column 2 

indicates the setup time range. Columns 3 to 6 are related to Model 3 while columns 7 

to 10 are related to Model 4. Columns 3 and 7 show the minimum values of CPU time 

while 5 and 9 show the maximum values of CPU time spent by models to obtain the 

optimal solutions. Columns 4, 6, 8 and 10 exhibit the b value for which those maximum 

and minimum values of CPU time are reached.  
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Table 5. 7 Maximum and minimum CPU times (in seconds) spent by two models for 

parallel machine problems solving the 30-job instances. 

   Learning effect Deterioration effect 

m S  Min b Max b Min b Max b 

2 S1 0.64 0.6 1.921 0.9 0.597 0.3 308.499 0.8 

 S2 0.601 0.6 2.29 0.9 0.695 0.1 41.227 0.9 

 S3 0.65 0.4 1.96 0.9 1.093 0.2 21.37 0.9 

4 S1 0.365 0.6 1.033 0.9 2.864 0.1 24.596 0.8 

 S2 0.354 0.7 0.818 0.9 7.014 0.3 76.337 0.9 

 S3 0.386 0.3 1.059 0.9 14.998 0.8 71.278 0.7 

6 S1 0.283 0.1 0.569 0.9 16.905 0.2 55.322 0.6 

 S2 0.267 0.7 0.592 0.9 7.502 0.5 58.616 0.8 

 S3 0.284 0.8 0.837 0.9 5.304 0.2 23.511 0.5 

8 S1 0.238 0.7 0.65 0.9 2.039 0.7 12.246 0.3 

 S2 0.248 0.6 0.801 0.9 1.606 0.3 8.976 0.7 

 S3 0.247 0.7 0.528 0.9 0.358 0.1 4.978 0.4 

 

From the results in the table it is seen that the CPU times are relatively small and that 

the largest values are obtained for m = 2. This is somewhat reasonable because having 

fewer machines the sequences of jobs are longer. 

 

5.4. Conclusions 
 

In this chapter, we studied how total completion time is affected by learning effect or by 

deterioration effect over sequence-dependent setup times in single and the parallel 

machine scheduling problem. To model the learning or deterioration effects we used 

functions depending on the number of machine setups already completed and, on a 

learning, or deterioration factor.  

 

From the experiments carried out for single machine problems, we can conclude that the 

solutions obtained without considering the learning/deterioration effects could be 

considered of acceptable quality for the different levels of b, although higher quality 

solutions could be obtained if these effects on the sequence dependent setup times are 

considered in the process of production planning.  

 

For parallel machines problems the situation is different. For both types of effects, the 

solutions obtained without considering learning and deterioration effects are of very 

poor quality, deteriorating further as the b value decreases. For parallel machines 

problems we recommend to always take into account the learning and deterioration 

effects in the process of production planning. In addition, it is essential to consider the 

learning effect if we want to get high quality solutions.  

 

Using the proposed formulations, we are able to solve optimality of up to 30 jobs. Then, 

interesting research avenues could be the addressed of the scope of formulations for 

parallel machine problems and the design of heuristic and metaheuristic algorithms to 

determine quality solutions for larger instances considering learning effect or 

deterioration effect in the production programming process. 
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Chapter 6  General conclusions 
 
 

In this thesis work, we approach two kinds of scheduling problems and in both of them, 

the goal is to minimize the total completion time. The first problem is the parallel 

scheduling problem with sequence-dependent setup times. In the second addressed 

problem, we incorporate learning and deteriorating effects over the sequence-dependent 

setup times according to the position, and the approach was for a single machine and 

parallel machines environments. 

 

6.1 Conclusions 
 

From the first problem, the parallel scheduling problem with sequence-dependent setup 

times, we conclude the following: 

 

▪ We presented two new time-dependent formulations for the addressed problem.  

 

▪ We showed that time-dependent based formulations performed much better than 

the others formulations for the parallel machines scheduling problem with 

sequence-dependent setup times. 

 

▪ In the case with many jobs and few machines, model 5 showed a better 

performance. 

 

▪ For the same problem, propose a hybrid algorithm that combines the GRASP 

and Variable Neighborhood Search metaheuristics. 

 

▪ After tested several orders of the neighborhoods for the improvement phase, the 

best results were achieved by selecting randomly the order of the neighborhoods 

sequence.  

 

▪ Comparing with optimal solutions or best integer solutions found using a 

mathematical model, and with results of the best heuristic from the literature we 

show the effectiveness of the proposed hybrid algorithm. 

 

From the second problem, the parallel scheduling problem with sequence-dependent 

setup times with learning and deteriorating effects, we conclude: 

 

▪ We presented mixed integer formulations for the environments of a single and 

parallel machines with learning and with deterioration effects for the case when 

these effects act just over the setup times. 

 

▪ The experiments for parallel machines environment obtained the bigger gaps 

percentages regarding the optimal solution without effects than the experiments 

for single machine environment. 

 

▪ The function implemented to describe the deterioration effect presents a widely 

decreases in setup times for sequences with more processed jobs. 
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▪ We noticed that for these two kinds of problems (single and parallel machines), 

an optimal solution with learning or deterioration effects does not remain to be 

the optimal solution when these effects are not considered. 

 

6.2 Future works 
 

In this research, the learning and the deterioration effects were considered just over the 

sequence dependent setup times. Another research line could include these effects over 

the setup times and over the processing times. Also, the generalization of this addressed 

to other manufacturing environment with sequence dependent setup times could also be 

another interesting research direction. 
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Appendix A. Acronyms Table 
 
Table A. 1 Table of acronyms 

  

TCT Total Completion Time 
Makespan (Cmax) The completion time of the final job sequenced at a schedule 

m-TSP m-Travelling Salesman Problem 

TWT Total Weighted Tardiness 

TWCT Total Weighted Completion Time 

B&B Branch-and-Bound algorithm 

ATSP Asymmetric Travelling Salesman Problem 

VRP Vehicle Routing Problem 

TSP Travelling Salesman Problem 

P-s-d Past-sequence-dependent 

GRASP Greedy Randomized Adaptive Search Procedure 

VNS Variable Neighborhood Search 

VND Variable Neighborhood Descent 

RVND Random Variable Neighborhood Descent 

IGA Iterated Greedy Algorithm 

RCL Restricted Candidate List 

WMDD Weighted Modified Due Date 

HMA Hybrid Metaheuristic Algorithm 

 
 

Table A. 2 Table of classification scheme for scheduling problems. 

  

P|STsd|TCT Parallel machine Scheduling Problem with sequence dependent 

Setup Times, minimizing TCT 

 
R|STsd|Cmax 

 
Unrelated parallel machine scheduling problem with sequence 

dependent Setup Times, minimizing the makespan 
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