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Resumen 

El procesamiento de video es un campo que ha tenido un crecimiento notable en los 
últimos años, ha pasado de ser un área de investigación académica pura a ser un área de 
desarrollo para aplicaciones de seguridad y electrónica de consumo; actualmente hay una 
tendencia de mercado orientada a eliminar los reproductores ópticos para reemplazarlos 
con discos duros y así incrementar la capacidad de almacenamiento al mismo tiempo que 
se reducen los costos de operación. Un nicho de mercado emergente es el procesamiento 
de imágenes para aplicaciones médicas, en donde se requieren dispositivos especializados 
para auxiliar en el diagnóstico de enfermedades incluso si el médico se encuentra en otro lugar. 

Un sistema de codificación de video requiere de varias etapas de procesamiento para 
adquirir, comprimir y codificar la información para después transmitirla a algún otro dispo­
sitivo o medio para su posterior reproducción. En términos computacionales, cada etapa es 
muy demandante, por lo que debemos escoger entre dos enfoques: hardware y software; las 
implementaciones en software son muy eficientes en términos del volumen de procesamiento 
de datos, pero el problema radica en que se desperdician recursos del sistema al estar ligados 
a una longitud de palabra fija dependiente de la arquitectura del procesador, adicionalmente, 
las operaciones de acceso y escritura a memoria tienden a disminuir el desempeño del sistema. 

Cuando el volumen de procesamiento, el consumo de potencia y el desempeño son 
restricciones de diseño, los procesadores en hardware son la mejor opción para implementar 
tareas de codificación de video; existen varias arquitecturas de hardware apropiadas para 
la implementación de procesamiento de video como los Procesadores Digitales de Señales 
(DSP), Unidades de Procesamiento Gráfico (GPU), Arreglos de Compuertas Programables 
(FPGA) y Circuitos Integrados de Aplicación Específica. Cada uno de estos procesadores está 
especializado en tareas específicas, pero solo los FPGA han demostrado tener la capacidad 
de acelerar cualquier algoritmo o proceso debido a su alto grado de flexibilidad, permitiendo 
que el diseñador pruebe la arquitectura cuantas veces sean necesarias hasta lograr un diseño 
diciente en térmiuos de complejidad material, consumo de potencia y frecuencia de operación. 

En la primera parte de esta tesis discutimos las características fundamentales ele la 
n�prcseutación numérica de la información visual y las bases de la compresión; los m(�todos 
de compresión con pérdida y sin pérdida son analizados y comparados; posteriormente 
se presenta un breve resumen de los estándares de codificación y al final de la sección se 
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presenta un comparativo entre los procesadores anteriormente mencionados. 

En la siguiente etapa de este trabajo se presenta un resumen de las arquitecturas de hard­

ware utilizadas comúnmente para procesamiento de video; Las arquitecturas para calcular la 

Transformada de Coseno Discreta tienen la característica de ser regulares y apropiadas para 

la implementacin en alta escala de integración (VLSI); la mayoría de estas arquitecturas está 

basada en la descomposición Renglón-Columna que permite una implementación directa 

en hardware; los algoritmos rápidos se explican a profundidad, posteriormente se presenta 

un estudio de las arquitecturas basadas en Aritmética Distribuida y se establece un com­

parativo entre las dos familias en términos de la viabilidad para su implementación en FPGA. 

La codificación entrópica y la codificación de Huffman se explican en esta sección; existen 

varios esquemas para la codificación de Huffman que son apropiados para la implementación 

en ASIC, el problema principal radica en que son arquitecturas muy grandes que requieren de 

accesos constantes a memoria; posteriormente se explican los Algoritmos de Ordenamiento 

serial y paralelo así como su implementación en hardware. Las arquitecturas paralelas 

permiten ordenar arreglos de datos en unos cuantos ciclos de reloj, por lo que se explora la 

posibilidad de estimar la función de densidad de probabilidad de la imagen con una red de 

ordenamiento. Al final de esta sección se presentan las arquitecturas para la Estimación de 

Movimiento. 

En la siguiente etapa de este trabajo se presentan las implementaciones de los procesos 

requeridos para la codificación de video: se explica brevemente en qué consiste la adecuación 

algoritmo-arquitectura y se presentan los códigos de descripción material de los bloques 

aritméticos necesarios. Decidimos utilizar plataformas reconfigurables por sus características 

de flexibilidad y la posibilidad de probar diferentes configuraciones sin necesidad de cambiar 

completamente el diseüo. En esta tesis se utiliza únicamente la librería ieee standard logic 

para n�clucir la utilización de recursos. 

Finalmente, los resultados de las implementaciones arquitecturales son discutidos y com­

parados en términos de complejidad material, ya que si ésta es reducida, podemos suponer 

que habrá un consumo de potencia reducido. Se presentan algunos resultados de síntesis 

lógica y simulación para determinar la viabilidad de trasladar el sistema a un Circuito Inte­

grado de Aplicación Específica. 
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Abstract 

Video processing has been a fast growing field in thc recent years, it has evolved from a 
purely academic research area to a research and development area for consumer electronics, 
medical and security applications; actually there is a market trend oriented to remove all op­
tical media reproducers and replace them with hard drives to increase media storage and to 
reduce operation costs; an upcoming niche market is identified as medical image processing, 
where dedicated devices are required to help in the diagnosis of medical conditions even if 
the physician is in other geographic location. 

Conventionally a video coding system involves several processing stages to acquire, com­
press and code data to convey it efficiently to another media for a later reproduction. Each 
stage is very demanding; in terms of computational complexity and oftenly we have to choose 
between a hardware or a software solution; software implementations of video coders are very 
efficients in terms of throughput, but they tend to underutilize the system resources as they 
work with fixed wordlengths and are tied to an specific processor architecture with externa! 
memory devices; read/write operations required to fetch data tend to diminish the system 
performance. 

When system performance, power consumption and throughput are hard constraints a 
hardware processor is the best choice to implement video coding tasks; there are many hard­
ware architectures suitable- for implementing video processing like Digital Signal Processors 
(DSP), Graphic Processing Units (GPU), Field Programmable Gate Arrays (FPGA) and Ap­
plication Specific Integrated Circuits (ASIC). Each processor is specialized for certain task, 
but only FPGAs have proven to be capable of accelerating any algorithm or process as they 
ofl'er a high degree of flexibility, allowing the system designer to test the architecture over 
and over again until an efficient design in terms of material complexity, power consumption 
and maximurn operating frequency is achieved. 

In the first part of this thesis we discuss the fundamental characteristics of the numerical 
representation of visual information and the necessity of compresion; both lossy and lossless 
compression methods are analyzed and compared; then a brief survey on video coding stan­
dards is presentcd, and a comparison betwcen dedicated processors for image processing and 
their application is carried out. 
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In the next stage of this work, we survey hardware architectures for video processing 
tasks; Discrete Cosine Transform (DCT) architectures have the characteristic of being highly 
regular and suitable for Very Large Scale of Integration (VLSI) implementation, most of them 
are based in a Row-Column decomposition that allows to implement the algorithm directly 
in hardware; Fast algorithms are thoroughly explained, later, Distributed arithmetic archi­
tectures are studied and compared to fast algorithms in terms of the feasibility for FPGA 
implementation. 

Entropy coding is explained along with Huffman Codes, sorne variable length coding ar­
chitectures are surveyed and explained in terms of their material complexity, there are many 
Huffman Coding Schemes that are suitable far ASIC implementation, the main drawback is 
that all of them are too large and require externa! memories to store the code words; next we 
explain Sorting algorithms; this architectures are useful to sort ascendingly or descendingly 
arrays of numbers in a few clock cycles, there are two families of sorters, parallel and serial, 
in the former a random array is sorted in a comparison-exchange network, meanwhile in the 
latter the incoming value is inserted into the corresponding position of the array, in any case, 
we study the possibility of estimating the probability density function of the image with a 
sorting network, at the end of this section Motion Estimation architectures are presented 
and the representative block searching algorithms and hierarchical search algorithms are cx­
plained in detail. 

In the next part of this work the architectural implementations of the above mentioned 
processes is presented, algorithm-architecture adequations are discussed and the HDL cod­
ing process of the required arithmetic modules is explained; we decided to work over recon­
figurable platforms because they are the best developing tools because of their characteristics 
of flexibility and testability; FPGAs were the chosen platform to target HDL designs. Only 
ieee standard logic library was employed to code the architectures, eventhough there are IP 
cores and libraries that have many functions or blocks already build we decided to implement 
the algorithms directly into hardware to reduce resource utilization. 

Finally, the results of the architectural implementations are discussed and compared in 
terms of material complexity, if the complexity is low, then we can expect a low power con­
sumption, nevertheless sinthesis and simulation results are presented in arder to determine 
the feasibility to translate the system design to an ASIC. 

Vlll 



Contents 

Resumen 

Abstract 

List of Tables 

List of Figures 

1 Introduction 

2 State of the Art 

2. 1 lmage Processing . . . . . . 
2.2 Compression ........ . 

2.2.1 Lossless Compression 

2.2.2 Lossy Compression . 
2.2.3 Considerations in Compression Method selection . 

2.3 V ideo Standards 
2.3.1 H.1 20
2.3.2 H.261 ...... .

2.3.3 MPEG-1 ..... . 

2.3.3.1 Hierarchy 
2.3.3.2 Group of Pictures 

2.3.4 MPEG-2 . . . . . . . . . . . 

2.3.4.1 
2.3.4.2 
2.3.4.3 

2.3.4.4 

2.3.4.5 
2.3.4.6 

H.263 

11acroblock Structure 

Slice Structure 

2.3.5 

Quantization . . . . . . . . . . 

Calculated Motion Vectors . . . 
Profiles and Levels of MPEG-2 
Tools for lnterlacing 

2.3.5.1 H.263+
2.3.6 MPEG-4 . . .. . 
2.3.7 H.264/ AVC .. . 

2.4 Video Processing Architectures 

lX 

V 

vii 

xiii 

XV 

1 

5 

5 
9 
12 
1 4  

15 
16 
16 

17 

17 

18 
20 

2 1  

2 2  

2 2  
2 2  

2 3  
2 3  

25 
25 
25 
26 
27 

28 



CONTENTS 

2.4.1 Hardware-Software Applications 

2.4.2 Hardware-Software Co-Design 

2.4.3 Applications . 

2.5 Justification ... 

3 VLSI Architectures 

3.1 Discrete Cosine Transform 

3.1.1 1D DCT ..... . 

3.1.1.1 Fast algori thms . 

3.1.1.2 Polynomial Transforms . 

3.1.1.3 Distributed Arithmetic . 

3.1.2 Memory Transposition 

3.2 Entropy Coding ............. . 

3.2.1 Huffman Coding . . ...... . 

3.2.1.1 Known Implementations 

3.3 Sorting Algorithms . . . . . . . . . . 

3.3.1 Sorting Networks ...... . 

3.3.1.1 Processing Element . 

3.3.1.2 Bubble Sort . . . . . 

3.3.1.3 Even-Odd Sorting Network 

3.3.1.4 Bitonic Merging Network 

3.3.2 Serial Sorting . . . . . . . . . . . . . . . . . ... 

3.3.2.1 Insertion Algorithm 

3.3.2.2 Parallel Insertion .. 

3.3.2.3 Dichotomic Insertion . 

3.4 Quantizer . . . . . . . . . . . . . . . . 

3.5 Predictor . . . . . . . . . . . . . . . . . 

3.5.1 Full Search Block Matching Algorithm 

3.5.2 Hierarchical Search Algorithm 

3.5.3 Known lmplementations 

4 Architectural lmplementations 

X 

4.1 Discrete Cosine Transform . . 

4.1.1 Fast Algorithm . . . . 

4.1.1.1 Multiplicator 

4.1.1.2 Corclic Algorithm. 

4.1.2 Distributed Arithmetic 

4.1.3 Memory Transposition 

4.2 Entropy Coding ..... . 

4.2.1 Sorting Algorithms .. 

4.2.2 Huffman Coding ... 

4.3 Coder Proposed Architecture 

4.4 Conclusions ......... . 

3 1  

3 2  

3 3

36 

39 

39 

4 2  

4 2  

4 5

46 

5 3

57 

5 8

64 

69 

72 

72 

72 

73 

79 

81 

83 

84 

84 

85 

87 

90 

92 

93 

97 

97 

97 

98 

101 

103 

107 

108 

108 

112 

114 

117 



5 Results 

5.1 Discrete Cosine Transform 
5.1.1 Fast Algorithm . . 

5.1.2 Distributed Arithmetic 
5.1.3 DCT Architectures Compared 

5.2 Entropy Coding ..... . 
5.2.1 Sorting Algorithms 

5.3 Conclusions 

6 Conclusions 

6.1 Future Work . 

Bibliography 

CONTENTS 

119 

119 
119 

120 
123 

124 

124 
126 

129 

130 

131 

Xl 



CONTENTS 

xii 



List of Tables 

2.1 Applications for Audio, Image and Video Compression 

2.2 Entropy Coding with Variable Length Symbols . 

2.3 Video Coding Standards Summary 

2.4 MPEG-1 Limitations ....... . 

2.5 :tvIPEG-2 Profile limits 

2.6 MPEG-2 Levels . . . . . . . . . . . . . . . . . . . . . . .... 

2.7 Comparison between FPGAs, ASICs, GPUs, DSPs and CPUs 

2.8 Tasks in Platform-Based Design 

3.1 ROM content for N = 4 . . . . 

3.2 Contents of the reduced size R01-1 with OBC cocling for N = 4 . 

3.3 VLC encoder operation . 

3.4 VLC decoder operation . . . . . . . . . . . . . . . . . . . . . . . 

3.5 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.6 Parameters for simplified hierarchical block matching algorithm 

4.1 

4.2 

Booth Coefficients . . . . . . 

Frequency Counting Adder 

5.1 Cordic Synthesis Results . . . . . . . . . . 

5.2 1D-DCT Fast Algorithm Synthesis Results 

5.3 Shift-Accumulator Unit for DCT-DA ... 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

1D-DCT with conventional Distributed Arithmetic 

1D-DCT with Offset Binary Coding ................. . 

DCT-1D architectures synthesis results for Altera Cyclone II device 

Compare-Exchange Synthesis Results .. 

4 -item merging network synthesis .... 

:tvlerging Networks synthesis comparison 

Sorting Networks synthesis comparison 

Sorting Networks synthesis comparison 

3 2-item Pipelined Sorting Network

Xlll 

10 

13 

16 

18 

24 

24 

2 9  

34 

50 

52 

60 

64 

87 

94 

9 9

113 

120 

120 

12 1 

12 3 

12 3 

123 

124 

124 

125 

12 5 

126 

126 



LIST OF TABLES 

XlV 



List of Figures 

2.1 Finite size window . . . . . . . . . .  . 

2.2 Pixel Sampling Points . . . . . . . .  . 

2.3 Sampling and Reconstruction sequence 

2.4 Generic compression system . . . . 

2.5 Taxonomy of Compression Methods 

2.6 Lossless Compression Tradeoffs 

2.7 Lossy Compression Tradeoffs . . .

2.8 Asymmetric Compression System 

2.9 Group of Pictures . . . . . . . . . 

2.10 Macroblock 

2.11 l'vlPEG frames . . . . . . . . . 

2.12 Group of Pictures deployment 

2.13 Transmission of a GOP . . . . 

2.14 IvIPEG-2 I\facroblocks and sample positions 

2.15 Time to market ASIC vs. FPGA 

3.1 DCT Architectures Classification 

3.2 DCT-2D General Architecture .. 

3.3 DCTs required far an M x N image . 

3.4 Chen's Graph .. 

3.5 Lee's Graph . . . . . . . . . . . . .

3.6 Loeffier's Graph . . . . . . . . . . .

3.7 2D-DCT by Polinomial Transform . 

3.8 8-point DCT II decomposition . . .

3.9 Conventional Multiplication vs Distributed Arithmetic 

3.10 ROM-Accurnulator Architectures . . . . . . . . . .  . 

3.11 Distributed Arithmetic with Offset Binary Coding . .  . 

3.12 Pure Distributed Arithmetic Implementation of DCT . 

3.13 Distributed Arithmetic with OBC lmplementation of DCT 

3.14 iviemory Transposition for DCT . .  

3.15 l'demory Transposing Architecture . 

3.16 Generic entropy coder 

3.17 Huffman Coding 

XV 

6 

8 

9 

12 

13 

14 

15 

18 

19 

19 

20 

21 

22 

23 

36 

40 

41 

42 

43 

44 

45 

46 

47 

49 

50 

52 

54 

55 

56 

56 

57 

59 



LIST OF FIGURES 

3.18 VLC Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.19 Memory based Huffman Decoder 62 
3.20 VLC decoder . . . . . . . . . 63 
;3.21 Tree-Based architecture. . . . 65 

xvi 

3.22 Variable 1/O-rate architecture 66 
3.23 Park's Codee Architecture . . 67 
3.24 CAM based Architecture . . . 68 
3.25 Rudberg's Pipelined Parallel Decoder 70 
3.26 Kumar's Huffman codee . . . . . . . 71 
3.27 Compare-Exchange (CE) elements for Sorting Networks . 72 
3.28 Bubble Sortíng Process . . . . . 73 
3.29 Bubble Sort Network . . . . . . . . . . . . . . 74 
3.30 16 ítem Bubble sortíng network . . . . . . . . 75 
3.31 Iterative rule for Even-Odd mergíng networks 77 
3.32 4-ítem mergíng and sorting networks 78 
3.33 8 ítem sortíng network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
3.34 16 ítem sortíng network 79 
3.35 32 ítem sortíng network . . . . . . . . . . . 80 
3.36 4 ítem bítonic sortíng network . . . . . . . . 81 
3.37 Iteratíve rule for Bítonic Mergíng Networks . 82 
3.38 8-ítem bítonic sortíng network . . . . . . . . 83 
3.39 Single insertion architecture for N elements 83 
3.40 Cases of parallel ínsertíon . . . . . . . . . . 84 
3.41 Parallel insertion architecture . . . . . . . . 85 
3.42 Díchotomic Insertion Architecture for N = 8 
3.43 Quantízation Process . . . . . 
3.44 Inverse Quantization Process . . . . . . . . . 
3.45 Block searching fundarnentals . . . . . . . . 
3.46 Type 1 Array for Block Matching Algorithm 
3.47 Type 2 Array for Block Matching Algorithm 
3.48 Híerarchícal search algoríthrn methodology 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
4.10 
4.11 

1-D DCT architecture . ...
Booth Multiplíer Architecture
Cordic Serial Archítecture . .
Pípelined Cordíc Archítecture
Shift-Accurnulator Unít .. . .
DCT- DA Fínite State Machine
ROM-Accumulate Archítecture
Shift-Accumulator unit for OBC .
Row-Column Transforrnation architecture for 2D-DCT
Two-core architecture of 2D-DCT .. . . .. . . . . .  . 
Compare-Exchange module 

86 
87 
88 
89 
91 
92 
93 

98 
100 
102 
103 
104 
105 
106 
106 
107 
108 
109 



4.12 8-item Merging Network Architecture . 

4.13 Huffman Coder proposal .. 

4.14 Frequency Counting .... 
4.15 Video Cornpression System . 

4.16 Proposed Video Coder . . . 
4.17 Huffman Codebook Selector 
4.18 Sorting Network reduction for the proposed architecture 

5.1 RTL view of Fast Algorithm ......... . 

5.2 RTL view of Distributed Arithrnetic 1D-DCT 

5.3 RTL of a 32-item Sorting Network . . . . . . . 

LIST OF FIGURES 

111 
114 

115 
115 
115 
116 

117 

121 

122 

127 

xvii 



Chapter 1 

Introduction 

Image and Video Processing is a field that has changed exponentially through recent years; 

it is one of the most successful and used technologies and has evolved from an academic re­

search area to a commercial application research and development area; nowadays is common 

to hear that certain device has real-time video processing capabilities, or that supports many 

image and video standards; why do we talk about real time processing? Is it really necessary? 

Why do we need to process such large amounts of data in short periods of time? Why are 

we so concerned about giving real time processing capabilities to consurner electronics? 

Real-time image and video processing is one of the fastest growing technologies in the 

communications field as High Definition television, streaming and videoconferencing applica­

tions reach evcryday larger markets, but also is of great importance in security surveillancc 

systems for large facilities like airports, bus and train stations, schools and even state build­

ings, video processing is a critical tool for medica! applications where an accurate visual 

representation of images is required to help physicians diagnose a number of diseases or med­

ica! conditions, video processing could also help monitoring patients with infectious diseases 

without endangering medica! personnel. 

To process an image or a sequence of images we must perform various processes consecu­

ti vely to compress, quantize, code, and convey information to an storage device or to another 

processor that reverses the process; compression is understood as the process of eliminating 

information redundancies within a frame, as we know, there are sorne light components that 

the eye cannot see, thereforc their presence within the image is irrelevant; if the information 

of the frame is highly correlated we can assume that there is more information than required, 

the same principle applies to consecutive frarnes where a pixel has a high probability of stay­

ing as it is in the next frame; The standardized image compression is achieved by applying a 

Fourier based orthogonal transforrn known as Discrete Cosine Transform, this transform has 

the characteristic of concentrating the energy in the lowest frequencies of the cosine function, 

letting the frame with a huge amount of irrelevant information that can be removed bcfore 

sending data to the next process in the chain. 
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CHAPTER l. INTRODUCTION 

The quantization process consists of assigning binary values within a range to the DCT 
coeflicients to that the next process, known as entropy coding can be performed easily and 
smoothly; unlike DCT, entropy coding is a lossless coding scheme that helps to reduce the 
amount of information that has to be stored or conveyed, the greatest challenge in entropy 
coding is to make efficient a computationally exhaustive method known as Huffman Coding. 
Finally, the most demanding task in terms of computational operations must be performed, 
Motion Estimation is a method used to identify the portions of the frarne that change through 
adjacent frarnes, this process is required to increase the maximum DCT compression and to 
increase the maximum operating frequency. 

Irnages and Video can be processed either in hardware or software, software video pro­
cessing algorithms are very fast and accurate, but they rely on a cornputer processor, and an 
operating system to handle rnernory access and peripheral devices; hardware video processing 
can be performed by a nurnber of specialized devices like DSPs, GPUs, FPGAs and ASICs; 
each signal processor is suitable for sorne task, for example DSPs are a good option if we need 
to compute filter functions of convolutional operations between vectors, regularly they are 
programmed in C language; GPUs are generic devices optimized for video processing tasks, 
they are very close to CPUs as they only have cache memory and require external mernories 
with random accesses to store the code that is going to be executed, they are popular because 
they can be programmed with high level languages and their processing rate is usually high. 

FPGAs represent along with ASICs the most efficient hardware option to process video; 
FPGAs have the advantage of being extremely flexible; as a designer, one can test an ar­
chitecture over and over again until a satisfactory result is achieved, their configuration is 
usually coded in Hardware Description Languages like Very High Speed Integrated Circuits 
Hardware Description Language (VHDL) or Verilog HDL allowing the designer to code a 
complex system in a modular fashion, an FPGA is capa.ble of performing any task of an 
ASIC, the main difference between them is that FPGAs need to be configured before the 
process starts and ASICs are already configured to perform an specific task and cannot be 
used for any other application. 

This thesis is concerned with the design of a pure VLSI architecture of a video co-processor 
that <loes not rely on a CPU or externa} memory devices to compress video frames; most 
of video processing tasks are computationally exhaustive, therefore it is necessary to trans­
late the algorithms into hardware to reduce the computational complexity employing parallel 
and pipelining techniques by accelerating the processes and reducing the critica} path. VLSI 
design over reconfigurable platforms will allow us to compare hardware implementations 
targeted for power consumption, die area and operating frequency to establish a triple com­
mitment between design constraints to find the optimum architecture. 

The methodology of this thesis consisted in analyzing the algorithms of every video pro­
cessing stage in the main layer, then a preliminary translation of algorithm to hardware is 
performed in order to begin testing the design constraints; after analyzing the algorithm's 
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computational complexity, a hardware version is coded in VHDL and then is synthesized with 

Altera Quartus II software to determine the material complexity, silicon area and maximum 

operating frequency of the module. 

Thesis Outline 

This thesis is organized as follows. In Chapter 2 the basic concepts of image processing are 

explained and taken as the basis for compression; Lossy and Lossless compression methods 

are explained in detail and sorne recomendations for chosing a compression scheme were pre­

sented; A video coding standard survey is presented to understand the different processes 

that might be follower in arder to process video in an efficient way, also a brief summary 

of video processing devices is presented, later in this chapter a comparative table between 

DSPs, CPUs, GPUs, FPGAs and ASICs is presented. 

Chapter 3 presents a study of the available VLSI architectures for DCT, Quantization, 

Entropy Coding, Sorting Algorithms and Motion Estimation; the performance of each archi­

tecture is thoroughly discussed and a feasibility analysis between existing architectures for 

a determined processing stage is presented; at the end of the chapter a novel video coder is 

presented and compared to a generic coder in terms of the number of clock cycles required 

to process video through all the stages. 

In chapter 4 is reported every architecture implemented in the FPGA in terms of how 

many logic elements are required, how many flip-flops and what amount of memory is re­

quired for the proposed architectures, we look forward establishing an approximate measure 

of the material complexity of the Co-Processor; Chapter 5 presents the results of the architec­
ture synthesis for DCT and sorting networks, a comparison is made between synthesis results 
optimized for area and speed and the feasibility of implementation in a single reconfigurable 

device is studied. 

Finally, concluding remarks are given and future work is highlited. 
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Chapter 2 

State of the Art 

In recent years there h� been a significant evolution in algorithms and architectures for au­
dio, image and video processing [1]. On the algorithm field robust methods for size reduction 
of audio, image and video data have been developed in order to make easicr thc data ma­
nipulation, storage and transmission; on the architecture field nowadays it is possible to 
implement complex compression processes on a relatively low cost integrated circuit, in fact 
this has incited a great <leal of activity in developing multimedia systems for thc consumcr 
rnarket [2]. 

The importance of these advancements is that audio, image and video information have 
the potential to become another data type, this implies that multimedia data can be cligi­
tally encoded so that it can be stored and transmitted in the same media or channel with 
other digital data types [3]. Data encoding standardization can lead the industry to the 
development of low cost implementation that will promote the generalized use of multimedia 
information [4]. 

2.1 Image Processing 

Sight is one of the senses that allow us to perceive and assimilate an incredible amount of 
information in a short time interval [5], the variety of inforrnation that goes through thc 
cye to be interpreted by the brain can be consider infinite as we never stop receiving visual 
information ( unless of course we el ose our eyes). Throughout the years we have increased 
sight capability by crcating devices capahlc to dctect electromagnctic radiation evcn if thc 
wavelengths are outside the normal vision range. By the use of sound waves or X-rays we are 
able to "see'' inside objects and into locations far beyond our scopc, high specd videocamera.c; 
a.llow us to see the slightest details of a moving object like a flying humming bird.

Visual inforrnation is a term that cannot be accurately definecl as it involves everything, 
there is no way to explain the terrn unless we introduce sorne restrictions; first of ali, we 
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shall assurne that information is enclosed in a finite image size, that is, the viewer receives 

the visual information as if looking through a rectangular window of finite dimensions as 
shown in figure 2.11 ; every irnage or video capturing device works under the same principle 

of handling finite amounts of information. Second restriction is based on the assumption that 
the viewer <loes not have the capability of depth perception, so he cannot tell how distant 
objects are by changing the focus of his eyes, in exchange, he can infer whether the object is in 

the foreground or in the background based on the position of the object with respect to others. 

Figure 2.1: Finite size window 

Having these two restrictions in mind, visual information is deterrnined by the wavelengths 

and light intensities that passes through each point of the window and reach the viewer eyes, 

hence, the problem of representing visual inforrnation in a numerical form is reduced as we 
only have to represent the intensity distribution of the finite size window. lf a cartesian plane 
is irnposed on the window we can represent the perceived intensity at any point (x, y). Thus
I(x, y) represents the visual information or image at the instant of consideration, later we 

will add the parameter t for images that vary with time. 

There are certain images I(x, y) that can be exactly specified, for example a light square 

over a dark background could be described as indicated in equation 2.1, the main problern 

is that no such exact specification is possible for real life situations with a limited amount 
of numerical data, hence an aproximation of I rnust be done if it is to be processed in a 
practica! system. 

l(x, y)= 
{l a::; x :� b, e::; y::; d

O otherw1se 
(2.1) 

As the majority of irnages must be stored, transmitted or processed a binary represen­
tation of data is required; I(x, y) must be represented by a finite nurnber of bits, the rnain 

1 Picture taken from www.bellasartes.gob.mx 
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problem relies in the wordlength that must be chosen; as we know, bit representation is 
an aproximation to the closest level of intensity, so, to increase the accuracy of the rep­
resentation we must increase the number of bits per word; this decision must be seriously 
considered as it might lead to an increase in material complexity, making the system too ex­
pensive in terms of silicon area and can affect the maximum operating frequency and power 
consumption of the processor, so it is necessary to estímate the mínimum representational 
fidelity required for the particular application to design the processing system accordingly [5]. 

Deciding what degree of accuracy is needed in a system is not an easy task, starting with 
I(x, y) we must find a digitization scheme that comply with computational constraints and 
then construct the corresponding representation of data; from this data we must reconstruct 
an approximate replica i(x, y) of the original image. Next we must assume that a distor­
tion measure D(I, i) � O exists to indicate how accurate is i(x, y) with respect to I(x, y); 
although this coding issues are very specific, there are several difficulties associated to it, 
first of all, image processing systems are designed to handle a variety of image formats, this 
leads to different distortion measurements per format, so it could be possible to have image 
with high distortion for all coding schemes, thus making impractical to work with. The next 
problem is that the distortion measure can be out of the desireable constraints making thc 
system unfeasible; even though this issues need to be considered, there are other aspects that 
can be used to evaluate a coding system like the complexity, robustness, resilience, compati­
bility and scalability [6]. 

Now that is clear that we cannot describe I(x, y) with absolute accuracy it is evident that 
we require a finite number of bits to represent the intensity levels of I with an acceptable 
degree of accuracy; if time is considered as a parameter, then the whole process of sampling 
and quantizing is performed in a repeating cycle known as PCM coding; the set of sampling 
points of the image can be considered as a bidimensional array where samples are placed both 
on vertical and horizontal directions as shown in figure 2.2a, a slight variation of the sampling 
array is shown in figure 2.2b, notice that sorne rows are shifted by half sampling period; this 
samples are commonly known as picture elemets or pixels, in this way, pixel ( x, y) is exactly 
the same than I(x, y). 

Pixels should be located close together to measure the intensity variations of the area of 
interest, but, if we locate them too close we will have an unnecessary amount of information, 
so, the required sampling density depends on the intensity variations that the processor must

accomodate, this sampling density is closely related to resolution; there are sorne techniques 
to measure resolution, one is the mínimum distance between two lines or two pixels within 
the image, another metric is related to frequency contents of the image, this is especially 
useful when working with Fourier transform of any other Fourier related orthogonal trans­
form; keeping this in mind, we can say that sampling density is chosen depending on either 
resolution or processing costs. 

Once the sampling density has been determined, there might be sorne fast variations in 
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(b) Offset Array

Figure 2.2: Pixel Sampling Points 

the intensity levels within pixel(x, y) making diffi.cult to measure accurately with the selected
sampling rate, this happens often when optical devices have a larger resolution than needed, 
this fast transitions tend to distort the visual information, having as a result an image that 
does not represent the real data; in signal processing this phenomenon is known as pre-alias. 
To prevent this effect we require to take an average of samples surrounding each (x, y) pixel; 
even if intensity transitions are too fast or too srnall they would not change the final repre­
sentation of visual information. 

An easy method is to form a weighted average over the pixel neighborhood; for this we 
need a weighting function h

e( u, v) that peaks only at ( O, O) and falls in any other case, the 
average or filtered image is then expressed as shown in equation 2.2; I(w, z) is calculated as
the instantaneous value at pixel (w,z) (see 2.3. The intensity at each point of the image is 
replaced by a weighted average, this process is known as pre-filtering since I has not been 
sampled. 

y+6x+6 

l(x, y)= J J I(w, z)hc(x - w, y - ZJdwdz (2.2) 

y-6 x-ó

J(w, z) = 8(w)8(z) (2.3) 

Pre-filtering helps to reduce the amount of information as only a finite number of samples 
is represented, fast variations of intensity are removed and intensity values are quentized to 
finite accuracy. Having the quantized pixels of the filtered image we might need to reconstruct 
a replica i(x, y) of the original image, the rnain prnblem is deciding what intensity values are 
going to be assigned at (x, y) points that do not correspond to a sampling point; we might 
choose either to assign a zero or a near value; in both cases an artificial pattern will appear in 
l ( x, y) causing a post-aliasing effect, this problem can be diminished if we interpola te between
pixels to obtain smooth intensity transitions. Let hd

( u, v) be an interpolation function, so
that the reconstructed replica is given by equation 2.4, if the sampled replica is defined using 
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Dirac delta functions, then equation 2.4 can be re-written as shown in equation 2.5 and the 
reconstructed image is given by equation 2.6, the sequence of sampling and reconstruction of 
an image is shown in figure 2.3. 

i(x, y) = L l(xk, Yk)hd(x - Xk, y -
Yk)

k 

Is(x, y) = ¿ l(xk, Yk)ó(x - xk)ó(y - yk)

i(x, y)= J J J5 (w, z)hd(x 
-

w, y - z)dwdz

J(x,y) �-- Pre-Filter Quantizer f------Input image 
Pixel Codersampling 

Reconstructed j (:r, 1J) 1 � f, (.-z:, Y) PixelReplica ◄ PoSI-Filte Decoder 
Figure 2.3: Sampling ancl Reconstruction sequence 

2.2 Compression 

(2.4) 

(2.5) 

(2.6) 

Compression is a process intended to produce a compact digital representation of a signa! 
[2] [3]; when the signa! is defined as a video stream or an audio segment the real problem
of compression is to minimize the bit rate of the digital representation; it is important to
state that without compression, many applications would not be feasible as shown in table 2.1.

Audio, Image and Video signals hace rcpeated or irrelevant information known as redun­
dant data. lf we define b and b' as the number of bits in two different representations of the 
same information, then we can define C as the Compression Ratio 

e=!!_ 
b' 

(2.7) 

And from the compression ratio we can calculate the relative redunclancy of data: 

1 
R= 1-

C 
(2.8) 

If we consider a compression ratio C = 10 (10: 1), means that 10 bits of data can be 
represented using one single hit in compressed form, when we calculate the relative redun­
dancy of data R = 0.9, we notice that 90% of data is redundant and can be removed. 
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Application 
Voice 

8 ksamples/s, 8 bits/sample 
Audio conference 

8 ksamples/s, 16 bits/sample 
Video conference ( 15 fps) 

framesize 352 x 240, 24 bits/pixel 
Digital audio 

44- 1 ksamples/s, 16 bits/sample
Digital video (30 fps) 

framesize 352 x 240,24 bits/pixel 
Broadcast video (30 fps) 

framesize 720 x 480, 24 bits/pixel 
HDTV (59.94 fps) 

framesize 1280 x 720, 24 bits/pixel 

Uncompressed Data Rate Compressed Data Rate 

64 Kbps 2 - 4 Kbps 

128 Kbps 6 - 64 Kbps 

30.41 Mbps 64 - 768 Kbps 

1.5 Mbps 128 - 768 Kbps 

60.83 Mbps 1.5-4 Mbps 

248.83 Mbps 3-8 Mbps

1.33 Gbps 20 Mbps 

Table 2.1: Applications for Audio, Image and Video Compression 

As stated befare , compression refers to the process of reducing the amount of data re­
quired to represent a given quantity of information [3] and there are many reasons for using 
compression, the most relevant are [4]: 

l. Compression extents reproduction time of an storage device.

2. Allows electronic component miniaturization, with less data to store we get the same
result with increasingly smaller hardware.

3. Reduces bandwidth, thus it is useful for lowering costs.

4. lf a fixed bandwidth is assigned, compression allows sending a better quality signa! over
the same space.

In digital image compression, b is the number of bits required to represent an image as 
a two-dimensional intensity array [5], that is a matrix f (x, y) of M columns and N rows 
where (x, y) are discrete coordinates; although this representation is suitable for human eye 
because it makes easier the interpretation of data it is not the best or the most efficient way 
to represent it. In general, we can say that two-dimensional arrays have five different types of 
data redundancy, each of these must be identified and later we must analize if we can exploit 
them or not. 

Code Redundancy: When the word-length of the 2D array utilizes more bits than the 
required to represent the luminance intensities we have a Code Redundancy, this type 
of data redundancy is presented when the codes assigned to a group of values do not 
represent accurately each value probability. This implies that there are intensities more 
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probable than others, therefore a binary code is required to represent both the most 
and the least recurring intensity, but we must assignt codes to intermediate values that 
might not be present in the image, so the code is redundant. 

Spatial Redundancy: Also known as Spatial Correlation refers to the fact that within an 
image or a video frame exists a significant correlation among neighbor samples and 
information is unnecesarily replicated. Most images are composed by objects that have 
regular shape and regular reflectance. 

Spectral Correlation: When data is acquired from multiple sources there exists significant 
correlation among samples from these sensors. 

Temporal Redundancy: For temporal data such as video there is significant correlation 
between samples in different segments of time. 

Irrelevant Informat!on: Most 2D arrays have information that is ignored and is even 
imperceptible to human eye, this kind of information is considered redundant becausc 
it is not used. 

Image and Video Compression is achieved when one or more redundancies are 

reduced or eliminated. [3] 

Normally we choose only one type of redundancy to remove; therefore there are rnany 
ways to achieve data compression, but, the increased commercial interests have ignited the 
efforts of international standardization of image and video coding [ 1]. 

A block diagram of the compression process is shown in figure 2.4, the source coder pcr­
forrns a compression process to reduce the input data rate to a level that can be conveyed by 
the transmission medium; after the source coding a second level of codification is required to 
translate the compressed bit stream into a signal suitable for either transmission or storage, 
in most systems source and channel coding are different processes, but in recent years have 
been developed methods to perform combined source and channel coding. To reconstruct 
the signa! one simply needs to reverse the codification process. 

Standardization enables image and video material from different sources to be: 

1. Processed on different hardware platforms

2. Stored on different storage devices

3. Transmitted on differcnt communication networks

The achieved interoperability opens a huge market for image and video acquiring-reproducing 
equipments at the same time that provides the consumers a wide selection of services, so 
standardization gives manufactures the great opportunity to have large scale productions at 
considerably low costs. The main issue of compression is that there are many methods to 
compress a given signa!, sorne are Model-Basecl methods while others are part of a great 
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Figure 2.4: Generic compression system 

family of Waveform-Based methods that include lossy and lossless compression. A common 
classification of compression methods is shown in figure 2.5 [2]. 

2.2.1 Lossless Compression 

There are many applications where the decoder has to reconstruct the original data without 
any loss; lossless compression scheme is by definition a reversible process where the recon­
structed data is an exact replica (sample by sample) of the original data. This compression 
method can be used for any kind of data and is achieved by removing redundant information; 
in general there are two lossless techniques: 

• Run-Length Encoding: Data normally presents long strings with the same value, to
reduce the string lenghts we simply count the values and construct a new one with this
number and the value that represents, for example, the string:

GGGGGGGGGGGGGGBBBRRRRRRRGGGGGGGGGGGBBBBRRRRR 

Can be coded as: 
14G3B7 RllG4B5R

• Entropy Coding: Every sample is represented by a unique value called Symbol, equal
samples will be represente with the same symbol, this technique has the advantage
that symbols can have different lengths, so small-length symbols are used to represent
frequent samples (or data) and larger symbols are used to represent non-common data,
an example of this coding technique is shown in table 2.2.

The choice of a lossless compression technique involves a triple tradeoff between Coding 
Efficiency, Coding Delay and Coder Complexity as shown in figure 2.6 
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Model Based 

Waveform Based 

-Linear Predicbve Coding
-AR, ARMAModelíng
-Polynomial Fitting
-Fractals
-Object-Based
-Ot11er

Lossless 

Lossy 

Statistical 

Universal 

{
-Gilbert 
-Fano
-Huffman
-Other

{
-Anthmetic Coding 
-LZW
-Pattern Matching
-Other

Spatial Domain. {6��M 
Time Domain Delta l.·1odulation 

Vector-Quantization 
Other 

Frequency 
Domain 

{
-Subband
-Wavelet
-Other

{

F1lter-Based 

Transform-Based 
-Karhunen-Loeve

{

-Fourier 

-Hadamard
-DCT
-Other

Figure 2.5: Taxonomy of Compression Methods 

Symbol Probability Binary Code 

A 0.5 o 

B 0.3 10 

e 0.1 110 

D 0.1 111 

Table 2.2: Entropy Coding with Variable Length Symbols 
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Coding Efficiency 

Coder Complexity Coding Delay 

Figure 2.6: Lossless Compression Tradeoffs 

Coding Efficiency: This parameter is usually measured in bits per second (bps) and is 
limited by the entropy of the source signal; if the source has a large entropy it will be 
difficult to compress (e.g White Noise); when data source is redundant, coding efficiency 
increases as the entropy or randomness of the source is low. 

Coding Complexity: Refers to the computational requirements that must be met in order 
to compress a signa], the most important are: 

• Memory consumption

• Power consumption

• N umber of operations per second

• Hardware lmplementation

Coding Delay: This parameter measures the time required to code or decode a signa!, it 
is possible to accelerate the compression-decompression process implementing paral­
lel or pipeline processing techniques, but t.his may be irnpractical in terms of coding 
corn plexi ty. 

2.2.2 Lossy Compression 

Many applications in image and video processing do not require the reconstructed data to be 

identical to the original data, hence sorne arnount of loss in the reconstruction is allowed; any 
compression method that results in an irnperfect reconstruction is by definition a Lossy Com­

pression Method; These methods are irreversible, so the signal quality is the rnost important 
factor as it rapidly degrades as data goes throui�h different the compression processes. The 
selection of an specific lossy cornpression rnethod is not a trivial task and involves a four­
way tradeoff along Signa! Quality, Coding Efficiency, Coding Complexity and Coding Delay 
(Figure 2.7). The signa! quality is the key to lossy cornpression methods because there is no 
way to rneasure the quality of a compression system, in fact these compression methods are 
also known as Perceptual Coding Systems and the only thing that matters is the subjective 

effect achieved in the receiver. This degree of freedom allows lossy compression methods to 
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reach higher compression ratios than lossless compression schemes. 

Coding Efficiency 

Coding 
<J- -- --t---------{> 

Coder 

Complexity Delay 

Signal Quality 

Figure 2. 7: Lossy Compression Tradeoffs 

2.2. COMPRESSION 

2.2.3 Considerations in Compression Method selection 

\Vhen choosing a compression method, many parameters have to be considered to be sure 
that the selected method is compliant with the application requirernents; the first decision is 
whether a lossy or lossless scheme is needed, this is usually dictated by thc coding efficiency 
requirements, we must take into account that even in lossy compression processes the desired 
coding efficiency might not be achieved, this is a cornmon case when there are specific con­
straints on output signal quality. 

As mentioned before, cornplexity tradeoffs between encoder and decoder must be consid­
ered, there are sorne applications that require syrnrnetrical encoding while others require only 
low cornplexity in the decoder; Also we must consider that sorne compression rnethods are 
more robust than others, therefore resilience to transrnission errors needs to be considered in 
terms of the additional material complexity in the decoder. Data representation must also 
be considered as many compression standards code data through various stages, so we must 
ensure that the original can be restored no matter how many coding stages were between the 
coding and encoding or even if the encoding-decoding process is performed in tandem as it 
is used in video editing tasks. 

All issues in compression rnethod selection must be considerecl but we must pa.y special 
attention to interplay with other data modalities and internetworking with other systems; in 
the former we must ensure that severa! data modalities are supported so that the compression 
methods should have common elements [2], in the latter, transcoding between cornpression 
methods might be required because depending on the storage or transmission media we will 
need to exploit different types of redundancies at different times . 

15 



CHAPTER 2. STATE OF THE A RT 

2.3 Video Standards 

In the previous section we stated sorne of the most relevant reasons for standardizing, but 
it is necessary to have clear that standards do not necessarily represent the best technical 
solutions, but rather attempt to achieve a compromise between flexibility, complexity and 
compression efficiency achieved [7]; Video coding standardization activities began around 
1980's as an initiative of the International Telegraph and Telephone Consultative Comittee 
(now the ITU-T); this efforts were followed by the CCIR , the International Standards Or­
ganization(ISO) and the International Electrotechnical Commission (IEC), since then many 
standards have appeared among the years [l]; table 2.3 summarizes the most relevant char­
acteristics of the most important video standards. 

Standard Throughput Image Size Chroma Format 
H.120 1.544 Mbps - -

2.048 Mbps 
H.261 64 Kbps CIF 4:2:0 

384 Kbps 
MPEG-1 1.5 Mbps SIF 4:2:0 
MPEG-2 10 Mbps QCIF 4:2:0 

CIF 4:2:2 
4CIF 4:4:4 
16CIF 

H.263 64 Kbps SQCIF 4:2:0 
QCIF 4:2:2 
CIF 
4CIF 
16CIF 

MPEG-4 5Kbps to SQCIF to 4:2:0 
lOMbps HDTV 4:2:2 

4:4:4 

Table 2.3: Video Coding Standards Summary 

2.3.1 H.120

Study Group XV of CCITT was responsible of the first international effort towards video 
coding standardization; during the first study period (1980-1984) the first recomendation 
was issued as the recommendation H.120, later on 1988 the group issued the second and 
definitive version. This standard targeted videoconference applications at primary rates of 
1.544 Mbps and 2.048 Mbps; this standard has three parts or sections, part 1 was intended 
for 625 lines at 50H z at 2.040 Mbps. Part 2 was designed for international use, so it was 
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suitable far 625 and 525 lines at 50 or 60 Hz an 1.544 Mbps, finally, part 3 was designed 
for 525 lines at 60 Hz at 1.544 Mbps. Parts 1 and 2 use conditional replenishment with 
intrafield Differential Pulse Code Modulation for changed regions while part 3 uses intrafield 
prediction, backward prediction and motion compensated interfield prediction. This coding 
difference between the three parts of H.120 was the reason why it never became a commercial 
success. 

2.3.2 H.261

After the release of the first recommendation of H.120, the study group XV of the CCITT de­
cided to define a video standard for videoconferencing applications over ISDN at transmission 
rates lower or equal to 2l'vlb'ps (:S 2 Mbps). The first version of H.261 was released in 1989 
and was meant to provide audio and video services at variable data rates: p x 64 Kbps 
(p = 1 . .. 30); this first version became an international standard in 1991 because the same 
algorithm could be applied to a variety of data rates, becoming the first video coding standard 
that succeded worldwide. H.261 's hybrid Motion Compensation based on Differential Pulse 
Code :tvlodulation and Discrete Cosine Transform technique, zigzag scanning, Run-Length 
Encoding and Variable Length Coding are now necessary elcments in most video coding 
standards. 

2.3.3 MPEG-1 

The Moving Picture Experts Group was created in 1988 under the Subcomitee 2 of ISO, later 
it was renamed as the Work Group 11 (WGll) of the subcomitee 29 under the Joint Tech­
nical Comitee of ISO/IEC, so, the official name of MPEG is ISO/IEC JTC1/SC29/WG11. 
The main task of this group was to develop a video coding standard for digital storage ap­
plications at up to 1.5 Mbps [l]. In 1992 the draft ISO/IEC 11172 became an international 
standard, MPEG's algorithm is very similar to H.261 but it has more sofisticated techniques 
like bidirectional prediction and Half-pel Motion Compensation; although the standard was 
developed for storage applications, thc coder is not defined, so the manufacturers can use 
their own coding algorithms as long as thcy are compliant with the bitstream syntax. MPEG 
is a.n asymetric system (shown in figure 2.8) where the coder can be based on algorithms or 
be adaptive, this is, the coder is able to perform different tasks depending of the nature of 
input data; the decoder only performs preestablished tasks. 

There have been defined sorne boundaries that differenciate MPEG data streams from 
Non-MPEG streams; any data flow compliant with the defined l'vlPEG bitstream synta.x can 
be decoded, if any of the parameters is outside the boundaries, then the elata flow can not 
be clecoded. Table 2.4 shows the limits of sorne MPEG parameters. 
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Complex 

� MPEG 

Input Coder compliant data flow 
-

Algorithmic 

Simple 

� 

Decoder 
-

Detenninistic 

Figure 2.8: Asymmetric Compression System 

Parameter Lirnit 
Horizontal Image Size � 76"8 pixels 
Vertical Image Size � 576 lines 
N umber of M acroblocks � 396 
Number of Macroblocks per second � 396 X 25 = 9900 
Frarne Rate � 30fps 
Video Buffer Size � 2,621, 440bits 
Bit Rate � 1,856, 000bps 

Table 2.4: MPEG-1 Limitations 

2.3.3.1 Hierarchy 

Output
_ 

The highest level of MPEG is a sequence or succession of irnages, this succession can have an 
arbitrary length and might represent a video clip, a complete program, a series of programs or 
even a movie; inside the sequence the next level in MPEG hierarchy is defined as the Group 
of Pictures (GOP); typical MPEG-1 data flow consists in a repetitive structure of GOPs. In 
the simplest codification (that is without temporal compression) the GOP can be a single 
image, nevertheless in practice we consider a GOP as a sequence of 10 to 30 frames that 
can also be considered as the interval between intrn frarnes. GOP length is a determinant 
factor in compression efficiency, short GOPs imply a bad cornpression and long GOPs tend 
to diminish the quality of reproduction; Group of Pictures structure is shown in figure 2.9. 

The next element in MPEG hierarchy is the frame; unlike other video coding standards 
MPEG-1 <loes not consider the interlacing concept, so every image is treated as a complete 
frame even if it is one field, so it is cornmon that in this case the achieved cornpression is 
inf'fficient.. Th0 following element is the macroblock (figure 2.10), this entities are used to 
represent small areas of 16 x 16 pixels of luminance, they are numbered in the normal scan­
ning order ( top to bottom, from left to right); each macro block is divided into 8 x 8 pixel 
blocks, a block is the rninirnum unit that a discrete cosine transform processor can work with. 
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B B B P B B B P B B B P 

Frame is divided into 

Macroblocks 

(16x l6p1xels) 

t Group of Pictures 

Figure 2.9: Group of Pictures 

Each Macroblock has 

íour blocks 

(8 x 8 pixels) 

Figure 2.10: �'lacroblock 

I 

Each block has 
64 pixels 
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Macroblocks are used to reduce the complexity of bidirectional frames generation, also 
they are useful to find areas with the same color and are useful to identify the redundancies 
within intra and bidirectional frames. When we group macroblocks depending on their aver­
age intensity we have a slice, this entity helps the decoder to recover in case of synchronization 
errors. 

There are two types of frame in MPEG, so, to clarify the function of each frame their 
definition is: 

Intra frame: This frames are coded using only the information within the frame, this means 
that intra frames are spatially coded 

Non-Intra frame: Also known as inter frames, this type is subdivided into Bidirectional 
and Predicted frames, both of them are coded taking advantage of temporal redundancies, 
so it is obvious that they use information of previously coded frames. 

• Bidirectional Frame: are coded using information of the previous and the next
frame, in fact, the "future" reference is the next I or P frame.

• Predicted Frame: are coded using information of the previous I or P frame

The relationship between I, B and P frames is shown in figure 2.11. 

I B B p B B p 

Figure 2.11: MPEG frames 

2.3.3.2 Group of Pictures 

Images are categorized in a different way, I and P frames are known as anchors because they 
are used as a reference for B frame codification using motion compensation; a GOP starts 
with an I frame that must be coded first to start de sequence, if there is no I frame there 
is no previous information and it is impossible to have a reference for motion compensation. 
It is possible to have many bidirectional frames after de intra frame because B frames are 
coded and tr/J.[J.�J¡J.itted immediately after I frames. 

tsn:sllOTECt 
�i33CoS� 
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The first P frarne is coded using the previous I frame to have a temporal reference, the 
following P frames are coded using the first P frame as a reference, this implies a serious 
disadvantage when an error occurs in this frames because it propagates indefinitely as the 
bad P frame will be taken as a reference in the future P frames. B frames are coded using the 
previous anchor frame as a reference for the forward prediction and they use the following 
anchor frame for the bakwards prediction, this means that B frames are never use as a refer­
ence for prediction; in figure 2.12 is shown a typical closed GOP and the way it is unfolded. 

t Group of Pictures 

Figure 2.12: Group of Pictures dcployment 

A GOP is considered closed when all predictions occur within a block, there are also 
open GOPs with an I - B - I - B - I . . .  structure that are usually very efficient, the main 
problem of this structure is that therc is no way to separate the data flow; Closed GOPs are 
also known as regular GOP, this is because there is a fixed patter of P and B frnmes between 
I frames; a regular GOP can be characterized in terms of two parameters N and M, where 
N is the distance between P frames an M is the distance between I frames. B frames can 
be decoded only if the previous and next anchor frame have been sent to decoder, the figure 
2.13 shows the transmission order of a GOP. 

2.3.4 MPEG-2 

In 1990 began the efforts to generate a new standard to cover the applications that could 
not be attended with MPEG-1, in particular, this standard was foreseen to video qualities 
similar to NTSC/PAL, this implied data rates up to 10 Mbps; it was called MPEG-2 because 
it was seen as the second phase of ivIPEG-1. In 1992 the study group XV of ITU-T joined 
the group ISO/IEC JTC1/SC29/\VG11 to design the video coder for ATl\1 networks. In 
1993 the study group realized that the scope of l\IPEG-2 was extended beyond HDTV, so 
the efforts to generate MPEG-3 where dropped. 

Like MPEG-1, MPEG-2 coding standard is flexible, compatible and generic, but it has 
sorne aditional characteristics that were not covered with the previous standard, the most 
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P B B B P B B B P B B B 

t Group of Pictures 

Figure 2.13: Transmission of a GOP 

l 

important of them is the capability to process interlaced video; in MPEG-2 were defined 
sorne profiles to describe the functionality of the standard, also were defined the levels to 
describe the resolutions that can be used. This characteristic allowed MPEG-2 to replace 
MPEG-1 in areas like cable tv, ATM networks and Broadcast TV. 

2.3.4.1 Macroblock Structure 

Every profile and level of MPEG-2 supports 4:2:0 codification, but there is a slight difference 
than MPEG-1: the position of the color samples was redefined; Sorne profiles suppor 4:2:2 
and 4:4:4 codifications, the macroblock structures and position of color samples is shown in 
figure 2.14 [4]. 

2.3.4.2 - Slice Structure 

A slice is a group of macroblocks placed in scanning order and can be decoded without a 
reference of other slice; in MPEG-1 there was no restriction in the slice size, it could be a 
macroblock or an entire image. In MPEG-2 the maximum length of a slice is defined as a 
complete row of an image or less, but it cannot surpass this length. 

2.3.4.3 Quantization 

MPEG-1 allowe<l an 8 bit precision for the DC coefficients of the Discrete Cosine Transform; 
somo profiles of :t-.1PEG-2 allow 9 or 10 bits of precision for the same coefficients. 
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Figure 2.14: l'vIPEG-2 Macroblocks and sample positions 

2.3.4.4 Calculated Motion Vectors 

This tool was designed for MPEG streams transmitted over channels with high probabilities 
of macroblock loss. This is a problem, especially for I and P frames because in the worst 
case scenario, errors will propagate indefinetely. MPEG-2 has hidden motion vectors that 
are transmitted with intra coded macroblocks, if any macroblock is lost, the previous Cal­
culated Motion Vector will point to a similar macroblock that will substitute it in the decoder. 

2.3.4.5 Profiles and Levels of MPEG-2 

The characteristic that made I\IPEG a video cocling success was the fact that the decoder 
was able to translate any signal as long as the bit rate was compliant to MPEG specifications, 
for tv1PEG-2 the situation was far more complicated because it was too expensive to have a 
clecocler that supporte<l the new syntax elements for all allowed data rates; to solution this 
problem, the standard was divicled into two categories. The tools or syntax elements required 
to clecode are defined in MPEG-2 profiles, levels define the range of allowed elata rates, table 
2.5 shows lVIPEG-2 profile constraints; table 2.6 shows clifferent MPEG-2 levels [8]. 
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Profile 
Constraint Nonscalable 

Simple Mail Multiview 4:2:2 SNR 

chroma 4:2:0 4:2:0 4:2:0 4:2:0 or 4:2:2 4:2:0 

format 

picture I, p I, P, B I, P, B I, P, B I, P, B 
types 
scalable - - Temporal - SNR 
modes 

intra pre- 8, 9, 10 8, 9, 10 8, 9, 10 8, 9, 10, 11 8, 9, 10 
cision 
(bits) 

sequence no no yes no yes 
scalable 
extension 

picture no no no no no 
spatial 
scalable 
extension 

picture no no yes no no 
temporal 
scalable 
extension 

repeat first constrained unconstrained constrained 
field 

Table 2.5: MPEG-2 Profile limits 

Profile 
Constraint Nonscalable 

Simple Mail Multiview 4:2:2 SNR 
high - yes - yes -

high 1440 - yes - - -

main yes yes yes yes yes 
low - yes - - yes 

Table 2.6: MPEG-2 Levels 
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Scalable 
Spatial High 

4:2:0 4:2:0 or 
4:2:2 

I, P, B I, P, B 

SNR or SNR or 
Spatial Spatial 
8, 9, 10 8, 9, 10, 11 

yes yes 

yes yes 

no no 

unconstrained 

Scalable 
Spatial High 

- yes 

yes yes 
- yes 

- -



2.3. VIDEO STANDARDS 

2.3.4.6 Tools for Interlacing 

lnterlacing is an irnage scanning system that has been used since the origins of television, this 
technique divides an irnage or frame into two fields, each field contains the half of lines that 
compase a field. This process is necessary to increment de flicker rate of the irnage so that it 
will be imperceptible without affecting the TV bandwidth. In 525 line systerns like NTSC, 
scanned is performed in 3� of a second and it is displayed at 60H z; This displaying methocl
has the inconvenience of a temporal overlap of vertical and temporal spectres; Transcoding 
interlaced scanning video to progressive scanning is not a trivial task, it can only be acom­
plished using Motion Estimation techniques. 

As mentioned befare, MPEG-1 <loes not considcr interlaced video, so if a field is to be 
coded, every line will be duplicated to complete a frame, and of course this is an issue that 
affects coding efficiency. l'vIPEG-2 has the necessary tools to process interlaced images and 
the combination is very efficicnt, it is nearly impossible to differenciate them from a progrcs­
sive scanned image. 

2.3.5 H.263

H.263 arose in response to the need to transmit digital video over circuit switched networks
and mobile networks, study group XV of ITU-T began the standardization process whose
objective was to develop a video coding standards for low data rates (as low as 64 Khps)
using the coding structure of H.261. In 1996 the H.263 recommendation was approved.

If H.261 ancl H.263 are compared, we will find that H.263 provides thc same subjectivc 
quality than its predecessor, the differcnce is that H.263 requires less than the half of thc 
transmission rate of H.261, this performance improvement was possible thanks to coding 
technique optimization and the optional use of advanced coding techniques. 

Sorne improvements of H.263 over H.261 are: support of different image formats, motion 
compensation with half-pel resolution, three dimensional run-length encoding, optimizecl vari­
able length coding tables, extra headers to increase the capability of error recovery, optimized 
addressing of macroblocks, arithmetic coding (optional), four motion vectors per macroblock 
and hidirectional prediction ( optional). 

2.3.5.1 H.263+ 

It is considered the second version of H.263, was developed by thc Advanced Video Experts 
Group ITU-T /SG16/Q15 (previously known as ITU-T /SG15) and was published in 1998. 
H.263+ adcled twelve optional characteristics that allowed among others to: have custom
image sizes, have custom dock rates, increase compression efficiency, improve error adjust-
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ment in wireless networks and ensure backward compatibility. 

2.3.6 MPEG-4 

In 1993 the MPEG group began a new standardization activity under the name of MPEG-4, 
the goal of the group was to achieve higher compression efficiency using the available coding 
techniques; in 1994 the group determined that there were to few improvements compared to 
H.263 and H.263+ standards. The goal was then redefined and a particular attention was
given to the convergence of three industries that have been treated as separate applications:
communications, computation and TV. This scope helped the study group to determine that
MPEG-4 should be functional in future applications that for sure would not be supported
bJ existing standards; eight new features were added and classified into three categories.

1. Content based interaction

• Tools for multimedia data

• Content manipulation and data flow edition

• Synthetic and hybrid data coding

• improved temporal random access

2. Compression

• Coding efficiency

• Simultaneous dataflow codification

3. Universal Access

• Content based scalability

• Robustness in error susceptible environments

The first version of MPEG-4 was issued in 1998 and the second in 1999, this standard is 
officially known as ISO/IEC 14496 and entitled as Generic Audio Visual Object Coder, as 

its name states, it is a generic standard designed to cover a wide range of: 

• Bit rates: typically from 5 Kbps to 10 Mbps.

• Image format: Interlaced or progressive.

• Frame rates: From still images to video sequences.

• Communication networks: LAN, WLAN, etc.

• Input information: Synthesized or Natural.
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MPEG-4 utilizes an object-based representation model, this means that every scene is 
coded and manipulated as a single audiovisual object, this standard is an evolution of the 
previous block-based standards as it integrates second generation coding techniques as the 
pyramid coding and segment coding. 

2.3. 7 H.264/ AVC 

The Joint Video Team (JVT) of ISO/IEC and the Video Coding Experts Group (VCEG) of 
ITU-T developed a new video coding standard known officially as recommendation ITU-T 
H.264, ISO/IEC MPEG-4 part 10, Advanced Video Coding or simply H.264/ AVC. Work
started on 1998 when the VCEG called for proposals for a proyect known as H.26L. The
main goal was to significantly improve the coding efficiency of existent standards; the first
version of H.26L was issued in 1999. At the end of 2001 the JVT was created and had as
a mission to conduele the new coding standard that was finally published as H.264/ AVC in
2003.This standard has a high coding efficiency and is suitable for applications like broadcast
transmission over different media or video storage in optical and magnetic devices.

H.264/AVC is composed by two layers, the first one is the Video Coding Layer (VCL)
clesignecl to compress video efficiently; the second layer is the Network Abstraction Layer 
(NAL), the NAL is uscd to give format to the video representation of the VCL and to providc 
the heacler information needed to handle different transport layers or storage media. Com­
parecl to other video coding standards, H.264/ AVC is much more efficient in data coding, is 
very robust and is very flexible as it can operate over a great variety of network environments. 

There are two strategies that can be used to achieve a higher coding efficiency: 

1. Increase the accuracy in image prediction

2. Use entropy coding to reduce the average bits per symbol

l\fany tools to improve inter and intra frame prediction have been developed, sorne of 
them are the following: 

• Variable Block Size for motion compensation: There are seven different block sizes
( the smallest one is 4 x 4), this strategy is based in the fact that precision accuracy is
improved using small blocks .

• Multiple references frame for motion compensation: P and B frames prediction requires
multiple reference frames, it is obvious that a better prediction is achieved if we have
more than one reference the precision of the prcdiction is upgraded.

• Spatial Prediction: Is a directional intra frame prediction that uses as a reference
previously coded arcas whithin the same frame

• Skip modc: For predicted frames
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• Direct mode: For bidirectional frames 2 

2.4 Video Processing Architectures 

In 1997, Trimberger, Carberry and Johnson [9] developed a Time Multiplexed FPGA; the 
main idea is that one single FPGA can have one active configuration and eight inactive con­
figurations stored in on-chip memory (although it can be stored in externa! memory devices). 
These inactive configurations can be viewed as configuration planes; every plane is a very 
large word of memory, when the device is reconfigured every bit in the logic and intercon­
nection array is updated from one of the memory planes in 25 ns. 

A rapid-reconfigurable device is nothing but a curiosity without an operating model: 

l. Logic Engine Mode: Designs are modeled as Mealy state Machines emulated as a single
large design, FPGA can split combinational logic into pieces and look-up tables, FPGA
is reconfigured many times per user cycle.

2. Time Share Mode: FPGA emulates several independent FPGAs, the device remains
in a single configuration for multiple user dock cycles befare switching to another
configuration.

3. Static Mode: FPGA <loes not appear to be reconfiguring, hence the logic must always
be resident and active.

4. Mixed Mode: A single application may have few memory planes and the logic part of
the array will be split between the previous modes

From the above we can infer that memory access and location (on-chip/off-chip) are strong 
constraints that we will have to <leal with in video processing tasks (very demanding in terms 
of hardware and memory usage). 

To make this scenario even more difficult, there are many hardware platforms and algo­
rithms to process video and images; in [10] the first comparison between GPUs and FPGAs 
and their use for video processing is made, both are capable of parallel processing but their 
architectures and features are compared exhaustedly in order to determine whether GPUs 
have surpassed FPGAs or not; In table 2.7 the most relevant features of FPGAs, ASICs, 
GPUs, DSPs and CPUs are compared. 

Work presented in [10] is fundamental for this study because it establishes the guidelines 
to further comparison between programmable devices and the application; later on 2007 
Wayne Luk revisited his previous work and established a new comparison betweeen GPUs 
and FPGAs under multi-processor architectures [11], to be as objective as possible thcy 

2 1n both, Skip and Direct Modes, the reconstructed signa! is obtained directly from the reference frame 
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Feature FPGA ASIC GPU DSP CPU 
Architecture Parallel Pro- Parallel Pro- Pipeline Pipeline Parallel Pro-

cessing and cessing and cessing 
pipelining pipelining 

Computation Data path Standard High memory Multiple Integer units, 
without in- Qell bandwidth, MAC units floating point 
str. fetch and many floating units, vector 
decode cycle, point units units. 
CLB 

Memory Access Can be mini- Custom Less efficient DMA, modi- Memory ac-
mized though than FPGAs fied Von Neu- cess instruc-
data stream- mann Archi- tions 
ing and reuse tecture 

Clock Rate Slow Custom Fast Fast Fast 
Numher representation Fixed point Fixed point Floating Fixed / Floating 

(floating (floating point Floating Point 
point can be point can be point 
implemented implemented 
at a very high at a very high 
HW cost) HW cost) 

Throughput Rate Is the clock Custom # of parallcl Is the Clock At least two 
rate pipelines rate instruction 

multiplied by cycles 
clock rate, 
divided by 
# of cycles 
taken by the 
task 

Table 2.7: Cornparison between FPGAs, ASICs, GPUs, DSPs and CPUs 
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tested five algorithrns, all of these were used to test throughput in both FPGA and GPU 
platforms. In bicubic interpolation, GPUs showed superior performance over FPGAs, for 
2-D Convolution as window size grows, the FPGA overcomes the GPU, in Histogram Equal­
ization FPGAs outperforms GPUs by over three times; for Non-Full Search Motion Vector
Estimation GPUs there is not a clear domination because the architecture was targeted at
a desired throughput, for Primary Color Correction, despite the results obtained in [10], the
GPU has a higher throughput than FPGA, this demonstrates that GPUs have been under
constant evolution. From the comparison we can emphasize that GPUs are limited when the
designer wants to get data from an entire frame but are well suited to algorithms with arbi­

trary reuse patterns, on the other hand, FPGAs have proven ability for parallel processing
and true real time processing can be obtained with them [12].

FPGAs and DSPs are often compared in terms of the implem�ntation of a certain al­
gorithm, DSPs are optimized for externa! memory usage, so theY. are meant for on-line 
processing rather than real-time, on the other hand, FPGAs are suited for real-time and 
on-line processing, in fact, any DSP routine can be implemented in FPGAs, of course it is 
easier to implement algorithms written in high level languages directly on a DSP rather than 
describing the algorithrn in HDL for an FPGA implementation. As stated in [13] FPGAs are 
uniquely suited to repetitive DSP tasks, like MAC operations because they can perform this 
operations in parallel, so as a result FPGAs vastly outperform DSPs. The main problem of 
DSP implementations over FPGAs is that DSP programmers are forced to re-formulate the 
algorithms in terms of logic gates and flip-flops rather than high leve! codes. 

FPGAs are faster and more efficient in processing arithmetic operations than CPUs or 
GPUs. Compared to CPUs and GPUs, FPGAs are more effi.cient in terms of memory us­
age and memory access, the on-chip memory and parallel processing are a combination that 
neither CPUs nor GPUs are capable to overcome. Even number representation is a factor 
to compare, CPUs, GPUs and sorne DSPs use floating point representation, in the other 
hand FPGAs use fixed point [10], and this implies a faster and more efficient implementation 
because the same length is used to represent all numbers, of course floating point can be 
implemented in FPGAs but the hardware costs are very high. 
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In fact to determine which device should be used we must compare different factors: 

• Power Consumption: CPUs and GPUs require more power than DSPs or FPGAs [11],
as FPG As have a lower dock speed there is no need to use heat sinks or fans.

• Design Time: Obviously this fact depends on whether we choose to work with Hardware
Description Languages (HDL) or high level languages.

• Redundancy: both CPUs and GPUs are already inside a computer so redundancy is not
a problem, redundancy implementation on FPGAs and DSPs implies an extra hardware
cost.
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• Multiple Pipelines: DSPs and FPGAs can compute multiple data in the same dock
cycle, this capability helps both devices to overcome the redundancy naturally held by
CPUs and GPUs

• Multiple cores: if a device is not capable to reach the target throughput, a number of
them can be used to compute high amounts of data.

Even if we select a platform based on the recommendations issued in [10, 11], we must be 
aware that video processing algorithms are very demanding tasks and there is not a unique 
way to overcome this situation, sometimes it is necessary to divide the algorithms into a 
hardware and software part [14], if any portion of the algorithm is going to stay as it is, we 
should implement it into hardware to save time, in this way the fixed part of the algorithm 
is synthesized only once; dynamic parts or rapidly changing methods stay as software to give 
the developer the necessary flexibility to update them every time it is required. 

2.4.1 Hardware-Software Applications 

In [15] Dubois et al. propose a hardware accelerator for l'vIPEG-4 based on Motion Estima­
tion (ME) algorithm. ME is known to be the most computationally expensive stage of video 
processing, there are different families of approaches developed to solve the problem both in 
algorithmic and architectural point of view, the first family is the Reduced Search Algorithms 
(RSA), the goal of these algorithms is to reduce complexity by identifying possible candidate 
vectors within a search window; the second family consists of Multi-Resolution Searches, 
the third uses simplified matching criteria instead of Maximum Absolute Difference (l\'IAD), 
finally, the fourth family consists on pre-processing the images in arder to reduce them to 
binary data and then use a XOR to evaluate the MAD. 

The main contribution of Dubois's work is the modular programmable coprocessor archi­
tecture for Reduced Search Motion Estimation, wbere user is supposed to define both window 
and macroblock size, inside the coprocessor all pixels are stored in the FPGA to reduce ex­
terna! memory access, therefore increasing processing speed, the coprocessor is constituted of 
an internal buffer, the externa! memory controller and a MAD estimation core; the memory 
controller is in charge of downloading a pattern and its search window into the internal buffer 
memory. 

The motion estimation core has three elements, the first one controls the input through­
put (provided by the externa! memory), the second provides two rows to the MAD estimator 
and the third one temporarily stores the results before transferring them to the externa! 
memory, the main idea of the architecture is to achieve the desired leve! of flexibility and 
reprogrammability for the search in orcler to separate the elata access from the marching 
criterion algorithm. 
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Another demanding video processing algorithm is the Variable Length Coding (VLC), 
VLC is a lossless compression scheme and its current implementations are specific to a par­
ticular codee, so we can conclude that this particular algorithm is not suitable far multi-codec 
environments. 

In [16] is presented a design far encoding variable length codes in a multi-codec environ­
ment, two flexible and low cost implementations are presented, the first consists of various 
codec's implemented on the same reconfigurable array, so, as the same array is shared far 
multiple codec's high flexibility and low cost is achieved. The second implementation is a 
multi-codec processor where several parts are implemented in hardware and many memories 
are used to cover multiple standards. 

Vitabile [17] retakes the fact that image and video processing tasks are confined to large 
workstations or custom designed hardware because CPUs are too slow far the high speed 
required far real time video processing, but also they remind us that in most cases, image 
and video processing systems are designed in high leve] languages because developers are 
used to programming in C/C++ rather than any HDL, to salve this problem, algorithmic 
like hardware programming languages such as System-C or Handel-C are used, actually, the 
main contribution of the research was the guideline establishment to translate C code into 
Handel-C; the code synthesis and optimization regards on the software development tool. 
Despite the promising characteristics of this kind of algorithmic-like HDLs, we must not far­
get that they are translators between C and hardware, so their resulting netlists are far from 
optimal because they are used as a too] far software designers that need to implement their 
algorithms into hardware. 

Through [18], [19], [20] and [21] Lawal, Thornberg and O'Nils explore Real Time Video 
Processing Systems (RTVPS) and their constraints in hardware implementation, as we know, 
in RTVPS the operations perfarmed over a pixel are neighborhood oriented, so a large amount 
of data is required to be buffered ( data size grows clepending on the video frame and the oper­
ation window), therefore the main problem of RTVPS is memory access, FPGAs ha.ve proven 
to be effective implementation architectures far systems with high throughput requirements; 
in this case, memory structure and memory access become a priority, taking advantage or 
FPGA architecture, actually, the closest the memory is located, the fastest the FPGA will 
operate. 

2.4.2 Hardware-Software Co-Design 

As stated by De Michelli and Gupta [22] the methodology of Hardware-Software Co-design is 
a strategy for meeting system-level objectives by exploiting the existent synergism between 
hardware and software through their concurrent design. The major challenge in hardware­
software co-design consists on identifying the critica! segments of the software programs and 
compiling them efficiently to run on the programmable architecture, so, co-design problems 
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relate to how software programs are used to configure and program a hardware circuit as well 

as to how the reconfigurable architecture is organized [22]. 

Designing hardware-software systems involves three stages, the first one is the process of 
conceptualizing the specifications and the construction of a hardware and software models, 
the second stage looks towards achieving a reasonable level of confidence that the system will 
meet the model requirements, the third and last stage is simply the physical realization of 
the synthesized hardware and the compiled software. 

As mentioned befare, the main problem relies on choosing the elements of the system 
that will be designed as hardware or software; it is a real problem because any partitioning 
decision must consider the properties of the resulting blocks, if we consider general purpose 
processors, a partition represents a logical division of system functionality, but for FPGAs 
partitioning is not a simple issue, if we have systems consisting on arrays of FPGAs partition­
ing is equivalent to mapping; for systems consisting of processors and FPGAs, partitioning 
includes both a physical partition of systern functionality and mapping [22]. 

For embedded systems, an architectural assumption is needed: since these systems are 
implemented by processors and application-specific hardware, they can be characterized as 
coprocessors. This kind of architectures is often chosen to improve system performance in 
executing specific algorithms, but there are applications like real time systems where speedup 
is not as important as the satisfaction of size and timing constraints. From the ahove, we 
can say that coprocessors are easier to design and implement using embedded processors like 
Xilinx 's l\ilicroBlaze [23] or Altera 's Nios-II [24]. 

2.4.3 Applications 

We must consider that mobile convergence, portable multimedia applications and many dif­
ferent devices have led us to a world were multi-codec is needed [18], also, as mobile terminals 
become increasingly popular, cost effectiveness and low power consumption are very impor­
tant issues [25], as video processing requires special architectures its usual to find dedicated 
hardware engines, DSPs or FPGAs to bridge the gap, or process independent techniques are 
much more desirable for increasing reusability, so the evident solution must be an hybrid 
architecture consisting on a DSP or FPGA plus a dedicated hardware engine. 

The work presented in [25] propases a hardware efficient and low power architecture for an 
tvlPEG-4 decoder consisting in a memory block, a DSP, a Decoding Engine Unit (DEU) and 
an Interface Unit; the DEU consists of four different functions, including a variable length 
clecoder, a motion compensation (MC) unit, an inverse discrete cosine transform and a post 
noise reduction filter. As mentioned in [16] Variable Length Encoding/Decoding cannot be 
implemented on a DSP because of high density control fiow and large memory requirements, 
so both VLC and MC are considered as co-processors with local memory and independent 
frorn the DSP, the other two units are incorporated in the DSPs vector pipeline to reduce 
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the number of operations and power consumption. 

The work presented in [26] is concerned about the trade-off between performance and 
power consumption for the portable electronic device market, the objective is to minimize 
power dissipation depending on the required throughput, it is mentioned that the fast evo­
lution of mobile devices is forcing the designers to consider image acquisition and a better 
quality display in devices that were not originally meant to <leal with this tasks, this fact 
implies that still image acquisition will require higher sensor resolution to comply the video 
codee standards (high performance algorithms are used to achieve the greatest compression 
ratio). 

Power is important for us because when proc:essing image and video a lot of memory is 
used and a lot of power is consumed during memory accesses, this is when FPGA architec­
tures can be used to reduce externa} memory accesses and to exploit spatial and temporal 
redundancies to efficiently encade video. 

In [27] the design flow for ASICs and FPGAs is studied, of course the most significant 
difference between ASIC and FPGA platform-based design is that ASIC derivative designs 
are fixed at design time whereas FPGAs allow the derivative design at every stage, even 
at run-time, this important characteristic of FPGAs was termed by Cheung et al as late 
integration [27]. The main advantage of late integration is that it enables an instance of a 
system ( and the system itself) to be custornized depending on the environment in which it 
is deployed making it adaptable to changes. 

Stage ASIC FPGA 
Platform Hardware Kernel Hardware Kernel 

1/0, Clocks, Test structures 
Floor Planning 

System Design Subsystem Design 
-

Functional verification Functional verification 
Clocks, Test Structures 

Derivative Power Distribution 
Floor Planning 

Block implementation Block implementation 
Assembly, 1/0 Pre-assembly processing 

Run-time Environment Analysis 
Assembly 

Table 2.8: Tasks in Platform-Based Design 

In table 2.8 the stages for both ASIC and Reconfigurable platforms design are compared; 
we can observe that ASIC design stages are clearly separated, the hardware kernel is de­
signed to meet functional requirements that will be needed in the derivative stage like buses, 
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specialized component blocks, interface ports (for attaching the derivative designs) and test 
functions; in reconfigurable architectures, the platform stage covers the same tasks than 
ASIC design, but also includes tasks that would normally be carried out in the derivative 
development stage like the dock three and the floor planning (place and route) of the kernel. 

The derivative design stage for ASIC development involves the selection of component 
modules that the system requires for full functionality, the verification of the functionality, 
implementation of all components and final assembly, meanwhile in the derivative design 
stage for FPGAs a library of subsystems is validated and implemented instead of designing 
an validating the entire system. 

Finally, for reconfigurable platform architectures, at Run-time stage, information about 
the environment is gathered, systems are selected and assembled together and programming 
parameters are set. 

Now that we know the representative stages in ASIC and FPGA design, their coincidences 
and differences, there is one issue left to deal with: we must choose one of these to implement 
a model or system, but we will make our selection based on design and production times and 
costs. 

In figure 2.15 a comparison bctween FPGA and ASIC time to market analysis is shown 
[28]; as we can see the specification stage is exactly the same in both technologies, in the pre­
viously discussed design stage we start to notice the difference between FPGAs and ASICs, 
while ASIC designers take a long time in designing the platform and the derivative systems, 
FPGAs designers are capable of covering all three design stages and make the system inte­
gration. 

The next stage in ASIC design is the creation of the first silicon prototype meanwhile in 
FPGA design the production stage is started just before the system integration, the main 
advantage of FPGAs over ASICs is that the system design can be modified even in the pro­
duction stage, but ASICs are restricted to testing the silicon prototypes and have to wait for 
a new one if a change is needed; when the prototype is accepted the system integration stage 
begins and after that the production begins. 

So we can say that FPGAs have the advantage of reducing design time besides reducing 
the production costs, and they are the obvious choice if we are looking towards fast design 
and implemcntation. 

When we speak of FPGAs the most recurrent tcrm is reconfigurability, but what ex­
actly does it mean? According to De Michelli and Gupta, is the factor that increases the 
usability of a digital system, but not its performance, so if performance is the parameter 
of interest, we must know that for general purpose computing, top performance is achieved 
using superscalar RISC architectures, meanwhile for dedicated applications, ASICs achieve 
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the best performance and the lowest power consumption; Another important fact to consider 
is that ASIC-based coprocessors can accelerate specific functions, but FPGA-based ones can 
be applied to speedup arbitrary software programs, especially those with parallelizable oper­
ations [22]. 

2. 5 J ustification 

Video coding is a task that can be implemented both in hardware and software; the main 
problem with software implementations is that they tend to underutilize system resources as 
they work with long fixed wordlengths (i.e. 32 or 64 bits) and are tied to external memory 
read/write operations to fetch data; they also depend on an specific purpose processor capa­
ble of performing arithmetic and logic operations. 

Hardware implementation of algorithms have the advantage that memory requirements 
are drastically reduced because the algorithm is directly translated into VLSI components 
that perform the same task; another interesting fact is that the algorithm can be decom­
posed in hardware modules that perform separate tasks, allowing the designer to parallelize 
operations and reduce propagation delays, rnaking possible high throughput rates. As the 
algorithm is already translated into transistors no software is required to operate the system. 
'Ne must remember that any algorithm can be solved in software but it will never be as 
efficient as a VLSI architecture solution approach. 

We decided to work with reconfigurable architectures because they are suitable for mod­
ular implementation of systems, that is, we can code many different algorithms and then test 
and optimize each one individually prior to putting them together in a complex system, this 

36 



2.5. JUSTIFICATION 

design methodology is possible with Hardware Description Languages; even though there are 

IP Cores, libraries and parametrizable modules, we chose to work with direct VHDL coding 
because we want to reduce the computational complexity and at the same time achieve the 
smallest material complexity as possible using custom wordlengths and dedicated intercon­
nection paths; once the modules are coded in VHDL we can optimize the architectures in 
terms of speed, area or power consumption. 

CPUs, GPUs, DSPs, ASICs and FPGAs are suitable for sorne specific tasks required 
in image and video processing like domain transformations, quantization, codification or 
filtering, but only FPGAs are useful to accelerate any algorithm or process as they offer 
a high degree of flexibility that allows system designers to test over and over again until 
an efficient architecture is achieved. For this reason we considcr that FPGAs are the best 
option for real-time image and video processing tasks; their remarkable capabilities of par­
allelism, pipelining and dynamic reconfigurability make them especially useful when dealing 
with highly demanding algorithms where high throughput is required. The great advantage 
of working with FPGAs comes when the system prototype is completcly optimized: we can 
choose to scale the architecture or to transfer the design to an application specific integrated 
circuit. 

There are many applications where a dedicated video processor is required rather than a 
complex computational system; a co-processor could be used to enhance video surveillance 
applications, instead of having a CD/DVD/Blu-Ray or tape recorder we could acquire visual 
information, code it ancl transmit it over a digital channel using only an integrated circuit; 
a dedicated video co-processor can increase the competitive advantages of many devices of 
consumer electronics like car entertaining systems, we c:ould simply replacc the CD/DVD 
player with a hard drive, so the consumer can transfer any media to the drive, and reproduce 
it whencvcr he wants, this systcm can cven be implemented on airplanes or buses without 
representing an excessive cost for the airline/line. The medicine field also requires low cost 
and reliable video processors as there are many tools that require image processing like Mag­
netic Resonance, X-rays, Ultrasound and Computartzed Tomography, all these applications 
are critical to diagnose a large number of diseases or medical conditions, so a dedicated circuit 
can be used to acquire data, process it depending on the application and send it directly to 
a hard drive or to a network streaming device making possible to establish virtual consults 
between pairs that are located far away in a remate location without compromising visual 
quality. 

We want to develop a purc VLSI architecture of a video co-processor that does not rcly 
on a CPU or external memory devices; most of video processing tasks are computationally 
exhaustive, therefore it is necessary to translate the algorithms into hardware to reduce the 
computational complcxity employing parallelism and pipelining to accelerate the processes 
and reduce the critica! path. VLSI design will allow us to compare between implementations 
targeted for power consumption, die area and operating frequency; once the comparison is 
done we can establish a triple commitment to fincl thc optimum architecture. 
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Chapter 3 

VLSI Architectures 

3.1 Discrete Cosine Transform 

The energy of a discrete time signal x(n) can be represented as thc surnmation of the square 
valucs of each pixel as shown in equation 3.1, we can translate the expression of energy to 
the frequency domain ( equation 3.2); the energy distribution of the signal as a function of 
frequency is known as Energy Density Spectrurn (EDS) it is sirnply the magnitude of the 
DTFT of x(n) (equation 3.3). 

oc 

Ex(n) = L lx(n)l
2

n=-CXl 

7r 

Ex(n) = 2_ ¡· IX(w)l 2 
dw

21r 
-7r 

EDS= IX(w)l
2

(3.1) 

(3.2) 

(3.3) 

Using the EDS we are able to identify the frequency components that possess the lowest 
amount of energy and then we can discard them and still have a good representation of the 
original signa! when we return to time domain, hence a lossy compression scherne can be 
usecl to process the image in orcler to reduce the amount of elata that has to be storecl or 
transmitted. 

The Discrete Cosine Transform is a Fourier relatecl transform that uses only real nurn­
bers ( equation 3.4); this orthogonal transforrn has the characteristic of concentrating all high 
energy components in the lowest frequencies of the cosine [29] making the quantization ancl 
entropy coding processes easier to achieve. DCT has been widely studied since its introduc­
tion in 197 4 and is probably the most common orthogonal transform in image and video 
processing, therefore exist rnany hardware architectures to compute it, a taxonomy of DCT 
Architectures is shown in figure 3.1 [30]. 
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Figure 3.1: DCT Architectures Classification

The methods used to compute the DCT can be divided into two categories, the first one
groups matrix analysis, matrix decomposition and arithmetic approaches, the second cate­
gory groups polynomial transforms numeric approaches and convolutional structures: each
category can be -<livided into Row-Column Algorithms (RCA) and No Row-Column Algo­
rithms (NRCA) [30]; an overwhelming majority of implementations can be found in the
RCA group of the first category, many of them are Fast Algorithms [31], [32], [33], [34],
[35], [36] and the rest are Distributed Arithmetic implementations [37] , [38], [39]; of course
there are polynomial transform proposals like [40], [41], [42], [43], [44] but most of them are
particular cases of Row-Column decomposition algorithms or direct algorithm derivations.

In general, hardware costs of any architecture are usually determined by the number of
processing elements (PE), the interconection paths required to wire those PE and the amount
of memory requircd to store data; NRCAs family requires the least number of multiplications
but their interconnection structure is often complicated and the implementation is not trivial.
RCA family of architectures offer easy implementations ; many 1D-DCT architectures have
been implemented using fast algorithms; Parallel DCT algorithms are difficult to implement
because they require a dedicated communication structure and their material complexity is
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too high, Systolic Array or Distributed Arithmetic implementations offer a high degree of
regularity and help to reduce multiplications and additions. 

The goal of any DCT architecture is to reduce the number of operations required toperform the orthogonal transform; lt has been reported in [35] that direct or "brute force"implementation of the DCT-11 definition requires N4 multiplications and additions to com­pute one 8 x 8 block; One way to reduce computational complexity to 2N3 multiplicationsand additions per block is taking advantage of the separability property of the DCT (3.5);
as the DCT is orthogonal, implementing a multidimensional DCT implies aplying the 1-DDCT along each dimension [45], for 2D-DCT we first compute the row transformation first
and then the column transformation of the transposed DCT-lD result as shown in figure 3.2;to implement a 2-D DCT of an M x N image M N - point DCTs and N M - point DCTs
are required as shown in figure 3.3. 

1D DCT 
2n + 1 u1r 2m + 1 v1r 

N-1 [( ) ] {M-1 [( 
) ] } S(u,v) = k C(u)C(v) �cos 2N �x(n, m)cos 2M
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Figure 3.2: DCT-2D General Architecture

(3.5) 
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....----,ei.. M - point DCI' 

\._ N - point DCT

Figure 3.3: DCTs required for an M x N image 

3.1.1 1D DCT 

3.1.1.1 Fast algorithms 

This family of VLSI architectures is very efficient in terms of the number of multiplications 
and additions required to perform the orthogonal transform and represent the best option 
for ASIC (Application Specific Integrated Circuit) implementation even though large silicon 
areas might be required. 

The work presented in [32] was the first algorithm to report a meaningful reduction of 
computational complexity of DCT, the algorithm was derived in the form of four different 
types of matrices that were translated into a directed graph suitable for any desired value 
N = 2n 2'.: 2, this graph requires less than ¼ of the required operations of a conventional DCT 
algorithm using Fast Fourier Transform. Chen's Graph is shown in figure 3.4, we can notice 
that the algorithm has a recursive structure, therefore it is suitable for any macroblock size, 
the coefficients a, b, e, d, e, f and g are calculated as shown in equations (3.6). 
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Figure 3.4: Chen's Graph 
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Rao and Kamangar present two types of algorithms for fast implementation of the 2-D 
DCT in [45], the first one is a recursive structure that can be extended for different block 
sizes, the second algorithm is nonrecursive and is tied with an specific block size; both algo­
rithms have the same amount of additions than previous works, so the main contribution is 
to reduce the number of multiplications in order to reduce computational complexity. The 
fixed block size algorithm was proposed because when implementing a DCT is assumed that 
the processor will work only for a previously defined M x N blocks. Both recursive an<l 
nonrecursive algorithms work with all the coefficients at the same time, so, for a 4 x 4 block 
ali 16 "boxes" are used at the same time to obtain the DCT coefficients. 

In [33] a VLSI implementation of Lee's Fast Cosine Transform (FCT) [34] is presented, 
the FCT is similar to Fast Fourier Transform (FF T) in terms or the number of multiplications 
required as the N point DCT is decomposed into two � point DCTs; it is clear that this is 
not the most efficient way to implement the DCT, but it is suitable for hardware implemen­
tation; As the DCT is an orthogonoal transform, is clear that it is completely reversible, this 
means that we only need to invert inputs and outputs of the graph to compute the lnverse 
Discrete Cosine Transform (IDCT) and for that, bidirectional operators must be used. The 
graph is shown in figure 3.5, notice that there are three butterfly stages that involve ali thc 
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coefficients, the remaining stages consist on coefficient multiplication and reordering. 

The Ci factors are calculated using a simple formula: 

1 
ci = 

2 cos �� 

V . o 

�--,--y.s

V 
;-...,,....... ________ . 7

Figure 3.5: Lee's Graph 

(3.7) 

In [35] an operation efficient graph is presented, it requires 11 multiplications and 29 
additions to perform 1D-DCT; the graph structure is shown in figure 3.6; this graph was 
designed by Loeffier et al. based on even-odd decomposition, the algorithm consists in four 
calculation stages. First stage is commonly known as butterfly stage and is basically an 
addition-substraction block, second stage is by far the most complicated stage in this algo­
rithm, in the upper half of data lines a new butterfl.y needs to be performed, the remaining 
four data lines need to be processed as a rotation as shown in (3.8), this graph considers 
three rotation that are translated into nine multiplications and nine additions; In represent 
the inputs of the rotator while On represent the outputs. 

· 

n1r . n1r 

Oo = 10 · k · cos - + /1 · k · sm -
2N 2N 

n1r n1r 

01 = -lo · k · sin - + /¡ · k · cos -
2N 2N 

(3.8) 

In the third stage of the graph, a butterfl.y is applied to odd coefficients, meanwhile a new 
rotation process needs to be applied to data lines 2 and 3; In stage four the even coefficients 
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are left with no change and the remaining multiplications and additions are applied to odd 
coefficients, finally after the four stage transformation, data is rearranged and sent to the 
next process. 
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Figure 3.6: Loeffier's Graph 

rviany other algorithms have been proposed throughout thc years, evcn though many of 
them are very efficient in terms of the number of opcrations required to compute the DCT, 
we can affirm that Fast Algorithms are not well suited for FPGA implementation because 
large routing and interconnection butterflies are requirecl and this leads to extremely long 
propagation delays; This group of architectures also has problems with finite precision arith­
mctic because several rounding and truncation operations are require<l and this causeti a 
serious degradation with finite precision accuracy at the same time that material complexity 
increases [46]. 

3.1.1.2 Polynomial Transforms 

The Polynomial Transform (PT) approach to compute the Discrete Cosine Transform is based 
in the fact that any N - dimensional DCT can be splittecl into a series of 10-DCTs [43], this 
family of algorithms achieve considerable savings on the number of operations compared with 
the RCAs; many polynomial transform architectures require "jJ of the multiplications needed 
in RCAs, the number of additions is also reduced. Sorne PT algorithms are very efficient in 
terms of the nurnber of operations but have a vcry high material complexity, sorne others 
have bettcr computational structurcs ancl flexibility in the choice of dimensional sizes. 

In [44] a 2D-DCT implementation on FPGA using Polynornial Transformation is rcportecl; 
as we know, the direct implcmentation of the DCT definition rcquires N4 multiplications and 
ad<litions for ca.ch 8 x 8 macroblock; the solution proposal consists in a group of N 10-DCT 
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and a butterfly array to avoid memory transposition as shown in figure 3.7; one problem of 
this architecture is the regularity, but in exchange is a suitable option if computational speed 
is a prime. 
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In [47] an algorithm for splitting a 2N point lD-DCT into a set of 2k point type-IV DCTs 
is presented, k is assumed to be in 1 :::; k :::; (N - 1). Figure 3.8 shows both decomposition 
methods, in figure 3.8a the first approach is shown, we can observe that an 8 point DCT­
II is decomposed into one 4 point, one 2 point and one 1 point DCTs type IV; the first 
stage of this decomposition method rearranges input data in order to determine the mul­
tiplication and addition operands in the paired transform stage; it has been reported that 
the 8 point paired transform stage requires 14 additions, the 4 point DCT IV requires eight 
multiplications and twelve additions, the 2 point DCT-IV requires three multiplications and 
three additions. Therefore, this paired transform requires 12 multiplications and 29 additions. 

Figure 3.8b shows the decomposition of an 8 point DCT-II into a 4 point DCT-11 and a 4 
point DCT-IV, the required multiplications and additions to perform this transformation are 
exactly the same than the required for 3.8a; both methods have large butterfly stages and 
then we must assume long propagation delays, the main contribution of [47) is the paired 
transform-based approach for splitting lD-DCT into a number of short 1D transforms with 
the least number of additions and multiplications. 

3.1.1.3 Distributed Arithmetic 

Distributed Arithmetic (DA) is an efficient method to compute inner products when one of 
the input vectors is fixed [48], [49], [38], the main characteristic of DA is that it uses lookup 
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Figure 3.8: 8-point DCT II decomposition 

tables (LUT) to store precomputed multiplication results that must be accumulated in a 
separate stage to obtain the final result, this LUT-Accumulator couple is known as ROM 
Accumulator (RAC); in this way the use of multipliers is avoided and as a result the material 
complexity of the VLSI architectures is reduced. DA-based DCT implementations may use 
the original DCT algorithm, the even-odd frequency decomposition or the recursive DCT 
algoritm to perform the orthogonal transform. 

Any inner product can be represented as 

N-l 

Y = e . x = L c(ri (3.9) 
i=Ü 

where C = {eo,c1, ... ,cN-i} is a fixed coefficient vector, and X= {x0 ,x1, .. . ,xN-d is 
an input vector; assuming that xi is represented in E-bit 2's complement as shown in 3.10 

B-2 
xi = -xi,a-12B -1 + L xi,p2P 

p=O

then, we substitute xi in 3.9 and rearrange the expression as shown in 3.11 

(3.10) 

(3.11) 
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let 

i=O 
N-1 

CB-1 = - L ci xi,B-1
i=O

(3.12) 

Notice that when we exchange the summation order, the initial multiplications are dis­
tributed in a different calculus pattern (equation 3.13) as shown in figure 3.9. 

B-1 

Y= ¿C
p
2P (3.13) 

p=O

The Cj terms depend on the Xij 
values that have 2N possible values, so it is posible

to precompute the results and store them in a ROM whose address port is driven by the 
set ( xo,j, xi,j, · · · , x N-l,j) to retrieve the corresponding Cj val ue; Ali the intermedia te results
are accumulated in B dock cydes to produce the desired Y value. This methodology leads 
to a multiplier-free architecture, in figure 3. lüa the basic ROM Accumulator architecture 
is shown, notice that each retrieved value from the ROM is accumulated and shifted every 
dock cycle to compute the final Y output. The shift accumulator unit is a ripple carry adder 
that adds de ROM content to the previous accumulated result, table 3.1 is an example of the 
ROM content when N = 4. 

In figure 3. lüb the architecture of Distributed Arithmetic with Offset Binary Coding 
(OBC) is shown; OBC is a reordering technique used in Distributed Arithmetic to halve the 
ROM size, input bits are now represented in the range [-1, 1] instead of [O, 1]; any input data 
xi can be re-written as 
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The representation of -xi in 2's complement is 

then 

now we define 

B-2 

-X- = -X- B-12B -l + � �2P + 1! 'l l 

� 
t,p 

p=O

(3.14) 

(3.15) 

(3.16) 
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1 

. ROM : ROM 

(a) Basic RAC (b) RAC with Offset Binary Coding

: 

N 

(e) Partial Sum RAC

Figure 3.10: ROM-Accumulator Architectures 

Xo,j X1,j X2,j XJ,j Precomputed Result 

o o o o o 

o o o 1 C3 

o o 1 o C2 

o o 1 1 C2 + C3 

o 1 o o C¡ 

o 1 o 1 C¡ + C3 

o 1 1 o C¡ + C2 

o 1 1 1 C¡ + C2 + C3 

1 o o o Co 

1 o o 1 Co + C3

1 o 1 o Co + C2 

1 o 1 1 Co + C2 + C3 

1 1 o o Co + C¡ 

1 1 o 1 Co + C¡ + C3 

1 1 1 o Co + C¡ + C2 

1 1 1 1 Co + C¡ + C2 + C3 

Table 3.1: ROM content for N = 4 

: 
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then 

substituting 3.18 in 3.9 

now we define 

for j =J B - l; 

for j = B - l; 

di,p E { -1, +1} 

Y="°' �e '°' d xP - 1 L 2 i L i,p 

N-1 ¡B-1 l 
i=O p=O 

Y="°' � �c-d- sP - ��e 
B-1 ¡N-1 N-1 l 
L L 2' i,p 2 L i 

p=O i=O i=O 

for O :S j :S B - 1 

finally, the Distributed Arithmetic with Offset Binary Coding is defined as 

B-1
Y = L Dp

2P + Dextra 
p=O 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Figure 3. lüb shows the general architecture of DA with Offset Binary Coding; figure 3.11 
shows the detailed architecture of DA with OBC, notice that additional hardware complexity 
must be considered for the exclusive or gate array needed to operate data decodification, one 
multiplexer is used to invert the ROtvI output when p = B - 1, the other multiplexer is 
used to provide the initial value (Dextra) to the accumulator ; additionally two control signals 
are required to drive the rnultiplexers and the XOR array, therefore a finite state machine 
is needed to control de RAC architecture; even this hardware cost is a low price to pay 
considering ROM size reduction of 50%; this allows circuit size reduction, therefore power 
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X¡ 
,) 

X2 ..) 
XN-1,j

S¡ Xo
.,J 

1,� L
-J 

ROM --y 

Figure 3.11: Distributed Arithmetic with Offset Binary Coding 

X1,j X2,j XJ,j Precomputed Result 

o o o - ( Co + C¡ + C2 + C3) /2
o o 1 - ( Co + C¡ + C2 - C3) /2
o 1 o - ( Co + C¡ - C2 + C3) /2
o 1 1 - ( Co + C¡ - C2 - C3) /2
1 o o - ( Co - C¡ + C2 + C3) /2
1 o 1 - ( Co - C¡ + C2 - C3) / 2
1 1 o - ( Co - C¡ - C2 + C3) /2
1 1 1 - ( Co - C¡ - C2 - C3) /2

Table 3.2: Contents of the reduced size ROM with OBC coding for N = 4 
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consumption is reduced as the maximum operating frequency is enhanced, table 3.2 shows 
the content of the ROM for N = 4. 

There are many other architectures for RAC that use sorne kind of ROM decomposition, 
the generalized architecture is shown in figure 3. lüc; notice that the partial product technique 
is achieved by halving the ROM size and merging the partial results to form the number that 
will be accumulated. Area saving can be obtained either by implementing ROM decompo­
sition or by Offset Binary Coding; both techniques offer a similar area saving since they 
eliminate multiplication operations at the expense of a small number of extra additions [38 ], 
every time that a memory reduction takes place we must consider pipelining as an strategy to 
reduce the critica! path for the operation to be performed; ROM reduction can be studied as 

a recursive process that eventually will lead us to a LUT-less architecture where no memory 
is required, the hardware cost of a memory less architecture is a high number of multiplexers 
and full adders and a high number of pipeline· barriers. 

If pixels are coded in 8 bits, pure distributed arithmetic DCT implementation requircs 
8 x 28 x ROM wordsize Kbits of memory, this architecture is shown in figure 3.12; as we stated 
previously, OBC technique is used to reduce memory requirements. Figure 3.13 shows the 
architecture of the DCT using OBC, notice that befare entering RAC modules, there is a but­
terfly stage that computes the even-odd decomposition of coefficients; memory requirement 
for this architecture is calculated as 8 x 24 x ROM wordsize; Assuming a 16-bit word then the 
memory required for conventional DA and DA with OBC are 32 Kbit and 2 Kbit respectively. 

3.1.2 Memory Transposition 

It is clear that an 8-point lD-DCT transforms 64 coefficients, after the first transformation 
we must transpose these transformed cocfficients and then feed them to the second 8-point 
1D-DCT as shown in figure 3.14; we require 6 bits to address 64 words. Let the vectors 
{000000, 000001, • • • , 000111} and { 111000, 111001, · · · , 111111} be the first and last rows of 
the 8 x 8 coefficient matrix, notice that the most significant bits (MSB) identify the row and 
the least significant bits (LSB) identify the column, hence, to transpose the coefficient matrix 
we simply need to exchange the most significant bits with the least significant ones. 

Hardware implementation of the memory transposition process can be easily achieved 
using a single <louble-port RAtv1 (DPRAM); address gencration can be implernented 'vvith a 
six bit counter and a multiplexer array to swap the MSB and LSB blocks as shown in figure 
3.15 [50]. 
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Figure 3.12: Pure Distributed Arithmetic Implementation of DCT 
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Figure 3.13: Distributed Arithmetic with OBC Implementation of DCT 
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3.2. ENTROPY CODING 

3.2 Entropy Coding 

Entropy is a topic widely studied in [2], [4] and [3], let us consider a source S capable of gen­
erating random symbos s1, s2, · · · , sN; digital images and video can be considered as sources, 
in this case si represents one of N possible quantized values for a determined pixel, every
symbol has a probability of occurrence denoted as Pi, and the information within a symbol 
or self information is measured as shown in equation 3.24. 

1 
I(si) = log -

Pi 
(3.24) 

The entropy of a source can be understood as the average information of the source S an
is defined as 

1 
H(S) = ¿Pi log

2 
-

; Pi 

(3.25) 

Frorn equation 3.25 we can observe that if the symbols are distinct thc average number of 
bits to encode is bounded by the entropy, it is also clear that we require a probability model 
to calculate the e11tropy of the source, so in practice the entropy is unknown until we choose 
a distribution to fit data. 

As systern designers we must estimate the probability density function of the data to 
encocle and then rnap all the symbols into a dictionary or table that contains the codewords 
for each symbol, in fact, this process is widely known as entropy coding, the main idea of this 
process is to assign short codewords to high occurring symbols and long coclewords to sym­
bols that have low probability of occurrence; figure 3.16 shows the generic model for entropy 
coding, to perform the entropy decoding we simply need to reverse the flow of operations. 

Input Symbol -
Codeword 

-

mappmg 
Codeword 

•• 

Probability 

density 
function 

Figure 3.16: Generic entropy coder 
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Entropy coding is the last process in the majority of video standards like H.261, H.263 and 
MPEG; the rnain difference between this cornpression process and the DCT is that entropy 
coding is lossless while the DCT is lossy. The entropy coder has two data cornpression­
decompression units: 

l. Run-Length Coder: Compresses an input st.ream representing strings of consecutive
zeros by their run-length, when a zero is detec:ted the RLC sirnply counts the number of
consecutive zeros until the last one is reached or when the counter exceeds the rnaxirnurn
zero run-length. The inverse process is done by generating the appropriate nurnber of
zeros between nonzero data; this coder can be implernented with an ascending counter,
sorne registers and logic gates.

2. Variable-Length Coder: Maps the input data into codewords of variable length ac:cord­
ing to their probability; this process is performed with the expectation that the average
size of a codeword will be close to the entropy of the data source.

Entropy coding can be done using lookup tables based on the statistics of the input 
source [2], but decoding is a complex process because codewords have variable lengths and 
the receiver <loes not know where a codeword begins and where it ends; for this case, Huffrnan 
coding has two interesting properties: 

l. The is only one codeword per symbol, this means that it is irnpossible to have the sarne
arrangement of coding digits for two different messages.

2. No codeword is a prefix of another code, then, each source syrnbol is a unique leaf of a
decoding tree.

3. 2.1 Huffman Coding

Huffrnan Code was developed in 1952 [51] to reduce the amount of bits required to transrnit 
a rnessage, since then it has become the rnost widely used variable length coder and has been 
included in almost every irnage and video cornpression standard; Huffrnan Code offers high 
compression ratios and has the advantage of being lossless [52, 53]. Huffrnan coding requires 
a code word table ( also known as dictionary) that contains the mapping inforrnation between 
read data and coded words; frequent data is encoded using short length codes, as the data 
frequency decreases, the symbol length required to represent data increases. To build the 
table a complete scanning of the image to be compressed is required in order to obtain the 
frequency components that must be ordered frorn highest to lowest to propperly assign the 
symbol. 

A simple iterative process must be followed to build the huffrnan tree that is required to 
construct the Huffman code: 

l. Sort the symbols according to their probabilities
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2. Merge the two symbols with smaller probabilities

3. Repeat step two until a set of one element is achieved

Far n symbols, a Huffman tree has n - l nades, so the decoding process can be performed 
by tracing the decoding tree until a leaf is reached; figure 3.17a is an example of a lookup 
table that maps the incoming data into a unique codeword, figure 3.17b shows the binary 
tree required to decode the information. The output of the VLC when the input sequence 
is s3s6s5 will be 1001110110 as we simply substitute the input symbol by the corresponding 
codeword; in the decoder, if we have the following stream 11111011001011110 the decoded 
output will be sss2s3s4s6. 

si-- 00 
o s 1

o 

s2
--

01 
VI s2 

s3-- 100
o s3

o 

s4
--

101
s4

s5 
--

11 O 11 
o s5

s6
--

1 o s6111 O 
III 

s
1

-- 1111 O 
o s7

SS 
--

11111
s8 

(a) Encoding LUT (b) Binary Tree

Figure 3.17: H uffman Coding 

In general the average codeword length is defined as shown in equation 3.26, where li is the 
length expressed in bits of the corresponding codeword of symbol si; the average codeword 
length is then a measurement of the compression ratio. 

(3.26) 

There are two known methods far eliminating pre-sean process in real time applications: 
the first method is the static Huffman Coding that consists in a default code word table, the 
main clisaclvantages of this method are 

l. The compression ratio is not efficient as the dictionary is built using frequency valucs
that might not correspond to the image that must be compressed and
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2. The image must be scanned twice to compre.'>s real data, making real time applications
difficult to implement.

The second strategy is using Adaptive Huffman Codes, this method requires an adap­
tively constructed table that must be maintained both at the sender and the receiver side, 
as the frequency distribution of symbols changes, frequent symbols could be mapped onto 
long codewords causing a degradation in compression efficiency [52]; encoding speed is slow 
because many search and replace operations must be performed along table swapping. Nev­
ertheless,the greatest disadvantage of this method is that material complexity is too high, it 
requires vast FPGA resources to address all the possible hardware configurations that could 
be used while compressing an image. 

The VLC encoder proposed in [54] is based on programmable logic arrays to store Huff­
man tables, instead of PLAs we can use ROM, RAM or even CAM devices, figuré 3.18 shows 
the VLC encoder, notice that there are two registers used to buffer the output data, the 
length of each codeword is calculated in a four bit adder that controls a barrel shifter that 
places the output from the memory device next to the current bit stream, coded symbols are 
then packed in a 16-bit string, so, when the sum of the codelengths is greater than 15 a carry 
out signal is generated in the adder, this signal triggers the output of the upper register, then 
the process continues in the same way until no further data has to be coded. Table 3.3 shows 
the process described befare, for this example we use the encoding table 3.17a, the codeword 
assigned to the input symbol is underlined to facilitate comprehension. 

Input Upper Lower Accum Control 
Register Register Signal 

S7 1111000000000000 0000000000000000 5 o 

S5 1111011000000000 0000000000000000 8 o 

S2 1111011001000000 0000000000000000 10 o 

S3 1111011001100000 0000000000000000 13 o 

Sg 1111011001100111 ll00000000000000 2 1 
S4 1110100000000000 ºººººººººººººººº 5 o 

Table 3.3: VLC encoder operation 

The VLC decoding process is more complex than encoding because there is no way to 
identify whether a symbol ends and the next starts in the incoming data stream; in [2] a 
classification of VLC decoders is presented, in general there are constant input-rate (CIR) 
decoders and constant output-rate decoders (COR), the difference between both families is 
that CIR decoders have a variable output rate and the COR decoders have a variable input 
rate. 

In the simplest configuration, CIR decoders process input data serially; begining from 
the root it follows the branches of the decoding tree until a terminal node is reached, when 
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the codeword is completely decoded, the process restarts to continue with next codeword 
decodification; in fact, this process can be modeled as a finite-state machine (FSM) where 
each node is a state of the FSM, a simple control signal can indicate if the state is the end 
of a sequence or not, so, if we are to implement this kind of decoder we must consider N - 1 
states, where N is the total number of nodes of the decoding tree. Figure 3.19 shows the 
proposed architecture in [2] for a Huffman decoder using a ROM based FSM, notice that a 
control signal is required to clear the address register once a codeword has been decoded. 

In bit stream 

.,, ... 
.,, Q) 
Q) .... 

... .,, 
"O·-
"O bO 

<t: � 

t Clear 

Source symbol 

ROM 

Control 
signal 

Figure 3.19: Memory based Huffman Decoder 

:í ... 
o.�.... <.¡..¡ 
;::l ;::l 
o .D 

Under this decoding scheme the average time to decode any given codeword represented 
on a tree with n symbols is log2n cycles, and the throughput is determined by the reading 
cycles of the memory device; performance can be upgraded if multiple bits are traced at thc 
same time over the decoding tree, and the average decoding time is affected by the number 
of simultaneous bits that are processed in the following way log2 n

t b
'
t .concurren 1 s 

COR decoders are simpler that CIR, but their main disadvantage is that they do not 
provide a fixed decoding rate; moreover, if we want to process multiple bits concurrently, 
the Huffman tree has to be reconfigured, figure 3.20 shows the architecture for VLC decoder 
proposed in [54]. 

Just as the VLC encoder, the decoder utilizes a set of VLC tables, a barrel shifter, two 
registers and one 4-bit adder, the upper register is 16-bit long as the maximum codelength is 
assumed to be also 16-bit so that one codeword can be decoded per cycle; we must remember 
that a codeword can be splitted into two adjacent input streams, so, this decoder operates 
in two segments at the same time, in this architecture, the barrel shifter is a window that 
slides across the contents of both lower and upper registers, the shift operation is controlled 
by the adder that simply accumulates the length of the decoded codeword. 
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Every cycle, the output of the barrel shifter is compared with al the entries in the memory 
device, when a match is found the rnernory outputs the corresponding source syrnbol and the 
length of the decoded codeword is shifted both to the beginning of the next codeword and 
in the barrel shifter; if the adder result is greater than 15, then it resets, the carry out serves 
as a control signal that indicates whether the upper register has been fully decoded or not. 
When the logic value of the carry out is '1' the lower register is transferred to the upper one 
and a new 16-bit segment is stored in the lower register, this process continues until there is 
no further codeword to process. Table 3.4 shows this process, the output of the barrel shifter 
is underlined; notice that it is always 16 bit long, when the carry out of the adder changes 
from 'O' to '1' the contents of the lower register are moved to the upper register and a new 
stream to decode is stored in the upper register. 

Upper Lower Accum Control Output 
Register Register Signal 

1111011001100111 101010100101111 O 5 o S7 

1111011001100111 1010101001011110 8 o S5 

1111011001100111 1010101001011110 10 o S2 

1111011001100111 1010101001011110 13 o S3 

1111011001100111 101O10100101111 O 2 1 Sg 

1010101001011110 0010111100001101 5 o S4 

Table 3.4: VLC decoder operation 

3.2.1.1 Known lmplementations 

In [55] the necessity of a high-speed irnplementation of Huffman decoders is presented; two 
architecture farnilies are studied to solve this problern, tree-based architectures and Pro­
grammable Logic Array architectures. The first approach consists of a hardwired tree­
traversing where the branclüng function of each node is performed by a 1-to-2 demultiplexer 
and a register to store the source syrnbols associated with every terminal node, the architec­
ture is regular and dedicated but the material cornplexity is too high for large codebooks, 
figure 3.21 shows the architecture of a tree-based huffrnan decoder; pipelining can be intro­
duced to reduce the critical path by partitioning the entire decoder into n pipeline stages, 
each one containing one level of the binary tree. 

The architecture can be reduced by combining the dernultiplexer-register pairs in a single 
control/storage unit, in this case, the decoder can be irnplemented cascading sorne read only 
memories; as expected, multiple bit streams can be processed in parallel when the pipelined 
architecture is employed; lf the stream is of infinite length, the throughput is always one code 
per dock cyde, so the critical path is very short, hence it is suitable for high dock rates, 
this characteristic is independent of the alphabet size and the maximurn codeword length; 
as stated before, the main disadvantage of the architecture is that material cornplexity can 
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be very high. If the length of the stream is finite and constant then the pipeline speedup 
decreases as sorne blocks may run out of data while others still have information to decode. 

The PLA-based architectures proposed in Chang's work are constant-input rate and 
constant-output rate configurations, the contribution in this field is a variable-1/0-rate ar­
chitecture; this configuration is an extension of a constant-output rate architecture to decode 
N codewords per dock cycle whenever is possible; they use a PLA as a substitute of ROM 
devices employed in [54], so the FSM required to operate the architecture is easily coded 
with hardware description languages (HDLs), figure 3.22 shows the variable input-output 
rate architecture for a Huffman decoder. 
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Buffer 

indicators �-� 

Figure 3.22: Variable 1/0-rate architecture 

An asynchronous VLSI architecture for Huffman codees is presented in [56], this architec­
ture is a hardwired Huffman coding and decoding tree using multiplexers and registers, this 
work claims that is a compact and fast implementation when the symbol dictionary is already 
known, when the symbol distribution changes the tree is updated using asynchronous logic. 
The main problem of this approach is that it cannot take advantage of the fast generation 
of short Huffman codewords, so additional circuitry is required to implement dummy nodes 
and counters making this architecture unfeasible for large codeword tables. 

In [53] a simple scheme for mapping Huffman trees into memory devices is presented; a 
discussion on optimal Huffman code trees is taken into account, this kind of binary trees can 
always be represented as full binary trees, it <loes not matter if the tree grows to the left or 
to the right as long as every node has exactly two children nades; any binary tree can be 
transformed into a canonical tree without increasing the average code length [57]. 

Figure 3.23 shows the proposed architecture, memory device M1 stores a pointer of the 
symbols and their boundaries, every location of A12 stores a group of four pointers and bound-
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aries; both memory devices shall be initialized before the coding or decoding process begins. 
The Arithmetic-Logic Unit consists of two 8-bit adders and one comparator. 

8 
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9 

Figure 3.23: Park's Codee Architecture 
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The stack is used to store the intermecliate encoded outputs and to reverse data at the 
end of each encoding cycle; registers Rpr and R8 are used for tree traversing in the decoding 
process, two flip-flops can be used to implement this registers, finally, there are two counters, 
Cs is used to accumulate the length of the coded syrnbol and to store the number of symbols 
up to the previous traversing leve!, it is also responsible to send thc control signal rcquircd 
to output the symbol while decoding, CL is used to access memory device M2 ; notice that 
bidirectional 1/0 ports are used in this implementation. 

In [58] a Content-Addressable Memory (CAM) based architecture far dynamic Huffman 
Coding is presented, we already know the difference between-static and adaptive H uffman 
coding schemes and we must remember that adaptive scheme reaches a better compression 
result if the symbol distribution of incoming data is unccrtain, if the distribution is known, 
the best option is the static coding scheme, according to [59] dynamic Huffman encoding 
consists of two procedures: tree tuning and cacle generation. In [52, 60, 61] other CAf\-1 
based architectures for adaptive coding are presentecl; three problems with adaptivc cocling 
are identified and discused: 

l. Low compression during start-up phase.

2. Frequent symbols will be mapped onto long codewords when the frequency distribution
changes.

3. Encoding process is slow, many search and replace opcrations must be performed when
the table is swapped.
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The proposed architecture for Huffman coding is presented in figure 3.24; notice that it 
has three main blocks. The encoder block is composed of a CAM for the symbol table and 
a RAM for the codeword table, everytirne the CAM receives a syrnbol it is cornpared and 
an address is sent to the RAM that outputs the corresponding codeword; notice that two 
codeword tables are utilized, the active table generates the codewords while the shadow table 
prepares an optirnized version of the active table, when the cornpression ratio becomes lower 
than a certain threshold the tables are swapped. 

symbol 

:
-· - -------- - - - - --- Encoder ------------ - -------- - - --AAM- ---; 

' ' ' ' · scarch rcsult Active • ' >-�--- ----- '
: :e: table : 

,-------- Outputbuffer -------; 
, 

� 
1 codeword ; 

FIFO CAM � 
f--- -+--+- --------;� 

"' Shadow 
�-.--� 

Buffer 

-- - - - - - - - - - - -- - ---------- - -
table 

---- - ---------- -- - - - - --

: Frcquency 
circu1t 

: ______ Reconslructor ·-----� 

Figure 3.24: CAM based Architecture 

codeword 

The reconstructor block builds an optimized version of the shadow table, everytirne the 
CAM finds a match, the corresponding address is also sent to this block where a match 
counter for that specific symbol is increased. lf the syrnbol count value is beyond a certain 
threshold level then the assign module generates an optirnized Huffman code according to 
the new frequency distribution of input symbols; as the output of the encoder block has 
variable length a FIFO rnust be placed after the codeword table to rnanage the variations in 
data arnount, when the capacity of the FIFO is almost exhausted we must assurne that the 
compression ratio has become to small, therefore it will be necessary to switch to the shadow 
table. This architecture requires a counter for every syrnbol and a set of control signals that 
must be propagated to the entire array of counters, hence the material cornplexity of this 
solution is too high, even though high operating frequencies are reported there is not a single 
report table that describes how many Logic Elements or how many LUTs are required to 
implernent this architecture. 

In [60] a small change is made over the architecture shown in 3.24, instead of a single port 
CAM and an output buffer, a multi-port CAM is used and the output codeword is controlled 
by a series of switches connected to both the active and shadow table; in [61] the self op­
tirnizing feature for Huffrnan encoding is presented; this architecture consists of two blocks, 
the encoding block and the reconstructing block. in the former one CAM and two RAMs are 
used, when a symbol arrives and is compared in parallel, the CAM outputs at least one match 
from the symbol LUT and exactly one match is output from an input pattern table; then ali 
matched symbols are encoded with the same codeword in parallel and a match-flag enables 
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all the corresponding register. If a match flag has already a valid condition, the encoding 
block ignores the stored symbol and continues to the next address to select the next input 
symbol. The reconstructing block of keeps a high compression ratio for Huffman coding, 
the frequency distribution is calculated by using multiple-CAM matches, i f  it is required the 
new codeword is assigned in the shadowtable according to the recent distribution of input 
symbols, when the compression ratio decreases the active table is swapped with the shadow 
table, so that the coding efficiency is always high. 

A pipelined parallel Huffman decoder is presented in [62], this is a constant output-rate 
decoder, the main challenge with the proposed architecture is that the symbol decoder and 
the length decoder operate in parallel on the same code, therefore the code length is not 
available when the decoding process begins, making the process too complicated; to solve 
this drawback a buffer can be used in front of the symbol decoder so that the code length 
is known as the decoding process starts. Figure 3.25 shows the proposed architecture, the 
codelength is evaluated in the pipelined length decoder; every dock cycle one codelength is 
compared until a match is found, when this happens, the code has been shifted out from the 
shift register and stored in a register that feeds the symbol decoder. When symbol decodi­
fication process begins the length decoder starts to examine the next code and the process 
iterates until there is no symbol to decode. The rnajor disadvantage of this architecture is 
that symbol decoder is designed for a worst case dock rate of Ís,max = Íc1k in order to be able 
to handle succeding one-bit codes; this causes an skew effect as the dock rate in the symbol 
decoder is lower when longer codewords are decoded. 

In [63] an irnplementation of a Huffman Coder is presented, figure 3.26 shows the pro­
posed architecture, notice that input data must be available in a memory device consisting on 
twelve 32-bit length locations, then data is transferred to an occurrence calculator consisting 
on simple adders and then to the encoding block whcre a codeword is assigned; thc encoding 
block has two inner blocks, an adder that calculates the sum of values that pass through it 
and a sorter that arranges incoming data in descending order to assign propper codewords. 
Finally the decoder block receives incoming codewords and searches for the associated symbol. 

3.3 Sorting Algorithms 

In computer science terminology sorting is defined as the process of rearranging a sequence 
of values either in ascending or clescending order [64], sorting algorithrns havc both practica! 
irnportancc and theoretical interest, in fact algorithrns for sorting data stored in memory 
devices have been the focus of extensive research, in general, sorting processes have a huge 
number of practica! applications; most sorting algorithrns are suitable for software applica­
tions rather than hardware ones, even with parallel processing sorting is a complex task that 
requires lar ge silicon areas and interconection paths [ 65]. 
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Sorting algorithms are designed to process large amounts of information at once, so it is 
not wise to use them if the number of values to sort is small as the material complexity will 
be to high. These algorithms are divided into two classes: serial and parallel, in the former it 
is assumed that values arrive in a serial fashion to the sorting circuit in such a way that the 
new value needs to be inserted in an already ordered list [66, 64]; in the latter all the values to 
be sorted are processed at the same time within an interconnected network [67, 68, 69, 70, 71]. 

As we know, to achieve high throughput rates, several operations must be performed 
simultaneously, even in multiprocessor architectures input-output operations must be con­
current with processing operations; the main problem in the design of these architectures is 
the interconnection between the various parts of the system so that all data transfers between 
modules can be accommodated within the selected technology, either DSP, FPGA or ASIC; 
High speed buses and wired matrixes can be used to provide interconnection betwe�n system 
modules but in the former the speed of available hardware limits the performance while in 
the latter large interconnection paths and crosspoints are required according to a material 
complexity study presented in [72]. 

3.3.1 Sorting Networks 

3.3.1.1 Processing Element 

The basic element of Sorting Networks is the compare-exchange element (CE) (figure 3.27), 
it receives two 9-bit numbers over inputs A and B and outputs the mínimum number in 
the L port and the maximum number in the H port, the arrow tail indicates whether the 
processing element is ascending or descending. 

► 

► 

(a) Ascending Sorting Element (b) Descending Sorting Element

Figure 3.27: Compare-Exchange (CE) elements for Sorting Networks 

3.3.1.2 Bubble Sort 

This is a well known algorithm based on the succesive paired comparison of adjacent elements 
of the list, in this way the small values emerge from the array while the greater values sink 
into the bottom of the array, the sorting process is depicted in figure 3.28; notice that we 
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need to compare cvery element with the next one, but when we finish to run this process 
there will be unsorted values as the comparison is only between two numbers at a time and 
we need to run this process over and over again until the array is completely sorted; therefore 
to achieve hardware implementation of this algorithm we require compare-exchange elements 
arranged as shown in figure 3.29. 

2 3 

[:El 
1 f:El 
1 1 f:EJ 

1 1 
comparison direction 

Figure 3.28: Bubble Sorting Process 

This basic network has the following fcatures: 

N · (N - 1)
Number of CEs =

2

Vertical CE layers = N 

N 

(3.27) 

(3.28) 

Figure 3.30 shows the sorting network for N = 16 items, it is clear that bubble sorting 
networks are easy to implement in hardware but they are very big arrays that are not effi­
ciently interconnected, so this approach is based on brute force processing as it requires N 
dock cycles to sort an N item array; for small sets of values it could be useful, but once 
again, it is not the best option. 

3.3.1.3 Even-Odd Sorting Network 

This sorting method was proposed by Batcher in [65], this network is based in the fact that 
two ordered lists of numbers can be combined or merged into a single ordered list; the even­
odd sorting network is based on iterative merging stages that can be applied to an N-item list. 
The rnain goal of the network is to create srnall sorted lists of size 2, 4, ... , N during succesive 
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(a) 4 item sorting network

(b) 8 item sorting network

Figure 3.29: Bubble Sort Network 
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Figure 3.30: 16 item Bubble sorting network 
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processing stages, figure 3.31 shows the iterative rule of the even-odd merging network, we
can observe that there are two sorted lists A = { a 1 , a2, ... , ªª} and B = { b1 , b2, ... , bt}, these
lists are fed into the even merging network and into the odd merging network; lists C and D
are generated as outputs of the merging blocks; in this case, C is formed by odd-numbered
items of lists A and B, list D is formed by even-numbered ones, then lists C and D are
merged to obtain the descendingly sorted list E [50], equation set 3.29 shows the iterative
rule of the even-odd sorting network.

e¡ = C¡ 

e2i = min(Ci+1,dJ
e2;+1 = max(ci+1,d;)
es+t = dt

i = 1
, 
2
, 
· · · (3.29)

As we can see, two number merging is done by a single compare-exchange element, then,
the merging network of faur items is constructed using two 2-item merging networks and the
iterative rule as shown in figure 3.32a, as stated previously the condition to use a merging
network is that both lists are sorted, so, to implement a 4-item sorting network we need to
place two compare-exchange elements befare the -i-item merging network as shown in figure
3.32b. A sorting network of 8 items is shown in figure 3.33, notice that we require four
2-item merging netwoks (comparison-exchange elements) and two 4-item merging networks
befare entering the 8-item merging network; this means that the algorithm is recursive and
we must distinguish between a sorting network and a merging network. Merging net­
works require two ordered lists as inputs to produce an ordered output list, sorting networks
do not require input lists to be ordered as they will be propperly accomodated throughout
the merging stages.

Figure 3.34 shows a sorting network far 16 numbers and figure 3.35 shows a sorting
network for 32 numbers, notice that as we increase the size of the input lists the number of
compare-exchange elements in merging netwoks also increases as shown in equation 3.30

Number of CEs = log2 ( �) · � + 1 (3.30)
We must remember that merging networks are useful when inputs are previously ordered

lists of numbers, so we require additional compare-exchange elements to sort 2N numbers
that will serve as inputs of the merging networks; the number of compare-exchange elements
required in a N-item sorting network are:

Number of CEs = : · [(log2 
N)2 

- log2 N + 4] - 1 (3.31)
As the even-odd sorting network is based on an iterative fashion we require sorne layers

of comparison-exchange elements to sort a ranclom list of numbers.
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(a) even-odd merging network (b) even-odd sorting network

Figure 3.32: 4-item merging and sorting networks 

Figure 3.33: 8 ítem sorting network 
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- ----------',

Figure 3.34: 16 itern sorting network 

� 
. 

l CE l 
(1 + log2 N) · log2 Nert1ca ayers =

2 
(3.32) 

Notice that the smallest or greatest item (depending on the sorting mode) takes log2 N 
to be known because of the merging nctwoks structure; also, pipelining can be introduced 
to reduce the critical path, but we must be careful when implementing such a strategy; it is 
known that we cannot use pipeline barriers between all the stag.es of the algorithm because 
there is a point where pipelining not only <loes not help to reduce critical path but it decreases 
the maximum operating frequency. 

3.3.1.4 Bitonic Merging Network 

This sorting network is also based on Batcher's work as stated in [64]; a bitonic list is ob­
tained by means of the concatenation of two lists, one in ascending arder and the other in 
descending arder. Consider A = { a1, a2, · • · , aN} a bitonic list that can be splitted into two 
lists as shown in 3.33 and 3.34, these two lists are also bitonic and 3.34 contains the smallest 
value of the N-item list; the iterative rule of this network is shown in figure 3.37. 
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Figure 3.35: 32 item sorting network 
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Ascending list = { min ( a1, ªll-+I) , min ( a2, ªll-+2) , · · · , min ( ªll-, aN)} 
Descending list = { max ( a1, ªll-+I) , max ( a2, ªf+2) , · · · , max ( ªf, aN)} 

(3.33)
(3.34)

Just as the even-odd merging network, the smallest bitonic sorter is a compare-exchange
element, figure shows a four item sorting network, notice that before entering the merging
stage, the initial list is divided into two new lists; figure 3.38 shows a sorting network of 8
items, as in the even-odd sorting networks, this algorithm is recursive and after a two ele­
ment list has been sorted, then 4 ítem merging networks are required to output 8-item lists
that will be fed into 16-item merging networks an so on until they are merged into a single list.

Figure 3.36: 4 ítem bitonic sorting network

The required number of compare-exchange elements required in an N-item rnerging net­
work is

N N umber of CEs = 
2 

· log2 N (3.35)
The number of CEs increases if we configure a sorting network, equation 3.36 shows the

-required number of CEs for N-item sorting networks.

N b f CE N · log
2 

N · (log2 N + 1)um er o s = 2 (3.36)
Finally, the number of vertical layers of CE elements is expressed in equation 3.37, this al­

gorithm is suitable for pipelining but we must be careful and attend the same recomendations
of even-odd sorting networks.

. ( 1 + log2 N) · log
2 

NVertical CE layers = 2

3.3.2 Serial Sorting 

(3.37)

Serial sorting or insertion algorithms are based in serial data processing fashion, that is, evcry
numbcr or data to be sorted arrivcs one by one to a N clement array whcre it is inscrtcd
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Figure 3.37: Iterative rule for Bitonic Merging Networks 
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Figure 3.38: 8-item bitonic sorting network 

in the corresponding position, there are sorne reported architectures in literature for serial 
sorting. For the purpouse of this work we are going to describe in general the most common 

ones. 

3.3.2.1 Insertion Algorithm 

This algorithm is based on the sequential comparison of the item we want to include in an 
array with every item already inserted in the sorting architecture, for an insertion to be 

succesful we require to perform the operations on an already ordered array; when a ncw 
element arrives to the array it is compared with the first element of the ordered list if it 
is smaller it is inserted into that position, if it is greater then it is passed to the second 
element and so on; if the arriving element is inserted, then the previous value of that posi­
tion is then compared to the following item producing a shift operation, figure 3.39 shows 
the single insertion algorithm, notice that we do not require compare-exchange elements, 
we can mana.ge the operations with a simple comparator that outputs the largest number 
of two input and generates a control signa! that controls the register assigned to that position. 

Figure 3.39: Single insertion architecture for N elements 

This sorting algorithm requires N comparators and has a processing time of 
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N · (N -1) 
Processing Time = 

2 
(3.38) 

3.3.2.2 Parallel Insertion 

This algorithm compares the arriving element with all of the previously inserted elements 
at the same time, there are three posibilities when performing such a comparison shown in 
figure 3.40, In the first case, when the inserting element is smaller than the elements to its 
right we insert the value into that position and shift all the elements to the right; the second 
case is presented when the inserting element is larger than the element of the ith position but 
smaller than the element in the i + 1 position, when this occurs, the new element must be 
inserted in the (i + l) th position. Finally, when the inserting element is larger than the last 
element we simply insert the value in the last position and no further operations are required. 
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Figure 3.40: Cases of parallel insertion 

■ Case 1

■ Case2

■ Case3

The parallel insertion architecture is shown in figure , notice that the comparison element 
consists of a simple comparator that outputs the smalles number, a multiplexer and a register 
to hold the value for that particular position. The multiplexer that controls register's input 
is driven by the output of the current register i and the output of the previous register i - l. 
lf the inserting element is smaller than the element of register i the output of the comparator 
will send a control signa! to the multiplexer to select the inserting element to be stored in the 
i

th position; the output of comparators i and i + 1 will select the element previously stored 
in the ith position to be stored in the register assigned to i + 1 position, that is, the stored 
elements will simply be shifted to the right as shown in figure 3.41. 

3.3.2.3 Dichotomic Insertion 

This algorithm compares the inserting element to the middle element of an already sorted 
list, then, depending on the result of this compariso, the inserting element is moved either 
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lnscning E::lcmcnl 

Figure 3.41: Parallel insertion architecture 

to the upper half orto the lower half of the array, then, the inserting element is compared to 
the middle element of the corresponding array half, this process continues until there is only 
one value to compare with. 

The comparison elements used in this structure have a special fcature, only the inserting 
element is routed to the high or low output dcpending on the comparison result, this sorting 
algorithm requires a certain number of comparisons befare the array is cornpletely orclered, 
equation 3.39 shows the requircd number of comparators and equation 3.40 cxpresscs the 
number of comparator layers. 

Numher of Comparisons = N · log
2 

N (3.39) 

Comparator Layers = log
2 

N (3.40) 

The greatest disadvantage of this algorithm is that pipelining cannot be used to accelerate 
the sorting process as we must wait for the current inserting elcment befare starting the next 
element insertion, the reason is that middle elements of the array must be updated. 

If we desire to obtain the smallest N values from a list of M items_ (where M > N) we 
must add an extra compare element and a multiplexer, so that when we compare the largest 
elements of the list with the inserting element, the latter is either inserted in the penultimate 
position, the last position or not inserted at all, figure 3.42 shows the architecture for an 8 
item list. 

3.4 Quantizer 

Intra coded frames have their DC coefficients coded differentially with respect to thc previous 
block of the same type unless it belongs to another slice, in which case the DC coefficient is 
differentially coded with respcct to 1024, the range of unquantizecl coefficiets is 

Qlevels = {ü, 1, 2, · · · 8 X (2N - 1)} (3.41) 
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Figure 3.42: Dichotomic Insertion Architecture for N = 8 
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Which means the range of differential values for N = 9 is [-4088 to 4088], intra DC differ­
ential coefficients are quantized with a fixed step size of 8, thus, quantization is implemented 
by dividing by eight and rounding to the nearest integer; to accomplish this task in hardware 
we must consider that DCT coefficients are 12-bit long, so dividing by 8 irnplies a simple 
three-position right shift, no rounding stage is needed as the shift operation is performed 
over binary integers, this simple process is shown from left to right in table 3.5 

Decimal Hexadecimal Binary Right shift Quantized Coefficient 
-1511 A19 101000011001 101000011 -188
-176 F50 111101010000 111101010 -22
510 lFE 000111111110 000111111 63 
933 3A5 001110100101 001110100 116 
1977 7B9 011110111001 011110111 247 

Table 3.5: Quantization 

T he VLSI implementation of quantization can be achieved using a harclwired shift to crop 
the three least significan bits of the 12-bit word as shown in figure 3.43; as the quantization 
is a lossy process, to reverse the process we could simply fill with zeros to complete the 12-bit 
word length, but in order to add sorne randomness in the process we propase the use of 2-bit 
logic gatcs to generate the required least significan bits as shown in figure 3.44 

DCT Coefficient 

DCT Quantized 

Coefficient 

MSB 

3. 5 Predictor 

LSB 

12-bit word

9-bit word

MSB LSB 

Figure 3.43: Quantization Process 

Commonly two consecutive frames of a sequence are very similar as they are temporal varia­
tions either in the foreground or in the background of an imagc [4, 3, 2], this fact is the ba:'iis 
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Figure 3.44: lnverse Quantization Process 

of Motion Compensation, where a M x N frame is coded differentially with respect to another 
frame; in most video coding standards frames are divided into blocks of n x n pixels as it is 
easier to process small groups of adjacent pixels rather than processing the entire frame at 
once [73]; typical values of n are 4, 8 and 16. The resulting blocks of the segmentation of the 
current frame are called reference blocks or source blocks; the process of finding a block in 
a different frame that best matches the reference block is known as Motion Estimation, the 
motion vector points to the position of the best matching block within a rectangular area 
around the position of the reference bloc� called search window. Motion Estimation is the 
most computationally intensive component of coding algorithms [74], it could consume as 
much as 75% of the total processing power of a video codee. 

Figure 3.45 shows the process of block matching, notice that the search window extends 
on both sides over � pixels, the shadcd square represents the source block and the motion 
vector is representcd in red. 

Motion estimation is a highly dernanding task in terms of computational operations, there 
are two great families of Motion Estimators, one is based in the Block Matching Algorithm 
(BMA) [75, 76, 77] and the other is based on a Hierarchical Search Algorithm (HSA) [78, 79]; 
full search algorithrns have high material complexity, but the control logic is simple and 
suitable far hardware implementation as their structure is highly regular [73], robust and 
has fixed operation steps, but we must take into account that large silicon areas rnight be 
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required to achieve significant speed; hierarchical search algorithms emerged as a solution to 
reduce the vast number of operations required for full search BMAs, this drastical reduction 
carne along with a complex control logic, HSA data flow is not regular, as it is not a sequen­
tial process, hardware implementation of HSA must have low latency components to achieve 
high throughput rates. Both families use many algorithms to determine the motion vec­
tor, most common algorithms are Mean Absolute Error (MAE), Sum of Absolute Differences 
(SAD) [80], G lobal Elimination Algorithm (GEA) [81) and Mean Absolute Difference (MAD). 

3.5.1 Full Search Block Matching Algorithm 

To estímate a motion vector using block matching we must remember that the frame is divided 
into n x n pixel blocks, for each source block a corresponding matching block is sought within 
a search window surrounding the source block as shown in figure 3.45, as mentioned before, 
the search area regularly extends on both sides over the half of the distance from O to n,
for notation purpouses we will denote the absolute distance from -� to � as m, so that the 
search area contains (n + m)2 pixels [73]; the distance from the source to the corresponding 
block is written as 

n n 

k=l l=l 

(3.42) 

Term x1 represents the source block pixel and x1_1 represents the previous frame pixel, 
(k, l) are simply the pixel coordinates within a search block and (b..i, 6.j) represent the 
components of the vector that corresponds to the compared block; these components are 
defined over the search window as shown in 3.43. 

D..i = [-m · · · -1 O 1 2 • • • m] 2' ' ' ' ' ' ' 2 

D..y
· = [-m · · · -1 O 1 2 · · · m] 2' 

' ' ' ' ' ' 
2 

(3.43) 

The absolute value of x represents the largest number that is less or equal to the real num­
ber x, so (m + 1)2 distance measures must be calculated per block; Motion vector (b..i, b.j)* 
is in fact a displacement vector where D (b..i, 6.j) is mínimum 

(6.i, 6.j)* = min--1 
D (6i, 6.j) (3.44) 

Just as we did with the DCT, we can decompose the full search block matching algorithm 
to parallelize operations and accelerate calculations, De Vos describes 3.42 as a set of nested 
loops that can be processed in any order; if we calculate in parallel two of these loops the 
architecture can be arranged as a two dimensional array of processing elements that accumu­
late the absolute difference values; if we decide to calculate one loop at a time we will obtain 
a linear array architecture. In [73] two types of arrays are described, in type 1 array the k 
and l loops are parallelized and mapped into hardware, the absolute difference values that 

90 



3.5. PREDICTOR 

correspond to one distance measure are calculated concurrently in n2 processing elements, 
after (m + 1)2 clock cycles all distance measures for tii and tij are calculated; figure 3.46 
shows type 1 array computation, notice that all possible positions of the previous block are 
considered within the search area. 
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Figure 3.46: Type 1 Array for Block Matching Algorithm 

For type 2 array tii and tij loops are mapped into hardware, this implies that one pixel 
x1 (k, l) is treated in each processing cycle; this array has (m+ 1)2 processing elements, each of 
them corresponds to a specific displacement vector; after n2 steps all the pixels of the current 
block are processed and (m + 1)2 distance measures are available simultaneously, figure 3.47 
shows the computation sequence required for type 2 arrays. Both array types are Systolic 
Array Processors [82] this architectures process algorithms with few different instructions 
but high computational and data rates; this means that they are restricted to the algorithms 
they were derived from; to achieve an optimum performance the conditional portions of the 
algorithm are implemented in reconfigurable hardware ancl the fixed parts are implemented 
in dedicated hardware, a reported implementation of FB1\1A can be found in [83, 84, 85]. 
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Figure 3.47: Type 2 Array for Block Matching Algorithm 

3.5.2 Hierarchical Search Algorithm 

As mentioned befare, full search block matching algorithm architectures involve massive com­
putational efforts and high material complexity [86]; computationally speaking, Hierarchical 
Search Algorithm architectures are simpler and reduce the amount of operations required to 
find a motion vector than BMAs, their greatest disadvantage is that they require complex 
control logic, in exchange they are used to reduce the amount of redundant block matching 
operations. 

HSA technique works with a multi-step search algorithm through successive approxima­
tions of the best matching block; HSA is based on the assumption that movement within a 
sequence must be smooth; !et us consider a N x N block centered in (O, O) as shown in figure 
3.48, also take into account a maximum pixel displacement p, the mean absolute difference 
(MAD) of the blocks within a search area delimited by d = (p + 1)/2 is calculated, pixels 
labeled as 1 identify the leftmost top pixel of each block, the mínimum distortion position 
is then labeled as I; The next step of HSA begins in position I, the search area is now 
delimited by d/2, top left pixels of these blocks are labeled as 2, just as in the previous step, 
the position with the mínimum distortion is labeled as I I, this process continues in the same 
fashion until the displacement converges to l. For the maximum displacement p the number 
of required steps to compute the motion vector are log

2
(p + 1), for this reason, the method 

is also known as Two-Dimensional Logarithmic Search. 
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Figure 3.48: Hierarchical search algorithm methodology 

3.5.3 Known lmplementations 

In [87] a tree architecture for motion estimation is presented, authors claim that their design 
has high throughput, low data skewing for the purpouse of parallel computation, low latency 
and an independent data flow so that the tree can be used for BMA and HSA, the main 
contribution- is the implementation of interleaving in memory devices and pipeline stages 
to avoid idle cycles in the process, the main drawback is that interleaving techniques cause 
latency in the architecture. In [88] a full search block matching architecture is presented, the 
main contribution is that the motion vector is generate in 1252 dock cycles considering a 
Sum of Absolute Differences (SAO) algorithm, the architecture is based on two independent 
modules, a SAD unit that computes the difference between blocks and a motion vector gen­
erator used to find the minimum value in the SAO array, this system has a systolic behavior 
but it can operate in a single instruction multiple data (SIMD) fashion, authors report that 
the motion vector for a 16 x 16 block can be computed in 54.4µs.Nam et al. present a flexible 
VLSI architecture for full search motion estimation in [89], this architecture has serial input 
ports but the processing is performed in parallel and is parametrizable as it allows to set the 
search range for different video aplications, finally the structure is highly regular and it is 
mapped to one dimensional arrays. 
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Gupta and Chakrabarti propose various architectures for hierarchical block matching 
algorithms in [78, 79]; in [79] are presented sorne architectures for hierarchical BMA for 
generalized parameters, an extensive study of the number of comparisons and number of 
operations required to match a block is presented, table 3.6 shows the parameters for a 
simplified hierarchical BMA with a maximum displacement of ±10, a two step search is 
assumed. 

Parameter Level 1 Level 2 
Max. update displacement (d1) ±7 ±3 

Search window size (W1 ) 64 16 
Step size (S1) 32 16 
Subsampling 8 2 

Table 3.6: Parameters for simplified hierarchical block matching algorithm 

Considering an M x N image, at any level of estimation the number of motion vector 
estima tes is M x N / S¡, and W// U? operations per block match are required. In the first level 
27 blocks are matched per estimate, in the second level 18 blocks are matched; considering a 
frame frequency of f Hz the number of operations per second is calculated in the following 
way: 

(3.45) 

Considering a processing cycle time e, authors estimated the minimum number of proces­
sors required for real-time data computation as 

(3.46) 

For further details on the processor architecture and the memory organization please refer 
to [79]; In [90] is presented a low complexity block based motion estimation using one-bit 
transforms, the main idea of this paper is to transform video sequences into a one-bit/pixel 
representation an then apply the motion estimation methodology to reduce hardware com­
plexity and power consumption while maintaining a good compression ratio. One-bit strategy 
is based on the fact that the edges in an image are fundamental for accurate motion estima­
tion, therefore to extract the edges we must compare the frame pixel by pixel to a high-pass 
filtered version of the frame and force the differences to O or to 1; this process causes the 
thresholded frame to track high frequency noise, so, to eliminate it band-pass thresholding 
scheme is applied to maintain only the original content of the frame. 

Baek et al propase a recluced bits mean absolute difference (RBMAD) in [91] this method­
ology is used to reduce silicon area for material implementation at the same time that VLSI 
operations are boosted, the principle of opcration is simple we only require the MSB of each 
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pixel to compare the source block with all the candidate blocks, this criterion is described 
in equation 3.47, R represents the leftmost top pixel of the source block, S is the position 
of the pixel on the candidate block of the previous frame, just as in MAD method, we look 
forward to finding the smallest RBMAD to determine the motion vector. 

N N 

RBMAD(u, v) = L L IR(i,j)n-1:n-k - S('i + u,j + v)n-1:n-kl
i=l j=l 

(3.47) 

Do and Yun [92] present an architectural enhancement to reduce power consumption of 
Full-search BMA motion estimation by means of reducing unnecessary computation steps 
applying a method known as conservative estimate of exact distortion, power consumption 
is reduced as the differences are only measured if the estímate is SJnaller than the current 
minirnum distortion; every processing element computes the absolut� difference between lu­
minance levels of the source block and the search window, in this architecture the processing 
elements are connected in a systolic array fashion, each !ayer of the array has a shift register 
at the end to storc the pixel data of rnacroblocks not actively under examination. 

Conclusions 

There are many families of architectures used to compute the DCT-11, the great major­
ity of reported implementations are either recursive application of even-odd decomposition 
(fast algorithrns) or distributed arithrnetic considering direct implementations and memory 
reduction techniques. All fast algorithrns are very efficient in the required nurnber of multi­
plications ancl additions and are a well suited for ASIC irnplementation althoug large silicon 
areas are required, they are not a good option for FPGA because of its long propagation 
delays due large routing and interconection butterflies; fast algorithms also have serious 
problems when computing finite precision numbers because severa! rounding and truncation 
adequations are required throughout the different computing stages. In the other hand dis­
tributed arithmetic [93] implementations have a regular structure suitable for FPGA; this 
architectures are memory oriented and they offer high speed, high accuracy and their prin­
cipal advantage ovcr fast algorithms: design time is dmmatically reduced. 

Therc are many Huffman coder/decoder implementations, all of them share one inter­
esting feature: they are designed far small codeword tables and the material complexity is 
usually high ancl require a dedicated integrated circuit; even though the great amount of re­
ported architectures, there are few articles that report the number of logic elements, registers 
and propagation dclays, making difficult to forecast thc exact amount of resources that will 
be used on the implement.ation. 

Sorting algorithms can be used to builcl symbol frequency tables to accurately assign Huff­
man codes to input data, we must remember that aft.er DCT the energy is concentrated in the 
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lowest frequencies of cosine function and even after zig-zag sean we cannot assume that all 

coefficients are in descending order, therefore it might be sorne frequent data with long code­

words assigned; two general schemes of sorting were described in this section, parallel sorting 

networks are very efficient in terms of the number of operations and are useful when data 

arrives in a parallel fashion but their material complexity is just to high; as we should expect 

serial sorting algorithms are suitable for serial input data schemes, even though the material 

complexity is rnoderate, the control logic required to operate this kind of architectures is often 

complicated as the entire array must be dynamically rearranged when a new value is inserted. 

Finally, Motion Estimation architectures are surveyed, there are many families of algo­

rithms to estímate the motion vector but the suitable architectures use either SAD, MAD or 

MAE algorithms configured as systolic arrays or linear arrays to compute the distortion of 

an image between adjacent frames; this process is the most computationally demanding in 

the entire compression chain, not even the DCT or the Entropy Coder require as much oper­

ations as the motion estimator, so in order to achieve the required throughput for real-time 

applications we must find a way to accelerate the prediction process without compromising 

data integrity. 
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Chapter 4 

Architectural lmplementations 

Algorithrn-architecture adequation is defined as thc process of translating computational 
algoritlirns into hardware; we must take into account that algorithrn-architecture adcquations 
always lead to a sub-optimal architecture as there rnight be sorne portions of the algorithm 
that cannot be translated into hardware. As we mentioned before software solutions are 
efficient in terrns of throughput, but they are not efficicnt in terms of the material complexity 
required to perform a given task; VLSI architectures represent a bctter choice than software 
implementations because they are customly made to work with an specific wordlength and 
perform specialized functions, also, they do not require an operating system to proccss data, 
also memory requirernents are drastically reduced and thc maximum operating frequency is 
by far, higher than any computational system. 

4.1 Discrete Cosine Thansform 

4.1.1 Fast Algorithm 

The first DCT implementation was based on Loeffier's Fast Algorithm [35], to build the ar­
chitecture we need to identify the arithmetic operations required to code them as a-separate 
module; when the modules are coded then we rnust identify data dependencies to instantiate 
the blocks in the position where they are required. Figure 3.6 clearly shows that four process­
ing stages are required to perform a 1D-DCT, in every stage eight adder-substractor modules 
are required to perform the butterfly array operations, in stages two and three Cordic cores 
are required to perform the required rotations. In stage four of the fast algorithm ,x.,·e neecl 
a multiplicator block to calculate the product betwecn incoming data and the constant terrn 
v'2, figure 4.1 shows the implernented architecture. 

Each processing stage was coded separately as a single module, once each module was 
coded we coded the top level entity where ali the modules were instantiated, this coding style 
makes easier the process of building a system and allows a high degree of flexibility, any block 
can be reconfigured or re-synthesized the necessary times without affecting the entirc system. 

97 



CHAPTER 4. A RCHITECTURAL IMPLEMENTATIONS 

Stagc 1 Stagc 2 

Xv 

Xi Add/Sub Add/Sub 

X2 

x, Add/Sub Add/Sub 

X. Cordic Cordic 
Add/Sub ROM Rotator 

X,, Cordic Cordic 
Add/Sub ROM Rotator 

Figure 4.1: 

Add/Sub 

Cordic 
ROM 

Add/Sub 

Add/Sub 

Stagc 3 Stagc 4 

l-------�---- - - - 4 

Cordic 

' 2 

Rotator � : �-� Add/Sub 7 

Multiplier 

Multiplicr 

1-D DCT architecture

Stages two and three require cordic _rotators to compute the equation set 4.1 using only 
adding and shift operations, in this implementation we precomputed 10/ K and 11 / K and 
store<l the results in a 512-word ROM, we use the incoming value l as the address input 
of the ROM that simply outputs the corresponding l / K to avoid the use of an arithmetic 
divider. 

n1r n1r 

00 = 10 · k · cos - + l 1 · k · sin -
2N 2N 

n1r n1r 

01 = -10 · k · sin - + 11 · k · cos -
2N 2N 

( 4.1) 

In stage four we need to multiply two coefficients, so a hardware multiplier is required to 
perform the operation, the most efficient multiplication scheme is the Booth algorithm, the 
main issue is that the multiplier requires successive stages of fast adders, so, the material 
complexity increases;, another choice arises if we are not concerned with coeffi.cient accuracy, 
as we know, DCT is a lossy compression process, so when the in verse process is performed 
we will not recover the original values under any circumstance, so, as the multiplying factor 
is v'2 � 1.4142 we could round the factor to 1.5, so, to implement the multiplication we 
could simply add the incoming value with a 1-bit right-shifted version of itself. Multiplicator 
architecture is explained in detail in section 4.1.1.1 and Cordic architectures are discussed in 
section 4.1.1.2. 

4. l. 1.1 M ultiplicator

The multiplication process involves two basic operations: partial product generation and ac­
cumulation, hence there are two methods to optimize the multiplicator, the first one consists 
in accelerate the additions, the second aims to reduce the number of partial products. To 
combine both schemes in an efficient architecture we can use Carry Save Adders (CSA) to 
accelerate the additions and Booth's algorithm to halve the number of partial products to 
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be added. 

Binary multiplication is performed in the same way that we are used to multiplying two 
decimal numbers, so, if we consider operands A and B, the number of partial products 
required to multiply A x B is equal to the number of bits required to represent B; Booth's 
algorithm propases the recodification of the B operand to a reduced number of coefficients 
[94], if B has an even number of bits and Pis the weight of the MSB, the algorithm eliminates 
the odd powers of 2 considering that 

To calculate the coefficients we must consider the ajdacent bits of the even powers to 
form a 3-bit word, then we shall find the correspondig coefficient in a fixed look up table. 

bi+I bi bi-t e 

o o o o 

o o 1 1 

o 1 o 1 

o 1 1 2 

1 o o -2

1 o 1 -1

1 1 o -1

1 1 1 o

Table 4.1: Booth Cocfficients 

From table 4.1 we can observe that there are four possible coefficients -2, -1, O, 1, 2 this 
rneans that the operand A must be rnultiplied by the corresponding coefficient and then be 
added to the other partial products, the great advantage of this algorithm is that multiplica­
tions becomes a simple set of shift operations; to implement a Booth Coder in hardware we 
require a 2's complerñent module, a coefficient calculator, a partial product generator, four 
Carry Save Adders and a Vector Merging Adder (VMA) as shown in figure 4.2. 

As the coefficient calculator and partial product gcnerator are combinational circuits, 
they are both implemented along a 2's complement calculator in a single module named 
Booth Coder; CSAs are coded using Full Adders, the main difference between a conventional 
adder and a CSA is that in the latter Sum and Carry-out vectors are kept separated; for this 
implementation, the VMA was coded as a simple Ripple Carry Adder. 

Code 4.1 shows the easiest way to code Booth L UT using a with-select statement, g is a 
three bit vector that contains { bi+ 1, bi , bi-d; in any Booth multiplicator there are q. partía! 
products, this implies that for a fixed wordlength of input operands, g vectors are directly 
wired in an specific order, Code 4.2 shows how the partial products are generated depending 
on the power of 2 associated with the coefficient 
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with g select 
c oef <= "001" 

"001" 
"010" 
"110" 
n 111 n 

" 111" 
''000" 

when 
when 
when 
when 
when 
when 
when 

"001" 

,, 010" 1 

n 
011" 

1 

"100" 1 

,, 101,, 1 

"110" , 

oth ers; 

Code 4.1: Booth Coding 

with coef select 
ppl <=Awhen "001" , -- lA•2·1 

A(N-2 downto 0)&'0' when "010", - 2A•2·1 
Acomp(N-2 downto 0)&'0' when "110" , - -2t1*2"1 
Acomp when " 111" , - -IA• 2 • 1 
X"000000" when oth ers; 

Code 4.2: Partial product generation 

A><B 
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The next step in the design is to accelerate the architecture by reducing the critica! path; 
pipeline technique is suitable for this architecture as the critica! path will be the longest 
delay between pipeline barriers; Pipelines are easily introduced using a process statement 
that depends on Clock and Reset control signals as shown in code 4.3, in Chapter 5 sy nthesis 
results of Booth Multiplicator are presented. 

process (CLK, RST) 
begin 

i f RSI'= 'O' then 
Af <= x"00"; 
Bf <= x"00"; 
MultAB <= x" 00000"; 

e Is i f CLK' event and CLK= 'l' then 
-Barricr located at input port 

Af <= A; 
Bf <= B; 
--Barrier locat.ed at output port 

MultAB <= MulLAl3p; 
end if; 

end process; 

Code 4.3: Pipelining in VHDL 

4.1.1.2 Cordic Algorithm 

The Coordinate Rotation Digit Computer (CORDIC) was first introduced by Volder in [95], 
this is an iterative arithmetic algorithm for evaluating elementary functions and is especially 
suited for trigonometric functions [96]; this algorithm is commonly used when no hardware 
multipliers are available as the only arithmetic operations required are additions, bit shifts 
and table lookup. 

Three basic ideas are behind the Cordic algorithm, first of all we want to embed elemen­
tary functions as a generalized rotation operation, the next idea is to decompose rotation 
operations into a series of successive micro-rotations, finally, each rotation must be realized 
with hard-wired shift operations and additions. 

Two operation mocles are allowed in the Cordic algorithm: Rotation and Vectoring, in 
the former, an input vector is rotated by an specific angle, in the latter the input vector is 
rotated to the x axis. Ercegovac in [97] propases two different architectures for a Cordic Core, 
a word serial architecture and a serial one; for the purpouse of this thesis we implemented 
a serial architecture for the Cordic Core because pipelining can be introduced to increasc 
the performance, the algorithm that must be translated into hardware is shown in equation 
set 4.2, this algorithm requires three adder-substractors, one multiplexer to select the sign 
of a;+i and a four-bit counter to increase the iteration number by one, this is required to 
determine the shift arnount in the next iteration; processor outline is shown in figure 4.3. 
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Figure 4.3: Cordic Serial Architecture 

(4.2) 

The LUT identified as o:i contains the result of O"i tan- 1 2-i where i represents the number 
of iterations, O"i+ 1 is determined by the sign of Y or Z depending on the operation mode, for 
Rotation mode, the most significan bit of Z determines the sign of O"i, for Vectoring mode 
the sign is determined by the most significant bit of Y.

A scaling factor K must be applied in order to get the correct results of the rotation, this 
factor is constant, independent of the angle being rotated and the number of iterations; in 
the general, to compute a cos 0 - b sin 0 and a sin 0 + b cos 0 the scaling factor is introduced 
directly by setting x[O] = f and y[O] = ¾-

The proposed Cordic Core can be easily pipelined to increase throughput an reduce the 
time propagation delay; we must select the number of iterations to approximate the results 
of the rotation, we decided to implement six iterations as the preliminary tests showed that 
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the error is less than 2-7; figure 4.4 shows the general architecture of the Cordic processor 
based on micro-rotations, notice that pipelining can be easily introduced to accelerate the 
calculations as shown previously in code 4.3. 

For the purpouse of analyzing the effect of the pipeline barriers in the critica! path reduci­
tion we implemented the architecture using three pipelining configurations, the first one uses 
two pipeline barriers, one located between the processor's input data and the first cordic core 
and the other located between the output of the last Cordic Core and the processor's output; 
the second configuration utilizes three pipeline barriers, the limiting barriers described above 
and a third barrier located between the third and fourth Cordic Core; finally a pipeline bar­
rier is placed between every core, synthesis results are presented in Chapter 5. 

K � rr(l + r2 i ) 112 
;:::j 1.6468 (4.3) 

i=O 

X[i] X[i+I] X[i] X[i+I] --► 

Y[i] Y(i+I] Y[i] Y[i+I] --

---- Z[i] Cordic Core Z(i+l] Z[i] Cordic Core Z[i+I] ► 

i+I i+I ► 

r) 
Si Si+I 

lteration 1 

Si Si+I -►

lteration N 

Operation Modc 

Figure 4.4: Pipelined Cordic Architecture 

4.1. 2 Distributed Arithmetic 

This implementation shares the first stage of the Fast Algorithm, in order to calculate the 
DCT we must rearrange incoming data, into even and odd coefficients, after the butterfly 
stage is performed, RAC architectures are used to add and accumulate the partial results 
pre-stored in ROM devices, the architecture is shown in figure 3.12, RAC module is divided 
into a ROM device and a dedicated Shift-Accumulate unit that consists of four blocks as 
shown in figure 4.5. 

We rcquire a Finite State Machine to control the shift-accumulate operations and the 
read/write cycles of the associated ROM, it is coded as a simple Mealy State Machine to 
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control the described outputs, two of them are the read and write enables or the ROM, the 
other two outputs correspond to the shift enable and the load instruction of the address 
generator; figure 4.6 shows the state diagram of the FSM. 

Eight ROMs have to be defined as the Distributed Arithmetic technique requires to have 
precomputed results of products, the DCT-11 angles for even and odd coefficients are shown
in matrices 4.4 and 4.5 respectively. 

[ oos40 
cos20 

lleven =
cos40 

cos60 

cos30 

[ cos0 

Q 
-

odd - cos50 
cos 70

cos40 

cos60 

- cos40

-cos 20

cos30 

-cos 70

-cos0

-cos 5(;1

cos40 

=

4
0 

l 
- cos60 -cos 20
-cos40 cos40

cos20 -cos60

(4.4) 

cos50 

=

7
0 

l 
-cos0 -cos 50

cos 70 cos30

cos30 -cos0

(4.5) 

Each row represents of the matrices represent the coefficients ea, c1, c2 and c3 of the Dis­
tri bu ted Arithmetic lookup table, bits x0,1, x 1,1, x2,1 and x3,1 correspond to the least significant
bit of each input vector R1 , R2 , R3 , R4 at j cycle; the Address Generator module takes the 
LSB of each vector and merges them into a single 4-bit word used to address the lookup 
table, every dock cycle the registers are right shifted to lookup for the corresponding value 
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Figure 4.6: DCT- DA Finite State l\fachine 

m the 2J+ 1 weight; if we do not want to use memory devices as the data fetch cycle rep­
resents a bottleneck we could code the lookup table as an array, the only difference is that 
we will require dedicated registers, figure 4. 7 shows the RAC architecture for conventional 
Distributed Arithmetic. 

Distributed Arithmetic with Offset Binary Coding is used to reduce memory require­
ments, this implementation is very similar to conventional DA, in fact, the butterfiy stage 
and the finite state machine are the same, the only difference relies in the memory reduction 
by half, two additional multiplexers and three exclusive-or gates, figure 4.8, XOR gates can 
be transferred to the ROM module as they are only required to address the input data as 
shown in code 4.4. 

Once the lD-DCT is described in hardware we have two choices for performing the 2D­
DCT, first option is to transpose lD-DCT result coefficients and re-enter data to the same 
lD-DCT core as shown in figure 4.9, even though this solution is efficient in terms of ma­
terial complexity, throughput is affected as the operations are performed in a serial fashion; 
the second option is to use two lD-DCT cores, after the first DCT is calculated and the 
coefficients are transposed, a second DCT unit performs the rernaining DCT, this operating 
structure allows the first DCT core to process the next block while the second is still process­
ing the first one as shown in figure 4.10; both figures show the required wordlengths for the 
architectures, notice that after performing the first lD-DCT two wordlengths are indicated, 
12-bit wordlength corresponds to fast algorithrn architecture; 16-bit wordlength corresponcls
to distributecl arithrnetic algorithms, this implies that we must truncate the 4 least signifi-
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Figure 4. 7: ROM-Accumulate Architecture 
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4.1. DISCRETE COSINE TRANSFORM 

typc arr is array(O to 7) of std_logic_vector (15 downto 
constant lv!El'vf : arr: = (X"D2BF" ,X" E95F" ,X" E95F" ,X" 0000" , 

signa! 

signa! 

signa! 
signa! 

begin 

addrf 
qd 
sel 
dirm 

X" E95F" ,X" 0000" ,X" 0000" ,X" 16Al"); 
s t d _ 1 o g i e_ ve et o r ( 3 downto O) ; 
std_logic_vector (15 downto O); 
std_logic; 
std_logic_vector(2 downto O); 

-- logic gates required to address the memo1¡¡ 

sel <= addrf(3) and stop; 
dirm (2) <= addrf(2) xor sel; 
dirm(l) <= addrf(l) xor sel; 
dirm(O) <= addrf(O) xor sel; 

w ith dirm select 
qd <= MEM(O) 

MEM(l) 
MEM(2) 
MEM(3) 
l'vlEM(4) 
MEM(5) 
MEM(6) 
MF.M(7) 

whcn 

when 
when 

when 
whcn 

when 
when 

11 000,, 1 

,, 001" . 

,, 010" , 

,, o 11 !I 1 

"100" , 
" 101" , 
11 

110" 

When"lll"; 

O); 

Code 4.4: ROM module for Distributed Arithmetic with OBC 

can bits as they are the decimal part of the coefficient ancl the accuracy loss is less than a unit. 

Transposition 
_ 12 

Mcmory 

DPRAM 

Input 

9 Input 9 12 Output 12 

Buffer 
- ID-DCT :: 

Buffer 16 Output 

Figure 4.9: Row-Column Ttansformation architecture for 2D-DCT 

4.1.3 Memory Transposition 

As explained in chapter 3, memory transposition can be achievecl using a Double Port Ran­

clom Access ivlemory clevice, code 4.5 shows the easiest way to define a DPRAM. The op­

eration of this module is simple, when the first coefficients of the DCT are calculated we 

must store them in memory, we use a 6-bit counter to address the memory locations; when 

the counter resets, we can start reading the memory to feed the next lD-DCT stage; as 

shown before in figure 3.15 we must rearrange the counter output vector to genera.te the reacl 

adclress. The counter is easily coclecl using cascaded Half-Adclers and an XOR gate. 
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Input 9 - 12 12_ Transposition 12 

·-1ID-DCT 16 - Memory ID-DCT 
DPRAM 

Figure 4.10: Two-core architecture of 2D-DCT 

architecture rtl of IFRAM is 
- 2 -D array for the RAM 

type MEM is array (2uLONGITUD...DIR-l downto O) of 
std_logic_vector ((LONGrI'UD_WORD--1) downto O); 

- RAM s igna!

signa) RAM : l'vlEM;

begin 
process ( e I k ) 

begin 
if CLK'event and CLK='l' then 
RM1(Waddr) <= dato; 

1 
12 

------�► Output 

- if the same address is read and written at the same time 

- the reading will be the last stored data of that location 

q <= RAM( Raddr) ;
end if; 

end process ; 
end architecture; 

Code 4.5: Dual-Port RAM 

4.2 Entropy Coding 

4.2.1 Sorting Algorithms 

We decided to use sorting networks to generate the probability density function on the fly 
at the same time that M acroblock to Block conversion, DCT and Quantization processes are 
performed in order to determine the propper Huffman dictionary as we will know the exact 
frequency distribution of the symbols within a Macroblock. 

The basic component of any sorting algorithm is the compare-exchange module, this en­
tity consists of a comparator that indicates if inputs a and b are equal or if a < b, and two 
multiplexers that determine the outputs SO and S1 depending on the values inserted to the 
module, figure 4.11 shows the configuration of this module, notice that output selection de­
pends on aeb, a < b, and an input signal identified as A/ D, this signal indicates whether the 
compare--exchange module will work in ascending or descending way, we decided to code the 
CE with the capability of sorting either ascendingly 01 descendingly because there is practi­
cally no difference (two logic elements) between the implemented CE without a selector and 
the CE with a selector, this gives us the flexibility to chose the sorting mode for any given 
list without having to modify the architecture: Code 4.6 shows how the output selection is 
done, notice that the output signals of the cornparator are concatenated with the selection 
bit, then we use this 3-bit signal as the output selector of the multiplexers. 
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Figure 4.11: Compare-Exchange module 

outsel <= AD & XIY & XeY; 
10: Comparador port map(X,Y,XeY,XIY); 

so 

SI 

with outsel select 
SO <= X when " 001" "010" 11 100 11 "101" , Y when oth ers; 

with outsel select 
S 1 <= X when " 000" 1 "001" 1 " 1 O 1 " "110", Y when oth ers; 

Code 4.6: Compare-Exchange output selection 
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As the compare-exchange element is the smallest sorting network we must interconnect 
several CEs to sort data arrays or lists, so it is necessary to instantiate the component, 
code 4. 7 must be inserted within the architecture of any sorting network. Previously in 
Chapter 3 the difference between a merging network (MN) and a sorting network (SN) was 
explained, in order to build a N size sorting network we will require one N-item merging 
network, two �-item networks, four �-item networks and so on until we reach the 4-item 
networks, then, to complete the design of the sorting network we have to include � CE 
elements before the 4-item merging networks. 

component CompExch is 
p ort( 

X,Y : in std_logic_vector(S downto O); 
AD : in std_log.ic; 
SO,Sl : out std_logic_vector(S downto O)); 

end component ; 

Code 4.7: Compare-Exchange module instantiation 

We must remember that the only restriction to use a merging network is that the input 
lists must be sorted, for an 8-item merging network we require two 4-item merging networks 
and three additional compare exchange elements at the end to sort the output list as shown 
in figure 4.12, in general a N-item merging network is constructed using two �-item merging 
networks and � - 1 CEs, making this an iterative process. 

As a 64-item sorting network is required in our architecture we need to build the merg­
ing networks for 4, 8, 16, 32 and 64 items, the great advantage is that they can be coded 
individually and instantiated when required; this architectures are big in terms of material 
complexity as they require many CE modules to construct a merging network, huge amounts 
of signals are required to interconnect each block, meaning that the design is also large in 
terms of interconnection paths, in exchange it offers a highly regular structure and practically 
no control logic is required to sort the array. 

Code 4.8 shows the instantiation required to build an 8-item MN, as expected, two 4-item 
merging networks are used as a basis of the new network, instances JO and J1 define input 
and output connections of both 4-item MNs, signals labeled as Cn define the required wires 
to connect the outputs of the previous MN to the 1;{- -1 CEs used to rearrange the network's 
output; the same process must be followed to build larger networks. 

A 64-item sorting network was constructed using sixteen 4-item MNs, eight 8-item MNs, 
four 16-item MNs, two 32-item MNs and one 64-item MN; this architecture is very large 
( + 19K LE), code 4.9 shows the instantiation of all the components required to build a 64-
item sorting network, L

n represent the input list of the sorting network, En represent the
sorted network, notice the regularity of the implernentation and the large amount of signals
required to wire the necessary blocks.
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8-item Merging Network
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Figure 4.12: 8-item Merging Network Architecture 

architecture func of Merge8 is 
component CompExch is 

port ( X,Y in std_logic_vector(8 downto O); 
AD in std_logic; - O= Ascending, 1 = Descending 
SO,S1 out-std_logic_vector(8 downto O)); - Outputs SO and S1 are exclusive 

end component; 

component Merge4 is 
port( Ll,L2,L3,L4 

sel 
E 1 , E2 , E3 , E4 

end component ; 

begin 

in std_logic_vector(8 downto O); - L = input line
in std_logic; 
out std _Jogic_vector (8 downto O));- E= sorte d element 

10: J\Ierge4 port map(Ll, L2, L3, L4, sel ,El ,Cl ,C2,C3); 
1 l: Merge4 port map(L5 ,L6, L7, L8, sel ,C4,C5,C6, E8); 
12: CompExch port map(Cl,C4,sel ,E2,E3); 
13 : CompExch port map( C2, CS, se 1 , E4, ES) ; 
14: CompExch port map(C3 ,CG, sel , E6,E7); 

end architecture; 

Code 4.8: 8-item Merging Network coding 
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After synthesizing all sorting networks for area optimization the propagation delays were 
measured and analized; we determined that a hardware acceleration technique must be em­

ployed to reduce the critical path, pipelining is the obvious choice because parallelism requires 

large silicon areas; synthesis results for area and speed optirnization are presented in Chap­

ter 5. 

4.2.2 Huffman Coding 

As mentioned in chapter 3, there are many architectures for Huffman coding, and the rnain 

drawback is that all of thern are too large and complex control logic is required to assign the 
symbols to their corresponding codewords . Static and Adaptive Huffman methods have been 

discussed and both of them are based on particular facts; static Huffman Coding requires a 
prior knowledge of the data probability density function, on the other hand, adaptive Huff­

man Coding requires a dynamic construction of the frequency table, this requirernent tends 

to reduce coding efficiency. 

A mernory based architecture can be used to dynamically calculate the probability den­
sity function of serial input data on the fly; we require two random access mernories to 

construct the frequency table, one hardwired adder block named "+ 1" that simply adds 

one unit to any number using only half-adders; a sorting network is required to order in 
a descendent fashion all the symbols, after the sorting process is performed, a cornparison 

layer and an 8-bit adder are used to determine the exact amount of symbols; depending on 

the adder result we select the predefined Huffrnan dictionary that fits the number of syrnbols. 

Both RAM devices are initialized with zeros in all locations, input data is used to address 
the rnemories to output the number in that specific location and sends it to the + 1 block, 
once the nurnber has been incremented by one it is stored in the same address of the sec­

ond RAM, when a new reading cycle begins we update the first RAM, to continue the process. 

If we do not want to use memory devices to construct the frequency table we can use 

sorting networks; when the sorting process is completed we are certain that data is ordered, 

but we do not know how many symbols are included in the array, perhaps the array has 
only one symbol, or it rnight have 256 different symbols; we irnplernented a compare elernent 
that indicates if the inputs A and B are equal; figure 4.14 shows the method to calculate the 
number of symbols, two signals are required: aeb already present in the Cornpare-Exchange 
elernents, and AeB, generated in the cornparator, truth table 4.2 indicates the nurnber that 

must be accumulated in the adder. 

Two special cases are identified: as the first element must be counted anyways, we can 
initialize the accumulator in 1; for the last elernent of the network we have to instantiate both 

inputs of the cornparator with the last number of the list to ensure the element counting. If 
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architecture func of Sort64 is 
begin 
10: CompExch port map(Ll,L2,sel ,Ml,M2}; 

13 1 : CompExch port map( L63 , L64 , se 1 , M63, M64) ; 

132: Merge4 port map(Ml,l\13,M2,M4,sel ,Nl,N2,N3,N4}; 

147: Merge4 port map(M61,M62,M63,M64,sel ,N61,N62,N63,N64}; 

148: Merge8 port map(Nl, NS, N3 ,N7,N2,N6,N4,N8, sel , Pl, P2 ,P3 ,P4, PS, P6, P7, P8}; 

155: Merge8 port map(N57, N58, N59, N60, N61, N62, N63, N64, sel , P57, P58, P59, P60, P61, P62, P63, P64) ; 

156: Mcrgel6 port map(Pl,P2,P3,P4,P5,P6,P7,P8,P9,PI0,Pll,Pl2,Pl3,Pl4,Pl5,Pl6,sel, 
Ql ,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9, QIO ,Qll, QI2, Ql3, Ql4 ,Ql5 ,Ql6}; 

159: l\1ergel6 port map( P49, P50, PSI, P52, P53, P54, P55, P56, P57, P58, P59, P60, P61, P62, P63, P64, sel , 
Q49,Q50,Q5I,Q52,Q53,Q54,Q55,Q56,Q57,Q58,Q59,Q60,Q61,Q62,Q63,QG4}; 

IG0: Merge32 port map(QI, Q2, Q3 ,Q4, Q5,Q6, Q7, QB, Q9, Ql0, Qll, Ql2, QI3, Ql4, Ql5, Ql6, 
Q17, Ql8, Ql9, Q20 ,Q21, Q22, Q23 ,Q24 ,Q25, Q26, Q27, Q28, Q29,Q30, Q31, Q32, sel , 
Al,A2,A3,A4,A5,A6,A7,A8,A9,AI0,All,Al2,A13,Al4,Al5,Al6, 
Al7,A18,A19,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,A30,A31,A32}; 

I 6 1 : Merge32 port map( Q33, Q34, Q35, Q36, Q37, Q38, Q39, Q40, Q4 l , Q42, Q43, Q44, Q45, Q46, Q47, Q48 , 
Q49,Q50,Q51,Q52,Q53,Q54,Q55,Q56,Q57,Q58,Q59,Q60,Q61,Q62,Q63,Q64,scl, 
Bl,B2,B3,B4,B5,B6,B7,B8,B9,BI0,Bll,Bl2,Bl3,Bl4,Bl5,Bl6, 
B17,Bl8,B19,B20,B21,B22,B23,B24,B25,B26,B27,B2B,B29,B30,B31,B32}; 

162: Merge64 port map(Al,Bl,A3,B3,A5,B5,A7,B7,A9,B9,All,Bll,Al3,B13,Al5,Bl5, 
Al 7, B 17, Al9, Bl9, A21, B21, A23, B23, A25, B25, A27, B27, A29, B29, A31, B31 , 
A2,B2,A4,B4,A6,B6,AB,B8,Al0,Bl0,Al2,Bl2,Al4,Bl4,Al6,Bl6, 
Al8,B18,A20,B20,A22,B22,A24,B24,A26,B26,A28,B28,A30,B30,A32,B32,sel, 
El,E2,E3,E4,E5,E6,E7,E8,E9,E10,Ell,El2,El3,E14,El5,El6, 
E17,E18,El9,E20,E21,E22,E23,E24,E25,E26,E27,E28,E29,E30,E31,E32, 
E33,E34,E35,E36,E37,E38,E39,E40,E41,E42,E43,E44,E45,E46,E47,E48, 
E49,E50,E51,E52,E53,E54,E55,E56,E57,E58,E59,E60,E61,E62,E63,E64); 

end architccture; 

Code 4.9: 64-item Sorting Network instantiation 

aeb AeB Add 

o o 2 

o 1 1 

1 o 1 

1 1 o 

Table 4.2: Frequency Counting Adder 
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RAM RAM Vector 

Input addr q addr q 
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Figure 4.13: Huffman Coder proposal 

Frequency 
Counting 

j 

Huffman 
Codebook 
Selector 

f-----<► Codeword 

we do not want to waste resources in a full 8-bit adder we can replace that module with a 
+ l block and a simple shift-left operation to perform the operations indicated in the table.

4.3 Coder Proposed Architecture 

A generic encoder consists at least of five basic processes as shown in figure 4.15: Macroblock 
to Block (MB-B) conversion, 2D-DCT processor, Quantization, Zig-Zag Scanning and En­
tropy Coding. MB-B conversion, DCT and Quantizarion are performed in parallel fashion, 
Zig-zag sean transforms the 8 x 8 matrix into a 1 x 64 vector using a finite state machine; 
once the vector is obtained we must feed the Huffman coding process to perform the variable 
length coding. 

The worst case scenario after performing the DCT is to have 64 different coefficients, this 
could happen if the block pixels are not correlated, if this happens we will require a large code 
book with long codewords; when the image has a pattern (pixels have a tight correlation with 
its neighbours) we can assume a direct relation between the number of symbols of the source 
image and the number of symbols of the DCT transformed image [98], this implies that when 
pixels within a block or macroblock are correlated we will require approximately the same 

number of symbols befare and after the DCT. If we know the probability density function of 
the macroblock before compression, there is a high probability that the selected code book 
will be the smallest and will increase the coding efficiency for that specific macroblock. 

The main idea of this architecture is to initiate the obtention of the macroblock's pdf at 
the same time than the macroblock to block conversion is performed; after the MB-B process, 
each block enters the DCT and then enters the quantizer; we have all this time to sort in 
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parallel all pixels and determine the number of symbols to select the Huffman Codebook. 
Figure 4.16 shows the proposed coding method vs the conventional method (dashed lines), 
notice that entropy coding process can be splitted into two processes: Huffman Coding and 
Variable Length Coding; conventional method starts the frequency table construction and 
assignation of codewords after the Quantization and Zig-Zag Sean; by parallelizing frequency 
table construction after the Q and Zig-Zag sean we simply assign the codewords. The block 

identified as Huffman codebook selector is used to route the corresponding L U T  that contains 
the codewords depending on the number of symbols as depicted in figure 4.17. 

Addr 

# ofSymbols 

Read 

Huffman codebook selector 

. 

Huff 

Codes 
>---+--

Huff 

Codes 

Huff 

Codes 

Figure 4.17: Huffman Codebook Selector 

Codeword 

Another option derived from this proposal is to perform the same process for every block, 

the difference will be the size reduction of the sorting network from 256 to 64 elements; figure 
4.18 shows that the same process must be followed to obtain the frequency table of the block. 
lf we choose to implement this particular architecture we must be aware that the available 
dock cycles to perform the frequency count are now limited to the required cycles to process 
the DCT and the quantization. 

Parallelizing highly demanding tasks as DCT and frequency table generation for entropy 
coding implies large silicon areas, in exchange, we expect lower processing times and high 
throughput rates. 
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Figure 4.18: Sorting Network reduction for the proposed architecture 

4.4 Conclusions 

In this chapter we reported three different implementations of the Discrete Cosine Trans­

form, first architecture was based on the fast algorithm proposed by Loeffier in 1989, the 

rotators required in stages two and three were replaced with six micro-rotation Corche cores; 

second and third implementations are based on Distributed Arithmetic; conventional DA 

requires more memory resources but the material complexity is lower than DA with Offset 

Binary Coding because no additional multiplexers or gates are required to calculate the DCT. 

Sorting and Merging networks for different list sizes were presented and coded as an al­
ternative to dynamic Huffman coding; any real-life picture or frame has the characteristic 

of presenting smooth transitions between adjacent pixels, so after the DCT process we can 

assume that many coefficients will be eliminated and that the number of symbols within the 
DCT-transformed image will be similar to the amount of symbols employed in the original 
irnage. Calculating the probability density function on the fly allows us to select the smallest 
codewords for most frequent symbols as they come out of the zig-zag sean. 
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Chapter 5 

Results 

In this section, the synthesis results far sorne architectures reviewed in Chapter 4. are pre-­

sented; sorne simulations and synthesized RTL modules are shown; all irnplementations were 

coded in VHDL and Quartus II software was used to synthezise all the modules; two syn­

thesys techniques were studied: Area and Speed; as we might expect in many cases area 

optimized codes are slower than speed optimized ones, but in sorne others area optimized 

codes are faster than speed optimized architectures; this interesting fact is possible because 

area and speed constraints are complementary, so, if we synthesize far area, the maximum 

operating frequency might be diminished, but if the synthesized LEs are adjacent and the 

interconnection paths are short, this area optimized architecture could also have the highest 

operating frequency. Area and Speed synthesis is shown far every tested architecture. 

5.1 Discrete Cosine Transform 

As mentioned early in section 4.1, three different architectures to perform the DCT were im­

plemented: Fast Algorithm, Distributed Arithmetic and Distributed Arithmetic with Offset 

Binary Coding; Fast algorithm implementation requires a Cordic Rotator module to replace 

the arithmetic operations of the original rotation with simple adders and shifters; at stage 

faur of the algorithm a booth multiplier is required to perfarm J2 · 13 and v'2 ·Is, Distributed 

Arithmetic implementations require RAM modules to store precomputed results of the DCT 

coefficicnts matrix and a dedicated module used to shift and accumulate the coefficients until 

the final result is obtained. 

5.1.1 Fast Algorithm 

Prior to implementing the fast algorithm we implemented the cordic algorithm and a booth 

multiplier as they represent irnportant design modules far the architecture; Synthesis re­

sults far Cordic Algorithm are shown in table 5.1, in the second column the reported time 

propagation delay is 76.885 ns, by means of pipelining we implemented seven barriers and we 
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were able to reduce the critical path so that the maximum operating frequency is 119.98 MHZ. 

Acceleration Technique None Pipeline 

Logic Elements 731 1201 

Combinational Functions 731 1157 

Flip-Flops o 292 

Worst Case TPD 76.885 ns -

Clock - 119.98 MHz 

Table 5.1: Cordic Synthesis Results 

Table 5.2 shows the synthesis results of the implemented 1D-DCT based on Loeffier's al­

gorithm replacing rotators for Cordic cores; notice that there is not much difference between 

the required logic elements and combinational function, the difference between synthesis for 

speed and for area is the maximum dock frequency; memory requirements are high because 

we need three modules of 512words x 13bits to store all the possible results of /0and/1 for 

the Cordic Rotators. 

Synthesized for Speed Area 

Logic Elements 3482 3105 

Combinational Functions 3413 3037 

Flip-Flops 1015 1015 

Memory bits 19968 19968 

Clock 107.92 MHz 96.05 MHz 

Period 9.266 ns 10.411 ns

Table 5.2: 1D-DCT Fast Algorithm Synthesis Results 

Five pipeline barriers were implemented to accelerate the architecture, two barriers are 
located at input and output ports, the three remaining barriers are placed between each 

processing stage, figure 5.1 shows the synthesized architecture, flip-flop barriers are clearly 

identified between the stages. 

5.1.2 Distributed Arithmetic 

Shift-Accumulator Unit for Distributed Arithmetic was synthesized to determine the maxi­
mum operating frequency of the module before instantiating it in the DCT-DA design, table 

5.3 shows that the module is small and fast; flip-flops are required to operate the State 

Machine. To complete the design of a Distributed Arithmetic Architecture we must include 
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Figure 5.1: RTL view of Fast Algorithm 

RAMs and the butterfly stage; table 5.4 shows the synthesys results of the DCT-DA imple­
mentation, figure shows the RTL synthesis. 

Device Cyclone 11 
EP2C35F672C6 

Logic Elements 108/33216 ( < 1%) 
Combinational Functions 86/33216 ( < 1 %) 

Flip-Flops 100 
Pins 37 

Memory bits O/ 483840 (0%) 
Clock 137.97 MHz 

Table 5.3: Shift-Accumulator Unit for DCT-DA 

Distributed Arithmetic with Offset Binary Coding architecture is very similar to conven­
tional DA, table 5.5 shows synthesis results for DCT with OBC and serves as a comparison 
between speed and area optimization. For this architecture, area optimization offers a slightly 
higher operating frequency than speed optimization, notice that LE difference is mínimum. 
RTL view of Distributed Arithmetic DCT with OBC is very similar to figure 5.2, in fact, the 
only difference relies in two extra multiplexers in every Shift-Accumulator Block. 
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5.1. DISCRET E COSINE TRANSFORM 

Synthesized for Speed Area 

Logic Elements 792 632 
Cornbinational Functions 503 427 

Flip-Flops 476 476 
Memory bits 2048 2048 

Clock 151.33 MHz 115.54 MHz 
Period 8.655 ns 6.608 ns

Table 5.4: 1D-DCT with conventional Distributed Arithmetic 

Synthesized for Speed Area 
Logic Elements 977 935 

Cornbinational Functions 659 638 

Flip-Flops 564 564 

Memory bits o o 

Clock 111.43 MHz 112.41 lv1Hz 

Period 8.970 ns 8.896 ns

Table 5.5: 1D-DCT with Offset Binary Coding 

5.1.3 DCT Architectures Compared 

Table 5.6 summarizes the most relevant features of the implemented 1D-DCT architecturcs, 

notice that Distributed Arithmetic implementations operate at higher dock frequencies than 

the fast algorithrn, this takes particular relevance because we did not use any pipeline barrier 

in DA architectures, so we can assume a higher operating frequency if pipelining technique 

is introduced in the design. 

Architecture DCT-1D Fast DCT-1D Distributed DCT-1D Distributed 
Algorithm Arithmetic Arithmetic with OBC 

Logic Elements 3482/33216 (10%) 632/33216 (2%) 977 /33216 (3%) 

Combinational Functions 3413/33216 (10%) 427 /33216 (1%) 659/33216 (2%) 

Flip-Flops 1015/33216 (3%) 476/33216 (1%) 564/33216 (2%) 

Memory 199G8/483840 (4%) 2048/483840 (<1%) 0/483840 (0%) 
Max. Frequency 107.92 MHz 115.54 MHz 111.48 MHz 

Latency 120 ns 470 ns 470 ns 

Table 5.6: DCT-1D architectures synthesis results for Altera Cyclone II device 
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5.2 Entropy Coding 

5.2.1 Sorting Algorithms 

In this section we show the synthesis results for the implemented sorting networks, the first 
element to report is the Compare-Exchange module, table 5. 7 shows the synthesis report for 
the CE, in fact it is a very small module consisting in only 34 Logic Elements (LE); synthesis 
results are the same even if we change the optimization technique to area or speed. Table 
5.8 shows the synthesis results for a 4-item merging network and table 5.9 shows the results 
for 8, 16, 32 and 64 item merging networks; 64-item MN is not fitted to an specific device 
because we are working on the Web Edition of Quartus II and larger FPGAs are not available 
for synthesis. 

Device Cyclone 11 
EP2C35F672C6 

Logic Elements 34/33216 (< 1%) 
Combinational Functions 34/33216 ( < 1 %) 

Flip-Flops o 

Pins 37 
Memory bits 0/483840 (0%) 

Worst Case TPD 13.113 ns

Table 5.7: Comparc-Exchange Synthesis Results 

Device Cyclone 11 
EP2C35F672C6 

Logic Elements 102/33216 ( < 1 %) 
Combinational Functions 102/33216 � < 1 %) 

Flip-Flops o 

Pins 73 
Memory bits 0/483840 (0%) 

Worst Case TPD 19.134 ns

Table 5.8: 4-item merging network synthesis 

Table 5.9 has an interesting feature; in Chaptcr 3 the required number of compare­
exchange elements to merge a N element list is defined as shown in equation 5.1, Considering 
that the CE module was synthesized in 34 LEs, then the number of CEs can be determined if 
we divide the number of LEs by 34. Worst case Time Propagation Delay (TPD) is reported 
as it will serve as the comparison basis for future pipelined implementations. 
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MN Size 8-item 16-item 32-item 64-item
Device EP2C35F672C6 EP2C35F672C6 EP2C70F896C6 -

Logic Elements 306 ( < 1%) 850 (3%) 2210 (3%) 5474 
CE Modules 9 25 65 161 

Pins 145 289 577 1153 
Worst Case TPD 24.210 ns 30.147 ns 40.726 ns -

Table 5.9: Merging Networks synthesis comparison 

(5.1) 

Then, the required amount of CE elements to sort a list is expressed in equation 5.2, table 
5.10 shows the synthesis results for sorne sorting networks. Notice that that the logic element 
number increases drastically as sorne merging networks have to be recursively integrated in 
the design. 

(5.2) 

SN Size 8-item 16-item 32-item 64-item
Device EP2C35F672C6 EP2C35F672C6 EP2C70F896C6 -

Logic Elements 646 (2%) 2142 (6%) 6494 (9%) 18586 
CE Modules 19 63 191 543 

Pins 145 289 577 1153 
Worst Case TPD 37.907 ns 59.382 ns 88.532 ns -

Table 5.10: Sorting Networks synthesis comparison 

Now that the SNs are synthesized and the worst case time propagation delay is calculated, 
we can look forward accelerating the circuit using the pipelining technique, table 5.11 shows 
the results of SN synthesis considering two pipeline barriers, one located at input ports and 
the other at output ports, notice the slight LE increment and the new time period. 

lt comes to our attention that the maximum operating frequencies of the SNs are not 
suitable for MPEG-2 coding as they are below 27 i\1Hz; for the first architectural propasa! 
(Macroblock frequency table generation) we require a 256-item sorter, based on equations 
3.31 and 3.32 we need 3839 Compare-Exchange elements, arranged in 36 layers and at least 
122848 logic elements without pipelining; as we look toward high operating frequency and 
area optimization, this solution is beyond the scope, so we need to find another way to sort 
the macroblock (or the block, depending on the chosen architecture); parallelizing smaller 
sorting networks seems to be the the only option, but ,ve can also includc a pipelined strategy 
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SN Size 8-item 16-item 32-item 64-item

Device EP2C35F672C6 EP2C35F672C6 EP2C70F896C6 -

Logic Elements 659 2292 6800 19205 

Flip-Flops 144 288 576 1152 

Clock 41.81 MHz 25.50 MHz 16.31 MHz -

Period 23.915 ns 39.210 ns 61.330 ns -

Table 5.11: Sorting Networks synthesis comparison 

to increase clock rate, table 5.12 shows the synthesi.s result for a 32-item sorting network 

using area optimization, notice that the number of LE decreases and the clock frequency 

complies with MPEG requirements, figure5.3 shows the synthesized architecture of a 32-item 

SN without pipelining. 

Device EP2C70F896C6 

Logic Elements 5324 

Flip-Flops 1536 

Pipeline Barriers 5 

Clock 41.70 MHz 

Period 23.981 ns

Table 5.12: 32-item Pipelined Sorting Network 

Sorting networks arise as a feasible option to calculate the probability density function 

of any given image; as these arrays tend to occupy large silicon areas we must look forward 

a higher level solution that includes the selection of small sorting networks and both ac­

celeration techniques, parallelism and pipelining. We are convinced that the video coding 

process can be enhanced taking advantage of the "idle" clock cycles between the input of the 

processor and the output of the quantization block by the parallelization of the pdf obtention 

to determine the best codeword mapping of the symbols. 

5. 3 Concl usions 

Synthesis results show that the elements of the proposed architecture are large, but feasible 

for implementation in reconfigurable platforms like FPGAs, the largest modules are sorting 

networks; in exchange they can be pipelined to increase their maximum operating frequency 

to comply with video coding requirements; the bottleneck of the proposed architectures is 

located in the transposition memory, where serial to parallel and parallel to serial operations 

must be performed to address data between DCT cores. If we parallelize the DCT calculation 

with probability density function we reduce the latency of the architecture as we do not have 

to wait until the orthogonal transform is performed to begin the codeword assignation. 
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Figure 5.3: RTL of a 32-item Sorting Network 
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Chapter 6 

Conclusions 

In this thesis, analysis of video coding processes toward the design of a hardware video co­
processor was presented; Video coding is a highly demanding process that requires a large 
amount of arithmetic and logic operations. Many processing blocks are currcntly imple­
mcnted in hardware as application specific integrated circuits; onr main interest is to deter­
mine the feasibility of integrating the main layer of coding systerns (DCT, Q and Huffman 
Coding) in a single device. 

Historically, designers have centered their efforts in video decoding, but the emerging ne­
cessities in video transmission capabilities for consumer elcctronics have madc evident that 
a video coder for mobile applications is required; of course we could join existent modules 
to perform the task, but the main issue is that electronic deviccs are small and a single 
intcgrated circuit is required. 

The first coding task implies data compression, three architcctures to compute the Dis­
crete Cosine Transform were implemented and cornpared in terrns of material complexity and 
operating frequency; synthesis results showed that Distributed Arithmetic architectures offer 
the best trade off between both parameters; the problem with these finite precision imple­
mentations is the accuracy loss as rnany rounding and truncating operations are required to 
maintain a low material complexity. 

Quantization was an easy process as it only required a hardwired operation to reduce 
the 12-bit outputs of the DCT to a 9-bit quantization level. Huffman coding was analyzed 
in terms of material complexity and control logic; many reportcd irnplernentations require 
vast amounts of resources and complex control logic; we decidcd to explore the feasibility 
of sorting networks to generate the probability density function of a given block on the fly 
instead of waiting until the quantization process is finished. 

Sorting Networks wcre implernented using cornbinational logiC' blocks configurc�d i11 a ver­
tical array fashion; this architectures have the advantage of being simple as no control logic 
is rcquired to operate the network, the main drawback is that thcse architectures tend to be 
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large as we must parallelize comparators over and over again until we configure the required 

amount of elements. 

Synthesis results showed that they are effi.cient in terms of processing speed as they are 
capable of sorting large lists of numbers in a few dock cycles, especially when pipelining 

is introduced. The generation of frequency tables on the fly is a promising area that can 

be exploited in video coding, normally the dynamic generation of this tables is processed 

in memory oriented architectures that tend to be slow as there is an strong dependency on 

memory access cycles for reading and writting. 

Two architectures that parallelize DCT and Quantization with sorting networks were pro­
posed, we are certain that the implementation of sorting algorithms to generate frequency 

tables at the same time that the lossy compression processes are executed will help to reduce 

the critical path of integrated video processing devices; Hardware implementation results of 

DCT cores and sorting networks helped to determine the approximate material complcxity 

of the Co-Processor and helped to conclude that these architectures are feasible for imple­

mentation in reconfigurable platforms. 

Finally, reconfigurable platforms have proven useful for designing VLSI architectures to­

ward full custom designs as they can be used to test many different configurations of the 

same system without the necessity to wait until one version of the architecture is produced 

and tested; hence, reconfigurable architectures help to reduce design time at the same that 

makes easier the translation to full custom designs. 

6.1 Future Work 

There are a number of areas considered in this thesis where further work could be developed: 

l. Hardware implementation of the proposed architectures in a single FPGA.

2. Finish the algorithm-architecture adequation of the main layer.

3. Analysis of material complexity and exploration of parallel and pipelining techniques

to accelerate the coding process.

4. Establish the parameters to translate the designs to an ASIC.
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