Integrated transcriptomic and metabolomic analysis shows that disturbances in metabolism of tumor cells contribute to poor survival of RCC patients (Article) (Open Access)

Popławski, P.a, Tohge, T.b, Bogusławska, J.a, Rybicka, B.a, Tański, Z.c, Treviño, V.d, Fernie, A.R.b, Piekiełko-Witkowska, A.a

aCentre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Warsaw, Poland
bMax-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
cMasovian Specialist Hospital in Ostroleka, Ostroleka, Poland

Abstract

Purpose Cellular metabolism of renal cell carcinoma (RCC) tumors is disturbed. The clinical significance of these alterations is weakly understood. We aimed to find if changes in metabolic pathways contribute to survival of RCC patients. Material and methods 35 RCC tumors and matched controls were used for metabolite profiling using gas chromatography-mass spectrometry and transcriptomic analysis with qPCR-arrays targeting the expression of 93 metabolic genes. The clinical significance of obtained data was validated on independent cohort of 468 RCC patients with median follow-up of 43.22 months. Results The levels of 31 metabolites were statistically significantly changed in RCC tumors compared with controls. The top altered metabolites included beta-alanine (+ 4.2-fold), glucose (+ 3.4-fold), succinate (− 11.0-fold), myo-inositol (− 4.6-fold), adenine (− 4.2-fold), uracil (− 3.7-fold), and hypoxanthine (− 3.0-fold). These disturbances were associated with altered expression of 53 metabolic genes. ROC curve analysis revealed that the top metabolites discriminating between tumor and control samples included succinate (AUC = 0.91), adenine (AUC = 0.89), myo-inositol (AUC = 0.87), hypoxanthine (AUC = 0.85), urea (AUC = 0.85), and beta-alanine (AUC = 0.85). Poor survival of RCC patients correlated (p < 0.0001) with altered expression of genes involved in metabolism of succinate (HR = 2.7), purines (HR = 2.4), glucose (HR = 2.4), beta-alanine (HR = 2.5), and myo-inositol (HR = 1.9). Conclusions We found that changes in metabolism of succinate, beta-alanine, purines, glucose and myo-inositol correlate with poor survival of RCC patients. © 2016 Elsevier B.V.
Author keywords

Beta-alanine Metabolism Myo-inositol RCC Renal cell carcinoma Survival

Indexed keywords

EMTREE drug terms: adenine beta alanine glucose hypoxanthine inositol purine derivative succinic acid uracil beta alanine inositol transcriptome

EMTREE medical terms: Article cancer patient cancer prognosis cancer surgery cancer tissue cohort analysis controlled study correlative study diagnostic test accuracy study follow up gene expression gene targeting hazard ratio human human cell human tissue kidney carcinoma major clinical study mass fragmentography metabolite metabolomics polymerase chain reaction priority journal protein folding protein metabolism receiver operating characteristic sensitivity and specificity survival rate transcriptomics tumor cell uninephrectomy female gene expression profiling gene expression regulation genetics genomics kidney tumor male metabolism metabolome metabolomics renal cell carcinoma survival analysis

MeSH:

beta-Alanine Carcinoma, Renal Cell Female Gas Chromatography-Mass Spectrometry Gene Expression Profiling Gene Expression Regulation, Neoplastic Genomics Humans Inositol Kidney Neoplasms Male Metabolic Networks and Pathways Metabolome Metabolomics Survival Analysis Transcriptome

Chemicals and CAS Registry Numbers:

adenine, 22177-51-1, 2922-28-3, 73-24-5; beta alanine, 107-95-9; glucose, 50-99-7, 84778-64-3; hypoxanthine, 68-94-0; inositol, 55608-27-0, 6917-35-7, 87-89-8; succinic acid, 110-15-6; uracil, 66-22-8; beta-Alanine; Inositol

ISSN: 09254439
CODEN: BBADE
Source Type: Journal
Original language: English

DOI: 10.1016/j.bbadis.2016.12.011
PubMed ID: 28012969
Document Type: Article
Publisher: Elsevier B.V.