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E-mail: amezquita-brooks@ieee.org

Abstract. Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear
dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task,
is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most
widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semi-
active shock absorber are compared: an observer-based approach and a parameter identification approach.
The performance of these schemes is validated and compared using a commercial vehicle model that was
experimentally validated. Early results shows that a parameter identification approach is more accurate,
whereas an observer-based approach is less sensible to parametric uncertainty.

1. Motivation
Safety processes and technologies typically improve the overall equipment effectiveness and plant
efficiency, with benefits that drop to the bottom line. One study also showed the following benefits
from embedded safety systems: 5% productivity increase, 3% reduction in production expenses, 5%
reduction in maintenance costs, 1% savings in capital expenses and 20% reduction in insurance costs, [4].
Considering that an automobile is integrated by many systems, such as, transmission, steering, exhaust,
cooling, electrical, gasoline engine, fuel supply, electrical, braking and suspension system; where each
system is a set of interdependent parts fulfilling a specific function and capable of functioning on its own.
These systems can fail due to any number of possible failures that may occur in the sensors, actuators
and devices that integrate them.

Although the automobile is not a safety-critical system, several driving conditions can lead to lose the
vehicle stability with fatal consequences. The World Health Organization [19] estimates that 2.2 % of the
global mortality (around 1.24 million deaths) is related to vehicle collisions caused by multiple factors,
e.g. human factors, road quality, vehicle design and its maintenance, etc. The economic cost of motor
vehicle collisions is estimated at over US $ 100 billion per year in middle-income countries (i.e. 1 - 2 %
of their gross national product). Therefore, the preservation of the safety and comfort of passengers are
the most fundamental goals for vehicle manufacturers and automotive control engineers. This research
will focus on the controlled shock absorbers of the Semi-Active (SA) suspension system.
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The primary functions of an automotive suspension system are to [9]: (1) isolate the chassis motion
from road irregularities, (2) keep the tire-road contact with minimal load variations, (3) resist roll of the
chassis, (4) react to the control forces (longitudinal and lateral) produced by the tires and braking and
driving torques, and (5) maintain the wheels in the proper steer and camber attitudes to the road. The
last two objectives are related to the kinematic behavior of the suspension geometry which can be solid
axle or independent suspension; while, the first three objectives directly depend on the vertical force that
it must transmit from the tires to the chassis.

According to the capability to adjust the damping force, the automobile suspensions can be classified
as: passive, active or SA. Passive suspensions are only able to dissipate the energy and their damping
characteristics are time invariant, while active ones are able to store, dissipate and generate energy
through a variable damping coefficient but they are very expensive to apply because require an external
power supply. SA suspensions represent a good solution to control the vertical vehicle dynamics using
lower energy consumption and lower cost.

A suspension is integrated by 3 main elements: (1) an elastic element (i.e. a coil spring) which
delivers a force proportional and opposite to the suspension elongation, this part carries all the static
load; (2) a damping element (i.e. shock absorber), which provides a dissipative force proportional and
opposite to the elongation speed; this part delivers a negligible force at steady-state, but plays a crucial
role in the dynamic behavior of the suspension and (3) a set of mechanical elements which links the
suspended (sprung) body to the unsprung mass. From the dynamic point of view, the spring and the
damper are the two key elements, [21].

A SA suspension has an adaptable shock absorber where the continuous variable damping coefficient
adjusted by external control signals along a road surface offers much better comfort and road holding
performance with respect to Passive suspensions. The most fundamental advantage is its cost-benefit in
comparison with Active suspensions. Although, the variable absorbing force may only affect transient
behavior of the suspension deflection and does not affect its steady state as in an Active damper, SA shock
absorbers are efficient to manage the balance between comfort and road holding. During past decades,
different SA damper technologies have been examined, whose bandwidth oscillates from 0 to 30 Hz.
There are four main technologies of SA shock absorbers in the market: Electro-Hydraulic, Pneumatic,
Magneto-Rheological (MR), and Electro-Rheological.

An extensive work on SA suspension control systems emphasizes that Magneto-Rheological shock
absorbers are one of the best solutions to manage the compromise between comfort and road holding.
The transient response time of MR shock absorbers is around 12 ms, the power requirement is lower,
they are robust to extreme temperature variations, and they are easier to manufacture and implement [5].
However, the use of these MR shock absorbers increases the necessity of fault detection. It has been
noted that SA shock absorbers are more susceptible to faults. This is specially relevant since the effect of
damper faults could vary from the increase of chassis vibrations to the loss of stability.

This paper, an extended version of [12], is organized as follows: Section 2 briefly reviews previous
works on Fault Detection and Isolation for SA suspensions Section 3 defines the vehicle model. Section
4 describes the proposal. Section 5 discusses the results. Section 6 concludes the research project.

2. State of the art
Failures are inevitable and unpredictable in vehicle suspensions. The considered fault as case of study
is represented as a loss of oil in an automobile shock absorber. There are different aspects that cause
a damper leakage [20], which are related to a bad installation, an excessive use, a damage by external
devices or a bad design of control system that saturates the manipulation. The direct consequence of a
faulty shock absorber is the loss of damping force that causes a performance reduction in the suspension
capabilities (comfort and safety for passengers) at any driving situation.

There are few papers dealing with Fault Detection and Isolation (FDI) for SA shock absorbers, and
most of them are based on methods that inherently handle additive faults. These methods have the
advantage of low computational requirements and do not need permanent excitation.
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FDI modules based on analytical redundancy are the most accepted strategies for fault diagnosis and
estimation [28]; especially parity-space approaches, because of its applicability to nonlinear systems,
speed of detection, isolability property, robustness and computational complexity. Some FDI approaches,
based on parity space theory, have been proposed for automotive suspensions [8], [16] to diagnose faults
in actuators or sensors. However, these approaches have been designed for Linear Time Invariant (LTI)
systems without consideration of model uncertainties or noisy measurements.

[18] explored an optimized parity space approach for actuator FDI. The parity spaces spans all the
parity relations that quantify the analytical redundancies available between the sensor outputs and the
actuator inputs. A transformation matrix is then optimized to transform these parity relations into
residuals that are especially sensitive to specific actuator faults. Actuator faults cause the variance of
parity space residuals to increase. A CUmulative SUMmation (CUSUM) procedure is used to determine
when residual variance has changed sufficiently to indicate an actuator fault. The added advantage of
this design procedure is that it uses less computational power than some other FDI systems such as a
bank of extended Kalman filters.

In [24] the parity space method is used to detect the damper fault. However, the SA damper
nonlinearities are not considered nor model uncertainties. An extension of the FDI module based on
parity space theory by adding robustness to exogenous unknown disturbances is proposed by [23]. A
novel Fault-Tolerant Controller is proposed for an automotive suspension system based on aQuarter of
Vehicle QoV model. The design is divided in a robust Linear Parameter Varying (LPV) controller used
to isolate vibrations from external disturbances and in a compensation mechanism used to accommodate
actuator faults. The compensation mechanism is based on a robust fault detection and estimation scheme
that reconstructs a fault on the SA damper; this information is used to reduce the failure effect into the
vertical dynamics to achieve good control performances. Results show the effectiveness of the fault-
tolerant SA damper versus an uncontrolled damper.

[1, 2] presented a fault detection method for suspension system using continuous wavelet transform
in which Morlet wave function is used to determine the natural frequencies and amplitudes of signal
components and include maximum contribution to the signal energy at the specific scale. Fault diagnosis
has been investigated for dampers and upper damper bushings. After determination of faulty parts
of suspension system by using signal energy distribution, by observing the changes in the natural
frequencies and corresponding energy amplitudes, damper fault is distinguished from damper bushing
fault.

[27] presents an application of a diagnosis and a fault tolerant control method for an active suspension
system. The method detects and identifies an actuator fault and reconfigures the controller to maintain
the ride comfort and vehicle performance in the presence of road disturbances. The proposed scheme
consists of a diagnosis module and a controller reconfiguration module. The diagnosis module is
based on the Unknown Input Observer (UIO)approach to detect and identify actuator faults. A bank
of observers is designed to generate residual signals such that each of them matches the system in a
defined actuator fault mode. The controller reconfiguration module consists of a bank of controllers,
each corresponding to a fault mode of the system. The module changes the control law after the detection
and the identification of an actuator fault. In [25] a Lyapunov based restoring force observer that leads to
the design of a robust fault detection system is proposed. The fault estimation method provides a direct
estimate of fault (i.e. stiffness and damping variations).

[29] designed a fault detection filter in finite frequency domain. A sufficient condition for residual
system with the prescribed H∞ performance index is derived based on the generalized Kalman-
Yakubovich-Popov lemma. The fault detection filter is designed in middle-frequency domain such that
the residual systems are asymptotically stable. Results are validated with a numerical example.

Even more focus on control, [6] demonstrated the efficiency of the LPV framework for vehicle
dynamics control, when some actuators may be in failure (e.g. suspension and braking actuators
failures). A LPV/H∞ fault tolerant gain-scheduled vehicle dynamic control involving the steering
actuators, rear brakes and four suspension systems is proposed for yaw stability, lateral and vertical
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vehicle performances. The LPV control system can handle such failures through online adaptation of the
control input distribution. Simulation results on a model experimentally validated (e.g. Renault Mégane
Coupé) show the proposed methodology is effective and robust. Based on same LPV/H∞ framework,
[17] introduced a new Fault Tolerant Control (FTC) for a faulty semi-active suspension system (e.g.
oil leakages damper). A fast adaptive fault algorithm is used to estimate the fault. Then, the LPV-
FTC is designed to ensure the damper dissipativity constraint and to achieve the designed performance
objectives in both comfort and road holding. The controller solution is based on the LMI solution for
polytopic systems

Some FDI approaches based on parametric identification have been also proposed. These approaches
have the advantage of providing deeper insight into the process; however, most online estimation methods
need excitation and other operating requirements which may be restrictive when the road profile is
unknown. [26] presented two simple models for the vertical dynamics. A two-step scheme for fault
diagnosis is proposed, which consists of a detection of the fault in the first step and a fault diagnosis in
the second. Results with measured data, drawn from a test rig showed that fault detection with parameter
estimation leads to good results. Several different faults can be distinguished due to their unique patterns
of the estimated parameter changes. Also, parity equations enable detection of some faults and require
only little computational effort. Weak dampers can be detected.

Artificial Intelligence approaches had been exploited too. For automatic fault detection, estimated
parameters were mapped to the different faults, [3]. Neuronal networks (e.g. feedforward perceptron
networks) were proven for such tasks, the generalization error was below 4 %. Even a FDI system
was implemented with parameter estimation, the process has to be excited all the time to guarantee
convergence of the estimation algorithm. Then, parity equations were combined because they do not
need permanent excitation and require less computational effort. Also, [7] designed the FDI system
by developing the parity equations based on simple kinematical equations and on models of the lateral
vehicle dynamics. The calculated residuals are then used for fuzzy logic fault diagnosis. The detection
and diagnosis of sensor and process faults, as well as sensor reconfiguration, were presented for lateral
and vertical vehicle dynamics. Small faults could be detected with a good isolation performance.

Two different approaches are applied to SA shock absorbers to estimate faults: the observer-based
approach and the parameter estimation approach. The advantages and disadvantages of each method are
analysed in order to determine which one is more suitable to estimate actuator faults in a SA suspension
systems.

3. Quarter of Vehicle model
A QoV model is the most basic automotive suspension, Fig. 1. Its use assumes an equivalent load
distribution among the four corners and a linear dependency with respect to the translational and
rotational chassis motions. The lateral and longitudinal wheel dynamics is not considered, while the
wheel road contact is ensured.

This very simple one-dimensional model consists of a spring-damper-system representing the
suspension strut and a single spring replacing the tire. This friction element is added to estimate offset
values to detect offset faults, or increased friction. The damper contributes the drive safety and the drive
quality to the same extent. Its tasks are the prevention of an amplification of the body and the prevention
of a skipping wheel. A non-skipping wheel is the condition for a good road-contact. The task of the
spring is to carry the body-mass and to isolate the body from road disturbances maximally. A QoV
model is a well-known simplification for vertical dynamics analysis of vehicle, [3]. Faults occurring in
the damping system can be as a result of one or more of the following factors (numbered in Fig. 1):
(1) Damage of leak of the damper, (2) Weak springs, (3) Worn bushing and broken of support member
assembly, (4) the looseness joins, (5) under-inflation or over-inflation of tyres and (6) wear of the tyre.

The dynamic behavior of a QoV model with a SA suspension is described by:
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Figure 1. QoV model

msz̈s = −FD − ks(zs − zus)
musz̈us = ks(zs − zus)+FD − kt(zus − zr)

(1)

where zs, zus and zr are the sprung mass, unsprung mass and road profile vertical positions, respectively;
ms is the sprung mass which represents the chassis, mus is the unsprung mass which represents the wheel,
tire, etc.; ks and kt are the suspension and the tire stiffness, and FD represents the damping force.

The SA damper force behavior may be represented according to, [10]:

FSA = kpzde f + cpżde f + fcυ tanh(avżde f +adzde f ) (2)

where zde f = zs − zus is the suspension deflection, and υ is the damper control input (i.e electric current
for a MR damper), fc is the force due to the input, cp is the viscous damping coefficient, kp is the stiffness
coefficient, av and ad are coefficients which characterize the hysteretic behavior, Table 1.

The considered model for multiplicative fault is :

FD = α[kpzde f + cpżde f + fcυ tanh
(
avżde f +adzde f

)
] (3)

where α represents the effectiveness of the damper, i.e. α = 1 is a healthy damper, α = 0 represents
a 100 % damper failure. The aim is to estimate α using the masses accelerations and the suspension
deflection, while the road profile zr is an unknown perturbation input, because it is expensive to measure.

4. Approaches
Two complementary model-based fault estimation schemes for SA shock absorbers are proposed: an
observer-based approach, which is intended to estimate additive faults; and a parameter identification
approach, which is intended to estimate multiplicative faults.

4.1. Observer-based Fault Estimation
A FDI system based on an UIO and the QoV model (1) is proposed. The idea is to synthesize a residual,
which is sensitive to the damper fault and insensitive to disturbances (i.e. road profile). The damper fault
is first modelled as an additive fault:

FD = F̄D −Fδ (4)

where F̄D is the nominal force (i.e. the force of a healthy damper) and Fδ is the loss of force due to the
fault. By using (1), (3) and (4), a state space system is:
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ẋ(t) = Ax(t)+Buu(t)+Bzzr(t)+BFFδ (t)
y(t) = Cx(t)+Duu(t)+Dzzr(t)+D f Fδ (t)

(5)

with
x =

[
zs żs zus żus

]⊤
,y =

[
z̈us z̈s zde f

]⊤
A =


0 1 0 0

− k
ms

− cp
ms

k
ms

cp
ms

0 0 0 1
k

mus

cp
mus

− k+kt
mus

− cp
mus

Bu =


0

− fc
ms

0
fc

mus

Bz =


0
0
0
kt

mus

BF =


0

− 1
ms

0
1

mus


C =

 k
mus

cp
mus

− k+kt
mus

− cp
mus

− k
ms

− cp
ms

k
ms

1 0 −1 0

Du =

 fc
mus− fc
ms

0

Dz =

 kt
mus

0
0

D f =

 1
mus−1
ms

0


where k = ks + kp, u(t) = υρ(t) and ρ(t) is the nonlinear term of the SA damper model:

ρ(t) = tanh
(
avżde f +adzde f

)
(6)

Note that system (5) is comprised by a linear subsystem in a closed loop with a memoryless nonlinear
function υρ(t).

An important result of applying the UIO theory to this domain is, without road information, the
system is non-observable and non-detectable [11]. This will affect the state estimations.

An approximated UIO observer can be obtained by decoupling the system (5) from the road surface
using the procedure reported in [14]. The decoupled system can be written as:

ẋ(t) = Āx(t)+ B̄uρ(t)u(t)+ B̄FFδ (t)+Gy1(t)
y2(t) = C̄x(t)+ D̄uρ(t)u(t)+ D̄ f Fδ (t)

(7)

where

Ā =


0 1 0 0

− k
ms

− cp
ms

k
ms

cp
ms

0 0 0 1
0 0 0 0

 B̄u =


0

− fc
ms
0
0

 B̄ f =


0

− 1
ms
0
0

G =


0
0
0
1

C̄ =

[
C̄1
C̄2

]
=

[
1 0 −1 0

− k
ms

− cp
ms

k
ms

cp
ms

]

D̄u =

[
D̄u1
D̄u2

]
=

[
0
− fc
ms

]
D̄ f =

[
D̄ f1
D̄ f2

]
=

[
0
−1
ms

]
, y1 = z̈us, y2 = zde f , y3 = z̈s, ȳ =

[
y2
y3

]
For the state estimation the decoupled system (7) with the output y2 will be used since this output

does not depend on the fault. For the residual generation, y3, which is affected by the fault, will be used.
If (Ā,C̄1) are observable or detectable, an observer can be designed for the decoupled system to

estimate the states. The observability matrix of system (7), has rank 2; thus, two of the observer poles
cannot be located arbitrarily. For the system (7) the non-observable subset is related to two poles in s= 0;
therefore, the system is non-observable and non-detectable. A possible solution consists on generating a
stable system which approximates the frequency response of the UIO observer, [13].

An observer is a dynamical system whose inputs are the process input and output vectors. For
the decoupled system (7), the observer poles in s = 0 are related to the input contribution to the state
estimation. Since these poles are not stable regardless the observer gain, the best estimation effort is the
open-loop simulation of these states. In general the state estimation based only in the simulation of the
process (which is equivalent to an observer with observer gain equal to zero) is not advised. However,
the input related with these integrators is the unsprung-mass acceleration, which is indeed a measured
output, but it was considered as an input to achieve the decoupling of the system from the road profile.
Thus, the non-observable states are estimated via the output, like it is done by using high-gain observers.

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012037 doi:10.1088/1742-6596/659/1/012037

6



The observer gain matrix L is designed to place the two observable poles at (−20.38± 1.09i). The
resulting observer combines the closed-loop estimation dynamics and the integration of acceleration
measurements. For the states, which are estimated by numerical integration, it is well known that
low frequency noise in the measurements induces a divergence called drift [22]. Without additional
measurements, it is not possible to eliminate the drift by modifying the observer gain, [11, 15]. Since the
suspension deflection is limited and the masses velocities converge to zero, it is possible to use high-pass
filters to eliminate the drift. Then, the observer is complemented by adding a pair of high-pass filters
g f (s) = s/(s+ω f ) for each of the integrators. Only the non-detectable states are filtered, while the
observable ones are estimated by a closed-loop observer. The cut-frequency ω f of the filter is set at 0.14
Hz.

By using the estimated states with the UIO observer and the measurement of the sprung mass
acceleration, the residual can be computed to detect a fault (loss of damping force):

r(t) = y3 −
[
C̄2x̂(t)+ D̄u2u(t)

]
= D̄ f2Fδ (t) (8)

then the magnitude of the fault can be estimated as F̂δ = [D̄ f2 ]
† r(t) where † stands for the Moore Penrose

pseudo inverse.

4.2. Parameter Estimation Approach
By considering the multiplicative model of the fault in (3), the system can be represented in state-space
form as:

ẋ(t) = Anx(t)+g(x,u)α +Bzzr(t)
y(t) = Cn(α)x(t)+h(x,u)α +Dzzr(t)

(9)

with

An =


0 1 0 0

− ks
ms

0 ks
ms

0
0 0 0 1
ks

mus
0 − ks+kt

mus
0

g(x,u) =


0

− fcρu+cp(x2−x4)+kp(x1−x3)
ms
0

fcρu+cp(x2−x4)+kp(x1−x3)
mus


Cn =

 ks
mus

0 − ks+kt
mus

0
− ks

ms
0 ks

ms
0

1 0 −1 0

h(x,u) =


fcρu+cp(x2−x4)+kp(x1−x3)

mus

− fcρu+cp(x2−x4)+kp(x1−x3)
ms
0


Although the fault affects both the sprung and unsprung mass dynamics, for this estimator only

the sprung mass dynamic will be considered since it is independent of the unmeasured road profile.
Two measurements are used: z̈s and zde f . From (9), the discrete-time representation of the sprung
mass dynamic can be written in the regression form as ζ = ψ⊤θ where ζ = −ks(zde f )− ms(z̈s),
ψ⊤ =− fcρu+cp(żde f )+kp(zde f )

ms
and θ = α . The damper fault can be online estimated by using the Recursive

Least Squares (RLS) with forgetting factor λ :

e(k) = ζ −ψ⊤(k)θ̂(k−1) γ(k) = P(k−1)ψ(k)
λ+ψ⊤(k)P(k−1)ψ(k)

P(k) = 1
λ (I − γ(k)ψ⊤(k))P(k−1) θ̂(k) = θ̂(k−1)+ γ(k)e(k)

(10)

where θ̂ is the estimation of θ . The measurement of żde f is not available, therefore an estimation is
required to implement the parameter estimation. żde f may be estimated either by the numerical derivative
approximation of zde f or by an state-observer. In this case, an approximation based on the bandwidth-
limited derivative is used.

For a sufficiently high sampling rate, the discrete estimator will approximate the continuous time
model parameters. For this system the simulations show that 500 Hz was a sufficiently high sampling
rate to have a good approximation.
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Table 1. Commercial vehicle model parameters

Parameter Value Units Parameter Value Units
ms 315 Kg mus 37.5 Kg
ks 29,500 N/m kt 230,000 N/m
cp 1,500 Ns/m kp -10,239 N/m
av 7.89 s/m ad -13.8 1/m
fc 441 Ns/A

5. Results
Data from a commercial vehicle was used, Table 1.

Six tests were used to assess the performance of the FDI proposals. These tests consider a) an ISO
Type D at a vehicle speed of 30 Km/h, and b) a series of bumps as road profile signals, which represents
a normal driving conditions. Table 2 summarizes the tests characteristics.

Table 2. Tests used to evaluate the FDI methods.
Test Description Objective analysis

α Current
#1 [0.5,1] u = 2 A Estimation of abrupt fault at constant damper input.
#2 [0.1,1] u = 2 A Estimation of gradual fault at constant damper input.
#3 [0.1,1] u ∈ [0.5,3] A Estimation of gradual fault at varying damper input.
#4 [0.5,1] steps in zr Sensitivity to road disturbances.
#5 [0.5,1] 1.2 ms Robustness to uncertainty in ms.
#6 [0.2,1] 0.8 Kt Robustness to uncertainty in kt .

Although both strategies are used to estimate faults of different nature (i.e. additive or multiplicative),
a comparison can be made by calculating the equivalence between them. From (4) and (3) the relation
between the multiplicative and the additive faults can be obtained as Fδ = FD

( 1
α −1

)
.

Figure 2 (left plot) shows the estimation of the loss of force Fδ in the Test #1. An abrupt damper fault
is modelled as a step change in α; however, the equivalent additive fault also depends on FD, therefore
even if α is constant, Fδ is not. This figure shows the Least Squares Estimator (LEE) error converges to
zero for a step change in α , while the Observer-Based Estimator (OBE) error does not.

Figure 2 (right plot) shows the multiplicative equivalent fault of the Test #1, this confirms the last
discussion. The LEE is better posed for constant multiplicative faults than the OBE. Since real damper
faults are more similar to multiplicative faults, only this type of faults will be discussed.

Figure 3 (left plot) shows that both approaches are able to estimate gradual variations for
multiplicative faults, Test # 2. When the multiplicative fault α has a constant slope, neither of the
estimator errors converge to zero. The LEE has a lower overall error. In Fig. 3 (right plot) the estimation
of α is compared in the same fault conditions as in Test #2, but, in this case a varying damper input
([1,3] Amp) is considered. This is an important observation because this characteristic, is essential
for SA suspension systems. This figure also shows that the LEE has lower sensitivity to damper input
variation than the OBE.

Test #4 is used to asses the sensitivity of the fault estimators to sudden road profile changes, which
can represent road abnormalities such as potholes. The road decoupling of the OBE is not perfect since
a perfect UIO was not possible to design due to observability issues. This is more evident when the road
presents sudden changes, inducing a greater level of error. The LEE is not visibly affected by these road
characteristics, Fig. 4 (left plot).
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Figure 2. Comparison of estimated force loss and fault α in Test #1 (ISO Type D).
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Figure 4. Comparison of estimated fault α in Tests #4 and #5 (ISO Type D).
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Figure 4 (right plot) is used to assess the effect of sprung mass uncertainty on the estimated fault, a
sprung mass 20% heavier was considered. The results show, that the mass uncertainty induces steady
state error in both algorithms. The LEE has a greater error.

Figure 5 (left plot) shows the estimated fault in the Test #1 under other road condition, the series of
bumps. As observed in this figure, the LEE is less sensitive to the road profile and it presents a lower
error level. The LEE is better posed for constant multiplicative faults than the OBE. In Fig. 5 (right plot),
it can be observed that he LEE has lower sensitivity to damper input variation than the OBE.
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Figure 5. Comparison of estimated fault α in Test #1a and #3a (Series of bumps).

Test #6 is used to evaluate the effect of tire stiffness uncertainty on the estimated fault. This variation
may occur due to variations in the tire inflation pressure. A 20% lower tire stiffness was considered,
which corresponds to a variation of 5 psi in the inflation pressure. The results in Fig. 6 show that both
methods are robust to the uncertainty in this parameter. The OBE error is slightly higher, 10 % with
respect to the unperturbed case, whereas the estimation of the LEE is not affected since it is independent
of this parameter.

0 1 2 3 4 5 6
0

0.5

1

1.5

α

0 1 2 3 4 5 6

−0.5

0

0.5

Time [s]

E
rr
o
r

OBE

FEE

Real

Figure 6. Comparison of estimated fault α in Test #6 (Series of bumps).

Finally, a quantitative comparison of the approaches was made using the Root Mean Square Error
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(RMSE) index. Table 3 summarizes the results. It can be observed that the LEE presents an overall lower
level of error; for instance, in Test #2 the LEE has 493% lower RMSE in the estimation of the loss of
force Fδ . If the fault is represented in the multiplicative form, the LEE also yields a lower RMSE, but the
differences are smaller. For example, in test #2 the LEE is also lower but 57%. Only when sprung-mass
uncertainty is considered the OBE has a lower index, in this case 55% lower for Fδ .

Table 3. RMSE of fault estimation approaches under different scenarios.
Test Road OBE LEE

Profile Fδ α Fδ α
1 ISO Type D 1.46221 0.00062 0.36250 0.00050
2 ISO Type D 2.40880 0.00071 0.40596 0.00045
3 ISO Type D 1.78609 0.00080 0.41011 0.00044
4 ISO Type D 1.66067 0.00073 0.34299 0.00049
5 ISO Type D 1.51313 0.00077 0.91140 0.00120
1a Series of bumps 1.74457 0.00106 0.97300 0.00121
3a Series of bumps 1.75683 0.00077 1.16826 0.00065
6 Series of bumps 1.71662 0.00119 0.89106 0.00121

6. Conclusions
A comparison of two fault detection algorithms for the estimation of semi-active shock absorber faults
is presented. One method is based on classical least square parametric identification to estimate a
multiplicative fault. The second method is based on an Unknown Input Observer, which is used to
calculate a residual and to estimate the loss of force due to an additive fault.

It has been reported that shock absorber faults are normally of multiplicative nature; nonetheless,
additive fault estimation methods are more widely reported. Since it is possible to derive the
multiplicative equivalent from the additive estimation, both methods were compared through different
scenarios, including mass uncertainty, shock absorber input sensitivity and road profile sensitivity. The
results show that the Least Squares Estimator achieves better qualitative and quantitative performance in
all cases, with the exception of mass uncertainty. This also suggests that, for this system, identification
algorithms based on regression models are highly sensible to process parameters changes. It can be
concluded that the two estimators present complementary characteristics which could be exploited
depending on the operating conditions to improve the overall system performance. The results also
show that for this application a simple fault estimation algorithm, such as Least Squares Estimator, is
enough as long as a multiplicative fault structure is used and a low level of parameter uncertainty is
present.
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