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Inflammation is a central feature of liver fibrosis as suggested by its role in the activation of hepatic stellate cells leading to
extracellular matrix deposition. During liver injury, inflammatory cells are recruited in the injurious site through chemokines
attraction. Thus, inflammation could be a target to reduce liver fibrosis. The pandemic trend of obesity, combined with the
high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies.
Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. The
aim of this review is to describe the role of inflammation and the immune response in the pathogenesis of liver fibrosis and detail
the mechanisms of inhibition of both events by medicinal plants in order to reduce liver fibrosis.

1. Introduction

Fibrosis is an inappropriate tissue repair of the liver resulting
from almost all of the chronic liver injuries including alcohol
induced damage, chronic viral hepatitis (HBV andHCV), au-
toimmune, parasitic, and metabolic diseases, and less fre-
quently toxic or drugs exposure [1]. When fibrosis is not
controlled, it can further progress into cirrhosis. In contrast
with the traditional idea that cirrhosis is an irreversible state,
there is solid evidence indicating that fibrosis even cirrhosis
could be reversible [2].

Liver fibrosis is an important public health concern with
significantmorbidity andmortality [3]. Hundreds of millions
of people worldwide suffer from cirrhosis [4]. Chronic viral
hepatitis B and C, alcoholic liver diseases, and nonalcoholic
fatty liver diseases are the three most common causes [5].
Prevalence of chronic liver diseases, hence hepatic fibrosis-
cirrhosis, is predicted to increase, due in part to the rising

prevalence of obesity and metabolic syndrome, especially in
developed countries [6].

Pathogenesis of liver fibrosis is complex and varies
between different kinds of hepatic injuries. Usually after acute
liver damage, parenchymal cells regenerate and replace the
necrotic and apoptotic cells; this process is associated with an
inflammatory response and a limited deposition of extracel-
lular matrix. When injury persists, eventually the regenera-
tive response fails and hepatocytes are substituted by abun-
dant extracellular matrix mainly composed by collagen type
I-III-IV, fibronectin, elastin, laminin, and proteoglycans. Ac-
tivated hepatic stellate cells (HSCs) are the main sources of
extracellular matrix [7].

Inflammation is an important and complex feature of liver
fibrosis. Following liver injury, an accumulation of recruited
inflammatory cells in the injurious site occurs. Cells from
innate immune response, including, platelets, neutrophils,
macrophages, mast cells, and natural killer (NK) cells, and
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from the adaptive immune response, such as T- and B-cells,
participate in the fibrogenesis process. A wide repertoire
of pro- and anti-inflammatory compounds, which encom-
passes cytokines, chemokines, growth factors, and products
of oxidative stress, mediates the inflammatory response of
immune cells during the fibrosis process [8]. HSCs also take
part actively in the inflammation process through interaction
with diverse types of immune cells [9]. Furthermore, HSCs
conversion from a quiescent to an activated state character-
ized by a myofibroblast-like phenotype responsible for pro-
liferation and excessive extracellularmatrix deposition is reg-
ulated by inflammatory mediators, including transforming
growth factor-beta (TGF-𝛽) and tumor necrosis factor-alpha
(TNF-𝛼) [7].

There is no standard treatment for liver fibrosis, although
it is known that reducing liver injury events, such as inter-
ruption of alcohol intake or successful treatment of viral
hepatitis, contributes to control of the process. Nevertheless,
these actions do not seem to be sufficient in the vast majority
of patients to avoid progression to cirrhosis [8]. Even though
important advances have been made in the knowledge of the
pathogenesis of hepatic fibrosis for the past 20 years, there are
still important gaps to translate this basic information into
efficient antifibrotic drugs. Treatment strategies for liver fi-
brosis should take into account the versatility of its patho-
genesis and acting on all the events involved starting with
inflammation.

Supported by their safety, cost-effectiveness, and versatil-
ity,medicinal plants enjoy a growing popularity as antifibrotic
agents. We already reviewed how medicinal plants reduce
liver fibrosis by inhibiting HSCs activation and reducing
ECM deposition [10]. However, other antifibrotic mecha-
nisms could explain this activity such as suppression of in-
flammation and the immune response.This review focuses on
another way bioactive compounds from thirteen known hep-
atoprotective plants, including Curcuma longa, Silybum mar-
ianum, Ginkgo biloba, Salvia miltiorrhiza, Glycyrrhiza glabra,
Scutellaria baicalensis, Bupleurum falcatum, Phyllanthus spe-
cies, Berberis aristata, Picrorrhiza kurroa, Ginseng species,
Andrographis paniculata, and coffee species, reduce liver fi-
brosis: the suppression of inflammation and the immune
response.

2. Role of Inflammation and
Immune Response in the Pathogenesis
of Liver Fibrosis

2.1. Platelets. Platelets are among the first cells recruited
to the injurious site. Platelets initiate coagulation cascade
to limit blood loss converting fibrinogen into fibrin [8].
Involvement of platelets in the fibrogenesis results from its
capacity to release cytokines like TGF-𝛽 and platelet derived
growth factor (PDGF) [11]. Platelets also produce serotonin,
whichmediates liver regeneration [12]. Additionally, platelets
release the platelet derived chemokine (C-X-C) ligand 4
(CXCL4), also known as platelet factor 4 (PF4) [13]. Patients
with advanced hepatitis C virus-induced fibrosis or nonalco-
holic steatohepatitis, as well as animal models of liver fibrosis

induced by carbon tetrachloride (CCl
4
) and thioacetamide

(TAA), have increased intrahepatic levels of CXCL4 sug-
gesting a role of CXCL4 in the fibrogenic process. This role
were further exposed by observing that CXCL4(−/−) mice
have reduced liver damage and changes in the expression
of fibrosis-related genes, including matrix metalloproteinase
(MMP)-9, tissue inhibitor of metalloproteinases (TIMP)-1,
TGF-𝛽1, and interleukin (IL)-10, as well as a decreased infil-
tration of neutrophils and CD8+ T cells into the liver. In the
same study, CXCL4 stimulated the proliferation, chemotaxis,
and chemokine expression of HSCs in vitro [14].

2.2. Neutrophils. During liver injury, neutrophils rapidly in-
filtrate and transmigrate into the hepatic parenchyma. Trans-
migration is a chemokine-mediated event that involves adhe-
sion molecules such as integrin and intracellular adhesion
molecule-1 (ICAM-1). Next, neutrophils adhere to hepa-
tocytes through hepatocyte ICAM-1 and 𝛽2 integrins and
neutrophil Mac-1 (CD11b/CD18). Contact between hepato-
cytes and neutrophils triggers formation of reactive oxygen
by nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase and release of proinflammatory proteases through
degranulation leading to killing of hepatocytes, one of
the fibrogenic stimuli [15]. Besides, neutrophils synthesize
human neutrophil peptide-1 (HNP-1) and IL-17A, which en-
hance hepatic fibrosis by inducing cell proliferation [16] and
activating HSCs [17], respectively. Implication of neutrophils
in inflammation also involves reactive oxygen formation
[18]. However, importance of neutrophils in the fibrogenic
process has not always been clear. Indeed, bile duct-ligated
rats depleted of neutrophils showed no difference in hepatic
fibrogenesis compared with control rats [19]. Neutrophils
have been also associated with liver repair since neutrophils
depletion blocks early collagen degradation in repairing cho-
lestatic rat livers [20].

2.3. Mast Cells. Mast cells are immune cells involved in
immunoglobulin E- (IgE-) associated immediate hypersensi-
tivity and allergic disorders and in various liver diseases.They
are naturally present in the liver [21, 22]. These cells could
play a role in the development of liver fibrosis as suggested
by the correlation between the increased number of mast
cells and the amount of liver fibrosis in chronic liver diseases
such as primary biliary cirrhosis and alcoholic liver diseases
[22]. Nevertheless, this idea is controversial. Studies based
on mast cell-deficient mutant Ws/Ws rats and mice did not
find any important role for mast cells in the development of
liver fibrosis [23, 24]. However, mast cells elaborate a wide
range of mediators that have been associated with differ-
ent activities in liver fibrosis, including tryptase, chymase
proteases, interleukins (IL-3, IL-4, IL-5, IL-6, IL-9, IL-10,
IL-11, IL-12, IL-13, IL-15, IL-16, IL-18, IL-25, and TNF-𝛼),
chemokines (macrophage inflammatory protein-1𝛼 (MIP-
1𝛼)), hematopoietic factors (granulocyte macrophage colony
stimulating factor (GM-CSF)), stem cell factor (SCF), TGF-𝛽,
vascular endothelial growth factor (VEGF), nerve growth
factor (NGF), severalMMPs, heparin, histamine, chondroitin
sulfates, cathepsin, carboxypeptidases, and peroxidase [21].
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The chymase has been linked with the production of angi-
otensin II and the development of myocardium and renal
fibrosis [21] while mast cell tryptase induces proliferation,
migration, and synthesis of collagen type I by fibroblasts
[25, 26].

2.4. Natural Killer. NK cells are involved in defending host
against pathogens like hepatitis C virus by recruiting virus-
specific T cells and inducing antiviral immunity in liver [9].
Liver has a rich population of NK cells. Upon liver injury,
NK cells accumulate through chemokine receptor CXCR6
dependent pathway exacerbating the inflammatory response
and promoting hepatic fibrogenesis [27].The influence of NK
cells, especially the CD1d-restricted natural killer T (NKT)
cells, on the fibrogenic response has been observed by using
mice lacking mature NKT cells caused by genetic disruption
of the CD1dmolecule. CD1d-knockoutmice developedmini-
mal hepatic fibrosis induced by administration of TAA,which
was accompanied by reduction in collagen type I alpha 1
(COL1A1) and TIMP-1 expression [28]. Othermolecules have
been identified as contributors of the profibrogenic effect of
NK cells. Mice fed a methionine-choline-deficient (MCD)
diet, an animal model of nonalcoholic fatty liver disease, and
depleted in NKT cells have significantly attenuated hedge-
hog and osteopontin expression and fibrosis suggesting that
NKT cells promote fibrogenesis via osteopontin and hedge-
hog pathways [29]. Profibrogenic activity of NK cells also
comes from its ability to produce proinflammatory cytokines
such as IL-4 and IL-13 [30]. Additionally, NK cells kill
hepatocytes through release of tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) and/or granzyme B lead-
ing to liver injury that could further progress in liver fibrosis.
Nevertheless, NK and NKT cells have also drawn attention
to inhibiting liver fibrosis [31]. NK cells and NKT reduce
liver fibrosis by producing interferon gamma (IFN-𝛾) and
inducing death of early or senescence of activated HSCs
[32, 33]. NK cells kill activated HSCs via retinoic acid early
inducible 1/NKG2D dependent, TRAIL dependent, and Fas
ligand dependent mechanisms, thereby ameliorating liver
fibrosis [34, 35]. The pattern of increased levels of NK cell-
activating ligands (ribonucleic acid export 1 (RAE-1) in mice,
MHC class I polypeptide-related sequence A (MICA) in
human) and TRAIL receptors is not observed in quiescent
and fully activated HSCs, making them resistant to such
killing [31, 32]. Antifibrotic effect of NK cells can also be
explained by the production of IFN-𝛾, which is a cytokine
that directly inhibits HSCs activation leading to reduced liver
fibrosis [36]. Additionally, IFN-𝛾 induces HSCs apoptosis in
a signal transducer and activator of transcription 1 (STAT1)
dependent manner, which inhibits HSCs proliferation, atten-
uates TGF-𝛽 signaling, and stimulates NK cell cytotoxicity
towards HSCs, or upregulating NKG2D and TRAIL expres-
sion on NK cells [34, 37].

2.5. Macrophages. Macrophages are central orchestrators of
hepatic fibrogenesis [38] as proposed by the inhibition of
the activation of HSCs in rat with suppressed macrophages
infiltration [39] and the consequent reduction in fibrosis

and inflammation in animal model of liver fibrosis depleted
in macrophages [40, 41]. Upon liver injury, monocytes/ma-
crophages are recruited. The recruitment process is medi-
ated by chemokines and its receptors, especially C-C motif
chemokine receptor 8 (CCR8) and 2 (CCR2) and CC che-
mokine ligand 2 (CCL2, also named monocyte chemotactic
protein-1 (MCP-1)) [41–43]. Macrophages regulate inflam-
mation and fibrosis by producing factors such as TGF-𝛽,
IL-1𝛽, IL-8, PDGF, TNF-𝛼, and MCP-1 [38]. These factors
have proven to promote activation, proliferation, chemotaxis,
extracellular matrix accumulation, and survival of myo-
fibroblasts [44, 45]. Recently, macrophages have been de-
scribed as mediators of the induction of liver fibrosis by
activation of IkappaB kinase (IKK)/NF-𝜅B [46]. Inversely to
their fibrogenic role in ongoing liver injury, macrophages
have also a pivotal importance in liver repair [38, 47] since
macrophages depletion during recovery leads to failure or
retard of matrix degradation [40, 41]. Beneficial effects of
macrophages during regeneration could be mediated by
MMPs as well as others factors. Animals depleted with ma-
crophages have sustainedTIMPsmessenger RNAexpressions
levels and reduced expression of MMP-2 and -13 [41]. Addi-
tionally, in a study where bonemarrow-derivedmacrophages
were delivered to animal model of advanced liver fibrosis, the
macrophage therapy resulted in recruitment of host effectors
cells, like endogenous macrophages and neutrophils, release
of MMP-13 and -9, upregulation of anti-inflammatory IL-10,
and reduction in hepatic myofibroblasts [48]. Macrophages
can also favor liver fibrosis resolution by promoting HSCs
apoptosis through TRAIL and MMP-9 production [49, 50].
These opposite effects of macrophages suggest that two dis-
tinct macrophage phenotypes mediate fibrogenesis and res-
olution [38, 47]. GR-1+ subset of hepatic macrophages could
be associated for the profibrogenic effects [51].

2.6. Lymphocytes. Following liver injury, inflammatory lym-
phocytes infiltrate the hepatic parenchyma [52] as evidenced
by the increase in the number of all liver lymphocytes subse-
quent to induction of fibrosis by CCl

4
in mice. Lymphocytes

take part in the development of liver fibrosis, especially
CD8+ T cells [53]. Transgenic anti-inflammatory IL-10 from
hepatocytes attenuates fibrosis through reduction of CD8+
T cells [54]. Once lymphocytes infiltrated the liver, they
attach directly to activated HSCs to modulate fibrogenic
response and induce lymphocytes proliferation.This interac-
tion occurs because HSCs act as antigen-presenting cells by
upregulatingmembrane proteins human leukocyte antigen II
(HLA-II) and CD40 during fibrogenesis as well as major his-
tocompatibility complex (MHC) class II and CD11c [53, 55].
A further in vitro study of intercellular interaction showed
that CD8+ and CD4+ T-lymphocytes from peripheral blood
lymphocytes of HBV/HCV-infected patients with advanced
fibrosis can be engulfed by HSCs, a process that involves
ICAM-1 and integrin molecules as well as Rac1 and Cdc42
pathways, resulting in HSCs activation and consequent fibro-
genesis [56]. Additionally, CD4+ T cells can induce fibroge-
nesis by secreting cytokines, including TNF-𝛼 and IL-2 [57].
Interestingly, T helper subsets seem to play divergent role in
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fibrogenesis since C57BL/6 mice, displaying a Th1 lympho-
cytes response, haveminimal fibrosis compared with BALB/c
mice which exhibit Th2 response [58]. Th1 subset produces
high level of antifibrotic IFN-𝛾 whereas Th2 T cells produce
high levels of profibrogenic cytokines mainly IL-4, IL-5, and
IL-13 [59]. B lymphocytes are also involved in fibrogenesis;
nevertheless its influence has been less investigated than T
cells. Evidence of the profibrotic effect of B cells is that B
cell-deficient mice have markedly reduced fibrosis than wild-
typemice following CCl

4
administration [60]. B cells can also

induce fibrosis by producing profibrotic cytokine IL-6 [61].

2.7. Hepatic Stellate Cells (HSCs). Almost all of the stimuli of
inflammation converge to HSCs, which are not yet seen as
a passive cell type in this process. Besides HSCs activation
which is mediated by inflammatory species such as TGF-𝛽
and TNF-𝛼, HSCs are involved in the recruitment of inflam-
matory cells through different mechanisms: by releasing che-
mokines and expressing cell adhesion molecules [62]. Che-
mokines are considered as the inflammatory mediators that
modulate liver fibrosis by amplifying infiltration of inflamma-
tory cells [63]. HSCs produce a wide range of profibrogenic
and antifibrogenic chemokines and its receptors, including
CCR2, CCR5, CCR7, CXCR3, CXCR4, CCL2 (MCP-1), CCL5
(also named regulated on activation, normal T cell expressed
and secreted (RANTES)), CCL21, CXCL9, and CXCL10 (also
named interferon gamma-inducible protein-10 (IP-10)) in
schistosomiasis [64]. For example, CX3CL1/fractalkine solu-
ble peptides produced by activated HSCs promote chemoat-
traction of monocytes and thus chronic inflammation of the
liver, through CX3CR1 dependent signaling pathway [65].
Additionally, recruitment and migration of mononuclear
cells within the perisinusoidal space of diseased livers
might be the consequence of the interaction of HSCs with
ICAM-1 and vascular cell adhesion protein-1 (V-CAM-1)
ligand-bearing cells, such as lymphocyte function-associated
antigen-1- or -Mac-1/very late activation antigen-4-positive
inflammatory cells [66].

3. Inflammation and Immune Response as
Targets of Antifibrotic Medicinal Plants

Since inflammation is a key process that contributes to the
pathogenesis of liver fibrosis, to reduce inflammation and
immune response is a relevant way to treat hepatic fibrosis
[67, 68]. All the reviewed plants produce compounds that
suppress inflammation, thereby highlighting anti-inflam-
matory properties as an important antifibrotic mechanism
of medicinal plants. Even though all the reviewed medicinal
plants have been unequally investigated, they share common
anti-inflammatory mechanisms.

Acute or chronic administration of almost all the hepato-
toxic/fibrogenic agents triggers an inflammatory response in
liver; thus bioactive compounds or extracts from medicinal
plants have been tested in different model of hepatotoxicity
and fibrosis, including CCl

4
, TAA, MCD, high fat diet

(HFD), ethanol, concanavalin A (ConA), dimethylnitrosam-
ine (DMN), bile duct ligation (BDL), lipopolysaccharide

(LPS), ischemia/reperfusion (I/R), and D-galactosamine (D-
GalN). To facilitate the comprehension, we divided anti-in-
flammatorymechanisms ofmedicinal plants observed in vivo
in hepatotoxic models which use a single administration of
the hepatotoxic agent to induce inflammation, generally LPS,
D-GalN,ConA,CCl

4
, and I/R (Table 1), and thosewhich used

a subacute or chronic administration of the hepatotoxic agent
such as fibrotic models, including CCl

4
, DMN, TAA, MCD,

HFD, and BDL (Table 2).

3.1. Cytokines. All the reviewed medicinal plants reduce liver
fibrosis by downregulating hepatic expression and secretion
into bloodstream of inflammatory cytokines, which is illus-
trated by reduced protein and mRNA expression levels into
liver and decreased serum levels of cytokines, respectively.
Inflammatory cytokines targeted by vegetal compounds
include TNF-𝛼, IL-1𝛼, IL-1𝛽, IL-2, IL-4, IL-6, IL-12, IL-18,
and IFN-𝛾. Suppression of liver inflammation also involves
the upregulation of anti-inflammatory cytokine IL-10 hepatic
level and inhibition of inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2) expression.

3.2. Chemokines. Besides cytokines, bioactive compounds
from reviewed medicinal plants regulate chemokines expres-
sion to suppress liver inflammation. Recruitment of immune
cells to the injury site is orchestrated by chemokines such
as CXCL10, MCP-1, MIP-1, and high mobility group protein
B1 (HMGB1) and by other molecules like ICAM-1. During
liver injury, expression of chemokines and their recep-
tors is upregulated [69].HMGB1 is released actively bymono-
cytes/macrophages or passively by necrotic cells [70]. In
hepatocytes, HMGB1 release is mediated by nuclear translo-
cation of interferon regulatory factor 1 (IRF-1) [71]. Fol-
lowing injury, HMGB1 translocates to the cytoplasm and
into the extracellular space where it acts as both a cytokine
and a chemokine promoting inflammation through Toll-like
receptor (TLR)2/TLR4 pathways [72]. Hepatic expression,
secretion, and/or cytoplasmic translocation of HMGB1, espe-
cially from hepatocytes, are inhibited by curcumin from
C. longa, glycyrrhizin from G. glabra, and chlorogenic acid
from coffee [73–77]. Moreover, chlorogenic acid suppresses
IRF-1 nuclear translocation [76]. MCP-1 targets monocytes
and T-lymphocytes [78]. MCP-1 expression is decreased by
curcumin, caffeine, and magnesium lithospermate B from S.
miltiorrhiza [79–84]. ICAM-1 and CXCL10mediate adhesion
and migration of T-lymphocytes in the liver [85]. ICAM-1
expression is suppressed by curcumin, silymarin, and gin-
senoside Rg1 from P. ginseng [80, 86–88], while expression
of CXCL10 is inhibited by curcumin, ginsenoside Rg1, and
sodium tanshinone IIA sulfonate from S. miltiorrhiza [86,
87, 89]. Moreover, leukocytes attractant chemokines MIP-2,
MIP-1𝛼, and RANTES are inhibited by curcumin and sodium
tanshinone IIA sulfonate [79, 89]. Interestingly, MCP-1 and
MIP-2, as well as TNF- 𝛼, IL-12, COX-2, and iNOS, are also
inhibited in vitro by curcumin in isolated rat Kupffer cells
treated with LPS [79] and HSCs stimulated with PDGF [90]
suggesting that curcumin could selectively target these cells
to reduce inflammation. As a result of chemokines downreg-
ulation, medicinal plants block the recruitment of immune
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cells into the liver. Curcumin, silymarin, extract of G. biloba
(EGB), salvianolic acid B from S. miltiorrhiza, glycyrrhizin,
picroliv from P. kurroa, ginsenoside Rg1, andrographolide
from A. paniculata, and caffeine block neutrophils, lympho-
cytes, Kupffer cells, and mast cells hepatic infiltration follow-
ing liver injury [81, 82, 86, 87, 91–102]. However, tanshinone
from S. miltiorrhiza increases T lymphocyte subset CD3+,
CD4+, and CD8+ ratios in ConA treated mice [103].

3.3. Nuclear Factor-Kappa B (NF-𝜅B). NF-𝜅B is a transcrip-
tion factor implicated in the regulation of a wide range
of genes related to apoptosis, inflammation, and immune
response. Expression of many chemokines, cytokines, and
other inflammatory mediators, including iNOS, COX-2,
MIP-2, MCP-1, IL-12, and TNF-𝛼, is under control of NF-
𝜅B activation. Following liver injury, NF-𝜅B is activated.This
occurs via IKK-mediated phosphorylation and consequent
degradation of inhibitory molecules, such as IkappaBalpha
(I𝜅B𝛼) and phosphorylation of p65 subunit of NF-𝜅B. The
activated NF-𝜅B is then translocated into the nucleus where
it binds to specific sequences of DNA to regulate gene expres-
sion of many inflammatory-related genes [104]. NF-𝜅B activ-
ity is inhibited by curcumin, silymarin, EGB, salvianolic acid
B, polysaccharides, and sodium tanshinone IIA sulfonate
from S.miltiorrhiza, glycyrrhizin, baicalin from S. baicalensis,
saikosaponins A andD from B. falcatum, P. urinaria koreanis,
20(S)-ginsenoside Rg3, ginsenoside Rg1, and chlorogenic
acid in different animal models [76, 79, 80, 82, 87–89, 105–
118]. This occurs via suppressing NF-𝜅B nuclear transloca-
tion, downregulating phosphorylation, or increasing cytoso-
lic level expression of inhibitory protein I𝜅B𝛼 or inhibiting
nuclear expression or phosphorylation of NF-𝜅B p65 sub-
unit. Moreover, polysaccharides from S. miltiorrhiza inhibit
NF-𝜅B through upregulation of peroxiredoxin 6 (PRDX6)
expression [105]. Inhibition ofNF-𝜅B explains howmedicinal
plants reduce downstream induction of cytokines expression
during liver fibrosis and suggests a common mechanism
between their bioactive compounds. NF-𝜅B is regulated by
the intracellular redox state; this implies that antioxidant
compounds of reviewedmedicinal plants reduce chronic liver
injury-induced oxidative stress which is sensed by NF-𝜅B
resulting in suppression of inflammation during liver fibrosis
[119].

3.4. Toll-Like Receptors (TLRs). Toll-like receptors, especially
TLR2 and TLR4, are central mediators of the inflamma-
tion during liver fibrosis. TLRs ligands include pathogen-
associated molecular patterns (PAMPs) as well as danger-
associated molecular patterns (DAMPs) [120, 121]. DAMPs,
such as HMGB1, are released as part of the fibrogenic cascade
[122]. NF-𝜅B has been related to TLRs since stimulation of
TLR2 leads to activation of NF-𝜅B through upregulation
of myeloid differentiation primary response 88 (MyD88)
[123]. In consequence,HMGB1-TLR2/TLR4-NF-𝜅B signaling
pathway appears as a potential therapeutic target to suppress
inflammation in liver fibrosis. In CCl

4
-induced liver fibrosis

animal model and ConA challenged mice, curcumin inhibits
liver expressions of TLR2, TLR4, and TLR9 [77, 91]. Baicalin
and chlorogenic acid suppress TLR4-mediated inflammatory

signaling pathway by reducing hepatic level of TLR4 and
MyD88 protein expression in I/R-treated animal model
of alcoholic fatty liver disease [116] and CCl

4
-fibrotic rats

[76, 118], respectively. In these studies, disruption of TLR4
pathway correlated with downregulation of iNOS, COX-2,
TNF-𝛼, and IL-6 hepatic expression as well as NF-𝜅B inhibi-
tion [76, 116, 118]. Interestingly, chlorogenic acid also induces
the liver expression of bone morphogenetic protein and
activin membrane-bound inhibitor, the TGF-𝛽1 pseudore-
ceptor, by downregulating TLR4, providing a link between
proinflammatory and profibrogenic signals [118].

3.5. Heme Oxygenase-1 (HO-1). Heme oxygenase-1 (HO-1) is
a cytoprotective enzyme that is induced by a variety of stimuli,
including cytokines, heavy metals, and oxidants [107]. HO-
1 is transcriptionally regulated by the binding of redox-
sensitive transcription factors, such as activator protein-1
(AP-1) and nuclear factor erythroid 2-related factor 2 (Nrf2),
to antioxidant redox elements located in the promoter of the
ho-1 gene [124]. HO-1 exerts antioxidant, antiapoptotic, and
anti-inflammatory functions following hepatic injuries [125].
The latter is mediated by inhibition of inflammatory response
by targeting TNF-𝛼 and iNOS expression. Moreover, HO-1
induction reduces TLR4 overexpression and HMGB1 release
[126, 127]. Hence, HO-1 could play a significant role in medi-
ating anti-inflammatory properties of medicinal plants in
liver fibrosis. Salvianolic acids A and B, glycyrrhizin, baicalin,
20(S)-ginsenoside Rg3, andrographolide, and chlorogenic
acid increase HO-1 expression, level, and/or activity [76, 94,
106, 107, 109, 128–130]. Additionally, chlorogenic acid and
silymarin induce the nuclear translocation of Nrf2 facilitating
its binding with ho-1 promoter [76, 131].

4. Conclusion

Medicinal plants could be a source of polyvalent antiliver
fibrosis compounds targeting inflammation and the immune
response.The importance of knowing the main mechanisms,
by which medicinal plants act as antifibrotic agents, provides
options for the development of pharmaceutical compounds
and their subsequent use in medical practices. Since clinical
studies are sparse and mainly use chronic hepatitis B and
hepatitis C patients to assess the hepatoprotective effects of
medicinal plants, more clinical proofs of their anti-inflam-
matory properties on patients with fibrosis induced by other
agents than HBV and HCV are urgently needed.
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