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An important topic in the study of the time series behavior and, in particular, meteorological time series is the long-range
dependence. This paper explores the behavior of rainfall variations in different periods, using long-range correlations analysis.
Semivariograms and Hurst exponent were applied to historical data in different pluviometric stations of the Rı́o Bravo-San Juan
watershed, at the hydrographic RH-24Mexico region.Thedatabasewas provided by theWaterNational Commission (CONAGUA).
Using the semivariograms, the Hurst exponent was obtained and used as an input to perform a cluster analysis of rainfall stations.
Groups of homogeneous samples that might be useful in a regional frequency analysis were obtained through the process.

1. Introduction

When limited observations of hydrological events are avail-
able, the ability to provide appropriate characterization, anal-
ysis, and predictions of a phenomenon gets compromised.
However, the analysis can be improved by identifying homo-
geneous samples that can be used in combination to make
better estimates of a probability model. This is one of the
major concerns within the practice of regional frequency
analysis (RFA), where the final output is the estimation of
extreme events in a geographical area that can be used as
input in risk analysis, water management, zoning, and land
use applications, Hosking and Wallis [1]. However, the esti-
mation of extreme events is considered a complex problem,
mostly because the information is usually limited, serial
correlation exists, multiple change-points might be present,
and observations follow trends and seasonal patterns. To
address these issues, hydrological time series studies have
been successfully applied in the past, Machiwal and Jha [2];
however, most research efforts have been focused on trend
detection tests, leaving aside other important properties such

as stationarity, homogeneity, periodicity, and persistence. By
addressing these properties, a better selection of homoge-
neous samplesmight be possible, and as a consequence, prac-
titioners might achieve better predictions.

Previous works on time series analysis in climatology
with applications in precipitation go back to Bhuiya [3], with
the development of a test for stationarity after periodic and
trend components were subtracted from hydrologic series.
Buishand [4] used trend tests to evaluate the difference in
precipitation between rural and urban areas of Amsterdan
and Rotterdam. Buishand [5, 6] constructed several tests of
homogeneity in the mean of series with the use of cumulative
sums, likelihood tests, and Bayesian inference. Kothyari et
al. [7] evaluated three stations in India, Agra, Dehradun,
and Dehli, to test for changes in rainfall and temperature,
providing evidence of a change in the number of rainy days
during monsoon season and an increment in temperature.
Giakoumakis and Baloutsos [8] performed a trend analysis
on historical series of annual precipitations from the basin
of the Evinos Riven in Greece. By applying different tests
of randomness, decreasing trends were found in the rainfall
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records. Other authors dealing with trend analysis, homo-
geneity, and change-points found in the literature are Angel
andHuff [9],Mirza et al. [10], Tarhule andWoo [11], Luı́s et al.
[12], Kripalani and Kulkarni [13], Adamowski and Bougadis
[14], Yu et al. [15], and Kumar et al. [16]. A comprehensive
review of these works can be found in Machiwal and Jha
[2] with descriptions of related developments in hydrological
time series analysis.

Recent developments in hydrological analysis include the
works of Golian et al. [17] with a classification and clustering
approach of rainfall data using the natural-breaks classifi-
cation method and the fuzzy c-means (FCM) algorithm.
Shi et al. [18] analyzed variations in trends for precipitation
data using a linear regressionmethod, theMann-Kendall test,
and the Hurst exponent. The Hurst exponent, as part of a
fractal analysis, was used to evaluate long-range dependence
and the possibility of trends in the data. The following works
around the Hurst exponent include the developments of
Golder et al. [19], where the Hurst exponent is also used
to explore long-term correlations, and cumulative rainfall
observations weremodeled using the alpha-stable probability
law to deal with heavy-tailed distributions. Chang [20]
extended the application of theHurst exponent by developing
a computation approach to estimate the exponent over time
series that fits a discrete time fractional Brownianmotion and
fractional Gaussian noise. Yu et al. [21] also studied long-
term correlations using the Hurst exponent and performed
a multifractal analysis of rainfall series (see Kantelhardt [22])
based on a multiplicative cascade model and a multifractal
detrended fluctuation analysis. Other recent works on time
series analysis can be found in Carbone et al. [23] with
the construction of a simulation model of storms using a
double exponential distribution. Chou [24] investigated the
complexity at different temporal scales of rainfall and runoff
time series using the sample-entropy method, and finally,
Garćıa-Maŕın et al. [25] performed a regional frequency
analysis over rainfall data from Málaga, Spain, where the
grouping of stations into homogenous regions has been done
by following a cluster analysis with multifractal values of the
different series.

In this paper, a clustering approach is used to group sta-
tions into homogeneous samples after summarizing the
results of semivariogram analysis into a Hurst exponent. As a
case study, a sample of pluviometric stations, the Rı́o Bravo-
San Juanwatershed, at theRH-24Mexico regionwas analyzed
(Figure 1). A map of the Rı́o Bravo-San Juan watershed is
shown in Figure 2. This region is located in Mexico between
the states of Nuevo León, Coahuila, and Tamaulipas covering
an approximate area of 29420 km2. Some of the rainfall sta-
tions are shown in Figure 3.The data used has been provided
by CONAGUA, the local institution responsible for water
management in the country.

2. Problem Description

In practice, to performRFA, it is required to identify homoge-
neous regions where data follow similar patterns that can be
analyzed together to improve the identification of probability
models that in turn can be used to estimate extreme events

Figure 1: The watersheds of Mexico with Google Earth. In black
edge, the Rı́o Bravo-San Juan watershed. Source of the database:
http://www.conagua.gob.mx/.

Figure 2: Rı́o Bravo-San Juan watershed (San Juan river in blue).
Image source: “Water Management in the Rı́o San Juan Watershed,
in the Southern Rı́o Bravo Hydrologic Region of Mexico” at http://
earthzine.org/2012/08/13/.

and their frequency in terms of return periods. This analysis
is usually executed when dealing with droughts, pollution,
wind movement, temperature, atmospheric pressure, and
rainfall observations, to name a few. These researches deal
with the problem of finding groups of rainfall stations that
create homogeneous regions by considering fractal structures
captured through semivariograms and Hurst exponents.
Rainfall data from a sample of the hydrographic region RH-
24 Mexico, the Rı́o Bravo-San Juan watershed, are used as a
case study to evaluate the proposed approach.

3. Methodology

Semivariograms, in the present study, are used to quantify
long-range correlations of data from different pluviometric
stations usingmonthly records. By considering the analysis of
semivariograms of historical series, a rescaled range analysis
𝑅/𝑆 is performed to obtain a measure of the Hurst exponent
[26]. The Hurst exponent is used as a metric of a particular
pluviometric station. The process is repeated over each
pluviometric station within the region under analysis. Hurst
exponents are used as a reference to identify stations that
exhibit similar patterns. As a consequence, a cluster analysis
is applied to identify homogeneous samples. An advantage
of the Hurst exponent is the simplicity of its algorithm that
can be used to measure the condition of persistence or
antipersistence of a process, and it provides a metric that can
be used to classify different time series.
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Figure 3: Geographical locations (from Google Earth) of the
pluviometric stations at the Rı́o Bravo-San Juan watershed. Source
of the database: http://www.conagua.gob.mx/.

3.1. Semivariogram. The semivariogram or variogram 𝛾(ℎ)

is used to describe the relationship of paired observations
separated by a distance ℎ. It is a geostatistical technique that
allows a quantitative measure of the long-range persistence
in nonstationary time series Witt and Malamud [27], Haslett
[28], and Dmowska and Saltzman [29]. Correlations over
time and space create patterns that can be used to describe
the behavior of a set of observations. Mathematically, the
variogram estimates the expected squared difference between
neighboring random variables. This calculation is performed
over different ℎ values. Given a time series or stochastic
processes {𝑋

𝑡
, 𝑡 ≥ 0}, the autocovariance function at the

point (𝑡, 𝑡 + ℎ) is defined as 𝐶
𝑋
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𝑡. The semivariogram 𝛾(ℎ) is given by half of the variance
of the difference between pairs of observations at different
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where −1 ≤ 𝜌
𝑋
(𝑡, 𝑡 + ℎ) ≤ 1 is the autocorrelation function

(the autocovariance function normalized).
In the special case when 𝜌(𝑥

𝑡+ℎ
, 𝑥
𝑡
) = 0, ∀(𝑡, ℎ), it is said

that the stochastic processes {𝑋
𝑡
, 𝑡 ≥ 0} are uncorrelated and

the semivariogram is reduced to the arithmetic mean of the
variance of processes at times 𝑡 and 𝑡 + ℎ:
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If 𝑋(𝑡) and 𝑋(𝑡 + ℎ) are independent random variables
∀𝑡, again, though for a different reason, the semivariogram is
reduced to the special case (2).

In principle, given a stochastic process {𝑋
𝑡
, 𝑡 ≥ 0}, the

expected value of differences 𝐸[𝑋
𝑡+ℎ
−𝑋
𝑡
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lag ℎ is empirically estimated by the average over a “large
enough” ensemble of realizations or paths in time. However,
for a single time series {𝑋

𝑛
, 𝑛 = 1, 2, . . . , 𝑛}, the expected

value can be estimated assuming an ergodic hypothesis, that
is, a statistical principle of equivalence according to which the
average over time and the average over the ensemble are the
same, Lefebvre [30].Thereby the differences𝑋
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According to (5) for a maximum value of ℎ “relatively
moderate” or ℎ/𝑛 < 1, except in the presence of isolated
extreme outliers, the two summations in (5) are roughly of the
same order, such that the empirical average value (4) can be
approximated by 𝐸[𝑋

𝑡+ℎ
] ≈ 𝐸[𝑋

𝑡
] = 𝑚 = constant.This is an

observed characteristic in the time series of the pluviometric
stations. Therefore, the corresponding estimator of (3) is
simply
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3.2. Measurement of the Hurst Exponent 𝐻. To estimate the
Hurst exponent from a temporal series {𝑋

𝑘
}, with 𝑘 ∈

1, 2, . . . , 𝑁, the series is divided in a group of 𝑑-subseries of
length𝑚. Really, the size𝑚 is an average number. A standard
way, though not the only, to obtain the𝑚 size of the subseries
is partitioning the original series in powers of base 2. In doing
so, in each of the successive partitions, the approximate value
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of𝑚 is as follows:𝑁,𝑁/2,𝑁/22,𝑁/23, . . .. For each subseries
𝑛 = 1, 2, . . . , 𝑑, do the following:

(1) Calculate the mean 𝐸
𝑛
and the standard deviation 𝑆

𝑛
.
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subtracting the mean of each element using
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(6) For each subseries of length𝑚 take the average:
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(7) Hurst [26] found the relation of the statistical ⟨𝑅/𝑆⟩
𝑚

given by the following power law:

⟨
𝑅

𝑆
⟩
𝑚

≈ 𝑐𝑚
𝐻
, (12)

where 𝐻 is the Hurst exponent and 𝑐 is a positive
constant.

Two factors involved in the determination of the Hurst
coefficient are the way time series is divided into a group of
subseries and the asymptotic behavior of the rescaled range.
First, the range of values 𝑚 are used to calculate the slope of
log(⟨𝑅/𝑆⟩

𝑚
) given the relationship

log(⟨𝑅
𝑆
⟩
𝑚

) = log (𝑐) + 𝐻 log (𝑚) . (13)

Second, the determination of𝐻 is the result of the asymptotic
behavior of the rescaled range, that is, when the value𝑚 tends
to infinity. The analysis of the rescaled ⟨𝑅/𝑆⟩

𝑚
over some

values of 𝑚 is estimated using a log/log expression given in
(13). To obtain𝐻 coefficient, the least-squaresmethod is used.
The slope of this line is the Hurst coefficient𝐻.

This exponent is considered a fractal index, Mandelbrot
and Wallis [31], and provides information about long-term
correlations exhibited by a series of observations; for a
theoretical review of the Hurst exponent, see Mandelbrot
[32]. In practice, the Hurst exponent can take values between
0 and 1, where

(i) 0 < 𝐻 < 0.5 indicates nonpersistency in a series; that
is, an increment is more likely to be followed by a
decrement and vice versa;

(ii) 𝐻 = 0.5 indicates lack of serial correlation (Gaussian
white noise);

(iii) 0.5 < 𝐻 < 1 indicates persistency; that is, an incre-
ment is likely to be followed by an increment and a
decrement by another decrement.
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Figure 4: Time series for rainfall measurements from three stations
at Rı́o Bravo-San Juan watershed, Mexico. From the top to the bot-
tom, respectively: Apodaca, station number 19004, 1940 January–
2012 December; El Cuchillo, station number 19016, 1939 January–
2012 December; La Boca, station number 19069, 1923 January–2012
December.

4. Results

To illustrate the procedure, only the analysis of three rainfall
stations was selected to be presented in this section. The
measured values ofmonthly precipitation inmillimeters from
the stations Apodaca, El Cuchillo, and La Boca are displayed
in Figure 4, and results obtained taking into account all
stations (following the same process) are presented at the end
of this section.

As can be seen, patterns and relationships between
different stations are difficult to assess only through “eyeball”
analysis. However, when semivariograms are obtained, as
shown in Figure 5, a footprint of the data becomes more
evident. A closer inspection in every station shows a seasonal
pattern that repeats every 12 observations in the semivari-
ogram. This can be explained due to the fact that monthly
observations were used in the analysis.

Once the semivariograms were obtained, the Hurst expo-
nent for the series of the 𝛾 values was calculated. It can be seen
thatHurst coefficients are close to 1, which indicates a positive
long dependency of the data in the semivariograms. Hurst
exponents from all stations under analysis are presented
in Table 1, where the long dependency in all variograms
becomes clear. Someof the coefficients that appear in the table
exceed the interval established of possible values of the Hurst
exponent, 0 < 𝐻 < 1; this is a known error due to estimation
bias or a possible linear retrogression.

To address the issue of finding homogeneous samples,
a cluster analysis is performed using estimates of the Hurst
exponent. As shown in Figure 6, a histogram of frequencies
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Table 1: Hurst coefficients for semivariogram (6) from pluviometric stations at Rı́o Bravo-San Juan watershed.

Station Name Latitude Longitude Data Hurst
19015 El Cerrito 25 30 36 100 11 36 1939–2012 0.71245
19039 Las Enramadas 25 30 05 099 31 17 1940–2012 0.78917
19018 El Pajonal 25 29 23 100 23 20 1955–2012 0.79764
19012 Ciénega de Flores 25 57 08 100 10 20 1940–2012 0.80106
19003 Allende 25 17 01 100 01 13 1940–2012 0.82492
19069 La Boca 25 25 46 100 07 44 1923–2013 0.8387
19189 El Pastor 25 09 06 099 55 36 1987–2011 0.84065
19009 Casillas 25 11 47 100 12 51 1956–2012 0.84258
19187 California 25 18 23 099 44 02 1982–2011 0.84406
19173 Palmitos 25 25 02 099 59 50 1982–2012 0.85304
19002 Agua Blanca 25 32 39 100 31 23 1958–2012 0.86171
19134 Salinas Victoria 25 57 33 100 17 34 1979–2011 0.86501
19031 La Cruz 25 32 47 100 31 23 1955–2011 0.86751
19036 La Popa 26 09 50 100 49 40 1956–2011 0.87324
19008 Cadereyta Jiménez 25 35 25 099 58 30 1995–2012 0.87335
19185 El Canada 25 02 48 099 56 29 1982–2011 0.87351
19056 San Juan 25 32 36 099 50 25 1944–2012 0.87678
19016 El Cuchillo 25 43 05 099 15 21 1960–2012 0.87778
19052 Monterrey(Obs) 25 44 01 100 16 01 1986–2008 0.87802
19026 Icamole 25 56 28 100 41 13 1954–2012 0.88481
19200 La Cienega 25 32 10 100 07 15 1984–2011 0.89216
19004 Apodaca 25 47 37 100 11 50 1964–2012 0.89506
19047 Mimbres 24 58 26 100 15 31 1957–2011 0.89837
19140 Tepehuaje 25 30 19 099 46 15 1979–2012 0.91092
19267 Santa Ma. La Floreña 25 10 59 99 46 00 1984–2011 0.91686
19048 Montemorelos 25 10 55 099 49 56 1940–2012 0.91836
19040 Los Aldama 26 03 52 099 11 48 1942–1994 0.92157
19022 General Bravo 25 48 05 099 10 32 1927–2012 0.92301
19158 Rancho de Gomas 26 10 11 100 27 52 1981–2011 0.93016
19045 Mina 26 00 08 100 32 00 1953–2012 0.93308
19054 Rinconada 25 40 52 100 43 03 1945–2012 0.93977
19165 Chupaderos del Indio 25 48 49 100 47 24 1982–2011 0.94288
19266 San Jose de Barranquillas 26 32 41 100 28 21 1978–2011 0.94911
19171 Lampacitos 25 06 38 099 53 57 1982–2011 0.95188
19264 Dr. Coss 25 51 16 099 56 36 1982–2011 0.96461
19170 El Hojase 26 06 55 100 21 38 1982–2011 1.00650

was used to separate stations into 6 clusters. These clusters
and the result of fitting probability distributions over the data
of each rainfall station are shown in Table 2.

Distributions were selected based on a goodness of fit
analysis. After identifying a set of feasible distributionswith𝑝
values bigger than a significant level of 0.05, in every case, the
distribution with the highest average 𝑝 value was selected for
each station. Gamma and Generalized Extreme Value were
the distributions that gave the best fit over the data analyzed.
These functions are

𝑓 (𝑥; 𝛼, 𝛽) =
𝑥
𝛼−1

𝛽
𝛼
Γ (𝛼)

𝑒
−𝑥/𝛽
, (14)

𝑓 (𝑥; 𝑘, 𝜎, 𝜇) =
1

𝜎
𝑒
−(1+𝑘𝑧)

−1/𝑘

(1 + 𝑘𝑧)
−1−1/𝑘

,

𝑧 =
𝑥 − 𝜇

𝜎
,

(15)

respectively.
As a result of the analysis, estimated distributions do not

mix within cluster. This input can be used in a posterior
analysis to obtain maximum likelihood estimators of the
distribution parameters using all data concurrently.

5. Conclusions

Variograms followed by analysis of 𝑅/𝑆 or Hurst exponent
estimation were used as input of a cluster analysis. Hurst
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Figure 5: Semivariogram (6) corresponding to the time series of
rainfall measurements from the three stations of the Rı́o Bravo-
San Juan watershed shown in Figure 4. In each case the maximum
lag ℎmax = 0.20 ∗ 𝑁 was used, with 𝑁 indicating the size of the
time series. For comparison, the semivariogram corresponding to
Gaussian white noise is included. From top to bottom, respectively:
Gaussian white noise, Apodaca (station number 19004), El Cuchillo
(station number 19016), and La Boca (station number 19069).
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exponent provides a measure to determine if a time series is
like a Gaussian white noise or has underlying trends, and it
can be used to cluster the pluviometric stations according to
the values of their semivariograms. As a case study to evaluate
this approach, a sample of rainfall stations, those included
in the Rı́o Bravo-San Juan watershed from the hydrographic
region RH-24 Mexico, was used in the analysis. Long-range
dependency was found in every variogram evaluated with
the Hurst exponent; however, it was still found useful as
an input of a cluster analysis. A goodness of fit process
was executed with every series, and the results showed that

Table 2: Clustering of pluviometric stations by the Hurst exponent
of the semivariogram.

Cluster Station Hurst Distribution Parameters
1 19015 0.71245 Gamma(𝛼, 𝛽) (0.7022, 121.06)

3
19039 0.78917

Gamma(𝛼, 𝛽)
(0.8822, 101.75)

19018 0.79764 (0.5731, 78.07)
19012 0.80106 (0.5402, 119.7)

6

19003 0.82492

GEV(𝑘, 𝜎, 𝜇)

(0.349, 43.609, 38.143)
19069 0.83870 (0.389, 43.321, 33.483)
19189 0.84065 (0.453, 35.036, 22.915)
19009 0.84258 (0.376, 25.309, 17.281)
19187 0.84406 (0.377, 31.132, 24.640)
19173 0.85304 (0.379, 32.826, 25.056)

13

19002 0.86171

GEV(𝑘, 𝜎, 𝜇)

(0.351, 27.643, 20.471)
19134 0.86501 (0.319, 21.703, 16.845)
19031 0.86751 (0.313, 33.237, 23.081)
19036 0.87324 (0.506, 9.5213, 5.0588)
19008 0.87335 (0.407, 28.933, 22.421)
19185 0.87351 (0.379, 22.415, 16.03)
19056 0.87678 (0.372, 30.176, 22.56)
19016 0.87778 (0.366, 24.295, 16.683)
19052 0.87802 (0.429, 25.864, 19.559)
19026 0.88481 (0.418, 8.7536, 5.424)
19200 0.89216 (0.407, 33.194, 23.434)
19004 0.89506 (0.368, 23.938, 17.563)
19047 0.89837 (0.168, 33.305, 28.427)

11

19140 0.91092

GEV(𝑘, 𝜎, 𝜇)

(0.369, 30.367, 23.162)
19267 0.91686 (0.407, 20.642, 15.472)
19048 0.91836 (0.356, 37.599, 30.006)
19040 0.92157 (0.356, 20.614, 13.77)
19022 0.92301 (0.383, 25.054, 16.587)
19158 0.93016 (0.421, 16.537, 10.853)
19045 0.93308 (0.457, 12.116, 7.9187)
19054 0.93977 (0.485, 9.1504, 5.2866)
19165 0.94288 (0.434, 10.814, 6.4381)
19266 0.94911 (0.369, 32.361, 22.162)
19171 0.95188 (0.435, 31.356, 22.367)

2 19264 0.96461 GEV(𝑘, 𝜎, 𝜇) (0.401, 20.168, 1.2395)
19170 1.00650 (0.480, 20.046, 12.109)

existing dominant distributions within a feasible set (found
independently in each station) do not overlap over clusters.
The probability distributions were found nested within each
cluster. This is indicative that homogeneous patterns were
identified within groups, and groups were heterogeneous
between themselves.

The study of the rainfall stationswith semivariograms and
𝑅/𝑆 analysis provides a powerful tool that allows practitioners
to analyze long-term correlations and clustering in hydrolog-
ical time series. In future work, 𝐿-moments and spectral and
wavelets analysis will be used to improve understanding of
complex time series of pluviometric rainfall levels.
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