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In this article we discuss the findings of our research on students’ understanding of vector concepts in
problems without physical context. First, we develop a complete taxonomy of the most frequent errors
made by university students when learning vector concepts. This study is based on the results of several test
administrations of open-ended problems in which a total of 2067 students participated. Using this
taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and
administered it in English to 423 students who were completing the required sequence of introductory
physics courses at a large private Mexican university. We evaluated the test’s content validity, reliability,
and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also
conducted a detailed analysis of the students’ understanding of the vector concepts evaluated in the test.
The TUV is included in the Supplemental Material as a resource for other researchers studying vector
learning, as well as instructors teaching the material.
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I. INTRODUCTION

Most physical concepts covered in introductory physics
courses at the university level are represented by vectors.
Therefore, a complete understanding of these physical
concepts requires that students have a good grasp of basic
vector concepts. In recent years, several researchers have
investigated students’ understanding of vector concepts.
However, we detected three specific issues that still needed
to be addressed.
The first was the need to develop a complete taxonomy

of the most frequent errors made by university students
when learning about vector concepts in introductory
physics courses. The second, that to some extent is a
consequence of the first, concerns the availability of
multiple-choice testing instruments. While several tests
that incorporate the recommendations of physics education
researchers [1–3] have been created [1,4–12], one that
evaluated students’ understanding of vector concepts was
not yet available. The third issue, suggested by the second,
was the need for a large-population (or large sample) study
at the university level that would analyze students’ under-
standing of vector concepts after completing their intro-
ductory physics courses.
To address these needs, we undertook a research study

with three objectives: (1) develop a complete taxonomy of
the most frequent errors made when solving vector prob-
lems (without a physical context) by university students

who have completed the sequence of introductory physics
courses, (2) design a reliable multiple-choice test, follow-
ing the steps recommended by physics education research-
ers [1–3], that would evaluate students’ understanding of
vector concepts, and (3) analyze the results and determine
how well vector concepts are understood by a large
population of university students who have completed
the sequence of introductory physics courses. In sub-
sequent sections we will address these objectives, our
approach to them, the results of our study, and our analysis.
We should note that the test itself has been previously
discussed in a short article [13]; additional details are
presented here.

II. PREVIOUS RESEARCH

Previous studies of students’ understanding of vector
concepts can be clustered into three groups: (1) those that
analyze their understanding of vector concepts in problems
without a physical context [14–27], (2) studies that inves-
tigate their understanding in problems with a physical
context [16–19,24,27–32], and (3) studies that compare
students’ performance on both types of problems, with and
without a physical context [17–19,24,27,31]. Note that
some of these studies pertain to more than one group.
The studies in the first group [14–27] are closely related

to our investigation, since they analyze students’ under-
standing of vector concepts in problems without a physical
context. From this group, six studies [14–19] (by other
researchers) identify frequent errors that university students
make when they are learning vector concepts. In Table I we
show the 10 vector concepts used in introductory courses,
and for each concept we note the previous studies that
identified the errors that students typically make when
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studying that specific concept. The methods used in these
studies were individual interviews or tests of open-ended
problems. In Sec. V, we discuss the relationship between
the previous studies and our research.
As mentioned, in this study we design a multiple-choice

test that evaluates students’ understanding of vector con-
cepts in problems without a physical context. A previous
research study related to ours is by Van Deventer [18]. This
author designed isomorphic mathematics and physics
multiple-choice vector tests to compare students’ perfor-
mance in both contexts. There are two main differences
between the mathematics vector test designed by Van
Deventer and our test. The first is that the majority of
the distractors (incorrect answers) that Van Deventer builds
into his test are based only on interview results from a small
population (11 students). In contrast, our distractors were
constructed based on the results of multiple testings of
open-ended problems, and with a total sample of 2067
students. Secondly, our test evaluates more vector concepts
than the Van Deventer study.

III. METHODS AND TEST OF UNDERSTANDING
VECTORS (TUV) DEVELOPMENT

The research was conducted at a large private Mexican
university. The study’s participants were students who had
finished a calculus-based course on electricity and magnet-
ism (E&M). This course is the last of three introductory
physics courses taken by students at this institution.

A. Development of the most frequent errors taxonomy

To develop a complete taxonomy of the most frequent
errors that university students make with regard to vector
concepts (objective 1), we first conducted several studies
over four years that were based on several testings of open-
ended problems. As mentioned, a total of 2067 students of
E&M participated in the study. During this period, the
textbooks used in the E&M course were Physics for
Scientists and Engineers by Serway and Jewett [33] and
Tutorials in Introductory Physics by McDermott, Shaffer,

and the Physics Education Research Group [34]. These
studies focused on the detection of frequent student errors
and the use of incorrect reasoning and procedures. In
designing the open-ended problems, we (1) took into
account the results of previous studies [14–19] (Table I),
(2) made certain that the problems covered the main vector
concepts taught in introductory physics courses at the
university level, and (3) ensured that each problem evalu-
ated the core of each vector concept. The results of some of
our other studies based on open-ended problems have been
reported in previous articles [23–27].

B. Design and evaluation of the TUV

To design a multiple-choice test that evaluates student
understanding of vector concepts (objective 2), we used the
results of tests on open-ended problems (as recommended
by Beichner [1] and Engelhardt [3]). We designed an initial
version of a multiple-choice test and administered it to
students at the end of the E&M course. For most of the
items in this first version, we included more than four
distractors in order to investigate how frequently each
distractor was selected. Following the analysis of this
administration, we designed the final version of the
20-item multiple choice test [Test of understanding of
vectors (TUV)], which is presented in the Supplemental
Material [35]. The content validity of the test’s items was
evaluated by a panel of experts, in accordance with the
procedure recommended by Engelhardt [3]. This test was
then administered (in English) to 423 students at the end of
the E&M course. During this period, the textbooks of the
E&M course were Matter and Interaction by Chabay and
Sherwood [36] and Tutorials in Introductory Physics [34].
To evaluate the reliability and discriminatory power of the
TUV (also objective 2), we followed the procedure sug-
gested by Ding et al. [2].
The TUV tests the 10 vector concepts used in intro-

ductory physics courses at the university level, as shown in
Tables I and IV. Table IV shows the 10 vector concepts
evaluated in the TUVand the items’ descriptions. As can be
seen in Table IV, only one item each was included for four

TABLE I. Ten vector concepts used in the introductory courses. For each concept we note the previous studies that identify students’
errors.

Vector concept Previous studies

1. Direction of a vector Knight [14], Nguyen and Meltzer [15]
2. Magnitude of a vector Knight, Nguyen and Meltzer
3. Component of a vector Knight, Van Deventer and Wittmann [17], Van Deventer [18]
4. Unit vector in the Cartesian plane None
5. Graphic representation of a vector None
6. Vector addition Knight, Nguyen and Meltzer, Flores et al. [16], Van Deventer [18]
7. Vector subtraction Flores et al., Van Deventer and Wittmann, Van Deventer [18], Wang and Sayre [19]
8. Scalar multiplication of a vector Van Deventer [18]
9. Dot product Knight, Van Deventer and Wittmann, Van Deventer [18]
10. Cross product Knight, Van Deventer [18]
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of the 10 vector concepts. It should be noted that we had
designed additional associated items, but they were not
included on the final version of the TUV because the
percentage of correct answers for these questions was
higher than that recommended by Ding et al. [2]. For
example, for the vector concept “scalar multiplication,” we
only included the negative scalar multiplication item, since
in the open-ended administrations we found that the
percentage of correct answers for the positive scalar
multiplication problem was higher than the recommended
value.
The TUV has 11 items that evaluate the students’

understanding of vector concepts posed in graphical form
(items 1–5, 9–13, 19), as well as seven items that evaluate
their understanding of the calculation of vector concepts
(6, 8, 14, 15, 17, 18, 20), and two items that cover graphical
and calculations aspects (7 and 16). Figure 1 shows items
13 and 17 of the TUV. Item 13 is an example of the
problems in graphical form. Note that for the majority
of these items we used a grid, as recommended by
Nguyen and Meltzer [15], and we positioned the vectors
in a tail-to-tail representation, since some researchers have
found that students have more difficulty with this repre-
sentation [21,24]. Finally, item 17 is an example of the
calculation of vector concepts.

C. Analysis of students’ understanding

To examine the understanding of these vector concepts
by a large population of students (objective 3), we first
analyzed the overall performance of the 423 students in the
TUV and clustered the items of the test according to level
of difficulty. We then conducted a detailed analysis of the
students’ understanding of each problem on the TUV. We
described the percentages of correct and incorrect answers,
and identified the incorrect reasoning and procedures found

in the results of tests on open-ended problems. Finally, in
the Sec. VI, we classify (for instructional reasons) the most
frequent incorrect answer for each of the items of the TUV
and point out the incorrect answers that have a frequency
proportion of 20% or greater.

IV. ANALYSIS OF THE TUV

In designing the TUV, we paid particular attention to
issues of content validity, reliability, and discriminatory
power. The main results of these analyses are pre-
sented here.

A. Content validity

After the design of the TUV, we checked the content
validity of the items of the test. Content validity measures
how well the test items cover the content domain they
purport to test [3]. In evaluating the TUV, we asked 10
experts (physics faculty members) to rate each item with its
corresponding objective (1 being low and 5 being high), in
accordance with the procedure established by Engelhardt
[3]. Each of the items on the TUV was rated as having a
high score regarding the match between the test item itself
and its stated objectives. The lowest average score for any
item was 4.3 and the highest was 5. Moreover, the overall
average score was 4.71. These results are evidence of the
high content validity of the TUV.

B. Reliability and discriminatory power

We also evaluated the reliability and discriminatory
power of the TUV, performing the five statistical tests
suggested by Ding et al. [2]. The three measures focus
on individual test items: the item difficulty index, the
item discriminatory index, and the item point biserial.
Table II shows these values for each item on the TUV.
The other two measures focus on the test as a whole: the

FIG. 1. Item 13 (graphical subtraction of vectors in 2D) and item 17 (calculation of direction of a vector written in unit-vector notation)
of the TUV.
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Kuder-Richardson reliability test and Ferguson’s delta test.
We discuss the results of these five statistical tests below.

1. Item difficulty index

The item difficulty index (P) is a measure of the
difficulty of a single test question. A widely adopted
criterion, used by Ding et al. [2], is that the difficulty
index should be between 0.3 and 0.9. Table II shows the
difficulty index P values for each item on the TUV. The
difficulty index values range from 0.33 (item 3) to 0.92
(item 10). Only item 10 (graphic representation of a vector
in unit-vector notation) has an item difficulty index slightly
higher than the desired (0.92). Ding et al. also recom-
mended the calculation of the average difficulty value.
The criterion range for the average difficulty value is also
[0.3–0.9]. For the TUV, the average difficulty value is 0.68,
which also falls into the suggested range.

2. Item discriminatory index

The item discriminatory index (D) is a measure of the
discriminatory power of each item on a test. Ding et al. [2]
establish two criteria for this index: (1) eliminate items with
negative indices and (2) the majority of test items should
have a good discrimination index (D ≥ 0.3). Table II shows
the discrimination indexD values for each item on the TUV
(using the 25%–25% method). We observe that the TUV
fulfills these two criteria, since there are no negative items,
and the majority of items (18 items) are above 0.3. The
items with an index below this value are items 5 and 10.
From Table II, we note that these items have a high
difficulty index, which means that the great majority of
students answered these items correctly. This may explain
the low discrimination index. We decided to keep these
items, since they address important vector concepts
taught in introductory physics courses. Ding et al. also
recommended the calculation of the average discriminatory
index, suggesting a value of ≥ 0.3. For the TUV the

average discriminatory value is 0.48 (using the
25%–25% method), which meets this criterion.

3. Point-biserial coefficient

The point-biserial coefficient (rpbs) is a measure of the
consistency of a single item in relation to the whole test,
reflecting the correlation between students’ scores on an
individual item and their scores on the entire test. Awidely
adopted criterion, followed by Ding et al. [2], is that an
item with a satisfactory point-biserial coefficient must be
rpbs ≥ 0.2. Table II shows the point-biserial coefficient for
each item on the TUV. As one can see, all of the TUV’s
items satisfy this condition. Ding et al. also recommended
the calculation of the average point-biserial coefficient,
with a criterion range of ≥ 0.2. The average coefficient of
the TUV is 0.44, which also fulfills this criterion.

4. Kuder-Richardson reliability index
and Ferguson’s delta test

The Kuder-Richardson reliability index is a measure of
the self-consistency of a whole test. Ding et al. [2] state that
a test with a reliability index that is higher or equal to 0.7 is
reliable for group measures. The index for the TUV is 0.78,
which meets this criterion. Ferguson’s delta test measures
the discriminatory power of an entire test by investigating
how broadly the total scores of a sample are distributed over
the possible range. A widely adopted criterion, followed
by Ding et al. [2], is that a test with a Ferguson’s delta of
higher than 0.9 offers a good discrimination. Ferguson’s
delta test for the TUV is 0.97, which satisfies this
requirement.

5. Summary of the five statistical tests

We present a summary of the five statistical tests in
Table III. From the analysis, we can conclude that the TUV
is a reliable test with satisfactory discriminatory power.

V. STUDENTS’ UNDERSTANDING OF
VECTOR CONCEPTS, AS INDICATED

BY THE TUV RESULTS

In this section, we analyze the comprehension of vector
concepts by students who had finished the introductory
physics courses at the university, as demonstrated by their
performance on the TUV. Specifically, we studied the
results of 423 students who had completed the E&M
course. Table IV shows the 10 vector concepts evaluated

TABLE II. Item difficulty index (P), item discriminatory index (D), and point-biserial coefficient (rpbs) for each item of the TUV.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P 0.74 0.43 0.33 0.82 0.86 0.78 0.79 0.42 0.88 0.92 0.71 0.57 0.56 0.73 0.77 0.64 0.54 0.57 0.63 0.82
D 0.44 0.48 0.61 0.40 0.27 0.41 0.46 0.53 0.33 0.20 0.44 0.53 0.71 0.48 0.43 0.60 0.59 0.56 0.65 0.43
rpbs 0.45 0.39 0.43 0.45 0.32 0.40 0.46 0.45 0.47 0.38 0.39 0.42 0.56 0.43 0.41 0.50 0.43 0.44 0.54 0.45

TABLE III. Summary of the results of the five statistical tests
suggested by Ding et al. [2] for the TUV.

Test statistic Desired values TUV value

Difficulty index [0.3, 0.9] Average: 0.68
Discriminatory index ≥ 0.3 Average: 0.48
Point-biserial coefficient ≥ 0.2 Average: 0.44
Kuder-Richardson
reliability index

≥ 0.7 for group
measures

0.78

Ferguson’s delta test > 0.9 0.97
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in the TUV, the items’ descriptions, and the percentages of
the 423 students that selected a particular choice for each
item. Note that the percentages of the correct answers
correspond to the difficulty indices shown in Table II.

A. Students’ overall performance on the TUV

The average of the scores of the TUV (from the sample
of 423 students that finished a calculus-based course on
electricity and magnetism) is 13.52 of 20 possible points
(each test item is worth 1 point). This average, expressed
in percentage of the total possible points, is 68%, which
corresponds to the average difficulty index value (0.68)
found in the previous section.
The distribution of scores on the TUV is negatively

skewed, meaning that the distribution is concentrated on
the higher values. For this type of distribution, it is
preferable to use the quartile as the measure of spread.
The median of the distribution is 14, the bottom quartile
(Q1) is 11, and the top quartile (Q3) is 17, so the
interquartile range is 6. Note that a distribution that is
negatively skewed indicates a less difficult test; however,
if we consider that the students are finishing the third
introductory physics course (E&M), and that the TUV
evaluates concepts that are frequently used in these courses,
it is interesting to note that the students who are on the
median (14) had difficulty correctly answering 6 items (out
of 20) of the TUV.

Table IV shows the proportion of students correctly
answering all items of the TUV. The range of percentages is
very wide, from 33% on item 3 (geometric interpretation of
dot product) to 92% on item 10 (graphic representation of a
vector). To analyze these results, we decided to cluster the
problems based on the range of proportion of the correct
answer.

B. Clusters of TUV items according to level of difficulty

We classified problems as “high difficulty level” if they
had a proportion of correct answers that was equal to or less
than 60%, as “medium difficulty level” if they had a correct
proportion of 60% to 80%, and as “low difficulty level”
if their proportion of correct answers was equal to or
greater than 80%. Table V shows the division of items by
difficulty level.
As shown in Table V, the seven items considered to have

a high difficulty level in order of decreasing difficulty are 3

TABLE IV. The 10 vector concepts evaluated in the TUV, the description of the items, and the percentages of the 423 students of E&M
selecting a particular choice for each item. The correct answer is in boldface and N is for students that did not answer.

Vector concept Item Item description A B C D E N

1. Direction 5 Choosing a vector with the same direction from among
several in a graph

7 2 86 2 3 0

17 Calculation of direction of a vector written in unit-vector notation 54 11 15 11 8 1
2. Magnitude 20 Calculation of magnitude of a vector written in unit-vector notation 6 82 5 5 1 1
3. Component 4 Graphic representation of y component of a vector 8 3 82 3 4 0

9 Graphic representation of x component of a vector 6 3 2 88 1 0
14 Calculation of x component of a vector (angle measured from y axis) 3 2 73 21 2 0

4. Unit vector 2 Graphic representation of a unit vector 18 33 43 1 5 0
5. Vector representation 10 Graphic representation of a vector written in unit-vector notation 3 92 1 1 3 0
6. Addition 1 Graphical addition of vectors in 2D 8 5 1 12 74 0

7 Comparing the vector sum’s magnitude of two same-magnitude
vectors at 90° with the magnitude of the vectors.

5 79 9 4 3 0

16 Comparing the vector sum’s magnitude of two same-magnitude
vectors at 143.13° with the magnitude of the vectors.

12 64 11 4 8 1

7. Subtraction 19 Graphical subtraction of vectors in 1D 0 26 6 4 63 1
13 Graphical subtraction of vectors in 2D 6 4 8 26 56 0

8. Scalar multiplication 11 Graphic representation of a vector multiplied by a negative scalar 8 12 71 4 5 0
9. Dot product 3 Geometric interpretation of dot product as a projection 27 33 20 9 10 1

6 Calculation of dot product using the equation ABcosθ 7 78 3 9 3 0
8 Calculation of dot product of vectors written in unit-vector notation 42 8 27 5 18 0

10. Cross product 12 Geometric interpretation of cross product as a perpendicular vector 5 30 5 2 57 1
18 Calculation of a cross product magnitude using the equation ABsinθ 12 4 6 57 21 0
15 Calculation of cross product of vectors written in unit-vector notation 77 2 5 15 1 0

TABLE V. Division of items by difficulty level. Note that the
items in each category are arranged in order of difficulty.

Item difficulty
level

Range of correct
answer percentages

TUV items

High ≤ 60% 3, 8, 2, 17, 13, 12, 18
Medium (60%, 80%) 19, 16, 11, 14, 1, 15, 6, 7
Low ≥ 80% 4, 20, 5, 9, 10
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(geometric interpretation of dot product), 8 (calculation of
dot product of vectors written in the unit-vector notation), 2
(graphic representation of unit vector), 17 (calculation of
direction of a vector written in unit-vector notation), 13
(graphical subtraction of vector in 2D), 12 (geometric
interpretation of cross product), and 18 (calculation of
cross product magnitude ABsinθ). It is interesting to note
that four of these seven items (3, 8, 12, and 18) evaluate
students’ understanding of vector products, showing that
even after completing the three-course sequence students
still have a great deal of difficulty with these operations.
The other three items evaluate the unit vector concept, the
calculation of direction, and the subtraction in 2D.
The eight items classified as medium difficulty level are

19, 16, 11, 14, 1, 15, 6, and 7. The majority of these items
(5 out of 8) evaluate vector operations posed in a graphical
form: three items evaluate addition (1, 7, and 16), one
evaluates subtraction in 1D (item 19), and the last evaluates
a negative scalar multiplication of a vector (item 11). It is
interesting to note that the other two items in this group are
vector product items which are not in the high level group
(items 6 and 15), and one item evaluates the calculation of
the component of a vector (item 14).
Finally, the five items with a low difficulty level are

4, 20, 5, 9, and 10. The great majority of these items (4 out
of 5) evaluate vector properties: two evaluate the repre-
sentation of vector components (items 4 and 9), one
evaluates the direction property (item 5), and another
evaluates the magnitude of a vector (item 20). Note that
the other item of this group evaluates the graphical
representation of a vector written in unit-vector notation
(item 10), which indirectly evaluates the understanding of
the components of a vector.

C. Students’ understanding of each vector concept

Next, we consider students’ understanding of each vector
concept evaluated in the TUV, examining their performance
on each item separately (Table IV). When analyzing
Table IV, we first notice that some distractors on the test
have low percentages. This is explained by the fact that the
participants in this study were students that were complet-
ing the required sequence of university introductory
physics courses. We should note that when the test was
administered to students just entering the university, the
great majority of distractors had percentages that were
higher than 5%.

1. Direction of a vector

Items 5 and 17 refer to the concept of direction of a
vector. In item 5, students have to choose vectors with the
same direction. This item is a modification of an open-
ended problem designed by Nguyen and Meltzer [15].
Eighty-six percent of students answered this item correctly.
The most common error (7%, option A) was to choose
vectors K and L (error detected by Nguyen and Meltzer).

In our testing of open-ended problems, we found that the
students justified this selection by mentioning that vectors
K and L are pointing to the same “region” (northeast) as
vector A, or that vectors K and L have positive x and y
components like vector A. In a previous article [23], we
analyzed the misconceptions about this problem in more
detail.
In item 17, students have to calculate the direction of a

vector written in the unit-vector notation (A ¼ −3iþ 4j).
Knight [14] administered a similar problem but did not
catalog the frequent errors. Fifty-four percent of the
students answered this item correctly on the TUV.
The most common error (15%, option C) is to state that
the direction is 143.13°. In testing the open-ended prob-
lems, we found that these students first calculated a 53.13°
angle [as tan−1ð4=3Þ] and then incorrectly added a 90°
angle to this value. Another frequent error (11%, option D)
was to select 135°. These students believed that the vector
forms an exact negative 45° angle with the negative x axis.
Another error was to choose 53.13° (11%, option B),
calculating the direction as tan−1ð4=3Þ. And finally, the
fourth error was to select −53.13° (8%, option E), calcu-
lating the direction as tan−1ð−4=3Þ.
It is interesting to note the considerable difference in

percentage of correct answers that exists between item 5
(86%) and item 17 (54%). This shows that students have
more difficulty calculating the direction of a vector than
selecting vectors with the same direction.

2. Magnitude of a vector

Item 20 refers to the magnitude of a vector concept. In
this item, students have to calculate the magnitude of a
vector written in the unit-vector notation (A ¼ 2iþ 2j).
Knight [14] administered a similar problem but did not
itemize the frequent errors. On the TUV, 82% of students
answered this item correctly. The most common error (6%,
option A) was to incorrectly establish that the magnitude of
the vector A ¼ 2iþ 2j was 2. When testing the open-
ended problems, we observed that some of the students
used an incorrect equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ax þ Ay
p

to calculate this
magnitude. Another frequent error was to select the unit
vector of vector A (5%) as the magnitude of this vector
(option D). Another error was to state that the magnitude
was 4 (option C, 5%). Some of the students performed the
incorrect calculation of 22 þ 22 ¼ 16.

3. Component of a vector

Items 4, 9, and 14 refer to the component of a vector
concept. These items are modifications of multiple-choice
problems designed by Van Deventer [18]. The majority of
distractors in our items also appear in Van Deventer’s
problems. The main difference is that we reduced the
number of distractors to five, based on the test results of our
open-ended problems. In those tests, we also examined the
incorrect reasoning used by students that resulted in some
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of the wrong answers. In item 4, students had to choose the
correct graphic representation of the y component of a
vector. The angle given is from the y axis to the vector.
Eighty-two percent of the students answered this item
correctly. The most common error (8%, option A) was to
choose a component with a longer magnitude than the
correct one. In our open-ended problems, we found that
some students justified this selection by stating that the
magnitude of the y component of vector A must have
the same value as vector A. Another frequent error
(4%, option E) was to choose a component shorter than
the correct one. We found that these students knew the
“rule” that components are shorter than the magnitude
of the vector but had problems graphically identifying the
value of the components.
Item 9 has the same form as item 4, but in this case

students had to choose the graphic representation of the x
component of a vector. Eighty-eight percent of students
answered this problem correctly. The most common error
was to choose a component with a longer magnitude than
the correct one: 6% chose option A and 3% selected option
B. The incorrect reasoning found in the open-ended
problems was very similar to that established for item 4.
In a previous article [25], we analyzed the misconceptions
about items 4 and 9 in greater detail.
In item 14, students had to calculate the x component of a

vector. The angle given is from the y axis to the vector.
Seventy-three percent of the students answered this item
correctly. The most common error (21%, option D) was to
choose Acosφ, which is the equation that students memo-
rize in order to calculate the x component. The other
incorrect options had lower frequencies. It is interesting to
note the difference between the percentages of correct
answers for item 14 (73%) and that of items 4 and 9
(82% and 88%, respectively). This shows that students
have more difficulty calculating the component of a vector
(when the angle given is from the y axis to the vector) than
selecting the x and y components of a vector graphically.

4. Unit vector

Item 2 is related to the unit vector concept. The question
asks students to find the unit vector in the direction of a
vectorA (A ¼ 2iþ 2j). Forty-three percent of the students
answered this item correctly (option C). Of those who did
not select the correct option, 33% chose a unit vector that
has x and y components of one unit (option B). In our
analysis of the related open-ended problem that we had
tested earlier, we found that those students choosing option
B believed that this unit vector had a magnitude of 1.
Another incorrect answer that students chose (18%) was
option A: they chose two vectors, the x and y component of
vectorA. In their reasoning, the students connected the unit
vector in the direction of A with the two components
of vector A written in the unit-vector notation (2i and 2j).
Five percent of students who chose option E (the same

vector A) argued that the unit vector of A was the addition
of the two components written in the unit-vector notation,
which yields the same vectorA. We analyzed this in greater
detail in a previous article [26].

5. Graphic representation of a vector

Item 10 is a question in which the student is asked for
the graphical representation of a vector written in the unit-
vector notation (A ¼ −2iþ 3j). A low proportion of
students answered this question incorrectly, since 92% of
them chose option B. Three percent of students chose
option A, which is a vector with its tail in (−2, 0) and tip in
(0, 3). In the open-ended problem related to this item, we
found that some of these students first sketched the vector
components of vector A correctly with their tails in the
origin, and then drew the vector from the tip of the x
component to the tip of the y component. Three percent of
students chose option E which is a vector with its tail in
(−2, 0) and tip in (−2, 3).

6. Vector addition

Items 1, 7, and 16 are related to vector addition. In item
1, students are asked to calculate the addition of two vectors
in two dimensions. The item is a modified version of an
open-ended problem designed by Nguyen and Meltzer
[15]. Knight [14] and Flores et al. [16] used similar
problems in their tests and Van Deventer [18] used it in
interviews. In our multiple-choice test, 74% of students
answered the item correctly. Twelve percent of students
selected option D, which is a tip-to-tip vector (first reported
by Knight [14]). Eight percent of students selected option
A, which is a bisector vector, that is, a vector that is in
between the two vectors but lacks the precision to be
considered a correct sum (error reported by Nguyen and
Meltzer [15] and named by Van Deventer [18]). Five
percent of students selected a horizontal bisector vector
(option B, detected by Nguyen and Meltzer [14]). In a
previous article [24], we analyzed in greater detail students’
difficulties with open-ended problems similar to item 1.
In item 7, students are asked to compare the magnitude

of the vector sum of two perpendicular vectors of the same
magnitude to the magnitude of one of the vectors. Nguyen
and Meltzer [15] tested a similar problem. Seventy-nine
percent of the students answered this question correctly
(option B). A large proportion of students answered that the
magnitude was the same; however, they used different
arguments. Nine percent of students said that it was because
both vectors had the same magnitude (option C), 5% of
them chose the option that states that the vector sum only
changes direction (option A), and 4% chose the option that
states that the magnitude of the vector sum is the same by
means of the direct application of the Pythagorean theorem
(option D).
Item 16 is similar to question 7; however, in 16 the angle

between the vectors is 143.13°. Flores et al. [16]
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administered a similar open-ended problem. When com-
pared to item 7, a lower proportion of students answered
item 16 correctly (64%). In this question, a large proportion
of students answered that the magnitude of the vector sum
is greater than the magnitude of one of the vectors. Among
this group, 12% mentioned the use of the Pythagorean
theorem (error found by Flores et al.), 11% justified their
answer by saying that the addition of the vectors always
yields a resultant vector with a greater magnitude than the
individual vectors (option C), and 8% justified their answer
by maintaining that the distance between the tips of the
vectors is larger than the magnitude of vector A (option E).
Only 4% of students chose option D, that the magnitude
of the vector sum is the same as the magnitude of the
individual vectors.

7. Vector subtraction

Items 13 and 19 refer to vector subtraction. In item 19,
students have to choose the vector difference (A −B) of
two vectors (A ¼ −3i; B ¼ 5i) in one dimension. Wang
and Sayre [19] tested a similar open-ended problem, and
Van Deventer [18] included it in interviews. Only 63% of
students answered item 19 correctly. The most frequent
error (26%, option B) was to choose the vector Aþ B as
the answer (error detected by Van Deventer). Also, 4% of
students chose the vector B −A (option D) and 6%
selected option C, that is, −ðAþ BÞ (these errors had
been identified by Wang and Sayre).
In item 13, students have to choose the subtraction

vector (A−B) of two vectors (A¼−3iþ3j;
B ¼ −2i − 2j) in 2D. Flores et al. [16] tested a similar
open-ended problem and Van Deventer [18] used it in
interviews. Our results indicate that only 56% of students
answered item 13 correctly. The most common error (26%)
was to select vector−1iþ 1j (option D). In the open-ended
problem that we had previously administered, we found
two incorrect procedures: (1) students subtracted the
two vectors using components, and incorrectly added the
y components of the two vectors, and (2) students incor-
rectly sketched vector −B as vector 2i − 2j (collinear to
vector A), adding the vectors graphically to obtain vector
−1iþ 1j. This error has not been reported in the literature
for vector subtraction by other researchers. Another fre-
quent error (8%, option C) is to choose the vector sum of
the two vectors (error detected in interviews by Van
Deventer). Another error (6%, option A) is to choose a
vector with opposite direction (error identified by Flores
et al.). We found in our testing of open-ended problems that
the majority of these students sketched the vector difference
directly from the tip of vector A to the tip of vector B
(tip-to-tip error). Finally, 4% of students chose a horizontal
bisector vector (option B).

8. Scalar multiplication of a vector

Item 11 asks students to multiply a negative scalar
(negative 3) by a vector (A ¼ −2iþ 2j). The question is
a modified version of a problem used by Van Deventer [18]
in interviews. Seventy-two percent of students answered this
question correctly. Among the students who did not answer
the question correctly, 12% selected the option representing
vector 3A; that is, they had difficulty with the negative sign.
Another 8% of students chose a perpendicular vector with a
correct magnitude (optionA). In our previous study [26], we
found that some students answering this option used an
incorrect vector “A ¼ −2i − 2j” and, therefore, they incor-
rectly calculated the vector −3A ¼ 6iþ 6j. Those students
not only had difficulties in identifying the correct vector A,
but also in interpreting the scalarmultiplication. Five percent
of students chose a vector with the correct direction but with
an incorrect magnitude (option E), indicating difficulty in
interpreting the change in magnitude by the scalar. The
remaining 4%of students chose a vector with a translation of
three negative units in the y axis (option D). This error was
identified by Van Deventer in his interviews for the positive
scalar multiplication. In our previous article [26], we
analyzed the misconceptions about item 11 in more detail.

9. Dot product

Items 3, 6, and 8 are questions on the dot product. In item
3, students have to choose the geometric interpretation as a
projection of the dot product of two vectors. In interviews
on calculating the dot product, Van Deventer [18] found
that some students incorrectly consider the dot product
of two vectors to be a bisector vector between the vectors.
In item 3, only 33% of students answered the question
correctly. A large proportion of students (27%) chose
option A, which indicates that the dot product of two
vectors is the magnitude of a vector between the two
vectors. In an open-ended problem, we found that the most
common incorrect reasoning by these students was to relate
the scalar nature of the dot product with the magnitude of a
vector. The following is a sample answer by a student who
had applied this reasoning: “Dot product is a scalar, that’s
why its result is a magnitude and not a vector.” Another
large proportion of students (20%) chose option C, the
bisector vector between the vectors. In the open-ended
problem related to this item, we detected, as did Van
Deventer [18], that the most common incorrect reasoning
by these students was to associate the dot product with
addition vectors. Also, 10% of students thought that the dot
product was a horizontal vector in the direction of vectorD.
We found that the most common incorrect reasoning for
this error was based on an incorrect calculation of the dot
product using unit-vector notation. A representative student
answer that illustrates this incorrect reasoning is “To get the
dot product, one multiplies A · B ¼ ðxiþ xjÞ · ðyiÞ ¼ xyi.
As can be seen, i · j cancel each other out and only the
multiplication i · i remains.” Finally, 9% of students stated
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that the dot product was a perpendicular vector (confusing
the dot product with the cross product).
In item 6, students have to calculate the dot product of

two vectors that form an angle θ between them. Knight [14]
administered a similar problem but did not catalog the
frequent errors. Seventy-eight percent of students answered
this question correctly. Nine percent of students chose
option D, i.e., ABsinθ, which is the expression for
calculating the magnitude of the cross product of two
vectors. Seven percent of students selected AB (option A),
which is the direct multiplication of the magnitudes of the
vectors. In previous publications [25,27], we analyzed the
misconceptions about items 3 and 6 in more detail.
In item 8, students have to calculate the dot product

of two vectors written in the unit-vector notation (A ¼
1iþ 3j and B ¼ 5i). Knight [14] tested a similar problem
(without identifying the most frequent errors made by
students), and Van Deventer [18] included it in interviews.
In our results, only 42% of students answered item 8
correctly (option A). A large proportion of students (27%)
chose 5iþ 3j (option C). In the open-ended problem that
we had previously administered, we found that these
students calculated a dot product of vector 1i (from vector
A) and vector 5i (from vector B), incorrectly obtaining the
vector 5i, and then added the vector 3j (from vector B) to
the result. Another large proportion of students (18%)
answered 5i (option E). These students performed the same
calculation as the previous ones, without adding the 3j
(from vector B) to the vector 5i. Eight percent of students
chose option B (−15k), which is the cross product of the
two vectors, and the rest (8%) selected option D (6iþ 3j),
which is the addition of the two vectors.
It is interesting to note the great difference between the

percentage of correct answers for item 6 (78%), item 3
(33%), and item 8 (42%). This shows that students have
more difficulty interpreting and calculating the dot product
in the unit-vector notation than correctly applying the
equation ABcosθ.

10. Cross product

Items 12, 15, and 18 are questions regarding the cross
product. In item 12, students have to choose the best
geometric interpretation of the cross product of two vectors
from among several options. In a previous study [18], Van
Deventer used a similar problem in student interviews, but
in that study students were asked to describe the direction
of the cross product. This question assumed that students
knew that the result of the product was a vector, and we
tried to confirm this supposition. On our test, 57% of
students answered item 12 correctly. The most common
mistake (30%, option B) was to choose a vector with an
opposite direction. The rest of the students chose other
responses, such as option A (5%), which states that the
cross product is a vector between the two vectors in the
product (identified by Van Deventer in student interviews).

Others chose option C (5%), indicating that they believe
that the cross product is the magnitude of a vector between
the two vectors in the product.
In item 18, students have to calculate the magnitude of

the cross product of two vectors that form an angle θ.
Knight [14] tested a similar problem (without identifying
the most frequent errors made by students), and Van
Deventer [18] included it in interviews. Fifty-seven percent
of students answered item 18 correctly. The most frequent
error (21%) was option E, ABcosθ, the equation used to
calculate the dot product (this error was also identified by
Van Deventer in his interviews). The second most common
error (12%) was option A, AcosθBsinθ. We found that
these students correctly calculated the x component of
vector A as Acosθ but incorrectly calculated the x compo-
nent of vector B as Bsinθ. They then multiplied these
two expressions. Six percent of students selected option C,
ABsinð90° − θÞ, and 4% chose the equation AB (option B),
which is the direct multiplication of the magnitudes of the
two vectors. In a previous publication [25], we analyzed the
misconceptions about items 12 and 18 in more detail.
In item 15, students have to calculate the cross product

of two vectors using the unit-vector notation (A ¼ 1iþ 3j
and B ¼ 5i). Seventy-seven percent answered item 15
correctly. The most common error was option D (15%),
which has the opposite sign (15k). The second most
common error (5%) was option C, 5iþ 3j. We found that
these students calculated a product of vector 1i (from vector
A) and 5i (from vector B), incorrectly obtaining vector 5i.
They then added vector 3j (from vector B).
It is interesting to note the considerable difference that

exists between the proportion of correct answers for item 15
(77%) and that of items 12 and 18 (57% for both). This shows
that students have more difficulties in interpreting the cross
product and calculating its magnitude as ABsinθ than in
correctly calculating thecrossproduct inunit-vectornotation.
If we observe the items in which students have to do

calculations with two vectors written in unit-vector nota-
tion, we note that students have more difficulties with the
dot product (item 8, 42% correct) than with the cross
product (item 15, 77% correct). This difference seems to be
due to the fact that students have more difficulties with the
dot product interpretation (item 3, 33% correct) than with
the cross product interpretation (item 12, 57% correct). As
discussed, a significant proportion of students mistakenly
think that the dot product is a vector. Therefore, this error
may also have an effect in item 8 in which all the incorrect
options are vectors.
In contrast, in the items in which the definitions with

trigonometric functions are used, students have more diffi-
culties with the cross product (item 18, 57% correct) than
with the dot product (item 6, 78% correct). This difference
could be due to a generalization of the students that the
product between two vectors is ABcosθ. In the dot product
item, 78% of students answer that which is correct and only
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9% of students select the incorrect option ABsinθ. On the
other hand, in the cross product item, a large proportion of
students (21%) selectABcosθ, which in this case is incorrect.

VI. DISCUSSION

In this section we focus, for instructional reasons, on the
most frequent incorrect answer for each of the TUV’s
items. First, we classify them by type. We then display a
table of those incorrect answers that have a frequency
proportion that is equal to or greater than 20%. Next we
perform analyses of both.

A. Classification of the most frequent incorrect
answer for each of the items of the TUV

The most frequent incorrect answer for each of the items
of the TUV can be clustered into four groups. Table VI
presents this classification.

As we can see from Table VI, the first group of
difficulties is in the graphical properties of direction,
magnitude, and components of a vector. The frequent
answers to five items on the test (items 5, 4, 9, 2, and
7) are represented in this group. Upon analyzing these
answers, two categories of errors emerge. The first category
involves understanding the concept of direction (item 5).
As established in Sec. V, students have difficulties
relating the direction of a vector with the angle it
forms with the x axis, and instead relate it to the region
where it points. The second category of error is found in
the remaining items (4, 9, 2, and 7). As we can see, students
mistakenly believe that the x and y components of a
vector have the same value as the magnitude of the
vector. It is important to note that item 7 concerns
vector addition of vectors at 90° and does not refer
explicitly to vector components; the situation is completely
analog.

TABLE VI. Classification of the most frequent incorrect answer for each of the items of the TUV. Note that the most frequent incorrect
answer of the dot product interpretation problem (item 3) cannot be classified in a specific group because of the peculiar nature of the dot
product operation.

Difficulties group Description Most frequent incorrect answer for items in this group

Graphical properties Difficulties in understanding the
graphical properties of direction,
magnitude, and components of a
vector.

Item 5: Two vectors that form different angles with the x axis but pointing
to the same region (northeast) have the same direction.

Item 4: The y component of a vector has the same value as the magnitude
of the vector.

Item 9: The x component of a vector has a longer magnitude than the correct
one, because it has the same “value” as the magnitude of the vector.

Item 2: A unit vector has x and y components of one unit.
Item 7: The magnitude of the vector sum of two same-magnitude vectors
at 90° is the same as the magnitude of the vectors.

Graphical procedures Difficulties in understanding the
graphical procedures of vector
operations: addition, negative
scalar multiplication, and cross
product.

Item 1: Tip-to-tip error in the addition of two vectors.
Item 10: Sketching vector−2iþ 3j from the tip of the x component to the
tip of the y component.

Item 11: Vector with incorrect opposite direction in the negative scalar
multiplication.

Item 19: Add vectors in the subtraction of two vectors in 1D.
Item 13: Represent the subtraction vector ðA −BÞ of A ¼ −3iþ 3j and
B ¼ −2i − 2j as −1iþ 1j (not −1iþ 5j).

Item 12: Vector with incorrect opposite direction in the cross product of
two vectors.

Geometric calculation
procedures

Difficulties with calculations that
involve angles, trigonometric
functions, and the Pythagorean
theorem

Item 17: Calculate the direction of vector A ¼ −3iþ 4j as 143.13° (not
126.87°).

Item 14: Use the cosine function to calculate the x component of a vector
when the angle given is measured from the y axis.

Item 6: Calculate the dot product as ABsinθ.
Item 18: Calculate the magnitude of a cross product as ABcosθ.
Item 16: Apply the Pythagorean theorem incorrectly to calculate the
magnitude of the vector sum of two vectors at 143.13°.

Item 20: Apply the Pythagorean theorem incorrectly when calculating the
magnitude of vector 2iþ 2j as 2.

Unit-vector notation
calculation
procedures

Difficulties with calculations of dot
and cross products that involve
unit-vector notation.

Item 8: Calculate the dot product ðA⋅BÞ of the vectors A ¼ 1iþ 3j and
B ¼ 5i as 5iþ 3j.

Item 15: Calculate the cross product ðA ×BÞ of the vectors A ¼ 1iþ 3j
and B ¼ 5i as a vector with opposite sign (15k).
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The second group of difficulties in Table VI is in the
graphical procedures of vector operations. The frequent
answers for six items on the test (items 1, 10, 11, 19, 13,
and 12) fall into this group. Here we find three categories of
errors. The first category is in a vector addition operation, in
which students make the tip-to-tip error (items 1 and 10).
This error is found in problem 2D (item 1), where we see
that students sketch the vector sum Aþ B from the tip of
vector B to the tip of vector A. It also appears in item 10,
the problem that asks students to sketch vector
A ¼ −2iþ 3j; in their responses, some students sketched
vector A from the tip of vector −2i (with its tail in the
origin) to the tip of vector 3j (also with its tail in the origin).
The second category of errors that emerges is in the
representation of the negative multiplication of a vector.
Students had difficulty with item 11 (negative scalar
multiplication of a vector) and items 19 and 13 (subtraction
of vector in 1D and 2D). In items 11 and 19, they failed to
invert the direction of the vectors multiplied by −1, since in
item 11 they chose a vector pointing in the opposite
direction, and in item 19 they added the vectors instead
of subtracting them. In item 13, students also had diffi-
culties with the negative of vector B (B ¼ −2i − 2j), since
they represented it in their subtraction procedures as a
“perpendicular” vector (2i − 2j). Finally, the third category
of errors stems from an incorrect application of the right-
hand rule. As we can see from the cross product problem in
Table VI (item 12), students chose the option with the
incorrect opposite direction.
The third group of student difficulties classified in

Table VI illustrates problems with geometric calculations.
The frequent answers to five test items (items 17, 14, 6, 18,
16, and 20) fall into this group. Three categories of errors
emerge from the analysis of these answers. The first
category is made up of calculations that involve angles.
This error is found in item 17, in which students incorrectly
calculated the direction of vector A ¼ −3iþ 4j as 143.13°
(not 126.87°). As mentioned in Sec. V, these students had
difficulties with supplementary angle calculations, since
they first calculated a 53.13° angle [as tan−1ð4=3Þ] and then
incorrectly added a 90° angle to this value. The second
category of errors is found in items 14, 6, and 18, where
calculations of trigonometric functions (sine and cosine)
are involved. In item 14, students incorrectly calculated the
x component of a vector when the angle given is measured
from the y axis using the cosine function instead of the sine
function. In item 6, in order to calculate the dot product,
students incorrectly applied the sine function instead of the
cosine function, and in item 18, when calculating the
magnitude of the cross product of two vectors, students
incorrectly applied the cosine function instead of the sine
function. As we see, students had difficulty selecting which
of the two functions needed to be used in these situations.
Finally, in the third category of this classification group,
students had difficulty using the Pythagorean theorem in

two of the items. In item 16, students used the Pythagorean
theorem incorrectly to calculate the magnitude of the vector
sum of two vectors at 143.13°, showing that they do not
know the requirements for using this theorem, and in item
20, they incorrectly applied it by calculating the magnitude
of vector 2iþ 2j as 2.
The fourth group of student difficulties is in calculations

that involve unit-vector notation. The most frequent incor-
rect answers for vector products are shown in this group. As
mentioned in Sec. V, in item 8 students incorrectly
calculated the dot product of the vectors A ¼ 1iþ 3j
and B ¼ 5i as 5iþ 3j, and in item 15 they incorrectly
calculated the cross product of the vectorsA ¼ 1iþ 3j and
B ¼ 5i as a vector with the opposite sign (15k). These
errors seem to originate in the procedures that the students
followed. It is interesting to note that in the TUV there are
three other items (10, 17, and 20) that use the unit-vector
notation, but as shown above these errors seem to have their
origin in other specific difficulties.
Finally, we must note that the most frequent incorrect

answer for the dot product interpretation problem (item 3)
cannot be clustered in a specific classification group. This
is due to the peculiar nature of the dot product operation.
Remember that this operation is performed between two
vectors and the result is a scalar, not a vector. As noted in
Sec. V, in item 3 the most common incorrect answer was to
interpret the dot product of two vectors as the magnitude of
a vector between the vectors.

B. Identification of incorrect answers
with higher frequency percentages

In the latter analysis we classified the most frequent
incorrect answer for each of the items on the TUV.
However, the percentages of these answers vary widely.
For example, in the unit vector representation problem
(item 2), the most common incorrect answer has a fre-
quency rate of 33%, while that of the graphic representation
of the y component of a vector (item 4) is only 8%. Both for
this reason and for instructional purposes, we decided to
identify the incorrect answers on the TUV that have a
frequency rate of equal to or greater than 20%. Table VII
shows the nine incorrect answers that fulfill this criterion.
Table VII reveals several facts that are worth noting. Five

of the nine errors (errors 2, 3, 4, 7, and 9) are in vector
products and two of these five errors (errors 3 and 9) are in
the interpretation of the dot product problem. Also, two of
the nine errors (errors 5 and 6) are in the representation of
vector subtraction. Finally, the other two errors are in the
representation of a unit vector (error 1) and the calculation
of the x component of a vector (error 8).
An analysis of the errors in Table VII to determine where

they fall in the four difficulties groups shown in Table VI
yielded interesting results. We observe that the errors are
not concentrated in a specific group, but rather are found in
different groups: error 1 is in the graphical properties
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group; errors 2, 5, and 6 are in the graphical procedures
group; errors 7 and 8 are in the geometric calculation
procedures group; error 4 is in the unit-vector notation
group; and, finally, errors 3 and 9 are related to difficulties
in interpreting the dot product that are not classified in a
specific group.

VII. CONCLUSIONS

The first objective of this study was to develop a
complete taxonomy of the most frequent errors that
university students continue to make with regard to the
vector concepts after completing their introductory physics
courses. We developed this taxonomy by taking into
consideration the results of several studies that were based
on tests of opened-ended problems; we then designed the
TUV test with this taxonomy in mind. The test reflects this
taxonomy, since the distractor (incorrect answer) for each
item on the TUV corresponds to a frequent error that
students make when applying that specific vector concept.
In the analysis of students’ responses to the TUV test
questions, we detailed the characteristics of each error and
specified the incorrect reasoning or procedure (found in the
results of tests on open-ended problems) that led them to
commit this error. This taxonomy has three characteristics
that need to be emphasized: it includes the basic vector
concepts used in introductory physics courses; it references
errors and incorrect reasoning that have not been previously
reported in the literature; and it summarizes, to a certain
extent, the previous studies that analyze the students’
difficulties with vector concepts. Finally, it is important
to note that this taxonomy could be used by physics
education researchers to design new instructional materials
that will explicitly address the more persistent conceptual
difficulties [37].
The second objective of the study was to design a reliable

multiple-choice test, following the steps recommended by
physics education researchers [1–3], that would evaluate
students’ understanding of vectors. As mentioned, we

designed the TUV test using the aforementioned taxonomy,
and its content validity was assessed by a panel of experts.
We then evaluated the reliability and discriminatory power
of the TUV test, following the procedure suggested by Ding
et al. [2], and concluded that the TUV test is a reliable tool
with satisfactory discriminatory power. It is noteworthy
that the TUV is the first test for evaluating students’
understanding of vector concepts that fulfills these criteria.
The test could be used to analyze students’ understanding
of vector concepts in different institutions, to investigate
students’ learning gains [38,39] although pretest results
could be very low as with other standardized tests, like in
electricity and magnetism [7] in which students are not
familiar with the concepts, and to test the effectiveness of
new instructional material based on research designed to
increase student knowledge and understanding [38,39].
Some physics teachers may wonder if certain items could
be eliminated from the test in order to suit their curriculum.
For example, teachers of algebra-based physics courses may
wish to eliminate questions related to the dot and cross
product. Since the great majority of items on the TUV fulfill
the criteria for item reliability and discriminatory power
established by Ding et al. [2], it is very probable that a test
without some of these items will still fulfill all the criteria.
The third objective of this study was to analyze the

understanding of vector concepts by a large population of
students upon completing the sequence of introductory
physics courses at the university level. We performed this
analysis by administering the TUV to 423 such students.
First, we analyzed the students’ overall performance on the
test, finding that those at the median level had difficulty in
correctly answering 6 of the items on the test. We also
found that they had further difficulties with 7 of the 20
items (items 3, 8, 2, 17, 13, 12, 18). These items evaluate
the geometric interpretation of dot product, the calculation
of dot product of vectors written in the unit-vector notation,
the graphic representation of unit vector, the calculation
of direction of a vector written in unit-vector notation,
the graphical subtraction of vector in 2D, the geometric

TABLE VII. Incorrect answers on the TUV with frequency rates of equal to or greater than 20%. (Answers are in order of decreasing
percentage.)

Error Item Option Error description %

1 2 B Consider that a unit vector has x and y components of one unit. 33%
2 12 B Vector with incorrect opposite direction in the cross product of two vectors. 30%
3 3 A Interpret the dot product of two vectors as the magnitude of a vector between

the two vectors.
27%

4 8 C Calculate the dot product ðA⋅BÞ of the vectors A ¼ 1iþ 3j and B ¼ 5i as 5iþ 3j. 27%
5 13 D Represent the subtraction vector ðA − BÞ of A ¼ −3iþ 3j and

B ¼ −2i − 2j as −1iþ 1j (not −1iþ 5j).
26%

6 19 B Add vectors in the subtraction of two vectors in 1D. 26%
7 18 E Calculate the magnitude of a cross product as ABcosθ. 21%
8 14 D Use the cosine function to calculate the x component of a vector when the

angle given is measured from the y axis.
21%

9 3 C Interpret the dot product of two vectors as a vector between the two vectors. 20%
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interpretation of cross product, and the calculation of cross
product magnitude as ABsinθ.
We also analyzed in detail the students’ understanding

of each problem on the TUV, describing the percentages
of correct and incorrect answers, and identifying the
incorrect reasoning and procedures. Finally, in Sec. VI we
developed, for instructional purposes, a classification of
the most frequent incorrect answer for each of the items
on the TUV, categorizing them in four groups by type of
difficulty: (1) graphical properties, (2) graphical proce-
dures, (3) geometric calculation procedures, and (4) unit-
vector notation calculation procedures. We also identified
and analyzed the nine incorrect answers that had a
frequency proportion of equal to or greater than 20%.
These analyses of students’ understanding share the

special characteristic that they are the first in the literature
to have been carried out using a multiple-choice test that
fulfills the previously specified criteria. We believe that
these analyses provide physics teachers and researchers
with a general description of the difficulties that univer-
sity students have when applying vector concepts, even
after completing their introductory physics courses, and
could guide the design of new instructional material
intended to increase students’ understanding of vector
concepts.
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