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All rights reserved



Dedication

To my parents,
with their support and love they have raise bliss and happy children.

To my brothers,
because you taught me the ”iriomi” of the purest and most sincere friendship.

To all my family,
for being and allowing me to be that great example of life.

To my extended family, my friends,
for giving me the privilege of sharing their lives.

And of course for you Agapimu,
for being more than I ever dreamed.

A mis padres,
con su apoyo y amor han formado hijos dichosos y felices.

A mis hermanos,
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Wavelets for Spindle Health Diagnosis
By

Silvia Cristina Villagómez Garzón

Abstract
Industrial development and customer demands have increased the need to look for high-quality

products at low cost and, at the same time, ensure safety during manufacturing. As a result, ro-
tary machinery and its components have become increasingly complex, making their repairs more
expensive. Therefore, many efforts must be focused in preventing breakdowns in machines, for
which real-time fault diagnosis and prognosis are mandatory.

Considering that the element most prone to failure in a machining center is the spindle, and
with it its bearing system, the diagnosis of failures of these elements is of paramount importance.
To ensure the safe operation of the bearing, some methods of fault detection have been developed
based on different techniques. One of the most commonly used is vibration analysis.

There are several difficulties when dealing with analyzing vibration signals, they are complex
and non-stationary signals with a large amount of noise. Conventional analysis have not been
able to solve this problem, thus, alternative methods such as Wavelet Transform have been gaining
ground.

The following research is focused in detecting bearing faults, as well as the main shaft faults,
which eventually also lead to bearing damage, by using wavelets. Different signals, presenting
distinct bearing fault conditions, of different data sets are evaluated for validating the proposed
methodology. An exhaustive analysis has been developed for selecting the best parameters of this
methodology.

As results, an improvement around 20% in magnitude of bearing fault frequency peaks was
found, compared to the traditional methodology. The proposal of giving more weight to high
energy components allows increasing these fault frequencies, as well as reducing low frequency
noise. This provides a great advantage in pursuit of an automatic fault detection.

An industrial approach was also validated, by proving that the proposed methodology is more
immune to noise. Even though, the magnitudes of the bearing fault peaks are diminished by noise,
a comparison between the proposal and the traditional methodology reveal an increase of approxi-
mately 70% of those magnitudes. Demonstrating that the fault information is barely attenuated by
noise. Also, an early diagnosis was proved, which could benefit future studies of fault prognosis.

Finally, the filtering property of wavelet decomposition is exploited to limit the frequencies of
the signal to few harmonics of the shaft speed. This with the aim of restricting the spectrum for
detecting other faults, that mainly affect the spindle shaft, which are diagnosed by analyzing speed
harmonics and subharmonics. Thus, a complete methodology is proposed to deal with the main
spindle faults.
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Chapter 1

Introduction

Industrial development and customers demands have increased the need to pursue high-quality
products at low cost while ensuring safety during manufacturing. High Speed Machining (HSM)1

offers high-quality and low machining times; however, its components are more complex and
more expensive when they need repairs. For this reason, machine maintenance strategies have
evolved from corrective over preventive to condition-based maintenance, for which real-time fault
diagnosis and prognosis are needed, [Yan et al., 2014]. Therefore, all efforts must be focused in
preventing breakdowns in machines; thus, spindles must be monitored. A failure in the spindle can
be catastrophic, leading to costly machine downtime, affecting the productivity in the company.

Bearings are one of the foremost cause of failures in a machine tool spindle, they are the
most critical and vulnerable components in the mechanical transmission. According to statistics,
approximately 30% of mechanical failures in rotating machinery are due to the failure of rolling
bearings, [Cui et al., 2016]. Hence, the bearing faults diagnosis has been gaining importance due
to its detrimental effect on machines reliability. Additionally, spindle fault such as MisAlignment
(MA), Mechanical Looseness (ML) and UnBalance (UB) must also be monitored, as they might
lead to bearing faults.

As bearings wear out, several defects may unleash. The principal defects affecting bearings
are: distributed and local flaws. Distributed defects are divided in surface roughness, waviness,
misaligned races and off-size Rolling Elements (RE). On the other hand, local defects are splitted
into, cracks, pits and spalls on the rolling surface, [Prabhakar et al., 2002]. Most typical faults in
bearings are produced by local defects, mainly cracks, pits and spalls in the Inner Race (IR), the
Outer Race (OR) or the RE.

During bearing operation, localized faults or wear produce successive periodic impacts when
rollers pass over the defect and causes wideband impulses. The amplitude and period of these
impulses depend on the shaft speed, the type of fault (location) and the bearing geometry. Mean-

1All acronyms are defined in Appendix A
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2 CHAPTER 1. INTRODUCTION

while, the other faults influence straightforward to the shaft speed characteristics. Vibration signal
analysis is one of the most effective techniques for analyzing impulses to detect and diagnose flaws
for a successful maintenance program.

Nevertheless, there are several difficulties in signal analysis for fault detection. The foremost
problem to deal with are the characteristics of the signals, they are nonlinear and non-stationary.
Another issue to solve is that the signature of a defective spindle can be undercovered by noise, and
low frequency effects. In addition, as defect frequency is typically small it is not easily noticed.
For bearing faults, it also needs to be considered that, in an initial stage of wear, the vibration signal
shows up distinct peaks in the frequency domain, but after wear develops along the surface, the
signal becomes more like random noise and it can not be easily detected, [Chancey et al., 2002].
Among other difficulties, there is also a problem when trying to detect OR and IR defects at the
same time, the OR defects are clear in the spectra, while the IR are not easily detected.

To cope with these problems many research have been developed, and a wide variety of tech-
niques have been introduced such as Short Time Fourier Transform (STFT), Wavelet Transform
(WT), Hilbert-Huang Transform (HHT), Wigner-Ville Distribution (WVD), Statistical Signal Anal-
ysis (SSA) among others.

Traditional approaches (conventional time domain and frequency domain analysis) are not use-
ful as they tend to average out transient effects. Some defects such as UB, eccentricity and Bent
Shaft (BS) or bowed rotor can display similar time traces with impulses of similar amplitude and
frequency; therefore, defects can not be isolated. Also, the complexity and non-stationary charac-
teristics of signals carrying out with a large amount of noise make spindle faults very difficult to
detect with these traditional methods.

Signals have a vast information, but they are often tainted by noise. Signal processing tech-
niques must have the ability to split close frequencies in real data.

Due to the high frequency nature of defect bearings impulses, it is required to handle bearing
damage with a high frequency signal analysis. On the other hand, shaft faults must be analyzed
at low frequencies. Signal processing techniques, such as WT, Fast Fourier Transform (FFT) and
HHT are applied to extract features from the acquired signals.

1.1 Motivation

As industry develops, technological advances are needed to satisfy customers demands. When talk-
ing about manufacturing industry machining centers stand out, since they allow a high production
of complex pieces with much shorter machining times. Five axis machining centers, for exam-
ple, even allow speeds up to 80,000 RPM with superior precision and amazing surface finishing
capabilities.

When working at these speeds it is necessary to keep an accurate control of everything that
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happens during machining, to avoid damages in production as well as in the equipment. If the
equipment has a fault, it will be reflected directly in the machined product, generating losses for
the manufacturing enterprise.

To avoid damage in machining centers, maintenance procedures exist. These have been evolv-
ing along with existing technology. Initially machines were forced to work until they failed, giving
maintenance to the equipment when they could no longer function. While this prolonged its use-
ful life to the maximum, damages implied a sudden and prolonged breakdown with high costs of
repair. To solve this type of inconveniences the preventive maintenance emerged, which sets dates
to stop production and review the operation of the equipment. This maintenance allows to avoid
unforeseen events; however, this is done with much shorter times to which the equipment can fail,
wasting the capacity of the machines. Finally, as a balance between the two options described
above appears the condition-based maintenance, which monitors the entire process to know when
exactly it will require maintenance.

Currently, with the development of technology, industries are looking to migrate to more ad-
vanced monitoring and diagnostic systems, precisely to guarantee production. For this reason, the
monitoring of machining centers is highly quoted.

Considering that the element most exposed to failure is the spindle, and with it its bearing sys-
tem, the diagnosis of failures of these elements is of paramount importance for the manufacturing
industry.

1.2 Problem Description

To ensure a healthy spindle some methods of fault detection, fault diagnosis and fault prognosis
have been developed based on different techniques. One of the most commonly used is vibration
analysis, this technique allows capturing periodic events, as faults produce peaks for every rotation
this technique helps extracting features for monitoring spindles.

Vibration analysis is the single most important component of a successful maintenance pro-
gram, [Chancey et al., 2002], as it allows machine condition monitoring. This technique reacts
immediately to changes, is more likely to point to the actual faulty component and most impor-
tantly, many powerful signal processing techniques can be applied to vibration signals to extract
even very weak fault indications from noise and other masking signals, [Randall, 2011].

Faults, in the initial stage of wear, produce distinct peaks that can be seen in the frequency
domain, as wear develops they become more like random noise. This makes vibration analysis a
powerful tool for detecting incipient faults; but, it requires a good processing technique to show
faults before they can not be detected.

There are several difficulties to deal with analyzing vibration signals, they are complex and
non-stationary with a large amount of noise which makes very difficult to detect faults, especially
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by conventional analysis, [Kankar et al., 2011]. For bearings, the difficulties lie in the fact that the
distinctive features of a defective bearing is spread across a wide frequency band and hence can be
easily masked by noise and low frequency effects. Furthermore, the amplitudes of the defects are
small so they are not easily noticed. Therefore, the main problems to be solved when proposing a
methodology to detect spindle faults using vibration analysis are:

◦ Developing a powerful signal processing algorithm to filter noise and low frequency effects,
separating close frequencies in real data.

◦ Deal with non-stationary signals, considering transient effects.

◦ Efficient extraction of features that vary in time.

◦ Isolate defects to deal with more than one fault at the time.

Based on the previous issues, non-traditional signal processing techniques such as STFT, WT,
HHT, WVD, SSA can provide an efficient feature extraction method for fault detection.

1.3 Research Question

There are many problems when dealing with vibration analysis for spindle faults detection. Tra-
ditional signal processing can not deal with complex characteristics of signals, and are highly
affected by noise.

Commonly, fault detection focuses on a specific spindle problem; however, a methodology
that analyzes more than one defect can provide a complete overview of the state of the spindle.
Nevertheless, leading with more than one defect requires good spectral resolution since, certain
faults are analyzed at high frequencies, bearing faults, and others at low frequencies, MA, UB and
ML.

The adaptive multi-resolution capability of the WT has made it a powerful mathematical tool
for diagnostics of machine operation conditions in manufacturing. Though, many parameters must
be evaluated for performing a good decomposition and reconstruction to extract the features that
allow a good diagnosis. The type of WT, the mother wavelet, level of decomposition, indicators to
extract the useful information, must be well studied.

1.4 Solution Overview

To generate a successful methodology, some aspects must be considered. First, it must be guar-
anteed that collected information is useful, signals should contain valid information with a good
acquisition system and reliable sensors. To apply this methodology to industrial equipment, the
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characteristics of the environment as well as of the inside of the machine should be well identified.
A good characterization of the machine in good conditions must be established.

Wavelets have the ability of simultaneously gather information from time and frequency do-
mains with a varying time-frequency window. This substantial insight of the method makes it ideal
for processing transient and non-stationary signals as well as extracting features that vary in time.
As WT can also be considered as a special filtering operation, it has a denoising nature. This helps
to isolate defects to deal with more than one fault at the time.

After a good vibration signal is acquired, wavelets analysis is applied as a filter dividing high
and low frequencies, obtaining more detailed information of the vibration signal. The spectrum
of the signal is analyzed for identifying fault frequencies that previously are computed for every
possible damage. For the faults that are analyzed in the harmonics of the rotational speed, the low
frequencies are considered; while for bearing faults, high frequencies that contain more informa-
tion about the fault are analyzed.

1.5 Main Contribution

The main contribution of this thesis is the development of a methodology based on Wavelet Packet
Transform (WPT) for bearings faults diagnosis as well as for MA, ML and UB faults detection;
which are the main cause of spindle machining centers breakdowns.

Additionally, for the development of the methodology, it was analyzed which were the best
parameters for detecting spindle faults by using WT. Among the analyzed parameters were: the
type of WT, the optimum decomposition level and the most suitable MW.

The proposed methodology, was validated with different data sets, showing effectiveness for
the three of them. It was shown that IR, OR, RE, MA, ML and UB defects were efficiently deter-
mined.

In addition, a magnification of around 20% in magnitude of fault frequency peaks was found
compared to traditional methodologies. This increase may benefit in future implementation of
classifiers, as it gives more energy to the fault components and makes them more visible in the
spectrum.

A possible application to industrial level was also identified, as the proposed methodology
is more immune to noise. The magnitude comparison between the proposal and the traditional
methodology reveal that the attenuation of the fault peaks, due to noise, was approximately 70%
less for the proposed methodology.

1.6 Dissertation

This thesis is structured as follows:
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Chapter 2 introduces the subject by means of a brief description of the state of the art, considering
the evolution of the techniques for vibration signal analysis emphasizing the preference for
wavelets.

Chapter 3 describes the experimental development, the management of data sets and the DoE for
the data obtained from a GROB 550 machining center or similar during its daily industrial
operation.

Chapter 4 presents the theoretical-technical proposal with the development of the diagnosis method-
ology, and the used algorithms for applying the selected technique.

Chapter 5 shows the analysis of the results that validate the proposed methodology. A comparison
with other methods is included.

Chapter 6 presents the conclusions from this research, highlights the contributions obtained and
introduces some future works and research lines.



Chapter 2

State of the Art

2.1 Literature Review

The relationship between vibration signals and machine condition was first perceived by [Rath-
bone, 1939], where it was considered that the damage of the machine depend of the vibration
amplitude. By 1960, it was recognized that periodic monitoring could be useful to avoid machine
failures, so measurement and recording vibration signals experienced a great surge. In the next
decade FFT analyzers were applied, expanding vibration analysis to more difficult and complex
cases. From 1980s the technology of the accelerometers and digital computers improved, obtaining
a better performance in the efficiency and effectiveness of the analyses, [Randall, 2011].

When analyzing vibration signals of HSM machines, efforts must be focused in detecting some
paramount defects. The principal elements of the spindle that must be considered when monitor-
ing a machine are the shaft and the bearings. These components are in charged of transmitting
movement from the motor to the tool, so they are subjected to constant loads. When they present
defects the cutting process is altered, originating defects in the rest of the components as well as in
the quality of the machining.

Defects that emerge in spindles are basically MA, UB, ML, BS and bearings faults. A brief
description as well as the causes and effects of these faults are described in [Mais, 2002]. A
summary of these characteristics is:

◦ Misalignment (MA) is created when shafts, couplings and bearings are not properly aligned
along their centerlines. One principle cause of this problem is a poor coupling, and as effect
the bearing carries higher load than its design specification, leading to fatigue.

◦ Unbalance (UB) occurs when the shafts mass centerline does not coincide with its geometric
centerline. This is often induced by the addition of shaft fittings without an appropriate
counter balancing procedure. As MA, UB usually causes bearings fatigue.

7
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◦ Bent Shaft (BS) problem is almost identical to MA. It is occasioned by excessive torque.
Consequences are the same as the others: bearing’s fatigue.

◦ Mechanical Looseness (ML) appear when a machine component is loose. This is not com-
mon, and as consequence it is possible that the component will become detached and cause
secondary damage.

◦ Bearings are the principal reason of machine breakdowns, as they take up fatigue. Elements
that show defects are Inner Race (IR), Outer Race (OR), Cage (C), and Rolling Element
(RE).

Many research projects have been developed to identify faults from vibration signals. Never-
theless, many difficulties appear while trying to detect them. Within many methods of processing
vibration signals focused in the field of fault diagnosis, a trend towards the study of wavelets has
been noticed. In recent years, the theory and applications of wavelets have been deeply studied.

One of the first wavelet approach for detecting bearing faults was done by [Mori et al., 1996]

focused in analyzing just OR defects. By the same time [Paya et al., 1997] developed another tech-
nique based on the application of Continuous Wavelet Transform (CWT) and the use of Artificial
Neural Network (ANN) to detect automatically IR defects. In the next decade, many studies were
developed to take advantage of the benefits of WT in the analysis of nonlinear and non-stationary
signals.

Traditional approaches (conventional time domain and frequency domain analysis) are not use-
ful as they tend to average out transient effects; hence a wide variety of techniques have been in-
troduced such as STFT, WT, and WVD. Nevertheless, [Tse et al., 2001] revealed that in STFT, the
resolutions in the time and frequency domains are limited by the width of the analyzing window
so this technique is deemed unsuitable for fault diagnosis. On the other hand, WVD may lead to
the emergence of negative energy levels and spectrum aliasing, causing difficulty in interpreting
results. This research proposed that WT is uniquely suitable to detect bearing faults and suggested
a more convenient method to detect the existence of any bearing fault in a fast process and diagnose
its cause of fault in the higher frequency bearing excitation range.

Considering that the first proposals used CWT, which has the disadvantage of requiring great
computational effort due to overlapping and a large amount of redundant information, research has
focused on the development of other techniques. [Prabhakar et al., 2002] presented the diagnosis
of single and multiple ball bearing race faults using Discrete Wavelet Transform (DWT), where
signals are decomposed in low frequency (approximations) and high frequency (details) signals.
This helped to cope with the problem of detecting IR defects, which are not clear in the spectra as
OR. Another alternative was proposed by [Tse et al., 2004], a new method named Exact Wavelet
Analysis (EWA) was developed to generate multiple mother wavelets that will generate various
kinds of daughter wavelets that are adaptive to the characteristics of the inspected signal.
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Other methods were proposed by [Chancey et al., 2002] and [Nikolaou and Antoniadis, 2002],
the first one uses the Harmonic Wavelets (HW) which has been shown to be a favorable choice for
vibration analysis because of the use of the FFT and the Inverse Fast Fourier Transform (IFFT)
in its HW algorithm. The second one proposed the use of WPT were the signal is decomposed
in details and approximations, in turn, those are split into finer components. Some statistical
indicators, such as, the mean and the standard deviation are used to compare results.

[Zhang and Gao, 2004] identified that the WT could detect faults in the IR and OR unlike the
FFT, which deal only with OR faults. In [Zhang et al., 2005] the investigation was expanded to
shaft UB and finally in [Zhang et al., 2006] some improvements of the methods were developed by
using envelope and the Analytic Wavelet Transform (AWT), as result, RE faults were distinguished.

In the last 10 years, more improvements and combined methods have been developed to achieve
a better performance. [He et al., 2009] aggregate Sparse Code Shrinkage (SCS) to wavelet filters,
obtaining signals without any kind of noise. Also, an important contribution was made by [Rafiee
et al., 2010] analyzing the most suitable mother wavelet for detecting bearing faults. The research
examined 324 mother wavelets concluding that db44 has the most similar shape for comparing with
bearing faults, but presents the disadvantage of requiring much computational resources. [Wang
et al., 2011] realized another study to select the best mother wavelet, in this analysis single-side
models were considered, and it was found that they presented a better performance than the double-
side ones for bearing localized fault detection. The transient model was selected by applying the
technique of correlation filteringFurther researches handle several aspects: the different possible
faults, the ideal mother wavelet and ideal classifier. [Kankar et al., 2011] presented a procedure for
fault diagnosis of bearings to detect not only IR, OR and RE faults, but also combined defects. The
potential of various artificial intelligence techniques, to predict the type of defect in bearings, were
also investigated. On the other hand, [Law et al., 2012] combined wavelets (WPT) and Hilbert
Transforms to perform an analysis without predefined basic functions; instead, using adaptive
functions based on Empirical Mode Decomposition (EMD). In [Khanam et al., 2014] the developed
methodology considers the estimation of the defect size, and analyzes that wavelet sym5 is the best
suited for detecting the size of the defects, due to its form.

Some statistical methods have been included to work together with wavelet analysis. In [Liu,
2012] a method using Exponential Moving Average (EMA) filtering for eliminating noise features
and Shannon wavelet spectrum to detect faults frequencies was presented. Another study presented
by [Pandya et al., 2012] includes energy Kurtosis and ANN.

A compilation of many studies working with WT was done by [Yan et al., 2014], their re-
search presents a review of wavelets approach to machine fault diagnosis classifying the different
transforms, and recognizing different new proposals.

In the very last years, more expanded analysis has been done. [Kedadouche et al., 2016a]

presented a method that combines Empirical Wavelet Transform (EWT) and Operational Modal
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Analysis (OMA), Kurtosis values are used to select the performing of the envelope spectrum. In
a complementary research, [Kedadouche et al., 2016b] presented a comparison between the En-
semble Empirical Mode Decomposition (EEMD), the EMD and the EWT. It was shown that EWT
reduce computational time and shows a better effectiveness in decomposing a signal as compared
with EMD and EEMD methods. Additionally, a selection method of the Intrinsic Mode Function
(IMF) in the WT using the index selection variable was analyzed. Another method was proposed
by [Cui et al., 2016], where the detection of faults was done by comparing the high frequency band
power. A first step considered a wavelet denoising and then extracting features in both time and
frequency domain, for the fault detection the Grey Correlation Method was applied obtaining good
results in IR, OR and RE faults detection.

Finally, a good contribution for detecting early stages of bearing faults was done by [Li et al.,
2017] using Q Factor Wavelet Transform (QFWT) and Intrinsic Characteristic-scale Decomposi-
tion (ICD). The used WT presented better and faster results compared to EMD.

When analyzing shaft faults, MA, UB, BS and ML must be considered. Nevertheless, as BS and
ML are occasioned by excessive torque and by machine components that are loose from fabrication,
HSM centers already deal with quality and torque control. This make ML and UB the principal
defects to be considered. These faults can be detected by looking at the frequency spectrum and
evaluating the 1X and 2X speed harmonics, respectively; for other defects it is necessary other
techniques.

Wavelets have also been applied to detect this kind of faults as they help to separate the signal
in different frequency ranges. Some research have been done in this area. One of the first studies
was made by [Yanping et al., 2006]; a method to characterize the shaft status using parameters
extracted from wavelet coefficients of the CWT was developed. For a good detection, some ad-
ditional analysis was required, the use of Wavelet Grey Moment (WGM) and first-order Wavelet
Grey Moment Vector (WGMV) when the second one shows overlapped results. The studied defects
were UB and MA. On the other hand, [Peng et al., 2007] combines the Wavelet Transform Modulus
Maxima (WTMM), a variance in the CWT which detects local maxima in the wavelet coefficients,
and the Lipschitz Exponent, also known as Holder Exponent. The method is implemented for de-
tecting UB and MA. [Chen et al., 2013] reaffirm that WT have better results than other methods
such as FFT. In their research an implementation of DWT and Power Spectral Density (PSD) was
developed to analyze UB. DWT allows using lower sampling frequency making the storage space
reduced and the processing speed improved.

WT applied on UB and MA have not been widely studied. Some research based their analysis
in Finite Element Model (FEM) such as [Xul et al., 2017] were it was determined a linear response
between UB and sensed vibration amplitude. Other approaches like [Fan et al., 2013] used filters,
FFT and EMA to establish some limit values of peak amplitudes in different UB produced on a test
rig.
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A summary of WT approach research is shown in Table 2.1 where the techniques as well as
the studied defects are presented considering a chronological order to compare new trends. At the
beginning of the table bearing defects are considered, and at the end UB, MA and ML studies are
shown.
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Table 2.1: Comparison between some fault diagnosis researches using WT for machining

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Mori et al., 1996] OR Test rig
660 RPM

DWT
MW: Daubechies

Does not apply Maximum Value of coefficients

[Paya et al., 1997] IR Test rig
470-4230 RPM

CWT
MW: Db4

Does not apply ANN & Back-Propagation
96%

[Tse et al., 2001] IR, OR, RE Test rig
1200 RPM

CWT
MW: Gaussian

Does not apply Visual

[Nikolaou and Antoniadis, 2002] IR, OR Simulation /
Test Rig
1500 RPM

WPT
MW: Db12

Energy of coefficients Visual

[Prabhakar et al., 2002] IR, OR Vibration Tester
1800 RPM

DWT
MW: Db4

RMS and Kurtosis, FFT Visual

[Tse et al., 2004] IR, OR Simulation /
Test Rig
1398 RPM

EWA
MW: Multiple

Does not apply Visual

[Shi et al., 2004] IR, OR, RE Test Rig
1020 RPM

CWT
MW: Gaussian

Shannon Entropy Visual

[Purushotham et al., 2005] IR, OR, RE Test rig
1300 RPM

DWT
MW: Db2

MFCC HMM
99%

[Yan and Gao, 2005] OR Test rig
1200 RPM

WPT
MW: Harmonic

FDC MLP, RBF
99%, 100%

[Zhang et al., 2006] IR, OR, UB Test Rig
1200-8400 RPM

AWT
MW: C. Morlet

Envelope Spectrum Visual

[Zhu et al., 2009] IR, OR, RE Simulation /
Test Rig
1430 RPM

CWT
MW: Morlet

K-S Does not apply

[He et al., 2009] IR, OR Simulation /
Test Rig
1500 RPM

CWT
MW: Morlet

SCS Does not apply
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Table 2.1: Comparison between some fault diagnosis researches using WT for machining (Continued)

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Rafiee et al., 2010] IR, RE, C Test Rig
1420 RPM

CWT
MW: Analyzed: 324, Best:
Db44

Variance, Standard Deviation,
Kurtosis and 4th Central
Moment

Does not apply

[Tse and Leung, 2010] IR, OR, RE Test Rig
1400 RPM

CWT
MW:Morlet

Kurtosis and RMS Does not apply

[Kankar et al., 2011] IR, OR, RE Test Rig
250-2000 RPM

CWT
MW: Analyzed: 7, Best:
Complex Morlet

MSEC, Kurtosis, Skewness,
Standard Deviation.

SVM
100%

[Wang et al., 2011] IR, OR, RE Simulation /
CWRU Web Data
1796 RPM/
Test Rig
1496 RPM

Transient Modeling
MW: Laplace, HW,
Single-Side

Correlation Filtering Automatic Estimation

[Yan and Gao, 2011] OR Test Rig
900-1500 RPM /
2000 RPM

WPT
MW: Biorthogonal 5.5.

Kurtosis, Energy and PFA ANN
93%

[Liu, 2012] IR, OR, RE CWRU Web Data
1796 RPM/
Test Rig
1500-1920 RPM

Shannon Wavelet Spectrum. EMA Visual

[Pandya et al., 2012] IR, OR, RE Test Rig
1000-6000 RPM

WPT
MW: Rbio5.5

Kurtosis, Energy, MSEC ANN
93%

[Chandel and Patel, 2013] IR, OR, RE CWRU Web Data
1796 RPM

DWT
MW: db10

Variance, Variance of
autocorrelation

ANN
100%

[Cui et al., 2016] IR, OR, RE CWRU Web Data
1796 RPM

Adaptive Wavelet
Decomposition

Time-frequency features, ITD Grey relational analysis
100%

[Kedadouche et al., 2016b] OR Test Rig
600 RPM

EWT Does not apply Visual

[Li et al., 2017] OR, IR Test Rig
1800 RPM

Q-factor WT Does not apply Visual
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Table 2.1: Comparison between some fault diagnosis researches using WT for machining (Continued)

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Yanping et al., 2006] UB, MA, ML Test rig
0-10000 RPM

CWT
MW: Morlet

WGM and WGMV Numerical

[Chen et al., 2013] UB Simulation
110 RPM

DWT
MW: Db10

PSD Visual

[Peng et al., 2007] UB,MA Test rig
3000 RPM

CWT WTMM and the Lipschitz
exponent

Numerical
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2.2 Theoretical Background

2.2.1 Wavelets

WT is capable of concentrating in transitory and high frequency phenomena. It decomposes a
signal into a group of wavelets being added together, which are generated from a basic wave
function, usually called Mother Wavelet (MW), and maps it in a time-scale representation. Wavelets
are limited in time and frequency thus their energy is finite. They are local in both frequency
and time domain via dilations and translations respectively; hence, they have better resolution
than other transformations. Principal side benefits are noise reduction, compressing data, filtering
among others. The WT of a function s(t) is defined in eqn. 2.1

S(a, b) =

∫ ∞
−∞

s(t)
1√
a
ψ∗(a,b)(

t− b
a

)dt (2.1)

where ψ∗(a,b) is the complex conjugated of the MW, a the scale or dilatation (frequency range)
of the MW and b the translation in time.

Different types of WT have been developed for analyzing signals, starting with CWT evolving
to Second Generation Wavelet Transform (SGWT). The evolution of WT as well as their principal
characteristics are shown in Fig. 2.1, including some new research trends such as multi-wavelets.
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Figure 2.1: Wavelet transforms evolution
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When analyzing a signal, in addition to considering the type of transformation, it is necessary
to determine the MW to be used. Many studies have been carried out to compare and evaluate
which MW is the best. Some of the most used wavelets for vibration signals analysis are shown in
Fig. 2.2

Morlet Daubechies Gaussian

Complex Morlet Coiflet Symlet

Meyer Shannon Biorthogonal

Reverse Biorthogonal Mexican Hat Complex Gaussian

Figure 2.2: Typical mother wavelets

Nevertheless, for bearing faults the best behavior is obtained by the wavelet which is the most
similar to the defect. It must be considered that the computational effort becomes higher when the
complexity of the mother wavelet function grows up.

2.2.2 Bearing Faults

Bearings are one of the foremost cause of failures in a machine tool spindle, they are the most
critical and vulnerable components in the mechanical transmission. Most typical faults in bearings
are produced by local defects mainly cracks, pits and spalls in the IR, the OR or the RE, [Zhang
and Gao, 2004].

Defects produce successive periodic impacts, which are characterized by the following fre-
quencies:

• Ball Pass Frequency Outer-race (BPFO)

• Ball Pass Frequency Inner-race (BPFI)
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• Ball Spin Frequency (BSF)

• Fundamental Train Frequency (FTF)

Fault frequencies can be obtained by:

BPFO =
nfr
2

(
1− d

D
cosα

)
(2.2)

BPFI =
nfr
2

(
1 +

d

D
cosα

)
(2.3)

BSF =
Dfr
2d

(
1−

[
d

D
cosα

]2)
(2.4)

FTF =
fr
2

(
1− d

D
cosα

)
(2.5)

where, n is the number of RE, fr the shaft rotating speed and α the angle of the load from the radial
plane. Vibration signals as well as fault frequencies (BPFO, BPFI, BSF), D and d are shown in
Fig. 2.3.

D d

OUTER RACE DEFECT

1

BPFO

INNER RACE DEFECT

1

BPFI

ROLLING ELEMENT DEFECT

1

BSF

Figure 2.3: Signals from local faults in bearings

As it can be seen in Fig. 2.3, for the RE defect signal there is one extra peak between BSF.
This is because the BSF frequency is calculated for each contact of the ball with the OR; however,
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there is an additional periodic impact when the fault contacts the IR. Therefore, when analyzing
the frequency spectrum, the harmonics of the BSF/2 must be considered.

According to [Scheffer and Girdhar, 2004], there are four stages of bearing damage (Stage 1,
Stage 2, Stage 3 and Stage 4). Each stage is characterized by a different frequency spectrum as
shown in Fig. 2.4. To analyze the severity of the fault the spectrum is divided in four zones:

• Zone A: machine RPM and their harmonics (0-85 Hz)

• Zone B: bearing fault frequencies (85-500 Hz)

• Zone C: bearing natural frequencies (500-2,000 Hz)

• Zone D: High-Frequency-Detection (HFD) (above 2,000 Hz)

First stage of bearing wear presents peaks at the ultrasonic frequency ranges, Zone D, besides
the machine RPM, but, the spectrum is clear in Zones A and B, Fig. 2.4 (a). The next stage, Fig.
2.4 (b), generates the bearing component natural frequencies, Zone C, depending on the severity,
sidebands frequencies might appear and the peak of HFD increases its amplitude; Zone B remains
clear at this point. In the following stage fault frequencies are visible in the spectrum, Fig. 2.4 (c),
a number of sidebands may also appear; amplitude of peaks at Zones C and D might increases.
By the end of this stage the remaining bearing life is considered to be about 1 hour or 1% of its
average life.

a) Damage Severity: Stage 1 b) Damage Severity: Stage 2 

c) Damage Severity: Stage 3 d) Damage Severity: Stage 4
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Figure 2.4: Stages of bearing damage
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2.2.3 Unbalance, Misalignment and Mechanical Looseness

• Unbalance

UB occurs when the shafts mass centerline does not coincide with its geometric center-
line. This malfunction is caused by improper manufacturing, blade erosion, non appropriate
counter balancing procedure of shaft fittings among others. As a result of this, excessive
forces that affect the equipment are caused, and due to it, bearings carry a higher dynamic
load, which causes failure from early fatigue.

Vibration signal of an UB spindle is characterized by a single frequency occurring at once
per revolution (1X) and it does not contain harmonics unless the failure is severe. It must be
consider that amplitude of UB vibration signal increases with speed.

• Misalignment

MA is also an important fault that must be detected for preventing bigger damages. It is
created when shafts, couplings and bearings are not properly aligned along their center-
lines. This is mainly caused by thermal complications, expansion growth, bad alignment
of components during coupling, imparted forces from piping and support members or un-
even foundation, shifting in foundation or settling. MA leads to bearing failures due to early
fatigue, as they carry a higher load than its design specification.

Detecting MA with vibration signals is very important, it helps avoiding damage in bearings
and other elements of the machine. Commonly some overall vibration values are considered
to distinguish this failure; but, a more practical way of analysis is to consider the second
harmonic of the spindle speed (2X) and compare it with the first one (1X). If a higher than
normal 2X amplitude is detected, MA is occurring, this amplitude can vary from 30% of the
1X amplitude to 100 to 200% of it.

• Mechanical Looseness

ML is produced when a machine component came loose from its mounting, when the mount-
ing is cracked or broken or when the bearing wore down causing excessive clearance in the
bearing. Looseness may provoke that a part become detached and cause secondary damage.

ML is identified in the frequency spectrum by abnormally high rotation speed amplitude
peaks, followed by multiples or 1/2 multiples. These harmonics may be random and unor-
ganized. If there are a series of three or more synchronous or 1/2 synchronous multiples of
running speed in the range of 2X to 10X, and their magnitudes are greater than 20% of the
1X, there may be ML.





Chapter 3

Experimental System

3.1 Introduction

This chapter presents the description of the test rigs, the data obtained from them and the Design
of Experiments (DoE) performed in an industrial machining center. Two different data sets were
considered for bearing fault diagnosis. The Data 1 set was obtained from Case Western Reserve
University (CWRU) where single faults were introduced to bearings and the acquisition was made
by accelerometers attached directly in the bearings. The Data 2 set was obtained from a test rig
developed by NSF I/UCR Center for Intelligent Maintenance Systems (IMS). In this case bearings
were in new condition and were tested until they fail. MA and ML were analyzed in both data sets.

For UB, the developed DoE in a GROB 550 HSM center is described, where different signals
were recorded for 3 different unbalanced holder tools at different speeds. This corresponds to Data
3 set.

3.2 Experimental Data Sets

3.2.1 Data 1 set: CWRU - Bearing Data Center

CWRU provides a group of signals for bearing faults analysis. They had developed a test rig, Fig.
3.1. The equipment consists of a 2 Hp motor, a torque transducer/encoder, a dynamometer, and
control electronics, [CWRU, 1999].

Data was recorded for motor loads of 0 to 3 Hp with motor speeds of 1,720 to 1,797 RPM.
For fault analysis, single points were introduced to the bearings using an electro-discharge ma-
chining. Defect diameters were of 7, 14, 21, 28, and 40 mils (1 mil = 0.001 inches). The test
rig has two bearings: drive end and fan end. Data was collected at 12,000 samples/second and at
48,000 samples/second for drive end and at 12,000 samples/second for fan end. Fault characteristic
frequencies for the bearings are shown in Table 3.1.
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Drive end
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Figure 3.1: CWRU Test Rig Schema

Table 3.1: CWRU Bearing Defect Frequencies (multiple of running speed in Hz)

Bearing Inner Ring Outer Ring Cage Train Rolling Element

Drive end 5.4152 3.5848 0.39828 4.7135

Fan end 4.9469 3.0530 0.3817 3.9874

3.2.2 Data 2 set: IMS - Bearing Data

The NSF I/UCR Center for IMS with support from Rexnord Corporation in Milwaukee, USA.
developed a test rig for bearing fault diagnosis considering the full life of these elements. All
failures occurred after exceeding designed life time of the bearing, which it is more than 100
million revolutions, [IMS, 2004].

As shown in Fig. 3.2, four bearings were installed on a shaft. The rotation speed was controlled
at 2,000 RPM, and a radial load of 6,000 lbs was applied into the shaft and bearings.

Three data sets were generated, each data set describes a test-to-failure experiment. It consists
of 1-second vibration signal snapshots recorded at specific intervals. The sampling rate was 20
kHz.

All bearings were the same; they were tested in new conditions. The fault characteristic fre-
quencies were calculated based on the bearing geometry, Table 3.2. The following faults were
recorded:

• Set 1: IR defect in bearing 3 and RE defect in bearing 4.
• Set 2: OR defect in bearing 1.
• Set 3: OR defect in bearing 3.
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Figure 3.2: IMS Test Rig Schema

Table 3.2: IMS Bearing Defect Frequencies (multiple of running speed in Hz)

Inner Ring Outer Ring Cage Train Rolling Element

8.907 7.092 0.444 4.197

3.2.3 Data 3 set: Industrial Plant

In addition, vibration signals obtained from HSM spindles (GROB 550 machining center) from an
industrial plant were considered.

The GROB 550 is a compact, rigid, and highly flexible horizontal machining center, which
enables single setup machining of 5 sides as well as the most complex 5-axis simultaneous 3-D
surfaces. The maximum spindle speeds are available from 12,000 up to 28,000 RPM. Workpieces
up to 836 lbs can be machined with ultra-fast rapid rates up to 3,540 IPM in the Z-axis.

Vibration signals of this equipment were obtained from two different sensors VSA005 placed
inside the housing of the spindle and an ICP 621B41 sensor placed near the spindle. VSA signals
is detached to the VSE100 controller and to a Kristler 5134B amplifier. Signals were recorded in
Labview and Octavis software. Figure 3.3 represents the data acquisition system for GROB 550
machining center.

The spindle of the analyzed machining center can work up to 18,000 RPM. Velocity is recorded
by a sensor connected to the VSE controller, which it was also connected to the DAQ 9234. Table
3.3 presents the characteristics of the equipment and the recording parameters of the spindle in the
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GROB 550 SPINDLE

SENSOR: VSA

SENSOR: ICP

OCTAVIS

LABVIEW

LABVIEW

VSE CONTROLLER

DAQ 9234

DAQ 9234KISTLER 5134B

Figure 3.3: Signal acquisition schema of GROB 550

GROB 550 HSM center.

Table 3.3: Acquisition equipment characteristics of GROB 550

Equipment Model Sensing Parameters

Acquisition module DAQ 9234 / 4 Channels Sample rate: 51.2 kS/s/ch / Output: ± 5 V

Acquisition module VSE 100 / 4 Channels Sample rate: ≤ 100 kS/s / Output: 0-20 mA

Accelerometer VSA 005 fs: 0.10 kHz / Sensitivity: 0.2 [mg/
√
Hz] /

Range: ± 25 [g]

Accelerometer ICP 621B41 fs: 144-600 kHz / Sensitivity: 10.2 [mV/g] /
Range: ± 50 [g]

Amplifier Kristler 5134B / 4 Channels Gain programmable 0.5-150 / Output: ± 5 V

Speed Sensor Unknown Output: 0-5 V (0-18000 RPM)

3.3 Design of Experiments

3.3.1 Unbalance Holder

The tests were performed using different levels of UB holder tools. The vibration signals were
recorded at different spindle speeds. Two test were performed for each case of study to validate
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results and various GROB 550 machines were analyzed for comparing behaviors.
Different levels of UB were introduced in tool holders; for this research three test were ana-

lyzed: one with UB near 0 was considered as baseline and the other two with high levels of UB as
a first approach to detect this type of fault.:

• Holder tool with UB of 1.1 baseline
• Holder tool with UB of 10.5 bad condition level 1
• Holder tool with UB of 26.1 bad condition level 2

For machining purpose, the allowed UB limit is 2.5. This value is considered adequate not to
adversely affect the quality of machining in HSM.

The signals were recorded during 10 seconds with a sampling rate of 51,200 samples/s. Ev-
ery two seconds the spindle speed was incremented considering the following velocities: 8,000,
10,000, 12,000, 14,000 and 18,000 RPM, which are commonly used in industry. Figure 3.4 shows
the three signals that are acquired simultaneously, VSA sensor vibration, ICP sensor vibration and
speed in RPM. It must be considered the speed input signal to avoid analyzing the initial slope,
where transients can distort the analysis.
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Figure 3.4: Vibration signal for UB analysis





Chapter 4

Proposal

4.1 Introduction

A methodology for detecting spindle faults using vibration signals via WT was developed. The
analysis is presented in two sections, one for bearing faults and other for UB, MA and ML.

For bearing faults detection, a comparison between CWT, DWT and WPT was developed to
select the best mathematical tool for diagnosis. Then, an analysis of different MW was performed
for choosing the most suitable waveform for each fault. Once the transform and the MW have been
selected, the proposed methodology was applied for different faults. Finally, different results are
shown to validate the proposed methodology.

For UB, MA and ML the filtering property of WT was exploited, with the same decomposition as
bearing faults signal was reconstructed removing high frequencies as a low pass filter. Harmonics
and sub-harmonics of the shaft speed were evaluated.

4.2 Bearing Faults

Many techniques have been applied for bearing fault detection. Different WT as well as different
MW have been used. For selecting the most convenient WT, a comparison between CWT, DWT
and WPT was developed, results are shown in Appendix B. WPT has been selected as the best
transform for these purposes.

Once the WT is selected, the remaining parameter that must be evaluated is the best MW for
each bearing fault. Matlab Wavelet Toolbox has 125 different MW for WPT. To choose the most
suitable MW computational effort as well as others quantitative indicators, summarized by [Ngui
et al., 2013], were taken into account. Results are shown in Appendix B. The analysis showed that
dmey performs better for OR faults, while for IR and RE the best were db41 and db45, respectively.

Once the principal parameters of WT have been selected, the presented methodology, Fig. 4.1,
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is proposed for detecting spindle faults. The proposal consists of two branches, one for bearing
faults and the other for UB, MA, and ML.
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Figure 4.1: Proposed methodology for spindle faults diagnosis

Before any data manipulation, the acquired vibration signal is preprocessed by a trend removal
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calculated with the linear model presented in eqn. (4.1), where p1 and p2 are computed by Linear
Least Squares, eqns. (4.2) and (4.3). This eliminates the Direct Current Component (DCC), which
not only produces an interference; but, it also does not carry any useful information. This leads to
uplift integrally the signal amplitude in frequency domain [Lei, 2016].

ytrend = p1 × xtrend + p2 (4.1)

p1 =
ȳ (
∑n

i=1 x
2
i )− x̄

∑n
i=1 xiyi∑n

i=1 x
2
i − nx̄2

(4.2)

p2 =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 (4.3)

After performing the WPT the best tree is selected. The entropy of every packet of each level is
evaluated and the nodes with the best entropy (minimum entropy E(s)) are selected, considering
also that the whole frequency range must be covered without overlapping. By covering the analysis
of the entire spectrum, this methodology avoids losing the information contained in the various
frequency ranges; in contrast to other proposals where the analysis is focused only where most, but
not all of the vibration energy is concentrated. The discarded information might actually be useful
in prognosis [Ocak et al., 2007]. Matlab Wavelet Toolbox allows calculating directly this tree based
on eqn. (4.4), where si are the wavelet coefficients. The criterion to select which node must be
divided and which one must not is: A node N is split into two nodes if and only if the sum of entropy
of its subnodes N1 and N2 is lower than the entropy of N. An example of this criterion is shown in
Fig. 4.2, where the entropy for each node is shown and the ones that satisfy the mentioned criterion
are highlighted.

Kurtosis and RMS values of terminal nodes (last node of each branch) are calculated, Kur-
tosis indicates the impulsiveness of a signal, eqn. (4.5); while, RMS provides a measurement
of intensity, eqn. (4.6). By multiplying these values, it can be revealed the frequency zone
of the impacts that have been overwhelmed by other vibration signals, [Tse and Leung, 2010].
Nodes that provide more information about the fault are selected, considering all the values of
KR = Kurtosis × RMS over the threshold. This threshold is calculated as the average value
KR, eqn. (4.7). The coefficients of the best tree nodes are reconstructed (inverse WPT) and
multiplied for a weighting value before being added to obtain the complete desired signal. These
weighting values are considered 1 for all packets withKR that are over the threshold and the value
of the percentage with respect to the maximum for the ones that are below, eqn. (4.8).

Entropy(s) = −
n∑

i=1

s2i × log(s2i ) (4.4)
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Figure 4.2: Entropy of each node for best tree selection

Kurtosis =
1
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1
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)2 (4.5)

RMS =

√√√√ 1

n

n∑
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|xi|2 (4.6)

Threshold =
1

n

n∑
i=1

(KR)i (4.7)

Weighting V alues =

 1 if KR ≥ Threshold

KR
max(KR)

if KR < Threshold
(4.8)

Once the signal is processed, bearing faults detection is performed in frequency domain. The
envelope of the signal is computed and the DCC is eliminated by removing the trend. The envelope
generates an smooth wave outlining the extremes of the original signal. This shaping is obtained
by computing the absolute value of the analytic signal, eqn. (4.9). This analytic signal is acquired
by adding the 90◦ phase shifted value to it, eqn. (4.10).

Envelope = |AnalyticSignal| (4.9)

AnalyticSignal = signal + i× signal90 (4.10)
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Envelope analysis is a well known method for detecting rotational defect signals, as it is suit-
able for repetitive dynamic signal impulses. The key of envelope analysis is to detect the fault by
filtering off the low amplitude defect signal with low energy excluding the high amplitude rota-
tional vibration signals. The main advantages of this method are: intensifying useful signal for
fault detection, reducing non-periodical signal and its noise and eliminating the low-frequencies
and multiples caused frequency of revolutions.

Impactive faults excite the high frequency bearing and structural resonances of the bearing.
But, the diagnostic could not be done in the frequency spectrum resulting from the impacts, as this
is usually a sum of the resonance frequencies excited. The useful information is contained in the
repetition frequency of the impact series. Thus, the envelope analysis technique reduces the high
frequency problem to a low frequency problem by isolating the impact-repetition rates.

Finally, the FFT is obtained to observe the frequency spectrum and search for fault frequencies.
It must be considered that besides the fundamental fault frequencies and their harmonics, some
sideband may appear in the spectrum depending the type and magnitude of the fault. Table 4.1
presents the sidebands that must be taken into account when performing the diagnosis. Since the
values of fault frequencies are calculated based on equations that do not consider slips a percentage
of 1-2% of the calculated frequency is usually considered for diagnosis, [Smith and Randall, 2015].

Table 4.1: Sidebands considered for bearing fault diagnosis

Bearing Fault Expected Sidebands

IR Spaced shaft speed and its harmonics

OR No sidebands

RE Spaced FTF and its harmonics

4.3 Unbalance, Misalignment and Mechanical Looseness

As UB, MA, and ML require analyzing shaft speed, its harmonics and sub-harmonics low frequen-
cies must be considered. After performing signal decomposition with the WPT low frequency
nodes (less than 1 kHz) are analyzed. This node selection performs as a low-pass filter, which
allows to highlight rotation frequency which trends to be masked by high frequency magnitudes.

The FFT is obtained to observe the frequency spectrum. The magnitude of the rotation speed
is evaluated for UB, a comparison between the fundamental frequency and its first harmonic is
performed for detecting MA. Finally, harmonics and half harmonics are sought to diagnose ML.





Chapter 5

Results

5.1 Introduction

To validate the proposed methodology three signals with fault were taken into account from CWRU
data center. Based on [Smith and Randall, 2015] categorization a clearly diagnosable signal (Y), a
partially diagnosable signal (P) and a not diagnosable (N) signal were considered.

As shown in Fig. 5.1, data clearly diagnosable, Fig. 5.1 (a), (d) and (g), present high amplitudes
and peaks that stand out from the rest of the signal. For category partially diagnosable, Fig. 5.1
(b), (e) and (h), amplitudes are notably diminished and peaks are overshadowed by noise and other
vibration signals. In the last category, not diagnosable, IR signal presents high amplitudes but
peaks are completely overwhelmed by noise, Fig. 5.1 (c). On the other hand, OR and RE present
low amplitudes and non peak could be distinguished, Fig. 5.1 (f) and (i), respectively.

For early stage fault analysis, IMS data, the initial stage of damage was established by calculat-
ing the Kurtosis of each sample of the experiment and detecting where the value abruptly changes,
[Li et al., 2017]. Figure 5.2 (a), (b) and (c) present the number of sample where the failures are
starting considering faults in IR, OR and RE respectively. To compare stages of damage, the se-
lected sample (early stage), a final sample (critical stage) and a sample between this range (medium
stage) are considered for each fault, as shown in Fig. 5.3 .

5.2 Results

5.2.1 Raw signal and preprocessing

As first step of the proposed methodology a signal preprocessing is developed, eliminating interfer-
ence by a trend removal. As shown in Fig. 5.4 (a), the signal trend is fitted to a linear polynomial
curve and this value is subtracted from the original signal giving as result the signal in Fig. 5.4
(b). This guarantee the removal of the interference near zero frequency in the signal spectrum Fig.

33
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Figure 5.1: Signals considered to validate the proposed methodology (CWRU data)
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Figure 5.2: Kurtosis calculation for detecting the initial stage of damage (IMS data)

5.4 (c), which overshadows the characteristic frequency. The signal without the trend presents a
clearer spectrum, Fig. 5.4 (d), as the interference disappears. The characteristic frequency is easily
detected as it stands out for being the maximum value of the spectrum; while, in the previous case
the maximum value is located near 0 Hz.
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5.2.2 Signal decomposition

The signal is decomposed by WPT. For selecting an adequate level of decomposition, parameters
such as sampling frequency (fs) and fault frequencies must be analyzed. Equation (5.1) presented
by [Gao and Yan, 2010] allows to calculate the level of decomposition depending of the frequency
component that wants to be considered, in this case the fault frequencies of the bearing elements:
ffault; rearranging variables eqn. (5.2) is presented. Table 5.1 shows the parameters of each se-
lected signal and the computed limits for selecting the appropriate level of decomposition. The
fault frequencies were calculated by multiplying the spindle speed (converted to Hz) by the cor-
responding bearing fault frequency factor. Both parameters are reported in the information of the
respective data sets.

fs

2Level+1
≤ ffault ≤

fs

2Level
(5.1)

log2

(
fs

2 ∗ ffault

)
≤ Level ≤ log2

(
fs

ffault

)
(5.2)

Table 5.1: Level of decomposition calculated for each signal

Data fs Fault Speed Freq. Fault Freq. Level (L)

Case [kHz] Type [RPM] Factor [Hz] Limits

IR (Y) 1,797 162.19 5.21 ≤ L ≤ 6.21

IR (P) 1,752 5.4152 158.12 5.25 ≤ L ≤ 6.25

IR (N) 1,797 162.19 5.21 ≤ L ≤ 6.21

OR (Y) 1,796 107.31 5.81 ≤ L ≤ 6.81

CWRU 12 OR (P) 1,772 3.5848 105.87 5.82 ≤ L ≤ 6.82

OR (N) 1,723 102.94 5.87 ≤ L ≤ 6.87

RE (Y) 1,797 141.17 5.41 ≤ L ≤ 6.41

RE (P) 1,796 4.7135 141.09 5.41 ≤ L ≤ 6.41

RE (N) 1,729 135.83 5.47 ≤ L ≤ 6.47

IR 8.907 296.90 5.07 ≤ L ≤ 6.07

IMS 20 OR 2,000 7.092 236.40 5.40 ≤ L ≤ 6.40

RE 4.197 139.90 6.16 ≤ L ≤ 7.16

The computed level limits presented in the last column of Table 5.1 shows that, the only level
that is within the established range (considering that L must be a positive integer) is level 6, for all
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the analyzed signals except for the last one. As only one level could be selected, and level 6 aim to
be the best decomposition level, this value is considered. This depth allows a range of frequencies
of 93.75 Hz for each packet, which permits detaching each harmonic from the spectrum. Higher
ranges will allow also a good splitting, but computing load increases.

All signals are decomposed with WPT until 6th level, and the best tree is selected with Matlab
Toolbox command: besttree. This command computes the optimal subtree, which may be much
smaller than the initial one, considering the entropy criterion. The best trees calculated for CWRU
data are shown in Fig. 5.5 considering one signal with each fault.

5.2.3 Best nodes and weighting values

Kurtosis and RMS are computed for terminal nodes (last node of each branch of the best tree). The
computed values for the OR-Y fault are shown in Fig. 5.6.

Best nodes are established by calculating the threshold, which is computed as the mean value
of KR, Fig. 5.7 (a). The weighting values are considered 1 for all packets with KR that are over
the threshold and the ones that are below are calculated by dividing its corresponding value of KR
by the maximum KR of all the packets, Fig. 5.7 (b). In this case, only 5 packets are completely
reconstructed, as they contain more information about the fault, greater KR.

Both, Fig. 5.7 (a) and (b) present two labels in the x-axis; in the bottom, the upper frequency
limit of each packet is shown and on the top, the corresponding node of the best tree. This sim-
plifies detecting the best nodes and reveals that high frequencies are the ones that gather more
details about the fault, as they present higher KR. Most analysis focus on the fault frequency range,
(frequency up to 188 Hz); but, as it is shown this range presents one of the lowest KR.

5.2.4 Signal reconstruction

Once the weighting values are computed, the coefficients of the best tree must be reconstructed.
The signal reconstruction scheme is represented in Fig. 5.8. Each packet is processed and trans-
formed again into a time-acceleration signal. All packets are multiplied by their corresponding
weighting value and added together to obtain the final signal, Fig. 5.9

5.2.5 Envelope and post processing

A comparison of the original and the reconstructed signal in frequency domain is shown in Fig.
5.10, where the filtering processes is evident. Nevertheless, it is necessary to reduce the high
frequency spectrum to a low frequency to observe the bearing faults. Impact-repetition rates are
isolated by calculating the envelope of the signal. For an OR fault, Fig. 5.11 presents the recon-
structed signal and its envelope. The DCC is also calculated and subtracted from the enveloped
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Figure 5.5: Best trees selected for each fault
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Figure 5.6: Kurtosis, RMS and KR for the signal with OR-Y fault
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Figure 5.7: Weighting values for the signal with OR-Y fault

signal to obtain the final Envelope-DCC signal.
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Figure 5.9: Reconstructed signal from the OR-Y fault

5.2.6 FFT and bearing fault detection

Frequency analysis of the envelope signal enables easier diagnosis of multiple defects as the peri-
odicity of the impacts can be difficult to recognize in the envelope itself (time domain).

In Fig. 5.12, OR fault frequency and its harmonics can be clearly identified in spectrum as
peaks coincide exactly with the expected frequencies. Other peaks such as spindle speed and its
harmonics can also be distinguished. Some unknown peaks also appear in the spectrum, their
causes will be discussed later.

On the other hand, Fig. 5.13 presents the spectrum of the signal with an IR fault. The funda-
mental frequency of the fault as well as the harmonics present peaks with considerable magnitudes.
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Figure 5.10: FFT spectrum of the (a) original and the (b) reconstructed signal with the OR-Y fault
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Figure 5.11: Envelope of the reconstructed signal with removed DCC from the OR-Y fault

One characteristic of IR fault is that, according to the magnitude of the fault, each characteristic
frequency presents sidebands spaced the distance corresponding to RPM. These sidebands, spindle
speed and its harmonics are also highlighted.

Finally, the spectrum of the signal with a RE fault is presented in Fig. 5.14. Fault frequencies
are not as easy to distinguish as in IR and OR faults; however, considerable peaks are present in the
fault frequency and its harmonics, specially the second one. This type of fault present sidebands
spaced the frequency corresponding to the FTF. Five left sidebands and five right sidebands are
presented from each harmonic, between fault harmonics, some sidebands are overlapped. Several
peaks coincide with these sidebands, as well as with shaft speed harmonics.The same as for IR and
OR, the remaining peaks are examined in depth later.

Additional results of the application of the methodology to the remaining signals are included
in Appendix C, for both CWRU and IMS data.
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Figure 5.12: FFT of the enveloped reconstructed signal with removed DCC from the OR-Y fault
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Figure 5.13: FFT of the enveloped reconstructed signal with removed DCC from the IR-Y fault
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Figure 5.14: FFT of the enveloped reconstructed signal with removed DCC from the RE-Y fault

5.2.7 MA, ML, UB fault detection

The signals analyzed with the proposed methodology for bearing fault detection were also consid-
ered for studying MA and ML, as some present peaks in the spectrum that do not match with the
expected frequencies.

To analyze MA first and second harmonic of the shaft speed are needed, while for ML at least
3 multiples of 1/2 shaft speed must be considered. In this research, the limit for low frequency
nodes reconstruction was considered the fifth shaft speed harmonic. For both data bases, the cutoff
frequency is approximately 150 Hz, taking into account that each node of the WPT gathers 93.75
Hz, 2 nodes reconstruction is enough for this purpose. By performing this type of low pass filter,
low frequencies are not overwhelmed by the high amplitudes of high frequencies, Fig. 5.15.

In Fig. 5.16, IR fault signal was analyzed, vertical lines highlight the shaft speed harmonics
and the half shaft speed harmonics. The high amplitude of the second harmonic of the rotational
frequency (2X) compared with the amplitude of the fundamental frequency (1X) prove that some
MA is occurring. For this signal, half harmonics can also be distinguished, but with low magnitudes
which indicates that there is probably a ML in the test rig. The results for the remaining signals for
both CWRU and IMS data are included in Appendix C,.

A complementary analysis was performed to the baseline signals (test recorded without faults)
of each test rig used in this thesis. Figure 5.17 presents the FFT of CWRU baseline signal with
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Figure 5.15: FFT spectrum of the (a) original signal and the (b) low nodes reconstructed signal -
baseline of CWRU
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Figure 5.16: FFT of the two low nodes reconstructed signal with IR-P fault (CWRU data)

no load. From this figure, it can be observed that the equipment shows some MA as amplitude
of the second harmonic is higher than the first. Also, 1/2, 3/2, 5/2 and 7/2 of the shaft speed
frequency present considerable amplitudes, which according to the different faults analyzed, a ML
is identified as the cause of these peaks. Likewise, 1/4 speed harmonics were highlighted and
relevant peaks were found at this frequencies, which also contributes to the diagnostic of ML.

Figures 5.18 and 5.19 show the results of the MA and ML methodology applied to the baseline
signals of CWRU and IMS data respectively. CWRU datasets provide four baseline signals, one for
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Figure 5.17: FFT of the two nodes reconstructed signal 0 load baseline (CWRU data)

each case of load applied: 0Hp, 1Hp, 2Hp and 3Hp; their spectrum is shown in Fig. 5.18 (a), (b),
(c) and (d) respectively. For IMS the baseline signals are considered at the beginning of the test
to failure, first sample. One signal was analyzed for the state without fault for each bearing fault
case, IR, OR and RE; their spectrum is shown respectively in Fig. 5.19 (a), (b) and (c).

All signals of CWRU present an evident MA as the amplitude of the second harmonic of the
rotational frequency (2X) is higher than the amplitude of the fundamental frequency (1X). In Fig.
5.18 (a), shaft speed half harmonics present considerable amplitudes, a probable ML is also de-
tected. These analysis show that even for bearings in good condition the equipment present faults.
In addition, unknown peaks are shown in the spectrum, which represent the equipment’s own
noises. These reveal that the noises of the recordings of signals with bearing faults are a product
of the initial state of the equipment.

For all the baseline signals of IMS, the amplitude of the second harmonic of the rotational
frequency (2X) is higher than the amplitude of the fundamental frequency (1X); thus, the test
rig presents MA. Shaft speed half harmonics also present high magnitude peaks, which lead to a
diagnosis of ML fault.

Finally for UB fault analysis, the signals were obtained from a GROB 550 machining center,
where tool holders were prepared with different conditions of UB. Considering the same parameter
of five shaft speed harmonics to perform the low pass filter with the proposed methodology a cutoff
frequency of 1,000 Hz was established as the spindle speed considered for the analysis was 12,000
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Figure 5.18: FFT of the two nodes reconstructed signals baseline (CWRU data)

RPM.
Each node of the WPT gathers 93.75 Hz. Then, 11 reconstruction nodes are needed to cover

the desired spectrum. The original signals of each case of study, Fig. 5.20 (a), (b) and (c), as well
as reconstructed signals, Fig. 5.20 (d), (e) and (f), and their spectrum, Fig. 5.20 (g), (h) and (i),
were plotted. An increment of the spindle speed harmonic amplitude is observed as expected for
UB. Figure 5.20 (g) shows the peak of the rotational frequency with an amplitude around 0.03,
while Fig. 5.20 (h) and (i) present amplitudes of 0.05 and 0.08 respectively, evidencing that the
amplitude increases as the UB increases. MA and ML were discarded as no harmonics or half
harmonics of the rotation speed are presented.

5.3 Discussion

In an attempt to present all the results of bearing fault analysis in a quantitative way, Table 5.2
summarizes the magnitudes of the first 3 harmonics of the fault as well as the maximum peak
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Figure 5.19: FFT of the two nodes reconstructed signals baseline (IMS data)

of the spectrum. Other significant magnitudes besides the known fault are also listed for each
case. Based on the analysis of these parameters and the visual inspection of the cleared spectrum
obtained, a categorization of detection difficulty was established:

• Clear: The highest peaks coincide exactly with the expected fault frequency, without consid-
ering frequencies lower than 50 Hz as they could be part of rotational frequency-dependent
faults.

• Noisy: High peaks coincide with the expected fault frequency, but there is too many noise
and other peaks present higher magnitudes besides the ones lower than 50 Hz.

• None: None high peaks were found at the expected fault frequency.
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Figure 5.20: FFT of the two nodes reconstructed signals baseline (IMS data)

From all the studied cases, only one was considered non diagnosable; but, after analyzing the
high magnitude peaks, and considering that the database indicates that for the 28 mils diameter
faults other bearings were used, periodicity was sought in the remaining peaks. The 110 Hz fre-
quency presented harmonics and sidebands corresponding to an IR fault, this could indicate that
the fault factor of this bearing is not equivalent to the previous ones. Another peak was found at
the frequency of 128 Hz and presented harmonics; however, it could not be attributed to a fault in
the OR since the frequency can not exceed the BPFI, because it contradicts what was found for
110Hz. These results are shown in Fig. 5.21.

For data categorized noisy additional significant peaks were evaluated and combined defects
were found in each case. In signals from CWRU data, OR faults present also IR harmonics and
sidebands, while RE faults also have characteristics of IR and OR faults. Figures 5.22-5.25 high-
light these detection of combined faults.

For OR-N and OR-Y signals, IR fault was also diagnosed, as high magnitude peaks coincide
with IR fault harmonics as well as with their respective sidebands. IR fault harmonics present even
higher peaks than OR. Spectrum of the OR-N signal is shown in Fig. 5.22, while for the OR-Y
signal it is presented in Fig. 5.23.

The combined defects presented in the RE-P faulty signal are shown in Fig. 5.24. The highest
peaks of the spectrum are found in IR fault harmonics and their sidebands. Significant peaks
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Figure 5.21: Periodicity description of the additional peaks found in IR-N signal

were also found at OR fault harmonics. For the RE-N faulty signal the spectrum shown in Fig.
5.25 reveals that the bearing presents IR faults besides the expected ones. IR fault harmonics and
sidebands present higher peaks than RE fault harmonics.

Moreover, additional peaks found in IMS data categorized noisy, were mostly attributed to ML.
Analysis of this fault as well as MA are demonstrated in Table 5.3. OR results present a clear
diagnosis at early stages, even earlier that the proposed in the state of the art by [Li et al., 2017],
approximately 110 samples before, which leads to more or less 18 hours of pre-detection.

Some noise such as 6 Hz harmonics and some other peaks could not be explained or eliminated,
which indicates that an improvement in denoising study would be required.
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Figure 5.22: Combined defects found in OR-P signal, explaining additional peaks
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Figure 5.23: Combined defects found in OR-N signal, explaining additional peaks
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Figure 5.24: Combined defects found in RE-P signal, explaining additional peaks
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Figure 5.25: Combined defects found in RE-N signal, explaining additional peaks
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Table 5.2: Results for bearing faults

Data Detection Fault harmonics amplitude Maximum Additional

case difficulty 1st 2nd 3th amplitude significant peaks a

IR(Y) Clear 0.07100 0.05449 0.03183 0.08503 (1xRPM) Negligible

IR(P) Clear 0.02903 0.01598 0.00317 0.03199 (3xRPM) Negligible

IR(N) None 0.00322 0.00388 0.00209 0.05922 (110.1 Hz) 110 Hz / 128 Hz Harm & SB

OR(Y) Clear 0.19434 0.10360 0.06486 0.19434 (fault) Negligible

CWRU OR(P) Noisy 0.01131 0.00713 0.02377 0.03592 (17.7 Hz) IR Harm & SB / 6 Hz Harm

OR(N) Noisy 0.00368 0.00155 0.00883 0.01134 (40.2 Hz) IR Harm & SB / 6 Hz Harm

RE(Y) Clear 0.02245 0.05471 0.00656 0.07572 (18 Hz) 6 Hz Harm

RE(P) Noisy 0.00355 0.00546 0.00082 0.01805 (BPFI) IR Harm & SB / OR Harm

RE(N) Noisy 0.00459 0.00295 0.00246 0.06297 (BPFO) IR Harm & SB

IR(E) Noisy 0.00443 0.00206 0.00182 0.00789 (58 Hz) 22 Hz / 58 Hz / Noise

IR(M) Clear 0.00467 0.00329 0.00250 0.00698 (58 Hz) 15 Hz / 58 Hz / Noise

IR(C) Clear 0.00653 0.00744 0.00501 0.00824 (130 Hz) 130 Hz

OR(E) Clear 0.02101 0.01369 0.01068 0.02101 (BPFO) 137 Hz

IMS OR(M) Clear 0.10200 0.09780 0.04526 0.10200 (BPFO) 72 Hz

OR(C) Clear 0.11960 0.06911 0.04805 0.11960 (BPFO) 72 Hz

RE(E) Noisy 0.00676 0.00391 0.00439 0.02506 (29 Hz) 15-29-44 Hz / Noise

RE(M) Noisy 0.01082 0.00401 0.00560 0.03809 (15 Hz) 15-29-44 Hz / Noise

RE(C) Noisy 0.01022 0.01585 0.01058 0.05752 (15 Hz) 15-29-44 Hz / Noise

aHarm: harmonics, SB: Sidebands
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Table 5.3: Results for MA and ML

Data Speed harmonics amplitude MA fault Half Speed harmonics ML fault

case 1st 2nd 2st

1nd (%) 2st

1nd > 30% 1
2

3
2

5
2

7
2

1
2
X > 20%× 1X

IR(Y) 0.02621 0.01676 63.95 Yes 0.00044 0.00063 0.00041 0.00041 No

IR(P) 0.01476 0.03870 262.19 Yes 0.00151 0.00090 0.00133 0.00149 No

IR(N) 0.00266 0.00391 147.01 Yes 0.00038 0.00044 0.00048 0.00051 No

OR(Y) 0.01774 0.00755 42.53 Yes 0.00040 0.00043 0.00052 0.00039 No

CWRU OR(P) 0.00837 0.03474 414.95 Yes 0.00026 0.00036 0.00586 0.00032 No

OR(N) 0.02172 0.02206 101.57 Yes 0.00145 0.00141 0.00263 0.00084 No

RE(Y) 0.02006 0.02406 119.94 Yes 0.01264 0.00636 0.00342 0.00173 No

RE(P) 0.02817 0.04484 159.17 Yes 0.00348 0.00103 0.00078 0.00070 No

RE(N) 0.11190 0.18440 164.79 Yes 0.00290 0.00376 0.00943 0.02890 No

IR(E) 0.01940 0.02229 114.90 Yes 0.02320 0.02129 0.01282 0.02934 Yes

IR(M) 0.01364 0.02295 168.26 Yes 0.02854 0.03150 0.02131 0.02464 Yes

IR(C) 0.00924 0.01305 141.18 Yes 0.01407 0.01693 0.01541 0.02353 Yes

OR(E) 0.01540 0.01811 117.60 Yes 0.14320 0.01549 0.01277 0.01356 Yes

IMS OR(M) 0.01779 0.01269 71.33 Yes 0.13240 0.03446 0.01971 0.01067 Yes

OR(C) 0.01532 0.02314 151.04 Yes 0.04366 0.01961 0.01941 0.00930 Yes

RE(E) 0.01747 0.00955 54.67 Yes 0.01732 0.01683 0.01425 0.01396 Yes

RE(M) 0.01833 0.01741 94.98 Yes 0.02066 0.01739 0.02838 0.01575 Yes

RE(C) 0.01279 0.02320 181.39 Yes 0.02357 0.01686 0.01589 0.01715 Yes
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5.4 Comparison

For comparison purposes, the results of the proposed methodology were contrasted with the clas-
sical envelope FFT analysis. Figure 5.26, presents the results considering a baseline signal. To
have a same point of comparison, the signals were normalized to contrast their magnitudes. It can
be observed that some peaks are magnified while others are diminished, this helps giving more
weight to the fault frequencies that are searched and reducing or removing components that are not
contributing to the analysis such as noise.

With this methodology high magnitude peaks are more reliable to be part of the fault signal
than to be noise, giving more reliability to the signal processing.

Frequency [Hz]
50 100 150 200 250 300 350 400 450 500

A
c
c
e

le
ra

ti
o

n
 [
g

]

0

0.002

0.004

0.006

0.008

0.01

0.012

b) Proposed methodology

Frequency [Hz]
50 100 150 200 250 300 350 400 450 500

A
c
c
e

le
ra

ti
o

n
 [
g

]

0

0.002

0.004

0.006

0.008

0.01

0.012

a) Original signal

00

Magnified peak

Diminished peakRemoved peak

1/2 Shaft Speed

Figure 5.26: Comparison of the traditional envelope FFT and the proposed methodology for the
base line signal (without fault)

A comparison of a fault signal was also developed and is presented in Fig. 5.27, considering
the same parameters of normalization. Even though the fault is clear for both, original signal, Fig.
5.27 (a), and the signal after the application of the proposed methodology, Fig. 5.27 (b), fault peaks
are magnified.

Finally, with the purpose of verifying if the methodology could be efficient at industrial level,
its response to noise was compared. White Gaussian noise, which is distributed throughout the
frequency spectrum, was added to the original signal for testing purposes.

The comparison is evidenced in Fig. 5.28 - 5.30, where time domain, FFT and envelope FFT
are shown respectively. By looking to the time domain signals it can be observed that the one after
applying the proposed methodology, Fig. 5.28 (b) looks less noisy than the original signal, Fig.
5.28 (a). The shape of the fault is more evident, presenting a periodic peak and its corresponding
attenuation. From Fig. 5.29 the spectrum of the original, Fig. 5.29 (a), and the reconstructed, Fig.
5.29 (b), signals can be compared. Low frequency peaks as well as those around 1,000 and 2,000
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Figure 5.27: Comparison of the traditional envelope FFT and the proposed methodology for IR-Y
signal (CWRU data)

Hz are attenuated; reducing noise and extracting the important information about the fault. Finally
the comparison of the enveloped spectrum presented in Fig. 5.30 reveals the important increase of
the magnitude of the fault frequency peaks. Demonstrating that the attenuation caused by noise is
minimum for the proposed methodology.
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Figure 5.28: Comparison of the initial signal and the obtained with the proposed methodology in
time domain for IR-Y signal added white Gaussian noise SNR = 10 (CWRU data)

Table 5.4 summarizes the amplitude ratio improvement to noise response. The magnitude
considered for comparison was the fundamental fault frequency. The ratio values reflect an inten-
sification in the peaks of 22.88% and 71.03% for noiseless and noisy signals respectively.



56 CHAPTER 5. RESULTS

Frequency [Hz]

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

a)   Original Signal

Frequency [Hz]

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

b)   Proposed Methodology

A
c
c
e

le
ra

ti
o

n
 [
g

]

A
c
c
e

le
ra

ti
o

n
 [
g

]

Figure 5.29: Comparison of the FFT spectrum of the initial signal and the proposed methodology
for IR-Y signal added white Gaussian noise SNR = 10 (CWRU data)
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Figure 5.30: Comparison of the traditional envelope FFT and the proposed methodology for IR-Y
signal added white Gaussian noise SNR = 10 (CWRU data)

Table 5.4: Comparison between traditional envelope FFT and proposed methodology for
noiseless and noisy signals (IR-Y CWRU data)

Envelope FFT Methodology Ratio Envelope FFT Methodology Ratio

noiseless noiseless Methodology
EnvelopeFFT

noisy noisy Methodology
EnvelopeFFT

0.057778 0.070997 1.228790 0.040103 0.068590 1.710346



Chapter 6

Conclusions

6.1 Conclusions

The WPT combines computational efficiency and good resolution in time and frequency domain
which makes it an optimal tool for analyzing bearing faults. Considering that in high frequencies
incipient faults could be detected, this transform allows obtaining better results as it presents good
resolution in this range of frequencies unlikely DWT and CWT

The analysis of high frequencies for bearing fault diagnosis presents two main advantages,
first the detection of incipient faults and second the avoidance of external noises that are generally
associated with low frequencies.

The proposed methodology presents better results than classical envelope FFT as it gives more
weight to high energy frequencies. Important magnitudes of the peaks in the spectrum increase
while noise is diminished. A comparison showed an increment of the fault frequency 20% for the
noiseless signal. And even greater than 70% for signals with added noise.

The proposed methodology allows detecting faults earlier than what has been reported in the
state of the art, mainly for OR faults, where an earlier detection was proven with around of 18
hours of anticipation. For IR and RE peaks are identified, but some additional denoising would be
recommended for a clearer diagnosis.

6.2 Contributions

A complementary study of the best mother wavelet was developed to deal with the controversy
found at the state of the art, where different wavelets were proposed as the best. For this thesis one
mother wavelet was selected for each fault according to a comparison of quantitative parameters
instead of some visual qualitative parameters that have also been considered in other studies.

The proposed methodology deals with noise, weak signals and achieves detecting faults in

57
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high frequencies; therefore, in early stage of damage. As noise is one of the main problems at
industrial environments, this methodology presents a great potential to be applied in HSM centers
in manufacturing industries.

6.3 Publications

Two published papers were presented during the research.

• ”Diagnóstico de Fallas en Husillos de Mecanizado de Alta Velocidad usando Onduletas -
Estado del Arte”, Appendix D. XXIII Annual International Congress of SOMIM (20-22
September 2017, Cuernavaca, Morelos, México)

• ”Monitoreo de Husillos usando la Transformada de Onduletas”. Appendix. D. National
Congress of Automatic Control 2017 (04-06 October 2017, Monterrey, NL, México)

6.4 Future work

Some research lines have not been covered in this thesis; the following statements are proposed:

• Exploit the potential of Wavelet-Denoising to try to eliminate the remaining noise before
reconstructing the signal.

• The proposed method can be used with classifiers that instantly detect what type of fault is
present.

• Design of an specific mother wavelet that fits better to the each fault could be done to extract
more information from the vibration signal.

• An hybrid method could be developed with approaches as Deep Learning.
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Appendix A

Acronyms Definition

Table A.1: Acronyms Definitions

Acronyms Definition Acronyms Definition

ANN Artificial Neural Network AWT Analytic Wavelet Transform

BPFI Ball-Passing Frequency Inner-Race BPFO Ball-Passing Frequency Outer-Race

BS Bent Shaft BSF Ball Spin Frequency

C Cage CWRU Case Western Reserve University

CWT Continuous Wavelet Transform DCC Direct Current Component

DWT Discrete Wavelet Transform EEMD Ensemble Empirical Mode Decomposition

EMA Exponential Moving Average ESER Energy to Shannon Entropy Ratio

EWA Exact Wavelet Analysis EWT Empirical Wavelet Transform

FEM Finite Element Model FFT Fast Fourier Transform

FTF Fundamental Train Frequency HHT Hilbert Huang Transform

HMM Hidden Markov Models HSM High Speed Machining

HW Harmonic Wavelet ICD Intrinsic Characteristic-scale Decomposition

IFFT Inverse Fast Fourier Transform IMF Intrinsic Mode Function

IMS Intelligent Maintenance Systems IR Inner Race

ITD Intrinsic Time Decomposition K-S Kolmogorov-Smirnev

MA MisAlignment MEC Maximum Energy Criterion

MFCC Mel Frequency Complex Ceptrum ML Mechanical Looseness

MLP Multiplayer Perception MSEC Minimum Shannon Entropy Criterion

OMA Operational Modal Analysis OR Outer Race

PFA Principal Feature Analysis PSD Power Spectral Density
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Table A.1: Acronyms Definitions (Continued)

Acronyms Definition Acronyms Definition

QFWT Q Factor Wavelet Transform RBF Radial Basis Functions

RE Rolling Element SCS Sparse Code Shrinkage

SGWT Second Generation Wavelet Transform SSA Statistical Signal Analysis

STFT Short Time Fourier Transform SVM Suport Vector Machine

UB UnBalance WGM Wavelet Grey Moment

WGMV Wavelet Grey Moment Vector WPT Wavelet Packet Transform

WT Wavelet Transform WTMM Wavelet Transform Modulus Maxima

WVD Wigner-Ville Distribution



Appendix B

Wavelet Parameters Selection

B.1 Wavelet Transform Selection

To select an appropriate WT a comparison between CWT, DWT and WPT was performed consid-
ering some quantitative parameters. Figure B.1, shows the 3D scalograms of an OR faulty signal
from CWRU data performed with each WT, considering: same duration, same MW (db4) and same
level of decomposition: 5th level. The 3D scalogram allows to visualize frequency, time and coef-
ficients of the wavelet decomposition, enabling determining time-frequency resolution as well as
the magnitude of the coefficients which allows to localize the defect.

The purpose of this methodology is to detect incipient faults to avoid machine damage; faults
must be identified in the first stages. To achieve this objective, faults must be detected at high
frequencies, and for this reason a good resolution in this range is required.

The FFT graph, Fig. B.1 (a), shows high amplitude peaks in frequencies were the energy of the
signal is concentrated, this is evidenced in the high frequency zone between 2.5 and 4 kHz, with
the maximum peak at approximately 3.5 kHz. This range is the one that requires great resolution
in the wavelet decomposition.

It must be considered that wavelets are very good at detecting discontinuities, or singularities.
Abrupt transitions in signals, as in faults, results in high magnitude of the coefficients. That is why,
when comparing the different WT the amplitude of the coefficients should also be considered. By
analyzing the three scalograms from Fig. B.1 (b), (c) and (d) it can be distinguished that WPT
generates highest magnitudes of the coefficients (greater than 5), this parameter indicates that this
transform makes the wavelet fits better to the signal.

As WT works as a series of filters, better decomposition allows obtaining better results. DWT
presents a bad frequency resolution, only 6 frequency ranges are obtained (N◦ DWT ranges =

level+1). As bearing faults impulses are of high frequency in nature, signal decomposition in high
frequencies must present a good resolution. In this range DWT presents many frequencies con-
tained in each segment, so it can not be established which ranges must be evaluated. In Fig. B.2 (a)
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Figure B.1: WT 3D scalogram comparison applied to a signal with OR fault

it can be observed that the coefficients with magnitudes above the average are in the range between
1,500 and 6,000 Hz. So, from the 6 frequency ranges it would be necessary to analyze the range the
last two, from 1,500 to 3,000 Hz and from 3,000 to 6,000 Hz as both present high coefficient values.
The upper limit of each range in DWT can be calculated as DWT range limit = fs/2

2level+1−range .
This range covers an spectrum of 4,500 Hz which implies a bad resolution.

Instead, WPT, Fig. B.2 (b), shows a grate resolution as it decomposes the signal into 32 fre-
quency ranges of equal proportions (N◦ WPT ranges = 2level). With this transform four ranges
present coefficients magnitudes above the average (15, 16, 18 and 19). The upper limit of each
range in WPT can be calculated as WPT range limit = range × fs/2

2level
. It would be necessary

to analyze only the ranges from 2,625 to 3,000 Hz and 3,187.5 to 3,562.5 Hz. The sum of these
ranges cover an spectrum of 750 Hz which is much smaller than DWT

Meanwhile, CWT, Fig. B.2 (c), decomposes the signal into 32 frequency ranges as WPT; but,
not of equal proportions, as each range depends on the center frequency of the mother wavelet.
For high frequencies this transform has bad resolution, but for low frequencies it has an excellent
decomposition. In this case the range that must be evaluated can not be easily calculated, but from
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Fig. B.2 (c) it can be distinguished that coefficients with magnitude above the average are between
3,000 and 8,000 Hz. This implies an spectrum range of more o less 5,000 Hz which leads to a bad
resolution.

Figure B.2: WT frequency-coefficients comparison applied to a signal with OR fault

For selecting the best WT also computing time is considered. Contemplating exactly the same
parameters for each analysis, processing time for CWT was 0.0916 s, for DWT: 0.0285 s and finally
for WPT: 0.0479 s. This shows that DWT works 66.88 % faster than CWT and WPT speed is 47.7
% higher than CWT.

WPT combines computational efficiency, an acceptable resolution in the whole frequency
ranges; hence, this transform is selected for the developed methodology.

B.2 Mother Wavelet Selection

Matlab Wavelet Toolbox has 125 different mother wavelets grouped by families, for WPT, these
are described in Table B.1.

For preselecting some mother wavelets a computing time analysis is first preformed. One
signal for each fault (IR, OR and RE) was considered in this stage. The signals were splitted
into 20 segments, and the WPT was applied for each segment with each of the mentioned mother
wavelets. The computing time required for the analysis of every segment was measured, then
the average time was computed. Figure B.3 shows the average time of the 20 segments for each
wavelet, the number of the mother wavelets was considered in the same order that is presented in
Table B.1.

As it can be seen, some wavelets required excessive amount of time, the slowest wavelet re-
quires 944 seconds for computing the WPT of each segment compared to the fastest that needs
only 0.009 seconds. Wavelets from sym31 to sym45 were discarded as they need more than 900
times the computing time of the other wavelets.
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Table B.1: Mother wavelets for WPT

Wavelet Families Wavelets No wavelets

Daubechies ’db1’,...,’db45’ 45

Coiflets ’coif1’,...,’coif5’ 5

Symlets ’sym2’,...,’sym45’ 44

Discrete Meyer ’dmey’ 1

Biorthogonal ’bior1.1’,’bior1.3’,’bior1.5’ 15

’bior2.2’,’bior2.4’,’bior2.6’,’bior2.8’

’bior3.1’,’bior3.3’,’bior3.5’,’bior3.7’

’bior3.9’,’bior4.4’,’bior5.5’,’bior6.8’

Reverse Biorthogonal ’rbio1.1’,’rbio1.3’,’rbio1.5’ 15

’rbio2.2’,’rbio2.4’,’rbio2.6’,’rbio2.8’

’rbio3.1’,’rbio3.3’,’rbio3.5’,’rbio3.7’

’rbio3.9’,’rbio4.4’,’rbio5.5’,’rbio6.8’

Total 125
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Figure B.3: Mother wavelet computing time for signals with IR, OR, and RE faults

Another characteristic that was considered for preselecting wavelets is that mother wavelets
are divided in two main groups, orthogonal and biorthogonal. The principal difference between
both is that low-pass and high-pass filters of orthogonal wavelets are of the same length and are not
symmetric, while biorthogonal wavelets filters do not have the same length and the low pass filters
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are always symmetric while the high pass filters could be either symmetric or anti-symmetric,
Fig. B.4. Other difference is that coefficients obtained from orthogonal filters are real numbers,
while biothogonal are either real or integers. As orthogonal filters have more regular structure they
lead to easy implementation and scalable architecture. Under these considerations, biorthogonal
wavelets are not considered in this analysis. The studied wavelets and their corresponding order
for the following figures are shown in Table B.2.
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Figure B.4: Orthogonal vs Biorthogonal transfer modulus for decomposition and reconstruction
filters

Table B.2: Selected mother wavelets for WPT

Wavelet Families Wavelets No wavelets

Daubechies ’db1’,...,’db45’ 1,...,45

Coiflets ’coif1’,...,’coif5’ 46,...,50

Symlets ’sym2’,...,’sym30’ 51,...,79

Discrete Meyer ’dmey’ 80

[Ngui et al., 2013] presented a review of different quantitative methods of selecting the best
MW for various applications. In the area of bearing failures three methods have been proposed.
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[Rafiee et al., 2010] presented a method named ”SUMVAR” (SUMmation of VARiances) for ana-
lyzing the best MW among 324 with CWT, it was first tested in gears and then applied in bearings,
[Rafiee and Tse, 2009]. This method is based in the variance of the coefficients, considering that
the more variance the signal has, the greater the ability to properly classify faults. [Yan, 2007]

proposed the measurement of the Maximum Energy Criterion (MEC) and the Minimum Shannon
Entropy Criterion (MSEC) to select the wavelet that extracts the largest amount of energy from the
signal as well as the one that yields large magnitude at a few coefficients and negligible magnitude
at the others. MEC and MSEC are combined by calculating the Energy-to-Shannon Entropy Ra-
tio (ESER). Finally, [Kankar et al., 2011] developed the selection of the MW analyzing only the
MSEC. Many other research have also use these methods; but, there is not a consensus of which
wavelet is better.

Variance, eqn (B.1); MEC, eqn (B.2); MSEC, eqn (B.3) and ESER, eqn (B.5) are considered in
conjunction with an efficient computing time to select the best wavelet in this research. Consid-
ering that each bearing fault has its own different shape, instead of founding one best MW for the
three faults, IR, OR and RE, as some other research, one wavelet is considered for each one.

• ”SUMVAR” Criterion based on the Variance (V) of the coefficients

V =
1

N − 1

N∑
i=1

|W(s,i) − µ|2 (B.1)

where µ is the mean of W(s,i), N is the number of wavelet coefficients, and W(s,i) is the
wavelet coefficients.

• Maximum Energy Criterion

Eenergy(s) =
N∑
i=1

|W(s,i)|2 (B.2)

• Minimum Shannon Entropy Criterion

Eentropy(s) = −
N∑
i=1

pi ∗ log2(pi) (B.3)

where pi is the energy probability distribution of the wavelet coefficients, defined as:

pi =
|W(s,i)|2

Eenergy(s)
(B.4)

with
∑N

i=1 pi = 1, and pi ∗ log2(pi) = 0 if pi = 0

• Energy-to-Shannon Entropy Ratio

R(s) =
Eenergy(s)

Eentropy(s)
(B.5)
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To analyze the best MW, the level of decomposition of the WPT must be selected according
to the range of frequencies were the components with highest energy are found. To select an
appropriate range eight signals of each fault were selected from CWRU data, prioritizing the ones
cataloged by [Smith and Randall, 2015] as data clearly diagnosable, which present less noise. The
characteristics of these signals are listed in Table B.3. The spectrum of the signals according to
their fault are shown in Fig. B.5.
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Figure B.5: FFT signals energy

For IR the maximum peaks of the signals were found around 2,800 Hz, Fig. B.5 (a); the same
as for RE, Fig. B.5 (c); while for OR the maximum magnitudes were observed around 3,400 Hz,
Fig. B.5 (b). With a 4th level of decomposition the 8th range of frequencies (2,625-3,000 Hz) can
cover the high energy components of IR and RE failures. For the OR a bigger range is needed to
avoid splitting the high energy components, a 3rd level of decomposition is required and the 5th

range (3,000-3,750 Hz) must be evaluated.
Besides considering all parameters mentioned above, one extra criterion was analyzed for cal-

culating performance features of MW. WT is based on convolutions, if these convolutions are per-
formed on finite-length signals, as the ones considered for this thesis, border distortions as shown
in Fig. B.6 arise.

When the signal is reconstructed, these distortions disappear, but as quantitative parameters
work over the coefficients, border effects must be dismissed. To avoid this problem, the first and
the last 100 values of each packet were not considered for performance calculations. This signal
cutting implies only a loss of less than 3% of the content of each package.

MEC, MSEC, ESER and Variance of the coefficients are calculated for four signals of each
fault. For OR signals considered were the ones with a fault diameter of 0.007 in, for IR signals
with fault diameter of 0.021 in and for RE 0.028 in. Results of each quantitative parameter are
shown in Fig. B.7-B.9 for OR, IR and RE respectively.
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Table B.3: CWRU signals considered for MW analysis

Fault Type Fault Diameter Load Speed Fault Frequency Category a

OR 0.007 in 0 hp 1,797 RPM 107.36 Hz Y

0.007 in 1 hp 1,772 RPM 105.87 Hz Y

0.007 in 2 hp 1,750 RPM 104.56 Hz Y

0.007 in 3 hp 1,730 RPM 103.36 Hz Y

0.021 in 0 hp 1,797 RPM 107.36 Hz Y

0.021 in 1 hp 1,772 RPM 105.87 Hz Y

0.021 in 2 hp 1,750 RPM 104.56 Hz Y

0.021 in 3 hp 1,730 RPM 103.36 Hz Y

IR 0.014 in 0 hp 1,797 RPM 162.19 Hz Y

0.014 in 1 hp 1,772 RPM 159.93 Hz Y

0.014 in 2 hp 1,750 RPM 157.94 Hz P

0.014 in 3 hp 1,730 RPM 156.14 Hz Y

0.021 in 0 hp 1,797 RPM 162.19 Hz Y

0.021 in 1 hp 1,772 RPM 159.93 Hz Y

0.021 in 2 hp 1,750 RPM 157.94 Hz Y

0.021 in 3 hp 1,730 RPM 156.14 Hz Y

RE 0.021 in 0 hp 1,797 RPM 141.17 Hz P

0.021 in 1 hp 1,772 RPM 139.21 Hz Y

0.021 in 2 hp 1,750 RPM 137.48 Hz N

0.021 in 3 hp 1,730 RPM 135.91 Hz N

0.028 in 0 hp 1,797 RPM 141.17 Hz Y

0.028 in 1 hp 1,772 RPM 139.21 Hz Y

0.028 in 2 hp 1,750 RPM 137.48 Hz Y

0.028 in 3 hp 1,730 RPM 135.91 Hz Y

aBased on [Smith and Randall, 2015], where category Y is for data clearly diagnosable, P is for data partially
diagnosable and N for data not diagnosable
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Figure B.7: MW quantitative parameters for 4 signals with OR fault
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Figure B.8: MW quantitative parameters for 4 signals with IR fault

The average ESER, Variance and Time were considered for selecting the best MW, to be able to
average these parameters between the signals, first, values were normalized by dividing each value
by the maximum of each signal. These parameters are shown in Fig. B.10-B.12 for each fault,
where the maximum values of ESER and Variance are presented.

Finally, to make a decision based on the three presented parameters, these were counterpoised.
Figures B.13- B.15 present the results. Considering the maximum ESER, maximum Variance, and
minimum computing time, the most suitable MW for OR failures is dmey. The relationship ESER-
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Figure B.9: MW quantitative parameters for 4 signals with RE fault
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Figure B.10: Averaged MW quantitative parameters for signals with OR fault
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Figure B.11: Averaged MW quantitative parameters for signals with IR fault

Time and Variance-ESER gives great advantage to this wavelet, while the relationship Variance-
Time favors not for much db45. For IR faults when analyzing Variance-ESER there was a tie
between dmey and db41. But, when inspecting ESER-Time, in which dmey performs better, the
difference between both wavelets is not as high as in Variance-Time where db41 presents better
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Figure B.12: Averaged MW quantitative parameters for signals with RE fault

results. This makes db41 the wavelet that maximizes both parameters. For the last fault, it was
evident that db45 had the best performance for all relationships.
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Figure B.13: Quantitative parameters comparison for signals with OR faults
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Figure B.14: Quantitative parameters comparison for signals with IR faults
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Figure B.15: Quantitative parameters comparison for signals with RE faults

An additional analysis was preformed for selecting one MW for the three types of faults. The
average of the quantitative parameters was computed, Fig. B.16. The comparison of the parameters
was done as for individual faults, Fig. B.17. The best performance was obtained by dmey.
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Figure B.17: Quantitative parameters comparison for the three type of faults



Appendix C

Additional results of the proposed
methodology

C.1 Bearing Faults

The complete analysis for CWRU data is presented in Fig. C.1 - C.3, where (a), (b) and (c) show
the clearly diagnosable (Y), partially diagnosable (P) and a not diagnosable (N) cases respectively.
As in some cases many peaks are shown, to make more evident the coincidence between the peaks
and the fault frequencies a cleared spectrum is presented in Fig. C.4 - C.6. Peaks that correspond
to known frequencies (shaft speed and sidebands) were hidden.

For IMS data complete results are shown in Fig. C.7 - C.9, in these cases, (a), (b) and (c)
represent early, medium and critical stage of damage respectively. The cleared spectrums of these
signals are presented in Fig. C.10 - C.12.

Guidelines were plotted in all cases to show the fault frequency, their sidebands and the rota-
tional frequencies with their respective harmonics.

C.2 Unbalance, Misalignment and Mechanical Looseness

A complementary analysis for CWRU data is presented in Fig. C.13 - C.15 considering the second
part of the methodology to analyze possible MA and ML. For each fault, (a), (b) and (c) show the
clearly diagnosable (Y), partially diagnosable (P) and a not diagnosable (N) cases respectively.

For IMS data the complementary results are shown in Fig. C.16 - C.18; (a), (b) and (c) represent
early, medium and critical stage of damage respectively.

For both data bases guidelines were plotted showing the shaft speed harmonics, and half speed
harmonics.
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Figure C.1: Spectrum of IR faulty signals considering harmonics and sidebands (CWRU data
base)
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Figure C.2: Spectrum of OR faulty signals considering harmonics (CWRU data base)

a)   RE-Y - Harmonics and sidebands

0

Frequency [Hz]

100 200 300 400 500

A
c
c
e

le
ra

ti
o

n
 [
g

]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency [Hz]

100 200 300 400 500

A
c
c
e

le
ra

ti
o

n
 [
g

]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0

b)   RE-P - Harmonics and sidebands

Frequency [Hz]

100 200 300 400 500

A
c
c
e

le
ra

ti
o

n
 [
g

]

0

0.01

0.02

0.03

0.04

0.05

0.06

c)   RE-N - Harmonics and sidebands

0

FFT 

Spectrum

Fault

Harmonics

Shaft Speed

Harmonics

RE Sidebands

FTF

FFT 

Spectrum

Fault

Harmonics

Shaft Speed

Harmonics

RE Sidebands

FTF

FFT 

Spectrum

Fault

Harmonics

Shaft Speed

Harmonics

RE Sidebands

FTF

Figure C.3: Spectrum of RE faulty signals considering harmonics and sidebands (CWRU data
base)
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Figure C.4: Cleared spectrum of IR faulty signals (CWRU data base)
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Figure C.5: Cleared spectrum of OR faulty signals (CWRU data base)
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Figure C.6: Cleared spectrum of RE faulty signals (CWRU data base)
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Figure C.7: Spectrum of IR faulty signals considering harmonics and sidebands (IMS data base)
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Figure C.8: Spectrum of OR faulty signals considering harmonics (IMS data base)
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Figure C.9: Spectrum of RE faulty signals considering harmonics and sidebands (IMS data base)
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Figure C.10: Cleared spectrum of IR faulty signals (IMS data base)
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Figure C.11: Cleared spectrum of OR faulty signals (IMS data base)
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Figure C.12: Cleared spectrum of RE faulty signals (IMS data base)
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Figure C.13: Spectrum of IR faulty signals considering speed harmonics and half speed
harmonics (CWRU data base)
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Figure C.14: Spectrum of OR faulty signals considering speed harmonics and half speed
harmonics (CWRU data base)
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Figure C.15: Spectrum of RE faulty signals considering speed harmonics and half speed
harmonics (CWRU data base)
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Figure C.16: Spectrum of IR faulty signals considering speed harmonics and half speed
harmonics (IMS data base)
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Figure C.17: Spectrum of OR faulty signals considering speed harmonics and half speed
harmonics (IMS data base)
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Figure C.18: Spectrum of RE faulty signals considering speed harmonics and half speed
harmonics (IMS data base)
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MEMORIAS DEL XXIII CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 
20 al 22 DE SEPTIEMBRE DE 2017 CUERNAVACA, MORELOS, MÉXICO 

 

Tema A1b. Automatización y Control Mecánico y A2b.Manufactura  

“Diagnóstico de Fallas en Husillos de Mecanizado de Alta Velocidad usando 
Onduletas – Estado del Arte”  

Cristina Villagómez Garzón, George Batallas Moncayo, Diana Hernández-Alcántara, Antonio Jr Vallejo 
Guevara, David Ibarra-Zarate and Ruben Morales-Menendez  
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias 
Monterrey Nuevo León, México  
Email: {A00819778, A01361945, dianahalc, avallejo, david.ibarra, rmm} @itesm.mx 
 

R E S U M E N 

La detección y diagnóstico de fallas es una estrategia muy eficiente para dar mantenimiento y servicio en muchas 
industrias. Particularmente, en sistemas de mecanizado de alta de velocidad, la calidad de las piezas depende en buena 
parte del desempeño del husillo, donde los rodamientos representan los componentes mecánicos más vulnerables, 
estadísticamente el 30% de los paros de operación se debe a una falla en los rodamientos. Un sistema de detección y 
diagnóstico de fallas en rodamientos es una herramienta de competitividad industrial, no solo por evitar productos fuera 
de especificación, sino por evitar daños extremos. Se presenta una revisión bibliográfica de la investigación del uso de la 
Transformada de Onduletas para el análisis de vibraciones mecánicas que permitan la detección y diagnóstico confiables 
de fallas en rodamientos de husillos.   
Palabras Clave: Detección, Diagnóstico, Fallas, Rodamientos, Husillos, Mecanizado.  

A B S T R A C T 

 Detection and fault diagnosis is a very efficient strategy for maintenance and service in many industries. Particularly in 
high speed machining systems, the quality of the parts is highly dependent on the performance of the spindle where the 
bearings represent the most vulnerable mechanical components; statistically, the 30% of breakdowns are due to bearing 
failures. A detection and fault diagnosis system in bearings is a tool of industrial competitiveness not only to avoid products 
out of specification; but to avoid extreme damages. A full review of the research about the use of Wavelet Transform for 
the analysis of mechanical vibrations that allow a reliable fault detection and diagnosis in spindle bearings is presented. 

Keywords: Detection, Diagnosis, Failures, Bearings, Spindles, Machining. 

 

 

1. Introducción  

El monitoreo de la condición de una máquina, sistema o 
proceso es la manera más eficiente de administrar el 
mantenimiento en muchas industrias, ya que los ahorros 
económicos pueden ser excepcionales en muchos casos, sin 
considerar los daños materiales (y humanos) que se pueden 
evitar. El mantenimiento basado en la condición de una 
máquina o proceso que requiere operar continuamente, 
demanda de aplicaciones (algoritmos computacionales) que 
determinen o estimen la condición interna de la maquina 
mientras ésta se encuentre en operación.  
En el caso de los sistemas de mecanizado de alta velocidad 
existen dos grandes alternativas para realizar esta tarea, el 
análisis de vibraciones y el análisis de lubricantes; siendo el 
estudio de las vibraciones el de mayor interés práctico. 
Un centro de maquinado aun en condiciones normales tiene 
un cierto nivel de vibraciones, cuando se presenta una falla, 

estas vibraciones cambian de tal manera, que pueden 
asociarse a dicha falla.  
En este trabajo se presentarán algoritmos de detección y 
diagnóstico de fallas para husillos en centros de mecanizado 
de alta velocidad; aunque existen muchos enfoques y 
herramientas matemáticas, el estudio se limita al uso de la 
Transformada de Onduletas (WT, Wavelets Transform). Se 
conservan los términos en inglés para evitar confusiones. La 
Tabla 1 resume los acrónimos utilizados. 
 
Este artículo está organizado como se indica. La Sección 2 
describe el problema, mientras que la Sección 3 presenta una 
revisión bibliográfica de los trabajos más importantes que se 
han publicado utilizando WT. La Sección 4 ejemplifica este 
tipo de enfoque utilizando datos experimentales. 
Finalmente, la Sección 5 concluye la investigación.  
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los componentes mecánicos con más probabilidad de falla. A partir de una revisión bibliográfica
exhaustiva, se presentan los avances en el uso de la Transformada de Onduletas para al
análisis de vibraciones mecánicas de rodamientos en husillos. Adicionalmente, se propone una
metodoloǵıa para detectar y diagnosticar fallas en este tipo de aplicaciones.
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1. INTRODUCCIÓN

El monitoreo de la condición de una máquina, sistema
o proceso es la manera más eficiente de administrar
el mantenimiento. La economı́a del proceso puede ser
excepcional. Para llevar a cabo un mantenimiento basado
en la condición de una máquina en operación continua, se
requieren algoritmos eficientes que determinen el estado
interno en ĺınea, mientras está operando.

Un centro de maquinado aún en condiciones normales
presenta un cierto nivel de vibraciones. Cuando ocurre
una falla, estas vibraciones se modifican y en ellas
se puede encontrar el motivo del desperfecto. Este
análisis puede realizarse utilizando diferentes herramien-
tas matemáticas, una de las más usadas por su capacidad
de manejar señales complejas gracias a su multiresolución
es la Transformada de Onduletas (WT, Wavelet Trans-
form). En la Tabla 1 se muestra un resúmen todos los
acrónimos utilizados en este art́ıculo, se conservarán los
términos en inglés por ser muy familiares y para evitar
confusiones en su traducción.

La WT se asemeja a la Transformada de Fourier (FT,
Fourier Transform) al descomponer una función con base
a otras preestablecidas, mientras la FT utiliza senos y
cosenos; la WT maneja como funciones base distintas
onduletas. La WT está definida como:

F (a, b) =

∞∫
−∞

f(x)ψ∗
(a,b)(x)dx (1)

⋆ Los autores le agradecen al Tecnológico de Monterrey y al
CONACyT por sus apoyos parciales.

donde el * representa el conjugado complejo y la función
ψ(·,·) se selecciona de acuerdo a ciertas reglas de diseño.

La WT tiene beneficios en tiempo y frecuencia debido
a su ventana modificable, seleccionando el tiempo medi-
ante traslaciones y los rangos de frecuencia por medio
de dilataciones. En el procesamiento de señales no esta-
cionarias presenta un mejor rendimiento que los análisis
tradicionales, Kankar et al. (2011) y Lauro et al. (2014).
Además, a diferencia de la FT, tiene un conjunto infinito
de funciones base, lo que hace que la WT sea muy
versátil. Entre los beneficios intŕınsecos de esta trans-
formada están la reducción de ruido, la compresión de
datos, filtrado, entre otros.

Este art́ıculo está organizado en 5 secciones. En la Sección
2 se describe el problema y en la Sección 3 se presenta
una revisión bibliográfica de los trabajos más importantes
usando WT. La Sección 4 ejemplifica la metodoloǵıa
desarrollada para la detección de fallas, y finalmente, la
Sección 5 concluye el trabajo.

2. DESCRIPCIÓN DEL PROBLEMA

La relación entre las señales de vibración y el estado
de una máquina fueron inicialmente identificadas por
Rathbone (1939), concluyendo que el efecto negativo era
proporcional a la amplitud de la señal de vibración. Más
tarde, en 1960 se vió que el monitoreo y análisis de la
vibración pod́ıa prevenir dichos daños. Posteriormente, se
empezaron a analizar las señales de vibración con técnicas
como la Transformada Rápida de Fourier (FFT, Fast
Fourier Transform) para buscar relaciones más claras o
expĺıcitas en problemas más complejos. Con el desarrollo
de la era digital se mejoró la velocidad y capacidad de
procesamiento en el area de detección, Randall (2011).

Congreso Nacional de Control Automático 2017
Monterrey, Nuevo León, Mexico, Octubre 4-6, 2017
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Appendix E

Developed Programs

For the developed methodology four Matlab functions were developed, two for plotting the scalo-
grams, the first one in two dimensions and the second one in three dimensions; and two for process-
ing the signals, one for bearing faults diagnosis and the other for shaft faults diagnosis. Parameters
are shown in the following code.

1 % Loading s i g n a l
2 l o a d DE12k 0 007 OR C ; S i g n a l =X130 DE time ;
3

4 % P a r a m e t e r s
5 Leve l =6; % Leve l f o r WPT
6 MW= ’dmey ’ ; % Mother Wavele t
7 f s =12000; % Sampl ing Frequency
8 RPM=2000; % S p i n d l e Speed
9

10 % Decompos i t ion : WPT ( Mat lab Toolbox )
11 Tree =wpdec ( S i g n a l , Level ,MW) ;
12

13 % Scalogram P l o t s 2D y 3D
14 f i g u r e ( 1 )
15 ScalogramWPT2D ( Tree , f s )
16 f i g u r e ( 2 )
17 ScalogramWPT3D ( Tree , f s )
18

19 % F i n a l s i g n a l a f t e r p r o c e s s i n g f o r b e a r i n g f a u l t d i a g n o s i s
20 F s i g n a l =MetodologiaGBCV ( S i g n a l 1 , f s , ’OR’ ) ;
21

22 % F i n a l s i g n a l a f t e r p r o c e s s i n g f o r s h a f t f a u l t d i a g n o s i s
23 F s i g n a l 2 =MetodologiaGBCV 2 ( S i g n a l 1 , f s ,RPM) ;
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An scalogram can be plotted for any signal, the parameters needed are: the tree of the WPT
and the sampling frequency. The tree is easily obtained with the Matlab Toolbox function: wpdec
selecting the level of decomposition and the MW. An example is shown in Fig. E.1, for the 2D
scalogram and in Fig. E.2 for the 3D scalogram.

Figure E.1: WPT 2D scalogram function

Figure E.2: WPT 3D scalogram function
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The developed functions to plot the scalogram are shown below.

1 f u n c t i o n ScalogramWPT2D ( Tree , f s )
2 % −Tree : TreeWPT − f s : Sampl ing f r e q u e n c y
3 l e v e l = g e t ( Tree , ’ Depth ’ ) ;
4 [ SPEC , TIMES , FREQ, TNFO] = wpspectrum ( Tree , f s ) ;
5 SPEC= f l i p u d ( SPEC ) ;
6 FREQ1=0; SPEC1 = [ ] ;
7

8 f o r i =1 : l e n g t h (FREQ)
9 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;

10 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;
11 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
12 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
13 end
14 FREQ1=FREQ1 ( 1 : l e n g t h (FREQ) ∗2) ’ ;
15

16 p c o l o r ( TIMES , FREQ1 , SPEC1 ) ; s h a d i n g ( ’ i n t e r p ’ ) ; c o l o r b a r
17 x l a b e l ( ’ Time [ s ] ’ ) ; y l a b e l ( ’ Pseudo−Frequency [ Hz ] ’ ) ; z l a b e l ( ’ C o e f f i c i e n t s [ g ] ’ )
18 t i t l e ({ ’ Sca logram WPT’ ; [ ’ Leve l : ’ , num2s t r ( l e v e l ) ] } )
19 a x i s t i g h t

1 f u n c t i o n ScalogramWPT3D ( Tree , f s )
2 % −Tree : TreeWPT − f s : Sampl ing f r e q u e n c y
3 l e v e l = g e t ( Tree , ’ Depth ’ ) ;
4 [ SPEC , TIMES , FREQ, TNFO] = wpspectrum ( Tree , f s ) ;
5 SPEC= f l i p u d ( SPEC ) ;
6 FREQ1=0; SPEC1 = [ ] ;
7

8 f o r i =1 : l e n g t h (FREQ)
9 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;

10 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;
11 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
12 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
13 end
14 FREQ1=FREQ1 ( 1 : l e n g t h (FREQ) ∗2) ’ ;
15

16 s u r f ( TIMES , FREQ1 , SPEC1 ) ; s h a d i n g ( ’ i n t e r p ’ ) ; c o l o r b a r
17 x l a b e l ( ’ Time [ s ] ’ ) ; y l a b e l ( ’ Pseudo−Frequency [ Hz ] ’ ) ; z l a b e l ( ’ C o e f f i c i e n t s [ g ] ’ )
18 t i t l e ({ ’ Sca logram WPT’ ; [ ’ Leve l : ’ , num2s t r ( l e v e l ) ] } )
19 a x i s t i g h t
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The functions developed for processing the signal based on the proposed methodology are
presented below.

1 %% METHODOLOGY FOR BEARING FAULT DIAGNOSIS USING WPT
2 % By GEORGE BATALLAS & CRISTINA VILLAGOMEZ
3

4 f u n c t i o n F i l t e r e d S i g n a l = MetodologiaGBCV ( S i g n a l , f s , f a u l t )
5 %\\\\\\\\\\\\\\\\\\\\\
6 % Wavele t P a r a m e t e r s
7 %\\\\\\\\\\\\\\\\\\\\\
8 WaveIR= ’ db41 ’ ;
9 WaveOR= ’dmey ’ ;

10 WaveRE= ’ db45 ’ ;
11 N l e v e l =6;
12 %\\\\\\\\\\\\\\\\\\\\
13 % S i g n a l P a r a m e t e r s
14 %\\\\\\\\\\\\\\\\\\\\
15 s w i t c h f a u l t
16 c a s e ’ IR ’
17 w a v e l e t =WaveIR ;
18 c a s e ’OR’
19 w a v e l e t =WaveOR ;
20 c a s e ’RE ’
21 w a v e l e t =WaveRE ;
22 end
23 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
24 % S i g n a l P r e p r o c e s i n g Trend Removal
25 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
26 t ime = 0 : 1 / f s : ( l e n g t h ( S i g n a l )−1) / f s ;
27 f i t t n e s s = f i t ( t ime ’ , S i g n a l , ’ po ly1 ’ ) ;
28 t r e n d = f i t t n e s s . p1∗ t ime + f i t t n e s s . p2 ;
29 S i g n a l = S i g n a l−t r e n d ’ ;
30 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
31 % Wavele t P a c k e t Decompos i t ion and Bes t Tree
32 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
33 dwtmode ( ’mode ’ ) ;
34 T=wpdec ( S i g n a l , Nleve l , w a v e l e t ) ;
35 [ SPEC , TIMES , FREQ] = wpspectrum ( T , f s ) ;
36 % B e s t T r e e
37 BT= b e s t t r e e ( T ) ;
38 BTnodesN = l e a v e s (BT) ; BTnodesL = l e a v e s (BT , ’ dp ’ ) ;
39 f o r i =1 : l e n g t h ( BTnodesN )
40 FREQS( i ) =BTnodesL ( i , 2 ) ∗ ( f s / 2 ) / ( 2 ˆ BTnodesL ( i , 1 ) ) ;
41 end
42 FREQS= h o r z c a t (FREQS ( 2 : end ) , 6 0 0 0 ) ;
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43 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
44 % Bes t Nodes S e l e c t i o n [ K u r t o s i s x RMS ]
45 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
46 f o r m=1: l e n g t h ( BTnodesN )
47 COEFS=wpcoef (BT , BTnodesN (m) ) ;
48 K(m) = k u r t o s i s (COEFS ( 1 0 0 : end−100) ) ;
49 RMS(m) = rms (COEFS ( 1 0 0 : end−100) ) ;
50 end
51 K=sum (K, 1 , ’ omi tnan ’ ) ;
52 KR=K. ∗RMS;
53 %\\\\\\\\\\\\\\\\\\\\\\\\\\
54 % T h r e s h o l d KR Bes t Nodes
55 %\\\\\\\\\\\\\\\\\\\\\\\\\\
56 limm=mean (KR) ;
57 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
58 % T h r e s h o l d Normal ized Weigh t ing
59 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
60 f o r i =1 : l e n g t h (KR)
61 i f (KR( i )>=limm )
62 KRW( i ) =1 ;
63 e l s e
64 KRW( i ) =KR( i ) / max (KR) ;
65 end
66 end
67 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
68 % R e c o n s t r u c t e d S i g n a l With Weigh t ing Values
69 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
70 BSigna l =0;
71 f o r i =1 : l e n g t h ( BTnodesN )
72 BSigna l = BSigna l +KRW( i ) . ∗ wprcoef ( T , BTnodesN ( i ) ) ;
73 end
74

75 F i l t e r e d S i g n a l = BSigna l ;

1 %% METHODOLOGY FOR SHAFT FAULT DIAGNOSIS USING WPT
2 % By GEORGE BATALLAS & CRISTINA VILLAGOMEZ
3

4 f u n c t i o n F i l t e r e d S i g n a l = MetodologiaGBCV 2 ( S i g n a l , f s ,RPM)
5 %\\\\\\\\\\\\\\\\\\\\\
6 % Wavele t P a r a m e t e r s
7 %\\\\\\\\\\\\\\\\\\\\\
8 Wave= ’ db44 ’ ;
9 N l e v e l =6;

10 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11 % S h a f t Speed and 5 SSHz ha rmon ic s
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12 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
13 SSHz=RPM/ 6 0 ;
14 f c o r t e = c e i l ( SSHz∗5) ;
15 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
16 % S i g n a l P r e p r o c e s i n g Trend Removal
17 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
18 t ime = 0 : 1 / f s : ( l e n g t h ( S i g n a l )−1) / f s ;
19 f i t t n e s s = f i t ( t ime ’ , S i g n a l , ’ po ly1 ’ ) ;
20 t r e n d = f i t t n e s s . p1∗ t ime + f i t t n e s s . p2 ;
21 S i g n a l = S i g n a l−t r e n d ’ ;
22 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
23 % Wavele t P a c k e t Decompos i t ion and C u t o f f Frequency
24 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
25 T=wpdec ( S i g n a l , Nleve l , w a v e l e t ) ;
26 [ SPEC , TIMES , FREQ, TNFO] = wpspectrum ( T , f s ) ;
27 % S e l e c t i n g f i r s t nodes 5 SSHz ha rmon ic s
28 i f f c o r t e >FREQ ( 1 )
29 cu tF = f i n d (FREQ<=f c o r t e , 1 , ’ l a s t ’ ) ;
30 e l s e
31 cu tF =1;
32 end
33 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
34 % R e c o n s t r u c t e d S i g n a l on ly Low F r e q u e n c i e s
35 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
36 BSigna l =0;
37 f o r i =1 : cu tF
38 BSigna l = BSigna l + wprcoef ( T , TNFO( i ) ) ;
39 end
40 %\\\\\\\\\\\\\
41 % DC REMOVAL
42 %\\\\\\\\\\\\\
43 f i t t n e s s = f i t ( t ’ , BSignal , ’ po ly1 ’ ) ;
44 t r e n d = f i t t n e s s . p1∗ t + f i t t n e s s . p2 ;
45 BSigna l = BSignal−t r e n d ’ ;
46 BSigna l = BSignal−mean ( BSigna l ) ;
47

48 F i l t e r e d S i g n a l = BSigna l ;
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