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Prediction of AR marker’s position: A case of study
using regression analysis with Machine Learning

method
by

Yazmín Sarahí Villegas Hernández

Abstract

In an automated assembly process with robotic assistance, it is used vision sys-
tem, which is used to monitor or control the assembly process. In the assembly pro-
cess, the vision system recognizes objects and estimates the position and orientation.
Furthermore, the optical tracking information in manufacturing can provide valuable
support and time saving for autonomous operations, but ill environment conditions
prevent a better performance of vision systems.

This thesis research presents a novel method for estimating object position un-
der semi-controlled environment where lighting conditions change dynamically is
proposed.

This method incorporates machine learning and regression analysis that com-
bines light measurement and an augmented reality (AR) system. Augmented Reality
(AR) combines virtual objects with real environment. Furthermore, every AR applica-
tion uses a video camera to capture an image including a marker in order to place a
virtual object, which gives user an enriched environment. Using a tracking system to
estimate the marker’s position with respect to the camera coordinate frame is needed
to positioning a virtual object.

Most research studies on tracking system for AR are under controlled environ-
ment. The problem is that tracking systems for markers are sensitive to variations in
lighting conditions in the real environment. To solve this problem, a method is pro-
posed to estimate better a marker position based on regression analysis, where light-
ing conditions are taken into account. The proposed approach improves the accuracy
of the marker position estimation under different lighting conditions.

v



List of Figures

1.1 Jittering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Machine learning process . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Prediction process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Categorization of challenges in Augmented Reality . . . . . . . . . . . 7
2.2 Classification of Augmented Reality Tracking . . . . . . . . . . . . . . . 10
2.3 Circular marker [46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 ARToolKit marker [74] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Marker’s coordinates and camera coordinates [74] . . . . . . . . . . . . 14

3.1 Machine learning types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Milgram’s reality-virtuaity continuum . . . . . . . . . . . . . . . . . . . 25
4.2 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Experimental setup: CNC machine tool guide . . . . . . . . . . . . . . 40
5.3 Process for setting light range . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Machine learning system for AR marker position estimation . . . . . . 42
5.5 Machine learning process . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Process for finding the data distribution . . . . . . . . . . . . . . . . . . 44
5.7 Prediction process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Optimization process of predictor function . . . . . . . . . . . . . . . . 46

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Experimental results of position detection error on Sample 1 . . . . . . 50
6.3 Experimental results of position detection error on Sample 2 . . . . . . 51
6.4 Experimental results of position detection error on Sample 3 . . . . . . 51
6.5 Experimental results of improvement of proposed approach and sim-

ple regression approach on Sample 3 . . . . . . . . . . . . . . . . . . . . 53
6.6 Experimental results of improvement of proposed approach and sim-

ple regression approach on Sample 3 with underfitting . . . . . . . . . 54
6.7 Experimental results of improvement % of proposed approach vs sim-

ple linear regression approach on Sample 3 . . . . . . . . . . . . . . . . 55

vi



6.8 Experimental results of improvement % of proposed approach vs sim-
ple linear regression approach on Sample 3 with underfitting . . . . . 56

6.9 Experimental results of position detection error on the sample using a
camera web Acteck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.10 Experimental results of improvement of proposed approach and sim-
ple regression approach on Sample using a camera web Acteck . . . . 58

6.11 Experimental results of improvement of proposed approach and sim-
ple regression approach on Sample using a camera web Acteck with
underfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.12 Experimental results of improvement % of proposed approach vs sim-
ple linear regression approach on Sample using a camera web Acteck 60

6.13 Experimental results of improvement % of proposed approach vs sim-
ple linear regression approach on the Sample with underfitting using
a camera web Acteck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.14 Experimental results of position detection error on the sample using a
Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.15 Experimental results of improvement of proposed approach and sim-
ple regression approach on Sample using a kinect . . . . . . . . . . . . 63

6.16 Experimental results of improvement % of proposed approach vs sim-
ple linear regression approach on Sample using a kinect . . . . . . . . 65

6.17 Experimental results of improvement of proposed approach and sim-
ple regression approach on Sample using a kinect with underfitting . 66

6.18 Experimental results of improvement % of proposed approach vs sim-
ple linear regression approach on Sample with underfitting using a
kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Light measurement system . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Study case: Pieces to be assembled . . . . . . . . . . . . . . . . . . . . . 72
7.3 Study case: Pick-and-place robot and camera system . . . . . . . . . . . 72
7.4 Study case: Vision system interface . . . . . . . . . . . . . . . . . . . . 73

vii



List of Tables

2.1 Tracking sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Tracking system approaches . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Tracking system approaches . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Evaluation of different algorithms . . . . . . . . . . . . . . . . . . . . . 37

6.1 Light ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Safe distances for each operation . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Results of fit and underfit models for marker’s position estimation . . 68

7.1 Tracking system approaches . . . . . . . . . . . . . . . . . . . . . . . . . 73

F.1 Marker’s position estimation functions . . . . . . . . . . . . . . . . . . . 111
F.2 Underfit marker’s position estimation functions . . . . . . . . . . . . . 111

viii



Contents

Abstract v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Augmented Reality market forecast . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Methodology proposed . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Challenges in Augmented Reality . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Performance challenges . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Alignment challenges . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Interaction challenge . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Mobility challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Visualization challenges . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Issues in Augmented Reality Tracking . . . . . . . . . . . . . . . 9

2.2 Tracking system in Augmented Reality . . . . . . . . . . . . . . . . . . 9
2.2.1 Sensor-based tracking . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Vision based tracking . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Hybrid tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Machine Learning 20
3.1 Machine learning definition . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Supervised Learning: Regression . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Multiple linear regression . . . . . . . . . . . . . . . . . . . . . . 23

4 Augmented Reality 24
4.1 Augmented Reality: An overview . . . . . . . . . . . . . . . . . . . . . 24
4.2 Computer Vision Methods in Augmented Reality . . . . . . . . . . . . 25
4.3 Marker’s Tracking using ARToolKit . . . . . . . . . . . . . . . . . . . . 27

ix



4.4 Augmented Reality Devices . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Input Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.2 Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Augmented Reality Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Collaborative Augmented Reality Interfaces . . . . . . . . . . . . . . . . 30

4.7.1 Hybrid Augmented Reality Interfaces . . . . . . . . . . . . . . . 31
4.7.2 Multimodal Augmented Reality Interfaces . . . . . . . . . . . . 31
4.7.3 Augmented Reality Systems . . . . . . . . . . . . . . . . . . . . 31
4.7.4 ARToolKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.5 ARToolKit algorithm to superpose an object using a marker . . 32

5 Methodology 36
5.1 Criteria of decision of evaluation of different algorithms to reduce marker’s

position error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Initial preparation offline . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Light range setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4.1 Prediction using machine learning . . . . . . . . . . . . . . . . . 44
5.4.2 Optimization of the models . . . . . . . . . . . . . . . . . . . . . 44

6 Experimental setup and results 47
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Light range selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Standard distance for each operations . . . . . . . . . . . . . . . . . . . 49
6.4 Experiments using a Logitech C920 camera . . . . . . . . . . . . . . . . 49
6.5 Experiments using a camera web Acteck CW-760 standard . . . . . . . 56
6.6 Experiments using a Kinect 360 Xbox . . . . . . . . . . . . . . . . . . . . 61
6.7 Overfitting and Underfitting results . . . . . . . . . . . . . . . . . . . . 67

7 Conclusions 69
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Initial questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4 Scope of Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.5 Comparative issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.6 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Optimal Linear Prediction 75

B Optimal linear predictor 76

C ARToolKit-Kinect code for marker’s position estimation 77

x



D Machine learning code for marker’s position estimation 94

E Marker’s position estimations and light measurements 101

F Marker’s position estimation functions 110

G ARToolKit algorithm (to get position data) 112

H Machine learning algorithm (for training) 113

Bibliography 121

xi



Chapter 1

Introduction

This dissertation presents a novel method to estimate marker’s position under semi-
controller environment where lighting conditions change dynamically.

In an automated assembly process with robotic assistance, the assembly process
are made by robots where the human interaction is minimized. In order to reduce
the human interaction, vision system are developed in order to control the assembly
process. These vision systems are for measurement of the assembly pieces and for
position estimation of the pieces. There are many ways to estimate the position of
one piece as: recognizing the geometry of the piece, using sensors, etc. In this work,
it is used QR code patterns on the assembly pieces in order to recognize the piece
type and to estimate the position and orientation.

The optical tracking information in manufacturing can provide valuable sup-
port and time saving for autonomous operations, but ill environment conditions pre-
vent a better performance of vision systems. Most research studies on tracking sys-
tem for AR are under controlled environment. The problem is that tracking systems
for markers are sensitive to variations in lighting conditions in the real environment.

In this chapter, it is outline the main motivations of the research, the specific
problem to be addressed, the methodology we are proposing, the scope of the thesis,
and an outline of the dissertation.

1.1 Motivation

This research is addressed to reduce error of marker’s position estimation under un-
controlled environment. The precision is needed in the following areas:

• In work spaces for automatized assembly process, it is needed vision systems
for fast and easy detection of the assembly pieces. In these systems, it is needed
precision in the detection process in order to grab objects, to place objects and
to do any type of assembly in an automated way.

• In augmented reality is needed precision in the detection process of a marker
in order to avoid jittering problems as shown on figure 1.1 (when the 3D object
added appears and disappears because the marker is not detected).

1
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Figure 1.1: Jittering problem

In the study area of tracking (position and orientation estimation) of a marker
must be accurate. The main questions in this research are the following:

• How to reduce error or noise of the position estimation of a marker?

• Does the light variable affect the marker’s position estimation?

• How to measure the light variable that affects the marker’s position estimation?

1.2 Problem statement

Automated assembly consists of many components working together in order to do
an assembly without or minimal human interaction. These components are: robots,
automated table, vision system, controllers and a computer (there are many other
components like sensors that are not taking into account because these will not be
used in this research).

In automatized welding assembly for rectangular tubes, it is needed a robot
system and a vision system at least. The vision system is used to detect pieces to be
welded and to track the seam while the robot is welding. This research is focused on
the detection of the piece in order to estimate its position and orientation, which is
called tracking.

This tracking problem is focused on the detection of QR code markers that are
over the rectangular tube (in order to be detected and estimated its position and ori-
entation in an easy way). The problem consists on the accurate estimation of the
position and orientation of the marker on the piece in order to manipulate and do an
assembly to the piece using robots.

1.3 Augmented Reality market forecast

Augmented Reality (AR) market size [1] was over USD 570 million in 2015 with 80.8%
compound annual growth rate (CAGR) estimation from 2016 to 2024. The areas of
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AR applications are: automotive, medical, aerospace & defense, gaming, retail, in-
dustrial, and others.

Industrial applications accounted for over 25% global/world augmented reality
marker share in 2015. Several types of applications for AR are developing in the
industrial sector. The demand to handle complex machinery, assembly, maintenance
and training will rise augmented reality industry growth.

Several companies such as Bosch, Boeing and Airbus invest to improve their
manufacturing capabilities. For example, Boeing uses Google Glass to assist aircraft
wire harnessing, Bosh uses augmented reality technology from stat-up Reflekt for
its various applications including maintenance and Airbus uses Smart Augmented
Reality Tools (SART) for error prevention. This technology is well used for quality
inspection, training, work instruction and in the future is expected to be used exten-
sively in development across industries.

Automotive augmented reality market size is projected to grow significantly
with a compound annual growth rate (CAGR) of over 80% from 2016 to 2024. Aug-
mented Reality used to improve user experiences using conventional showroom visit
with virtual experience. For example, Ferrari created AR showroom app using 3D
tracking technology that lets customers in the show rooms to choose vehicle and vir-
tually change brakes, rims and paint job.

The marker forecast for augmented reality is predicted to grow significantly in
Asia Pacific AR industry over the next few years. It is expected that the fonds increase
and investment in technology would increase the demand of regional augmented re-
ality technology. With the increment of penetration of smartphones & tablets and
the amount of manufactures in Asia, it is anticipated that it contributes the rising
augmented reality market size. The investment of local vendors and the acquisitions
activities provide tremendous growth opportunities. Companies as Tencent Hold-
ings Ltd. and Lenovo Group Ltd. joined to buy Silicon Valley augmented reality
start-up Meta.

The forecast for America is that U.S. augmented reality market share will be the
biggest in North America and it will drive regional industry. The forecast market for
North America is going to exceed USD 24 billion by 2024. An increased adoption is
forecast in the industrial and automotive sector in U.s, which are both set to grow
faster than the rest of North America over the forecast time frame.

1.4 Thesis statement

In order to give a solution for an accurate estimation of the marker’s position, a ma-
chine learning based methodology is proposed. This method is based on machine
learning techniques. In this problem, it is used multiple lineal regression in order to
fit the data and get a better estimation of the marker’s position. The samples taken
had a normal distribution, then a multiple lineal regression can be used. This tech-
nique is commonly used to fit data and understand the relationship between vari-
ables. Having this information, the estimations can be more accurate and reduce
other errors like jittering, as shown in Figure 1.1 (when the 3D objects appear and
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disappear because the marker cannot be detected or is detected in other place by
error).

The machine learning method uses a simple algorithm of multiple linear regres-
sion and optimization. This algorithm was written in C++. The proposed method is
focused on the usage of machine learning and multiple linear regression.

1.4.1 Methodology proposed

This dissertation proposes a method of marker’s position estimation under uncon-
trolled environment for augmented reality (where the lighting conditions change dy-
namically).

In this methodology, a previous work (offline) must be made before it’s usage
in order to estimate marker’s position. This methodology consists of two phases:
Firstly, the samples (of estimated marker positions under different light conditions)
are taken and saved in a text file when the fiducial along the CNC machine tool guide
is moving and the light measurement is taken with a luxmeter tool. It was used CNC
machine tool guide in order to get the ground-truth position of the marker. The data
is divided into three categories of light range and saved into three different files.
Secondly, the data saved in a text file by the ARToolKit application is the input of
the machine learning application written in c++, which made the regression analysis
with the data.
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Training Data:
X Y Z LUX
0 0 100 250
0 0 200 235
0 0 300 255
. . . .
. . . .
. . . .
0 0 1000 300

Labels:
X Position
Y Position
Z Position
LUX(Light
measurement)
Light range:
1 (40-100lux)
2 (100-200lux)
3 (200-300lux)

Feature Vectors
(X,Y,Z,lux and
light range)

Machine
Learning

Predictor functions (for each light range):
h1(x,y,x, lux) = θ0 +θ1x+θ2y+θ3z+θ4lux
h2(x,y,x, lux) = α0 +α1x+α2y+α3z+α4lux
h3(x,y,x, lux) = β0 +β1x+β2y+β3z+β4lux

Figure 1.2: Machine learning process

Figure 1.2 shows the training process using multiple linear regression to gener-
ate a model for each range light.
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Predictor functions (for each light range):
h1(x,y,x, lux) = θ0 +θ1x+θ2y+θ3z+θ4lux
h2(x,y,x, lux) = α0 +α1x+α2y+α3z+α4lux
h3(x,y,x, lux) = β0 +β1x+β2y+β3z+β4lux

New Data:
X Y Z LUX
0 0 100 250
0 0 200 235
0 0 300 255
. . . .
. . . .
. . . .
0 0 1000 300

Prediction

Predicted
data:
z
100
200
300
.
.
.
1000

Figure 1.3: Prediction process

Figure 1.3 shows the predictor functions for each light range, which were re-
turned by the machine-learning application. These predictor functions are used to
estimate the marker position.

The proposed methodology is limited by the scope of this thesis.

1.4.2 Scope of the thesis

The research scope covers how the light condition changes affect the detection algo-
rithm. It also covers how much the light alter the marker detection algorithm. The
research covers how the machine learning algorithm works in order to resolve this
problem.

Yamauchi et al. [74] shows that the position errors (using ARToolKit libraries)
in the x- and y- directions are relative small and that the errors in the z-direction are
large. So, the z-position error is the only error variable that is going to be analyzed
in this work. In these experiments, the fiducial was moving through z-direction from
220mm to 1060mm. In addition, the light conditions change dynamical from the
range 41 lux to 303 lux. In this experiment, it was found that out the range of 41-303
lux the camera system cannot detect the marker.



Chapter 2

Literature Review

In the literature review of augmented reality, there are challenges or problems in the
area of tracking. Furthermore, there are also several types of tracking systems in
augmented reality that have different advantages and disadvantages.

Tracking systems for markers (fiducials) are used in AR applications. The track-
ing system can identify the marker using a camera in order to place the virtual object
over the marker, and the virtual object must remain aligned with the position and ori-
entation of the marker, which is called tracking. There are many kinds of markers,
where each toolkit has its own marker type. Most research studies are about differ-
ent tracking systems on ARToolkit or another toolkit. Actually, accurate registration
and tracking between virtual objects and real world objects are crucial challenge in
augmented reality.

2.1 Challenges in Augmented Reality

Tracking in Augmented Reality has different types of challenges, which can be cate-
gorized as performance challenges, alignment challenges, interaction challenges, mo-
bility/probability challenges and visualization challenges as shown in Figure 2.1.

Challenges in Augmented Reality

Performance
challenges

Alignment
challenges

Interaction
challenges

Mobility
challenges

Visualization
challenges

Figure 2.1: Categorization of challenges in Augmented Reality

7
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2.1.1 Performance challenges

The performance challenges are concerned with real time processing of the AR ap-
plication. The processing time of an AR application could be slow down the perfor-
mance of the application. The mobile AR applications have this performance issue
[75]. The visual recognition is computationally very expensive due to the 3D models
used, and it’s not due to complexity of the marker’s design [68].

2.1.2 Alignment challenges

Alignment challenges are concerned with proper placement of a virtual object to the
real world objects. The incorrect rendering of information is caused by the incorrect
alignment. In the other case, registration is the proper alignment of virtual objects
to the real world objects [30]. Tracking in outdoor for Augmented Reality is another
problem related to alignment challenge [8]. Accurate tracking system is required in
order to not cause a misalignment between virtual and real objects [71]. An accurate
calibration is also required for having accuracy in augmented reality systems [26].

2.1.3 Interaction challenge

Interaction challenges refer to the interaction of users with virtual and real objects
at the same time. The interfaces of interaction are: acoustic, haptic, tangible, gaze,
or text-based through which the user interacts with virtual objects. The interaction
with virtual object increases the amount of interaction problems [18]. There are many
interaction techniques and user interfaces problems that need to be solved [77].

2.1.4 Mobility challenges

These challenges are concerned with the portability of augmented reality systems,
which should be light and small so it can be used anywhere. The best type of aug-
mented reality system is the system that is portable outside a controlled environment
[9]. Schmalstieg et al. [59] developed a wearable system which needs to carry a whole
set of heavy equipments for a long time.

2.1.5 Visualization challenges

Visualization challenges are concerned with the display issues (HMD based or monitor-
based), contrast, resolution, brightness, and field of view. The illumination of the
virtual object and real world object is required to be the same [22] [19]. Another visu-
alization problem is occlusion, which is the process that determines which part of the
image is not visible from certain view-point [71] [25]. Fischer et al. [21] developed
a system for correct handling of occlusion between virtual objects and real world
objects in the scene, which made a realistic view [37].
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2.1.6 Issues in Augmented Reality Tracking

All tracking techniques have problems and none of them provides the best solution
for the estimation of pose tracking in the outdoor unprepared environment. In unpre-
pared out-door environment tracking is the main problem in an augmented reality
system.

Drastic motions often lead tracking failures and recovery the tracking takes a
lot of time, which leads to loss of real-time tracking [77].

In sensor-based tracking, it is used optical, magnetic, inertial, acoustic or ul-
trasonic sensors. The problem of optical tracking sensors is that these sensors are
sensitive to optical noise, occlusion, they are computationally very costly and slow
[76]. In optical tracking, it is difficult to track multiple objects in the scene at the same
time.

The problem of magnetic sensors is that these sensors are disturbed by the pres-
ence of electronic devices nearby [64]. Magnetic sensors have also problems of jitter.
This problem occurs because the accuracy degrades when their distance increases
from the source and these sensors are sensitive to electromagnetic noise [76].

The problem of acoustic system is that it is a slowly system because the sound
travels slow. The speed of sound in the air can change due to the change of temper-
ature or humidity in the environment, which can affect the efficiency of the tracking
system [64].

The problem of inertial tracking system is that the axis of wheel and bearing
have a small friction.

The problem of hybrid systems is that it increases the complexity and the costs
of tracking.

2.2 Tracking system in Augmented Reality

Zohu et al. [77] categorized the augmented reality tracking techniques in sensor-
based, vision-based, and hybrid tracking techniques. Sensor-based tracking tech-
niques are based on sensors as optical, magnetic, inertial, acoustic or ultrasonic that
are placed in an environment (real world). Vision-based tracking [76] techniques
used image information to track the position and orientation of a camera relative to
the marker or other real object. Hybrid-based tracking techniques [10] combines sev-
eral technologies in order to give a more accurate and robust solution for outdoor
tracking. Figure 2.2 shows the classification of Augmented Reality Tracking.

2.2.1 Sensor-based tracking

In sensor-based tracking, it is used active sensors in order to track the position of
camera movement relative to the marker or another real-world object. The sensors
used for tracking are optical, magnetic, inertial, acoustic or ultrasonic. Each type
of sensor has different accuracy, calibration, cost, engironmental, temperature and
pressure, range and resolution.
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Augmented Reality Tracking

Sensor Based
Tracking

Vision Based
Tracking

Hybrid
Tracking

Optical
Sensor

Tracking

Acoustic
Sensor

Tracking

Hybrid
Sensor

Tracking

Magnetic
Sensor

Tracking

Inertial
Sensor

Tracking

Marker
Based

Tracking

Markerless
Based

Tracking

Figure 2.2: Classification of Augmented Reality Tracking

Optical tracking

In optical tracking system [64], a video camera using visible or infrared light to track-
ing a retro-reflective marker, which reflects the incoming infrared light back to the
cameras. The infrared reflections are detected by the camera(s) and then processed
by the optical tracking system in order to get the position and orientation of the cam-
era(s). Using one camera, the system calculates the 2D marker position in camera
coordinates. Using two cameras, the 3D position with 6DOF (Degrees of freedom) of
each marker is computed. The cameras used are placed at different angles to view
the target object (marker). The position and orientation of each camera is calculated
using the epipolar geometry between two planes of images. The advantages of op-
tical tracking are that is inexpensive and gives a more accurate and robust tracking
in controlled environment. The disadvantages of optical tracking are that this track-
ing system is sensitive to lighting conditions and tracking is difficult when multiple
objects (markers) are in the environment.

Magnetic tracking

In magnetic based tracking [76], there are used different magnetic fields. These sen-
sors works as follows: first, the electric current is passed through coils (in the source),
as a result magnetic field is created. The position and orientation of receivers are
measured relative to the source. This tracking system is cheaper to implement, but
it is less accurate than optical systems. Furthermore, magnetic tracking sensors have
problems of jittering, accuracy (which degrades with distance), and sensitive to elec-
tromagnetic noise.
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Acoustic tracking

In acoustic tracking system [64], it is used ultrasonic transmitters and acoustic sen-
sors. The real object with ultrasound emitters and sensors are fixed in the environ-
ment. The position and the orientation of a user is calculated on the basis of time
taken for sound to reach the sensors. The disadvantage of this tracking system is that
acoustic tracking system is rather slow compared to other tracking sensors because
the sound travels relatively slowly. Another disadvantage of this system tracking
is that change of temperature or humidity in the environment, which can affect the
efficiency of the tracking system.

Inertial tracking

In the inertial tracking system, it is used a mechanical gyroscope (to get the orienta-
tion of an object) and an accelerometer (to get the position of an object). Mechanical
gyroscope system computes the orientation of the target using the rotational encoder
angels and using the principle of conversation of the angular momentum. This sys-
tem uses the axes of rotating wheel to have its own reference and is lightweight. The
disadvantage of this system is that the problems of that can occur due to small fric-
tion between the axis of wheel and bearing. Accelerometer is used to measure the
linear acceleration of an object with one degree of freedom.

Hybrid Sensor tracking

In hybrid tracking [56], it used a combination of various sensors. This combination of
two or more sensors provide a better solution compared with the usage of only one
sensor, but these hybrid systems increase the complexity and the cost of tracking.
There are different types of hybrid tracking system as follows:

Auer and Pinz [6] built a hybrid tracking system by combining optical and mag-
netic tracking. In this tracking system, they use as main estimator of position and
orientation of an object the magnetic sensor and the optical tracking sensor to refine
the estimations in real-time. This hybrid tracking system is faster and reliable than
an optical tracker and more precise than a magnetic tracker.

Maidi et al. [41] developed a hybrid approach for pose estimation, which mixes
an iterative method based on the extended Kalman filter (EKF) and an analytical
method with a direct resolution of pose parameters computation. This approach im-
proves stability, convergence and accuracy of the pose parameters.

Dhiman et al. [16] developed a cooperative localization method (called mutual
localization), which uses two cameras (each one with a fiducial (marker) in a sen-
sor specific coordinate frame), in order to estimate the 6-Deegres of freedom pose
of multiple cameras. Using this approach, it can be obviated the common assump-
tion of sensor ego-motion. This approach uses an algebraic formulation to estimate
the pose of the two-camera mutual localization setup under these assumptions. This
approach can localize significantly more accurately than ARToolKit.
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2.2.2 Vision based tracking

Vision-based tracking [77] is the most active area of research in augmented reality.
Computer vision methods are used to calculate the camera pose relative to the real
word objects (or markers). There are two types of approach in vision tracking: marker
approach and markerless approach. The marker approach [47] consists on the usage
of a fiducial (marker) where it is used to calculate the camera pose relative to the
marker. The markerless approach [14] consists on the usage of the environment in-
formation to disappear the marker image of the environment.

Marker-based tracking

In marker-based tracking, markers (or fiducials) are placed placed in the environment
or scene. These markers consist on patterns inside a black square. Naimark et al. [46]
presented a circular 2D bar-coded fiducial system where the fiducial design allows
having thousands of different codes, thus enabling uninterrupted tracking through-
out a large building at very reasonable cost. This circular-shaped marker clusters
with various parameters (number of markers, height, and radius) were developed
as shown in Figure 2.3. The advantage of this marker frame configuration delivers
excellent pose information, which translates to stable, jitter-free augmentation. AR-
ToolKit, a type of library for augmented reality, has its own marker type, which are
shown in Figure 2.4.

Figure 2.3: Circular marker [46]

Figure 2.4: ARToolKit marker [74]
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Ababsa et al. [5] developed a robust tracking system for Marker-based AR. The
advantage of this system is that it works at a large range of distance and realibility
under sever orientations.

Möhring et al. [45] developed a tracking solution for mobile phones, which
tracks colour-coded 3D marker.

Steinbis et al. [61] presented a set of 3D cone fiducials for scalable indoor or
outdoor tracking which are easy to segment and have a large working volume.

Maidi et al. [40] developed a system that combined extended Kalman filter and
an analytical method with direct resolution of pose parameters computation. The
advantage of this system is that it improves the stability, covergence and accuracy of
those pose parameters.

Herout et al. [28] introduced an improved design of the Uniform Marker Fields
and an algorithm for their fast and reliable detection. This marker field is designed
to be detected and to be recognized for camera pose estimation: in various lighting
conditions, under a severe perspective, while heavily occluded, and under a strong
motion blur. This marker field detection harnesses the fact that the edges within
the marker field meet at two vanishing points and that the projected planar grid of
squares can be defined by a detectable mathematical formalism. The modules of the
grid are gray-scale and the locations within the marker field are defined by the edges
between the modules. The detection rates and accuracy are slightly better and faster
compared with state-of-the-art marker-based solutions.

Rabbi et al. [53] extended the functionality of ARToolKit to a semi-controlled
or uncontrolled environment using multiple files, which are recorded in different en-
vironmental conditions. This approach improved the marker tracking performance
under different lighting conditions, brightness and contrast level. This approach may
increase processing time, which is controlled by implementing a priority queue. This
queue provides a priority to the pattern that is mostly used for tracking in the envi-
ronment.

Yamauchi et al. [74] studied the position and pose error detected by an aug-
mented reality system (using ARToolKit library). As shown in Figure 2.5, the marker
is perpendicular to the line of sight of the camera. The characteristics of the marker
detection are summarized as follows. The position of a marker is determined with
sufficient accuracy for the directions perpendicular to the line of sight of the camera.
The rotation angle of a marker around the line sight (of the camera) is also determined
accurately. However, the position of the marker in the line of sight direction cannot
be accurately determined. The detection error in this direction was revealed to be
proportional to the square of the distance between the camera and the marker. The
pose angles other than the rotation angle are also difficult to determine accurately.

Freeman et al. [24] proposed a method for predicting marker-tracking error in
order to quantify the accuracy of the marker position. This statistical approach uses a
modified Scaled Spherical Simplex Unscented Transform (SSSUT) algorithm in order
to establish the maximum and minimum error of the marker-position estimations
(estimated by the augmented reality system).

Wang et al. [70] presented a coarse-to-fine marker detection algorithm with
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Figure 2.5: Marker’s coordinates and camera coordinates [74]

sub-pixel edge localization. In this work, it is proposed a marker with a dot pat-
tern, which is detected and matched to a predefined descriptor in a fast way using
a simple threshold and hierarchical contour analysis. The algorithm yielded a fea-
ture detection error of less than 0.1 pixel (up to noise level σn ≤ 0.35) with real-time
performance.

Markerless-based tracking

Markerless tracking is when the marker-image detected is replaced with environ-
ment data; i.e. the marker is erased using image data that is near of the marker.
Harris [27] described a markerless 3D visual tracking system called RAPiD (Real-
time Attitude and Position Determination), which is the most popular and earlier
markerless tracking system. The advantage of this technique is that it minimizes the
amount of data that needs to be extracted from the video feed.

Park et al. [50] presented a method that allows natural features to be used for
tracking instead of artificial features. This method uses known visual features, first
the camera pose is estimated, then the system dynamically acquires additional nat-
ural features and uses them to a continuous update of the pose calculation. The
advantage of this method is that it provides robust tracking even when the original
fiducials are no longer in view.

Vacchetti et al. [65] combined edge and texture information to get a real-time
3D tracking. This system works as follows: first the interest points are found in the
image for each frame. Second, these interest points are then matched with interest
points of the reference frame, which are used for smooth camera trajectory.

Wuest et al. [73] presented a real-time model-based line tracking approach with
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adaptive learning of image edge features, which can handle partial occlusion and
illumination changes. The advantage of this approach is that it uses a CAD model of
the object for proper tracking in order to improve the robustness and efficiency of the
system.

Reitmayr et al. [54] introduced a model-based tracking system for outdoor aug-
mented reality in urban environments, which enabled accurate real-time overlays for
a handheld device. This system combines several well-known approaches (i.e. an
edge-based tracker for accurate localization, gyroscope measurements to deal with
fast motions, measurements of gravity and magnetic field to avoid drift and a back
store of reference frames with on-line frame selection to reinitialize automatically af-
ter dynamic occlusions or failures)

Ababsa et al. [3] introduced a markerless tracking for an outdoor augmented
reality, which provided robust and reliable tracking using mobile handheld camera.
The advantages that this system is efficient for partially known 3D scenes which com-
bined edge-based tracker with a spare 3D reconstruction of the real-world.

Dame et al. [15] presented a direct tracking approach that uses Mutual Informa-
tion as metric for proper alignment. The advantage of this approach is that it provides
a robust, real-time and an accurate estimation of the displacement.

Sanchez et al. [57] presented a solution of real-time camera tracking and 3D
reconstruction.

Park et al. [51] presented a method for improving the accuracy of 3DOF position
and orientation for outdoor AR. The advantage of this method is that it uses corner
points of buildings, detected as vertical edges in the image, and use it for refining
GPS location and compass orientation.

Kim et al. [36] presented a real-time solution for modeling and tracking multiple
3D objects in unknown environments. The advantage of this system is that it can
track 40 objects in 3D within 6 to 25 milliseconds.

Ababsa and Mallem [4] proposed particle filter framework with points and lines
model-based tracking to achieve real-time camera pose estimation. The advantages
of this implementation are simplicity and flexibility. It was showed that the algorithm
can accurately track the camera pose successfully under sever occlusions and nons-
mooth camera motions. A textureless object detection and 3D tracking with on-line
training using a depth camera.

Park et al. [52] presented a textureless object detection and 3D tracking with
on-line training using a depth camera. This method eliminates the requirement of
prior object model, since any data for detection and tracking is obtained on the fly,
which enhances the depth map.

Simon et al. [60] presented a promising method for markerless vision-based
camera tracking for augmented reality applications tracking-by-synthesis. The ad-
vantage of this system is that it can run at high speed by combining fast corner de-
tection and pyramidal blurring.

Donoser et al. [17] presented a real-time method to track weakly textured planar
objects and to simultaneously estimate their 3D pose. The basic idea of this method
is to adapt the classic tracking-by-detection approach, which seek for the object to be
tracked independently in each frame, for tracking non-textured objects.



CHAPTER 2. LITERATURE REVIEW 16

Ito et al. [32] presented a solution for the problem of the tracking performance
deteriorated by viewing the plane to be tracked has a significantly oblique angle to
the viewing direction or by moving object to a distant location from the camera. Ito
et al. presented the solution of modeling the sampling and the reconstruction process
of images. The main idea of this solution is that the template is corrected by applying
a linear filter, which is generated by means of a tracked pose of the plane, and then
using it for optimization, which tracks the plane in real time.

Lieberknecht et al. [38] presented a real-time method based on a consumer RGB-
D camera that tracks the camera motion within an unknown environment. This sys-
tem, While tracking, reconstructs a dense-textured mesh for it.

Uchiyama et al. [63] presented an approach for detection and tracking of differ-
ent types of textures including colorful pictures, fiducial markers and hand writing.

2.2.3 Hybrid tracking

Each sensor-based tracking and vision based tracking has its own limitations or dis-
advantages. In order to have a robust tracking solution, hybrid methods have been
developed. Hybrid tracking technique is the combination of both sensor-based track-
ing and vision-based tracking that attempts to compensate the shortcomings of each
technique by using multiple measurements to produce robust results.

Hirota et al. [29] developed a hybrid tracking technique that combined vision
based tracking (landmark tracking) and sensor based tracking (magnetic tracking).

Azuma et al. [10] described that not a single technology gives a complete solu-
tion for outdoor tracking, then a hybrid tracking technique was proposed for outdoor
augmented reality system, which is based on GPS inertial and computer vision tech-
nologies.

Kanbara et al. [33] presented a hybrid system, which combines vision-based
with inertial sensor. In this system, it is used vision-based approach for estimating
the position and orientation of the camera by tracking markers in the real world envi-
ronment, and inertial sensor is used to track stereo images and a camera orientation
to produce a robust tracking system.

Foxlin et al. [23] developed a hybrid system, this system combines miniature
MEMS (Micro Electro-Mechanical Systems) sensors to cockpit helmet-tracking for
synthetic vision by inertial tracking between helmet-mounted and aircraft-mounted
inertial sensors, and novel optical drift correction techniques. The advantage of this
system is that it achieves a better position accuracy and angular accuracy with low
latency.

Reitmayr et al. [54] developed a model-based hybrid tracking system for out-
door augmented reality in urban environments. The advantage of this hybrid track-
ing system is that it enables accurate and real-time overlays for hand-held devices.
Hybrid tracking system combines edge-based tracker to track accurate localization,
gyroscope measurements to deal with fast motions, measurements of gravity and
magnetic field to avoid drift.

Bleser et al. [12] developed a hybrid tracking approach that combines SFM
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Table 2.1: Tracking sensors

Sensors Track-
ing

Accuracy Sensitivity Cost DOF Advantages Disadvantages

Optical Sensors Accurate Light Cheaper 3/6 DOF High update
rate and better
resolution

Effect with op-
tical noise and
occlusion

Magnetic Sen-
sors

Less Accurate Electronic
Devices electro-
magnetic noise

Cheaper 6 DOF No occlusion
problem, high
update rate

Small work-
ing volume,
distance affect
accuracy

Acoustic Sen-
sors

Less Accurate Temperature
Humidity
Pressure

Cheaper 3/6 DOF Slow, Small,
light, no distor-
tion

Occlusion and
ultrasonic noise

Inertial Sensors Accurate Friction Cheaper 1/3 DOF No reference
needed, No
prepared en-
vironment
needed

Due to small
friction conser-
vation error

Hybrid Accurate Depend on sen-
sors used

Costly 6 DOF Compact, accu-
rate stable

Depend on sen-
sors used

Table 2.2: Tracking system approaches

Treatments Light changes Method Multiple cameras

Rabbi’s approach [53] X Multiple files
Maidi’s approach [41] Statistical method
Herout’s approach [28] Mathematical method
Dhiman’s approach [16] Algebraic method X
Yamauchi’s approach [74] Algebraic method
Freeman’s approach [24] Statistical method
Wang’s approach [70] Hierarchical contour analysis
Our’s approach X Statistical method

(structure from motion), SLAM (Simultaneous Localization and Mapping) and model-
based tracking.

Ababsa et al. [2] developed a hybrid tracker that combines optical sensor and
vision based approach. This tracking system uses component-based framework that
is designed for wide range tracker.

Schall et al. [58] introduced a 3DOF (Degrees Of Freedom) orientation tracking
approach that combines the accuracy and stability of vision-based tracking with the
correct orientation from inertial and magnetic sensors.

Waechter et al. [67] introduced a mobile multi-sensor platform to overcome
the shortcomings of single sensor system. This platform combines an optical camera
and mounted odometric measurement system that provides relative positions and
orientations with respect to the ground plane.

Bleser et al. [11] presented a hybrid system that combines the egocentric vision
with inertial sensors to track upper-body motion. In this hybrid system visual detec-
tors of the wrists are used with the images of a chest-mounted camera to substitute
the magnetometer measurements.

In Table 2.3, the differences between each approach described above are shown.
Most of these approaches used for marker detection do not take into account

many factors as light intensity, brightness and contrast. Rabbi’s approach takes into
account light intensity, but this approach may increase processing time according to
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Table 2.3: Tracking system approaches

Treatments Light changes Method Multiple cameras

Ullah’s approach [64] Optical tracking system using infrared
light

Yang’s approach [76] Magnetic based tracking
Ullah’s approach [64] Ultrasonic transmitters and acoustic sen-

sors
Ullah’s approach [64] Inertial tracking system using mechani-

cal gyroscope and a accelerometer
Auer’s approach [6] Hybrid tracking using optical and mag-

netic tracking.
Maidi’s approach [41] Hybrid tracking using extended Kalman

filter (EKF) and an analytical method
with a direct resolution of pose param-
eters computation.

Dhiman’s approach [16] Localization method X
Zhou’s approach [77] Vision-based tracking using computer

vision methods
X

Narzt’s approach [47] Marker’s approach using
Comport’s approach [14] Markerless approach
Naimark’s approach [46] Marker approach using a new fiducial

design
Ababsa’s approach [5] Marker’s approach for tracking
Möhring’s approach [45] marker’s tracking solution using a color-

coded 3D marker
Steinbis’s approach [61] Marker’s approach using a novel 3D

cone fiducial
Herout’s approach [28] Algorithm for fast and reliable detection

of markers using an improved design of
the Uniform Marker Fields

Harris’s approach [27] Markerless approach using 3D visual
tracking called RAPiD

Park’s approach [27] A method using natural features to be
used for tracking

Vacchetti’s approach [65] 3D tracking using edge and texture in-
formation

Wuest’s approach [73] X Tracking system with adaptive learning
of image edge features

Reitmayr’s approach [55] Hybrid tracking using a edge-based
tracker, gyroscope and measurements of
gravity and a magnetic field

Bleser’s approach [12] Hybrid system which combines SFM,
SLAM and a model-based tracking

Ababsa’s approach[2] Hybrid system that combines optical
sensor and a vision based approach

Schall’s approach [58] Hybrid system that combines 3DOF
orientation tracking with vision-based
tracking and magnetic sensors

Waechter’s approach [67] Multi-sensor for mobile AR
Bleser’s approach [11] Hybrid tracking that combines egocen-

tric vision with inertial sensors
Rabbi’s approach [53] X Multiple files
Maidi’s approach [41] Statistical method
Herout’s approach [28] Mathematical method
Dhiman’s approach [16] Algebraic method X
Yamauchi’s approach [74] Algebraic method
Freeman’s approach [24] Statistical method
Wang’s approach [70] Hierarchical contour analysis
Our’s approach X Statistical method
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the number of pattern files. The main problem is the noise of the marker position
estimation, which depends on the illumination and the rotation of the marker. In this
paper, it is proposed to use machine learning in order to find the correlation between
lighting conditions and position estimation of the marker.



Chapter 3

Machine Learning

For the past years, machine learning has been used for "learning" or analyze large
amounts of data and draw conclusion. Using machine learning, it is possible to do
better estimations and find patterns and tendencies, which could be used in differ-
ent area as: finance, healthcare, industry, and more. This chapter explains what is
machine learning and the different types of machine learning. In this chapter, it is
also explained the multiple linear regression, which is a technique used in machine
learning.

3.1 Machine learning definition

Machine learning is a subfield of Artificial Intelligence, where algorithms are used to
learn in order to behave more intelligently rather than just storing and retrieving data
like data systems do. Machine learning is a set of methods that can detect patterns
in data, and then use these uncovered patterns to predict future data, or to perform
other kinds of decision making under uncertainty.

As shown in figure 4.1, machine learning is divided in three main types: super-
vised, unsupervised and reinforcement learning.

Supervised
Learning

Classifiers Regression

Sequence
Prediction

Unsupervised
Learning

Clustering Association
Rule

Discovery

Market Basket
Analysis

Recommender
Systems

Figure 3.1: Machine learning types
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Figure 3.2: Supervised learning

In supervised or predictive learning approach, the goal is to learn a mapping
from a set of inputs (called x) to a set of outputs (called y), given a labeled set of
input-output pairs D = (xi,yi)

N
i=1, where D is the training set and N is the number of

training examples.
The training input xi is called feature, attribute or covariate, which could be a

D-dimensional vector of numbers representing real-valued scalar variables as height
and weight of a person, or it could be a complex structured object (such as image, a
sentence, an email message, a time series, a molecular shape, a graph, etc.).

The training output yi is called response variable, which could be a real-valued
scalar (such as a vector of numbers) or a categorical or nominal variable from some
finite set yi ∈ 1, . . . ,C (such as male or female).

In supervised or predictive learning there are two main types of problems: clas-
sification (or pattern recognition) and regression problem. When the yi is categor-
ical, the problem is known as classification or pattern recognition. When the yi is
real-valued scalar, the problem is known as regression. Furthermore, another variant
of regression problem, called ordinal regression, occurs when the training output yi
has some natural ordering such as grade A-F.

As shown in figure 3.2, the training text, documents, images, etc., and the fea-
ture vectors are the input for the machine learning system. This system generates
a predictive model or a predictor function. This function receives new text, docu-
ments, images, etc., and feature vectors in order to generate a likelihood of cluster ID
or a better representation.

In unsupervised or descriptive learning approach there are not a labeled set of
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Figure 3.3: Unsupervised learning

input-output pairs D = (xi,yi)
N
i=1. In this approach, the goal is to find “interesting pat-

terns” in the data, given a set of training inputs (D = (xi)
N
i=1). This problem is called

knowledge discovery. Without knowing what patterns it is looking for and without
an obvious error metric to use, this problem is much less well-defined problem than
supervised problem.

As shown in figure 3.3, the training text, documents, images, the feature vectors,
and the labels are the input for the machine learning system. This system generates
a predictive model or a predictor function. This function receives new text, docu-
ments, images, etc., and feature vectors in order to generate an expected label.

In reinforcement learning, the goal is to learn how to act or behave when given
occasional reward or punishment signals.

For example, ML can be used to detect the patterns of some images given. If we
have two types of image (star and diamond), then the ML system will detect the two
patterns.

3.2 Supervised Learning: Regression

Regression analysis approach is used when one or more predictor variables have a
correlation with the response variable. The optimal regression coefficients depend
on both the marginal distribution of the predictors and the joint distribution (covari-
ances) of the response and the predictors.
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The regression coefficient is interpreted as the estimation of how much the re-
sponse would change, if the independent variable were increased by one unit, hold-
ing the other predictor variables constant.

Regression analysis is used for probabilistic prediction. It is selected a sub-set
of the observations in order to make estimation of the whole population. A casual or
counter-factual prediction is an estimation done when the predictor variables are on
fixed values. Regression in machine learning works as a tool for causal interference.

3.2.1 Multiple linear regression

In machine learning, the most common technique used, depending of the problem,
is the multiple linear regression. Multiple linear regression is used to predict the
value of a variable y (called criterion variable) using multiple variables (xi, ...,xm)
(called predictor variables). These predictor variables could be known or unknown.
When the predictor variables are known, it is called supervised machine learning and
the predictor variables are called labeled variables. When the predictor variables are
unknown, it is called unsupervised machine learning. This leads to the following mul-
tiple regression function:

h(x1, ...,xm) = Θ0 +∑
m
i=1Θixi (3.1)

where Θ0 is called the intercept and the Θi are called coefficients.
The process of learning consists on using mathematical algorithm in order to

optimize the predictor function h(xi), which is an estimation of the criterion variable
y. For the optimization process, it is used training examples, which are input data
of both predictor variables (x1, ...,xm) and criterion variable y, which is known in
advance.

The loss function, as shown in Equation 3.2, is used to measure the improve-
ment of the predictor function h(xt,i). The input Θ represents all of the coefficients
that we are using in the predictor function. In this case, it is used only two coeffi-
cients Θ0 and Θ1.

J(Θ0,Θ1) =
1

2m

m

∑
i=1

(h(xt,i)− y)2 (3.2)

The loss function and training examples are used to know the difference be-
tween the criterion variable y and the estimated value h(x1, ...,xm), which is called
error, in order to measure the improvement of the predictor function. In the opti-
mization process, the intercept Θ0 and the coefficients Θi are changed constantly in
order to converge on the best values that minimize the error.



Chapter 4

Augmented Reality

Augmented Reality (AR) has been used in the industry for many usage types. The
definition of augmented reality and the differences between real environment, aug-
mented virtuality, virtual reality and augmented reality are given in this chapter. The
computer vision methods used in augmented reality for rendering and compute the
pose for the virtual object are explained in this chapter. The marker’s tracking us-
ing ARToolKit it is also explained in this chapter. Furthermore, the different types of
augmented reality devices and interfaces are also explained in this chapter.

4.1 Augmented Reality: An overview

Augmented Reality (AR) is defined as a view of real-word environment that has been
augmented by adding virtual computer-generated models in real-time. AR combines
real and virtual objects.

Miligrams et al. [43] explains the difference between real environment, aug-
mented reality, augmented virtuality and virtual environment. Milgram’s Reality-
Virtuality Continuum is defined by Paul Milgram et al. as a continuum that have
the real environment and the virtual environment and the combination of these two,
which are Augmented Reality (AR) and Augmented Virtuality (AV). AR is closer to
the real world and AV is closer to a pure virtual environment, as seen in figure 4.1.

Augmented Reality brings virtual information to immediate surroundings and
indirect view of the real-world environment, such as live-video stream. AR tech-
nology augments the sense of reality by superimposing virtual objects on the real
environment in real time.

Azuma et al. [7] did not consider AR to be restricted to a particular type of
display technologies. AR can potentially apply to all senses, augmenting smell, touch
and hearing as well.

Azuma et al. [7] considered that AR applications require removing real objects
from the environment, which are more commonly called mediated or diminished reality.

Indeed, removing objects from the real world corresponds to covering the object
with virtual information that matches the background in order to give the user the

24
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Figure 4.1: Milgram’s reality-virtuaity continuum

impression that the object is not there. Virtual objects added to the real environment
show information to the user that cannot directly detect.

4.2 Computer Vision Methods in Augmented Reality

The 3D virtual objects are rendered using computer vision methods. The orientation
and position of these virtual objects depend on the pose of the fiducial marker, optical
image or interest point where the virtual object is going to be placed. These computer
vision methods are called tracking and reconstructing/recognizing.

In tracking method, the fiducial markers, optical images, or interest points are
detected in the camera images. This method can make use of feature detection, edge
detection, or other image processing methods to interpret the camera images. There
are two types of tracking: feature-based and model-based. Feature-based methods
consist of estimating the position and orientation of the 2D image features in the 3D
world frame coordinates. Model-based methods make use of model of the tracked
objects’ features such as CAD models or 2D templates of the item based on distin-
guishable features.

Using the position and orientation of the 2D image in the 3D world frame, it
is possible to find the camera pose (camera’s position and orientation) for project-
ing the 3D coordinates of the feature into the observed 2D image coordinates and
by minimizing the distance to their corresponding 2D features. The constraints for
camera pose estimation are most often determined using point features. The recon-
structing/recognizing stage uses both the orientation data and position data obtained
from the first stage to reconstruct a real world coordinate system. Assuming a cal-
ibrated camera and a perspective projection model, if a point has the coordinates
(x,y,z)T in the coordinate frame of the camera, its projection onto the image plane is
(x/z,y/z,1)T .

In point constraints, we have two principal coordinate systems, as illustrated in
Figure 4.2, the world coordinate system W and the 2D image coordinate system. Let
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Figure 4.2: Coordinate system

pi(xi,yi,zi)
T , where i = 1, ...,n, with n≥ 3, be a set of 3D non-collinear reference points

in the world frame coordinate and qi(x
′
i,y
′
i,z
′
i)

T be the corresponding camera-space
coordinates, pi and qi are related by the following transformation:

qi = Rpi +T (4.1)

where

R =

rT
1

rt
2

rT
3

and T =

tx
ty
tz

 (4.2)

are rotation matrix and a translation vector, respectively.
Let the image point hi(ui,vi.1)T be the projection of pi on the normalized image

plane. The collinearity equation establishing the relationship between hi and pi using
the camera pinhole is given by:

hi =
1

rT
3 pi + tz

(Rpi +T ) (4.3)

The image space error gives a relationship between 3D reference points, their
corresponding 2D extracted image points, and the camera pose parameters, and cor-
responds, to the point constraints. The image space error is given as follow:

EP
i =

√(
ûi−

rT
1 pi + tx

rT
3 pi + tz

)2

+

(
v̂i−

rT
2 pi + ty

rT
3 pi + tz

)2

(4.4)

where m̂i(ûi, v̂i,1)T are observed image points.
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Huang et al. [39] use the scene 3D structure pre-calculated beforehand in order
to know where to place a virtual object, where the device will have to be stationary
and its position known. In case the entire scene is not known beforehand, Simul-
taneous Localization And Mapping (SLAM) technique is used for mapping fiducial
markers or 3D models relative positions. In the case when no assumptions about
the 3D geometry of the scene can be made, Structure from Motion (SfM) method is
used. SfM method can be divided into two parts: feature point tracking and camera
parameter estimation.

In the case the AR device is mobile and designed for an outdoor environment,
the tracking techniques used are different from the techniques explained above. Nils-
son et al. [48] built a pedestrian detection system for automotive collision avoidance
using AR. This system is mobile and outdoor. For a camera moving in an unknown
environment, the problem for computer vision is to reconstruct both the motion of
the camera and the structure of the scene using the image and additional sensor data
sequences. In this case, since no assumption about the 3D geometry of the scene can
be made, SfM method is used for reconstructing the scene.

ARToolKit [34] is a set of AR libraries, which was developed in 1999 by Hi-
rokazu Kato from the Nara institute of Science and Technology and was released
by the University of Washigton HIT Lab. ARToolKit is a computer vision tracking
library that allows the user to create augmented reality applications. It uses video
tracking capabilities to calculate in real time the real camera position and orientation
relative to physical markers. Once the real camera position is known, a virtual cam-
era can be placed at the exact same position and 3D computer graphics model can
be drawn to overlay the markers. The extended version of ARToolKit is ARToolK-
itPlus, which added many features over the ARToolKit, notably class-based APLIs;
however, it is no longer being developed and already has a successor: Studierstube
Tracker [69].

Studierstube Tracker’s [69] is a set of AR libraries. It supports mobile phone,
with Studierstube ES, as well as PCs, making its memory requirements very low
(100KB or 5-10% of ARToolKitPlus) and processing very fast (about twice as fast as
ARToolKitPlus on mobile phones and about 1 ms per frame on a PC).

4.3 Marker’s Tracking using ARToolKit

The marker’s tracking process is as follows: first, the marker image is converted to a
black and white binary image, which is called threshold, using a threshold value (in
order to know if the pixel is going to be black or white). Second, the black square of
the marker is detected. Third, the position of the four corners of the marker are esti-
mated, which are used to estimate the center position of the marker as well marker
pose.

ARToolKit uses both functions arDetectMarker and arGetTransMat to detect and
to estimate the position and pose of a marker. The arDetectMarker function detects the
black edges of the marker as well as the pattern inside it, which is registered in the
app. The arGetTransMat function identifies the position and pose of a marker, which
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is represented by a matrix, as shown in Equation (4.5).

x′

y′

z′

= p


xm
ym
zm
1

=

p11 p12 p13
p21 p22 p23
p31 p32 p33

 xm
ym
zm

+
p14

p24
p34

 (4.5)

The (x′,y′,z′) coordinates represent the transform matrix of the camera relative
to the marker frame coordinates. The transform matrix p is multiply by the vector of
the marker coordinates relative to the camera coordinates (xm,ym,zm).

The marker’s pose is represented by three rotation angles called pitch Θ, yaw φ

and roll ω , which denote rotations around the x,y,z axes, respectively. The rotation
angles are calculated from the components of the transform matrix in equation (4.5)
as follows:

Θ = tan−1
(

p21

p11

)
(4.6)

φ = tan−1
(

p32

p33

)
(4.7)

ω = sin−1(p31) (4.8)

4.4 Augmented Reality Devices

The main devices for augmented reality are displays, input devices, tracking, and
computers.

4.4.1 Displays

There are three major types of displays used in Augmented Reality: head mounted
displays (HMD), handheld displays and spatial displays.

HMD is a display device worn on the head that places both images of the real
and virtual environment over the user’s view of the world. HMD can either be video-
see-through or optical-see-through and can have a monocular or binocular display
optic. Video-see-through systems are more demanding than optical-see-through sys-
tems as they require the user to wear two cameras on his head and require the pro-
cessing of both cameras to provide both the "real part" of the augmented scene and
the virtual objects with unmatched resolution, while the optical-see-through employs
a half-silver mirror technology to allow views of physical world to pass through the
lens and graphically overlay information to be reflected in the user’s eyes.

Handheld displays employ small computing devices with a display that user
can hold in their hands, such as smart-phones, PDSs and Tablet PCs. They use video-
see-through techniques to overlay graphics onto the real environment and employ
sensors, such as digital compasses and GPS units for their six degrees of freedom
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tracking sensors, fiducial marker systems, such as ARToolKit, and/or computer vi-
sion methods, such as SLAM.

Spatial Augmented Reality (SAR) make use of video-projectors, optical ele-
ments, holograms, radio frequency tags, and other tracking technologies to display
graphical information directly onto physical objects without requiring the user to
wear or carry the display. Spatial displays separate most of the technology from the
user and integrate it into the environment. This permits SAR to naturally scale up
to groups of users, thus allowing collaboration between users, increasing the inter-
est for such augmented reality systems in universities, labs, museums, and in the art
community. There exist three different approaches to SAR which mainly differ in
the way they augment the environment: video-see-through, optical-see-through and
direct augmentation. In SAR, video-see-through displays are screen based; they are
a common technique used if the system does not have to be mobile as they are cost
efficient since only off. The shelf hardware components and standard PC equipment
are required. Spatial optical-see-through displays generate images that are aligned
within the physical environment. Spatial optical combiners, such as planar or curved
mirror beam splitters, transparent screens, or optical holograms are essential compo-
nents of such displays. However, much like screen-based video see-through does not
support mobile applications due to spatially aligned optics and display technology.
Finally, projector-based spatial displays apply front-projection to seamlessly project
images directly onto physical object surfaces.

4.5 Input Devices

There are many types of input devices for AR systems. Reitmayr et al.’s mobile aug-
mented system [55] used gloves as input device. ReachMedia [20] use a wireless
wristband as input device. Smart-phones can be used as pointing device; for exam-
ple, Google Sky Map on Android phone requires the user to point his/her phone in
the direction of the stars or planets the user wishes to know the name of. The input
devices chosen depend greatly upon the type of application the system is being de-
veloped for and/or the display chosen. For instance, if an application requires the
user to be hands free, the input device chosen will be one the enables the user to use
his/her hands for the application without requiring extra unnatural gestures or to be
held by the user, examples of such input devices include gaze interaction or the wire-
less wristband. Similarly, if a system makes use of a handheld display, the developers
can use a touch screen input device.

4.5.1 Tracking

Tracking devices consist of digital cameras and/or other optical sensors, GPS, ac-
celerometers, solid state compasses, wireless sensors, etc. Each of these technologies
has different level of accuracy and depends greatly on the type of system being de-
veloped. General tracking technology for augmented reality: mechanical, magnetic
sensing, GPS, ultrasonic, inertia, and optics.
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4.5.2 Computers

AR systems require powerful CPU and considerable amount of RAM to process cam-
era images. So fat, mobile computing systems employ a laptop in a backpack config-
uration, but with the rise of smart-phones technology and iPad, we can hope to see
this backpack configuration replaced by a lighter and more sophisticated looking sys-
tem. Stationary systems can use a traditional workstation with a powerful graphics
card.

4.6 Augmented Reality Interfaces

In Augmented Reality, tangible interfaces use real-world objects and tools in order
to have a direct interaction with the real environment. Kato et al. [35] developed
the VOMAR, which enables a person to select and rearrange the furniture in an AR
living room design application by using a real, physical paddle. Paddle motions
are mapped to intuitive gesture based commands, such as "cooping up" an object to
select it for movement or hitting an item to make it disappear in order to provide the
user with an intuitive experience.

Another example is TaPuMa [44], which is a table-top tangible interface that
use physical objects to interact with digital projected maps. In this tangible interface,
the user (using real-life objects) carries with him as queries to find locations or in-
formation on the map. The advantage of this application is that the use of objects as
keywords eliminates the language barrier of conventional graphical interfaces. On
the other hand, keywords using objects can also be ambiguous because it can have
different meaning for each person. White et al. [72] gave a solution for TaPuMa
problem, which was to provide virtual visual hints on the real object showing how it
should be moved.

Another example of tangible AR interactions include the use of gloves or wrist-
band.

4.7 Collaborative Augmented Reality Interfaces

Collaborative AR interfaces include the use of multiple displays to support remote
and co-located activities. Co-located sharing uses 3D interfaces to improve physical
collaborative workspace. In remote sharing, AR integrates multiple devices with
multiple locations to enhance teleconferences.

Studierstube [59] is an example of co-located collaboration. The designers of
Studierstube had in mind a user interface that "uses collaborative augmented reality
to bridge multiple user interface dimensions: Multiple users and contexts as well as
applications, 3D-Windows, hosts, display platforms, and operating systems."

Remote sharing can be integrated with medical applications for performing di-
agnostics, surgery, or even maintenance routine in order for enhancing teleconfer-
ence.
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4.7.1 Hybrid Augmented Reality Interfaces

Hybrid interfaces combine different interfaces that are used to interact through a
wide range of interaction devices. They provide a flexible platform, which is helpful
when the type of interaction display or devices will be used are unknown. Sandor
et al. (sandor2005immersive) developed a hybrid user interface using head-tracked,
see through, head-worn display to overlay augmented reality and provide both vi-
sual and auditory feedbacks. This AR system is then implemented to support end
users in assigning physical interaction devices to operations as well as virtual objects
in which to perform those procedures, and in reconfiguring the mappings between
devices, objects and operations as the user interacts with the system.

4.7.2 Multimodal Augmented Reality Interfaces

Multimodal interfaces combine real objects input with naturally occurring forms of
language and behaviors such as speech, touch, natural hand gestures, or gaze. These
types of interfaces are more recently emerging.

Wear ur World (WUW) (mistry2009wuw) is the MIT’s sixth sense wearable ges-
tural interface, which brings the user with information projected onto surfaces, walls,
and physical objects through natural hand gestures, arms movement, and/or inter-
action with the object itself.

Lee et al. (lee2010design) developed a multimodal interface that makes use of
gaze and blink to interact with objects. This type of interaction is now being largely
developed and is sure to be one of the preferred type of interaction for future aug-
mented reality application as they offer a relatively robust, efficient, expressive and
highly mobile form of human-computer interaction. They have the capability to sup-
port users’ ability to flexibility combine modalities or to switch form one input model
to another depending on the task or setting. In addition, multimodal interfaces offer
the freedom to choose which mode of interaction the user prefers to use depend-
ing on the context; i.e. public place, museum, library, etc. This freedom to choose
the mode of interaction is crucial to wider acceptance of pervasive system in public
places.

4.7.3 Augmented Reality Systems

Augmented reality systems can be divided into five categories: fixed indoor systems,
fixed outdoor systems, mobile indoor systems, and mobile indoor and outdoor sys-
tems. Mobile system allows the user for movement that is not constrained to one
room and allows the user to move through the use of a wireless system. Fixed sys-
tem cannot be moved around and the user must use these systems wherever they are
set up without having the flexibility to move unless they are relocating the whole sys-
tem setup. The selection of the type of system to be built must be made as it will help
them in deciding which type of tracking system, display choice and possibly inter-
face they should use. For instance, fixed systems will not make use of GPS tracking,
while outdoor mobile system will.
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4.7.4 ARToolKit

Artoolkit is a set of libraries for augmented reality developing. It was developed by
Hirokazu Kato, the team of HIT Lab of the University of Washington and the team of
HIT Lab NZ of the University of Canterbury (New Zealand).

ARToolKit gets the camera position relative to 6 DoF using computer vision
methods for marker’s tracking in real time. The characteristics are:

• Camera tracking: it is used a basic version for camera tracking.

• Black squares markers: it is used tracking methods of flat black squares with a
pattern, which must not be symmetrical.

• Fast and cross-platform: it works with many operative systems such as Linux,
Mac, Windows, IRIX, SGI, and so on, and it works with mobile devices and
smartphones such as Andriod, iPhone, PDAs, and so on.

• Active community: the community helps and resolves any doubt about AR-
ToolKit.

• Open source: the applications made using ARToolKit can be used, modified
and distributed (with the license GPL v2).

4.7.5 ARToolKit algorithm to superpose an object using a marker

Algorithm 1 shows how ARToolKit works. In this algorithm, it is created an OpenGL
window with Glut library, the initiation function is called, then it is created a thread
for video and then main-loop function is called.

Algorithm 1 Main algorithm of ARToolKit

1: // Create an OpenGL window with Glut library
2: glutInit(&argc,argv)
3: //Call the initiation function
4: init()
5: //Create a thread for video
6: arVideoCapStart()
7: //Associate callbacks
8: argMainLoop(NULL,NULL,mainLoop)
9: //End of the program

10: return(0)
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Algorithm 2 Initiation algorithm of ARToolKit

1: //Intrinsic parameters of the camera
2: ARParam wparam, cparam
3: //Size of the video camera (pixels)
4: //int xsize, ysize
5: //Open video device
6: if arVideoOpen(””)< 0 then exit(0)
7: if arVideoInqSize(&xsize,&ysize)< 0 then exit(0)
8: //Put the intrinsic parameters of the camera
9: if arParamLoad(”data/cameraparam.dat”,1,&wparam)< 0 then

10: print_error(Error putting the camera parameters)
11: arParamChangeSize(&wparam,xsize,ysize,&cparam)
12: //Initialize the camera
13: arInitCparam(&cparam)
14: //Add the marker
15: if patt_id=arLoadPatt("data/simple.patt")<0 then
16: print_error("Error adding the marker")
17: //Open the window
18: argInit(&cparam,1.0,0,0,0,0)
19: // The mainLoop function it is called automatically (a callback it is registered).

This algorithm grabs a image or frame, detects a marker and calls a function to
draw a 3D object.

The Initialization algorithm (Algorithm 2) consists on read the camera parame-
ters and the marker pattern to be used.
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Algorithm 3 Main Loop algorithm of ARToolKit

1: //Capture an image from the video stream
2: if dataPtr = (ARUint8 *)arVideoGetImage()==NULL then
3: arUtilSleep(2)
4: return
5: //Draw the image grabbed from the video stream
6: argDrawMode2D()
7: argDispImage(dataPtr,0,0)
8: //Detect the marker in the grabbed image (if it returns -1,
9: //it means error)

10: if arDetectMarker(dataPtr,100,&markerin f o,&markernum)<0 then
11: cleanup()
12: exit(0)
13: //Get another image from video stream
14: arVideoCapNext()
15: //Get the marker’s position and orientation with the best reliability after the

marker-detection algorithm has been run several times.
16: for j = 0,k =−1; j < marker_num; j++ do
17: if patt_id == marker_in f o[ j].id then
18: if (k ==−1) then k = j
19: else
20: if marker_in f o[k].c f < marker_in f o[ j].c f then k = j
21: //If the marker has been detected, it is obtained the transformation between the

marker and the camera
22: if k! =−1 then
23: arGetTransMat(&marker_in f o[k], p_center, p_width, patt_trans)
24: draw()
25: //Changing the buffer where it is draw the model
26: argSwapBu f f ers()

The main loop algorithm (Algorithm 3) is the main phase and it consists of:
grabbing an image of the video stream, detect a marker on the image, detecting
the marker’s position and orientation, computing the relative position between the
marker and the camera, and drawing a 3D object over the marker’s pattern (if it is
detected any).
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Algorithm 4 Draw algorithm

1: //Matrix 4x4 used by OpenGL
2: double gl_para[16]
3: GLfloat mat_ambient[]=0.0,0.0,1.0,1.0
4: GLfloat light_position[]=100.0,-200.0,200.0,0.0
5: //Change the context to 3D
6: argDrawMode3D()
7: //Change the camera view to 3D
8: argDraw3dCamera(0,0)
9: //Clean the buffer

10: glClear(GL_DEPTH_BUFFER_BIT)
11: glEnable(GL_DEPTH_TEST)
12: glDepthFunc(GL_LEQUAL)
13: //Convert the matrix of the marker to be used by OpenGL
14: argConvGlparam(patt_trans,gl_para)
15: glMatrixMode(GL_MODELVIEW)
16: glLoadMatrixd(gl_para)
17: //Draw the 3D object
18: glEnable(GL_LIGHTING)
19: glEnable(GL_LIGHT0)
20: glLightfv(GL_LIGHT0,GL_POSITION,light_position)
21: glMaterialfv(GL_FRONT,GL_AMBIENT,mat_ambient)
22: glTranslatef(0.0,0.0,60.0)
23: glRotatef(90.0,1.0,0.0,0.0)
24: glutSolidTeapot(80.0)
25: glDiable(GL_DEPTH_TEST)

Algorithm 4 shows how the draw algorithm of ARToolKit works. Firstly, a ma-
trix 4x4 is created. Secondly, the context is changed to 3D. Thirdly, the camera view
is changed to 3D. Fourthly, the buffer is cleaned. Fifthly, the marker’s pose matrix is
converted to be used by OpenGL. Sixthly, a 3D object is drawn.

The proposed methodology is explained in the next section.



Chapter 5

Methodology

Marker’s tracking research for augmented reality is a challenge that needs a practical
solution in real-time. In this chapter, it is explained the criteria of decision for the
proposed solution. Furthermore, it is explained the proposed solution, the light range
setting and the machine learning system.

5.1 Criteria of decision of evaluation of different algo-
rithms to reduce marker’s position error

In the past section, it was described the definition of the problem of how to have
an accurate marker’s position estimation under uncontrolled environment. In this
section, it is described the criteria of evaluation of different algorithms to reduce
marker’s position error.

The heuristics and evolutionary optimization approaches uses an intuitive sense,
which generally gives fast results, but these results are not necessarily the best so-
lution. In the case of the statistical approach, it can be helpful to understand the
outcome of the problem, the effect of some variables, the relationship between two
variables, the differences among groups of observations are the same or different,
and so on. Statistics are used to substantiate the findings and to help to establish
objectively when the results are significant. In Table 5.1 are defined and evaluated
different algorithm of artificial intelligence.

Therefore, the statistical approach is the only solution that can generate the best
solution. It is proposed to use an algorithm that uses a statistical as the machine
learning. Machine learning uses regression tool in optimization problems. These
type of problems have variables that affect a response variable, and the regression
tool is used to understand the relationship between the variables and the response
variable.

36
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Table 5.1: Evaluation of different algorithms

Algorithm Type of algorithm Brief description Evaluation of the algorithm for
marker’s position error reduction

Unsupervised
learning [42]

Machine learning It is used to find patterns of input In wasn’t needed to find a pattern in
a stream in this study case. The la-
bels of the data was already known and
the classification of the marker’s pattern
wasn’t in the scope of the problem.

Supervised
learning [42]

Machine learning Includes both classification and numeri-
cal regression. Regression is the attempt
to produce a function that describes the
relationship between inputs and outputs
and predicts how the outputs should
change as the inputs outputs should
change as the inputs change.

The classification problem wasn’t in the
scope of the problem. Regression is a
good option to reduce the marker’s er-
ror position.

Reinforcement
learning [42]

Machine learning The agent is rewarded for good re-
sponses and punished for bad ones. The
agent uses this sequence of rewards and
punishments to form a strategy for oper-
ating in its problem space.

It is an heuristic option and it doesn’t
guarantee an optical solution.

Heuristics [49] Search and optimization Heuristics supply with a “best guess”
for the path on which the solution lies.
Heuristics limit the search for solutions
into a smaller sample size.

The heuristics is an option for search a
solution in optimization in a fast way.

Hill climbing
[49]

Search and optimization The algorithm begin the search at a ran-
dom point on the landscape, and then,
by jumps or steps, we keep moving our
guess uphill, until we reach the top.

The heuristics is an option for search a
solution in optimization in a fast way.

Evolutionary
optimization
[13]

Evolutionary computation It uses a form of optimization search.
For example, it begins with a popu-
lation of organisms(the guesses) and
then allow them to mutate and recom-
bine, selecting only the fittest to survive
each generation (refining the guesses).
Forms of evolution computation include
swarm intelligence algorithms (such as
ant colony or particle swarm optimiza-
tion) and evolutionary algorithms (such
as genetic algorithms, gene expression
programming, and genetic program-
ming).

Evolutionary optimization searches in
limited population. It generates fast re-
sults but the search is limited.
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5.2 Proposed solution

In the past section, it was described the definition of the problem of how to have
an accurate marker’s position estimation under uncontrolled environment. In this
section, it is described the proposed solution for this problem, which consists on a
proposed methodology for estimating marker’s position based on machine learn-
ing techniques using statistical uncertainty of marker’s position under different light
conditions [66].

Based on a pre-statistical analysis (Anderson-Darling test) of the samples taken,
the data had a normal distribution. Using this information, it is proposed to use a
regression technique, which is used for fitting the data, which means that the noise
could be reduced. In addition, the pre-statistical analysis shows that the marker’s
position has different error depending on the light.

Based on these facts, it is proposed a methodology that consists on machine
learning using multiple regression for each type of regression range. This proposed
methodology consists of the following steps:

1. Take samples (initial preparation offline)

2. Apply machine learning to the samples taken (training phase)

3. Prediction of the marker’s position estimation

4. Optimization process of the prediction functions (which consists on the repeti-
tion of stage 1 and stage 3)

The proposed methodology needs a preparation offline before the usage of the
predictor function for fitting the data in order to have better marker’s position esti-
mations. In addition, this methodology like machine learning gets accurate results
when the training examples increase. Furthermore, the predictor function generated
must be used under the same light conditions that have been used in offline prepara-
tion.

5.2.1 Initial preparation offline

Before starting using the proposed methodology, an initial preparation offline is made,
which consists on the preparation of the experimental setup for taking samples, which
are the input to the machine learning process for fitting marker’s position data.

The experimental setup (as shown in Figure 6.1) for taking samples of the marker’s
position in different positions under different light conditions consist of the follow-
ing:

1. A luxmeter tool (to take light measurements)

2. An incandescent light bulb

3. A camera (Logitech C920) (in front the marker or fiducial)
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4. A marker (with QR-code pattern)

5. A computer (2.8 GHz Intel Core i7 MacBook Pro) (to take marker’s positions)

6. A device for getting the Ground truth (in this experimental setup was used a
CNC machine tool guide)

7. Stages (to fix these tools).

Figure 5.1: Experimental setup
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Figure 5.2: Experimental setup: CNC machine tool guide

The purpose of this step is to have a better understanding of the effect of the
light under the marker’s position estimation. For accomplish this purpose, the sam-
ples (of estimated marker’s positions under different light conditions and positions)
are taken for quantifying the statistical uncertainty. The process of taking samples
consists on taking and saving the data in a text file (using ARToolKit application)
when the fiducial along the CNC machine tool guide is moving and the light mea-
surement is taken with a luxmeter tool. Every time the marker reach the distance
wanted (which is moved with a CNC machine tool guide ), the light measurement is
taken with a luxmeter near the marker. The ground truth of the marker’s position is
taken with a CNC machine tool guide.

As it was explained before, the pre-statistical analysis of the data shows that the
marker’s position estimation has different error when the light changes. In order to
classify the data and have accurate data fitting of the marker’s position it is proposed
a method to classify light by range.

5.3 Light range setting

The accuracy of the marker’s position estimation depends on light conditions. In
order to minimize more the position estimation error, it is proposed to divide the
data into ranges of light conditions. Just because the marker’s position estimation is
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Figure 5.3: Process for setting light range

so sensitive to the light change, it is proposed treat the error by light range separately
in order to minimize the error.

Using the data taken from the samples (marker’s position estimation using AR-
ToolKit under different light conditions and positions), it is used to choose the light
ranges in order to classify the data. As shown in Figure 5.3, the process for setting
light range is the following: first, a relationship between the light measurement and
the XYZ position estimation must be searched. Second, an analysis of the relationship
of the position error and the light measurement must be done in order to set the light
ranges. In each light range chosen, the approximate error must be the same. Third,
the light range information must be added to the data input for the machine learning
system.

The process of ARToolKit for estimating the marker’s position is explained in
Algorithm 5, which shows the pseudo code of the algorithm for grabbing an image,
detect a marker and estimate its XYZ positions. This algorithm starts creating a file
for saving the data and detecting the camera. Then, if there isn’t any problem, a loop
starts for grabbing an image, detecting the marker in it, and saving the data in the
file. The data is saved in a file in the form of lists of the XYZ position. Then, the light
measurements are added into the file. At the end, the data is divided by light range
into three different files (one file for each light range).

Using the light range and the samples (taken in the initial preparation offline),
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Figure 5.4: Machine learning system for AR marker position estimation

the sample data is classified by light range, which is the input for the machine learn-
ing process in order to generate models for fitting the marker’s position by light
range.

5.4 Machine learning

As it was explained in the past section, it is used a machine learning based method for
fitting the data of marker’s position estimation by light range in order to minimize
the error. As it was explained before, the data has a normal distribution, so it was
applied multiple linear regression in order to generate models.

As shown in Figure 5.4, the proposed method for marker’s position estimation
under controlled environment works as following: first, the system receives as input
the sample data under different position and light conditions (as it was explained in
the past section). Then, the light measurements are taken with a luxmeter tool. Initial
marker position estimations (or sample data) are taken using ARToolKit application
(as it was shown in Algorithm 5). Second, the machine learning system (Algorithm
6) builds a model to fit the marker position data using the initial position estimations
and light condition data. The training is finished when the system stops receiving
training examples (or samples). Third, the system finds the best predictor function
for marker position estimation.

In order to get the maximum reduction of error of the marker’s position estima-
tion, the data is classified by light range. In the statistical analysis in each light range
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Figure 5.5: Machine learning process

the data has different mean error. The machine learning process is made using this
light range classification.

As shown in Figure 5.5, the data (i.e. XYZ marker’s position and light measure-
ment) is divided into n categories of light range and saved into three different files.
This data is the input of the machine learning system, which uses a multiple linear
regression algorithm. As shown in the Algorithm 6, the system grabs the informa-
tion and save it in a matrix in order to apply the gaussian elimination to it and obtain
a model. Then, using the loss function (Equation 3.2), the model is optimized with
the best coefficients for it. This optimization process with loss function consists on
changing the coefficients dynamically in a random way and find the best solution.
The system learns from previous computations and new training examples in order
to produce new models for AR marker position estimation. As shown in Figure 5.8,
the training process ends when the system stops receiving training data.

The distribution of the data is a very important step before made any predictor
function. A statistical analysis is needed in order to know the distribution of a popu-
lation. Knowing the distribution of the data, it is possible to generate more accurate
models (predictor functions).

As shown in Figure 5.6, the first step to fit data, it’s finding the data distribu-
tion. First, it’s done a statistical analysis, in which it’s tested the data for the typical
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Figure 5.6: Process for finding the data distribution

distributions like normal, uniform, logistic, and so on. Second, the distribution that
fits better the data must be chosen. Third, the distribution chosen must be used in
the machine learning system in order to find the best model that fit the data.

Using this machine learning based method, the predictor functions are gener-
ated and used to make estimations for marker’s position with more accuracy. In the
next section, it is going to be explained this process.

5.4.1 Prediction using machine learning

In this section, it is explained the use of the predictor functions in order to make
accurate estimations of marker’s position. A better accuracy in marker’s position
estimation is needed in Augmented reality in order to get rid errors like jittering (a
virtual object appears and disappears) or to get more accuracy for detecting objects
with a marker over them.

As shown in Figure 5.5, in order to make a prediction, new data (XYZ marker’s
positions and light measurement) must be given to the system. Using the models
generated using machine learning and the data to estimate the marker’s position
with more accuracy.

The accuracy obtained with these predictor functions is improved when the
machine learning based system gets more training examples, this process is called
optimization. This process is explained in the next section.

5.4.2 Optimization of the models

In industrial applications as detecting the position of objects with markers over them,
it is very important to have accuracy in order to have a full or semi automatic system.
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Figure 5.7: Prediction process

The system learns from previous training models and new data in order to get
new models for AR marker position estimation. As shown in Figure 5.8, the input are
old models (it also could be the old data with ground truth) in order to generate new
models. The training process ends when the system stops receiving training data.

The models become better and more accurate when it is used more training
examples. The training examples must have been taken in many conditions possi-
ble. For example, take samples in the same positions, but it was changed the light
conditions every time the sample is taken. The samples taken must be at the same
distances, but it was used a different light condition.
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Figure 5.8: Optimization process of predictor function

In the next chapter, it is explained how to set the experimental setup and the
conditions of the experiment. It is also explained how the light range selection was
made.



Chapter 6

Experimental setup and results

In the previous chapter, the problem and proposed solution of how to make the
marker’s detection more accurate in an uncontrolled environment was discussed.
It was proposed a machine learning based method in order to fit the data generated
by the ARToolKit application. It was also proposed to generate a predictor function
for each light range. It was also proposed a method for choosing a light range. This
light range was chosen by similar average error of marker’s position. This approach
reduces the error of the marker’s position.

In this section, it is described the light range selection based in the samples
taken. Indeed, in this section it is described the experimental setup and the exper-
iments carried out. The same experiment (with different parameters) was repeated
three times.

6.1 Experimental setup

The proposed method needs an initial preparation offline before using this method
properly in order to make any marker position estimations. Firstly, before taking
any sample, it is needed to prepare the experimental setup (as shown in Figure 6.1)
with the luxmeter tool, the camera (Logitech C920, camera web ACTECK CW-760
standard and kinect Xbox 360), the marker (ARToolKit fiducial), the computers (2.8
GHz Intel Core i7 MacBook Pro for machine learning system and a 2.00GHz Intel(R)
Pentium(R) Dual CPU T3200 Toshiba Satellite for getting samples), CNC machine
tool guide (for training), and stages (to fix these tools). Secondly, the samples (of es-
timated marker positions under different light conditions) are taken and saved in a
text file when the fiducial along the CNC machine tool guide is moving and the light
measurement is taken with a luxmeter tool. It was used CNC machine tool guide in
order to get the ground-truth position of the marker. The data is divided into three
categories of light range and saved into three different files. Thirdly, the data saved
in a text file by the ARToolKit application is the input of the machine learning appli-
cation written in C++, which made the regression analysis with the data. Algorithm
6 shows the training process using multiple linear regression to generate a model for
each range light. The machine learning application returns predictor functions for

47
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each light range. These predictor functions are used to estimate the marker position.
In each sample, it is going to take into account the last marker’s position esti-

mation in each position where it is taken. Every camera or kinect has an auto-focus,
which generates noise to the data at the start of the marker’s detection. Therefore, it
is going to take into account the sample #400 in each position.

The cameras or kinect used are the following:

1. Logitech C920 with a resolution of 1920 x 1080 RGB @ 30fps

2. Camera web ACTECK CW-760 standard with a resolution 640 x 480 RGB @
30fps

3. Kinect Xbox 360 with a resolution 1280 x 960 RGB @ 12fps

In this experiment, it is studied the effect of underfitting in each sample. Each
sample has 41 marker’s position estimations that were taken with 10mm of differ-
ence between each position estimation. Then, every sample is reduced in order to
establish the underfitting functions. Therefore, in each sample set of 41 position esti-
mations are eliminated 20 position estimations. Then, each underfit sample consists
on position estimations that were taken every 20mm through 400mm.

Figure 6.1: Experimental setup

6.2 Light range selection

The light range selection is an important step in order to divide the data into groups.
The main idea of this process is to reduce the light error that makes noise. If the data
is divided into groups, then the noise is not going to affect all the estimations.

The light range used in this work was chosen through the statistical analysis of
the sample data taken. In the analysis of the data, it was found that three groups
have the same mean error. In the light range from 40 to 100 lux, the mean marker’s
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position error was of 40.69 mm. In the light range from 100 to 200 lux, it was found
that the mean marker error was of 40.13 mm. In the light range from 200 to 310 lux, it
was found that the mean marker’s position error was of 69.76 mm. Then, these three
groups of light measurement are used in our experiment as three range light, which
are shown in Table 6.1.

Light Ranges
Type of range Lux range Average error of marker’s position

Range #1 40-99 40.69
Range #2 100-199 40.13
Range #3 200-310 69.76

Table 6.1: Light ranges

6.3 Standard distance for each operations

In automated assembly it is used robotics arms. In this study case, where used two
types of robots: a pick-and-place robot and a welding robot. The operations in this
case are pick and place a piece and weld the joints of the assembly. The ISO 10218-2:
2011:Robots and robotic devices [31] establish the security distances for stopping the
robots. It was taken into account the safe distance in order to establish the scope of
the experiment.

The formula for the safe stopping distance is in Table 6.2. In many cases the
safe stopping distance is taken into account in the design of a work cell. In this study
case, it is used a pick-and-place robot with a reach distance of 710mm. It is also used
a welding robot with a reach distance of 1437mm. In this case, the reach distance is
taken as a minimum distance from the camera and the respective robot.

6.4 Experiments using a Logitech C920 camera

In sample 1, Figure 6.2, the light range used in this sample goes from 41 to 303 lux,
where the light changes dynamically and randomly. In this sample, the mean of the
marker’s position error using ARToolKit approach is 49.8645 mm.

In sample 2, Figure 6.3, the light range used in this sample goes from 124 to 279
lux, where the light changes dynamically and randomly. In this sample, the mean of
the marker’s position error using ARToolKit approach is 32.7584 mm.

In sample 3, Figure 6.4, the light range used in this sample goes from 116 to 256
lux, where the light changes dynamically and randomly. In this sample, the mean of
the marker’s position error using ARToolKit approach is 20.5810 mm.
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Standard distance for operation
Type of operation Description Distance Formula
Pick-and-place Robot CRS F3 710mm Robot’s reach=710mm
Welding Fanuc ARC

Mate 0iBt
1437mm Robot’s reach=1437mm

Safe distance Safe distance to
stop a robot

DS DS = 63(in/s) ∗ (T S +
TC + T R) + DPF
Where:
DPF= 1.2 m (48 in.)
DS= minimum safe dis-
tance
TS= stopping time of device
TC= worst stopping time
of control system
TR= response time of safe-
guarding device including
interface
DPF= maximum travel distance
toward a hazard once someone
has entered the field [62]

Table 6.2: Safe distances for each operation
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Figure 6.2: Experimental results of position detection error on Sample 1
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Figure 6.3: Experimental results of position detection error on Sample 2
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Figure 6.4: Experimental results of position detection error on Sample 3

In these three samples, it was found that the light conditions change the marker
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position estimation using ARToolKit libraries. The mean of the marker’s position
error was not constant in these samples because of the light conditions were different
in each sample. In our proposed approach, the light condition variable is taken into
account in order to have better marker position estimations.

In the statistical analysis of the samples, it was found that the data has a normal
distribution. It was used the Anderson-Darling normality test on the three samples in
order to know if the samples have a normal distribution. It is possible to use multiple
linear regression in order to generate models to estimate marker’s position because
the data came from a normal distribution.

In Table F.1 are shown the fit models generated for the proposed method and the
simple linear regression. Also, in Table F.2 are shown the underfit models generated
for the proposed method and the simple linear regression.

The Figure 6.5 shows the cumulative improvement of different approaches for
the marker’s position estimation in z-direction on sample 3. The improvement of the
proposed approach and the simple regression approach are compared to ARToolKit.
It was compared the cumulative error in each position of the proposed method and
the simple linear regression method with the ARToolKit position estimation error.
The ARToolKit approach refers to get estimations of marker position using ARToolKit
libraries. The simple linear regression analysis approach refers to generate predictor
functions of the data without be classified by light range. The proposed approach
consists in classify the data by light range and then do a multiple regression analysis
to the data. In this experiment, the three light ranges used are from 40 to 100 lux, 100
to 200 lux and 200 to 310 lux.

As shown in Figure 6.5, it was found that using the proposed method and tak-
ing into account light conditions, the error of position estimation can be reduced. The
mean of the position error using the proposed approach is of 1.258 mm, additionally,
the mean of the position error using ARToolKit approach is 20.58 mm. Using the
proposed approach, it is obtained better results than using only ARToolKit approach.
In the case of underfitting, the mean of the marker’s position error using ARToolKit
approach is 20.6142mm, and the mean of the position error using the proposed ap-
proach is of 7.8325mm.
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Figure 6.5: Experimental results of improvement of proposed approach and simple
regression approach on Sample 3

Furthermore, the proposed approach has better results if the training set is in-
creased. The position error was reduced 87% in this scenario. Furthermore, nearly
99% of the total variability in the response variable (marker position) is accounted for
by the estimated marker position by ARToolKit and the light measurement. In this
experiment, the regression line models have a R2 = 0.99 that indicates a strong lin-
ear relationship between the ground truth and the predictor variables (the estimated
marker position and the light conditions).

In the case of underfitting proposed method, the marker’s position error was re-
duced 62.00% in this scenario. Furthermore, nearly 98.18% of the total variability in
the response variable (marker’s position) is accounted for by the estimated marker’s
position by ARToolkit and the light measurement. In this experiment the regression
line models have a R2 = 0.9641 and R2 = 0.9995 respectively that indicates a strong lin-
ear relationship between the ground truth and the predictor variables (the estimated
marker’s position and the light conditions).

In Figure 6.5 is shown the maximum improvement of the proposed method vs
the ARToolKit approach is of 35.3535144mm and the minimum improvement is of
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Figure 6.6: Experimental results of improvement of proposed approach and simple
regression approach on Sample 3 with underfitting

2.2849mm. In Figure 6.5 is shown the maximum improvement of the simple linear
regression vs ARToolKit approach is of 33.8724mm and the minimum improvement
is of 2.1167mm. In this case, there is not much improvement between the proposed
method and the simple linear regression method in each marker’s position estima-
tion.

In Figure 6.6 is shown the maximum improvement (with underfitting) of the
proposed method vs the ARToolKit approach is of 41.1117mm and the minimum
improvement is of 15.38mm. In Figure6.6 is shown the maximum improvement (with
underfitting) of the simple linear regression vs ARToolKit approach is of 28.01862mm
and the minimum improvement is of 11.9335mm. In this case, there is a significant
improvement from the proposed method and the simple linear regression.

In Figure 6.7 is shown the cumulative improvement (which is the sum of all the
improvements in each position) of the proposed method vs simple linear regression
in this sample is of 20.85%. In Figure 6.8 is shown the improvement of the under-
fitting (using less data) of sample 2, the cumulative improvement is of 1863.63%. In
this case, the proposed method have more improvement when it is used less data.
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Therefore, using this camera, it is clearly that the proposed method have better re-
sults than the simple linear regression, and that the proposed method much have
better performance when it is used less data than the simple linear regression.
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Figure 6.7: Experimental results of improvement % of proposed approach vs simple
linear regression approach on Sample 3
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Figure 6.8: Experimental results of improvement % of proposed approach vs simple
linear regression approach on Sample 3 with underfitting

6.5 Experiments using a camera web Acteck CW-760 stan-
dard

In this experiment, it was used a camera web Acteck CW-760 standard for taking
samples of marker’s position estimation. Figure 6.9 shows that the light range used
in this samples goes from 26 to 250 lux, where the light changes dynamically. In
this sample, the mean of the marker’s position error using ARToolKit approach is
133.3852mm. In the case of underfitting, the mean of the marker’s position error
using ARToolKit approach is 134.0064mm.
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Figure 6.9: Experimental results of position detection error on the sample using a
camera web Acteck

In Table F.1 are shown the fit models generated for the proposed method and the
simple linear regression. Also, in Table F.2 are shown the underfit models generated
for the proposed method and the simple linear regression.

The Figure 6.10 shows the cumulative improvement of different approaches for
the marker’s position estimation in z-direction using a camera web Acteck CW-760
standard. The improvement of the proposed approach and the simple linear regres-
sion approach are compared to ARToolKit. In this sample using a camera web Acteck
CW-760 standard, it was found that using the proposed method the marker’s position
estimation error can be reduced. The mean of the position error using the proposed
approach is of 2.227mm. Using this approach, it’s also obtained better results than
using only ARToolKit approach. In the case of underfitting, the mean of the position
error using the proposed approach is of 2.5759mm.

Furthermore,the proposed approach has better results if the training set is in-
creased. The marker’s position error was reduced 98.33% in this scenario. Further-
more, nearly 99.08% of the total variability in the response variable (marker’s posi-
tion) is accounted for by the estimated marker’s position by ARToolkit and the light
measurement. In this experiment, the regression line models have a R2 = 0.9757,R2 =
0.9972 and R2 = 0.9997 respectively that indicates a strong linear relationship between
the ground truth and the predictor variables (the estimated marker’s position and the
light conditions).

In the case of underfit proposed method, the marker’s position error was re-
duced 97.84% in this scenario. Furthermore, nearly 99.41% of the total variability in
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the response variable (marker’s position) is accounted for by the estimated marker’s
position by ARToolkit and the light measurement. In this experiment the regression
line models have a R2 = 0.9827,R2 = 1.00 and R2 = 0.9998 respectively that indicates a
strong linear relationship between the ground truth and the predictor variables (the
estimated marker’s position and the light conditions).

In Figure 6.10 is shown the maximum improvement of the proposed method
vs the ARToolKit approach is of 187.6010mm and the minimum improvement is of
71.2973mm. In Figure 6.10 is shown the maximum improvement of the simple linear
regression vs ARToolKit approach is of 188.5919mm and the minimum improvement
is of 71.4334mm. In this case, both approaches have almost the same performance.
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Figure 6.10: Experimental results of improvement of proposed approach and simple
regression approach on Sample using a camera web Acteck

In Figure 6.11 is shown the maximum improvement of the underfit proposed
method vs the ARToolKit approach is of 186.5510mm and the minimum improve-
ment is of 71.9584mm. In Figure6.11 is shown the maximum improvement of the
underfit simple linear regression vs ARToolKit approach is of 188.3479mm and the
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minimum improvement is of 72.03581mm. In this case, the simple linear regression
have a slightly better performance than the proposed method.
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Figure 6.11: Experimental results of improvement of proposed approach and simple
regression approach on Sample using a camera web Acteck with underfitting

In Figure 6.12 is shown the cumulative improvement (which is the sum of all the
improvements in each position) of the proposed method vs simple linear regression
in this sample is of 0.5028%. In Figure 6.13 is shown the improvement of the underfit
sample 2, the cumulative improvement is of -7.6209%. In this case, only in when it
is used enough data the proposed method have a slightly better performance, and
when it is used less data the simple linear regression have a slightly better perfor-
mance.
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Figure 6.12: Experimental results of improvement % of proposed approach vs simple
linear regression approach on Sample using a camera web Acteck
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Figure 6.13: Experimental results of improvement % of proposed approach vs sim-
ple linear regression approach on the Sample with underfitting using a camera web
Acteck

6.6 Experiments using a Kinect 360 Xbox

In this experiment, it was used a Kinect 360 Xbox for taking samples of marker’s
position estimation. Figure 6.14 shows that the light range used in this samples goes
from 130 to 249 lux, where the light changes dynamically. In this sample, the mean
of the marker’s position error using ARToolKit approach is 209.9307mm. In the case
of underfitting, the mean of the marker’s position error using ARToolKit approach is
211.9582mm.
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Figure 6.14: Experimental results of position detection error on the sample using a
Kinect

In Table F.1 are shown the fit models generated for the proposed method and the
simple linear regression. Also, in Table F.2 are shown the underfit models generated
for the proposed method and the simple linear regression.

The Figure 6.15 shows the cumulative improvement of different approaches for
the marker’s position estimation in z-direction using a Kinect Xbox 360. The im-
provement of the proposed approach and the simple linear regression approach are
compared to ARToolKit. In this sample using Kinect, it was also found that using
the proposed method the marker’s position estimation error can be reduced. The
mean of the position error using the proposed approach is of 2.166mm, addition-
ally, the mean of the marker’s position estimation error using ARToolKit approach
is 209.9307mm. Using the proposed approach, it’s also obtained better results than
using only ARToolKit approach. In the case of underfitting, the mean of the position
error using the proposed approach is of 4.2455mm.
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Figure 6.15: Experimental results of improvement of proposed approach and simple
regression approach on Sample using a kinect

Furthermore, the proposed approach has better results if the training set is in-
creased. The marker’s position error was reduced 98.97% in this scenario. Further-
more, nearly 99.25% of the total variability in the response variable(marker’s posi-
tion) is accounted for by the estimated marker’s position by ARToolKit and the light
measurement. In this experiment the regression line models have a R2 = 0.999 and
R2 = 0.986 that indicates a strong linear relationship between the ground truth and
the predictor variables (the estimated marker’s position and the light conditions).

In the case of underfit proposed method, the marker’s position error was re-
duced 97.97% in this scenario. Furthermore, nearly 99.64% of the total variability in
the response variable (marker’s position) is accounted for by the estimated marker’s
position by ARToolkit and the light measurement. In this experiment the regression
line models have a R2 = 0.9936 and R2 = 0.9992 respectively that indicates a strong lin-
ear relationship between the ground truth and the predictor variables (the estimated
marker’s position and the light conditions).

In Figure 6.15 is shown the maximum improvement of the proposed method
vs the ARToolKit approach is of 335.8237mm and the minimum improvement is of
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106.2425mm. In Figure 6.15 is shown the maximum improvement of the simple linear
regression vs ARToolKit approach is of 322.3875mm and the minimum improvement
is of 104.4134mm. In this case, the proposed method have a slightly better perfor-
mance than the simple linear regression.

In Figure 6.17 is shown the maximum improvement of the underfit proposed
method vs the ARToolKit approach is of 371.5629mm and the minimum improve-
ment is of 106.6792mm. In Figure6.17 is shown the maximum improvement of the
underfit simple linear regression vs ARToolKit approach is of 326.8494mm and the
minimum improvement is of 105.4133mm. In this case, the proposed method have a
slightly better performance than the simple linear regression.

In Figure 6.16 is shown the cumulative improvement (which is the sum of all the
improvements in each position) of the proposed method vs simple linear regression
in this sample is of 22.04%. In Figure 6.18 is shown the improvement of the underfit
sample 2, the cumulative improvement is of 43.1221%. In this case, the proposed
method have a better improvement when it is used less data than the simple linear
regression.
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Figure 6.16: Experimental results of improvement % of proposed approach vs simple
linear regression approach on Sample using a kinect
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Figure 6.17: Experimental results of improvement of proposed approach and simple
regression approach on Sample using a kinect with underfitting
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Figure 6.18: Experimental results of improvement % of proposed approach vs simple
linear regression approach on Sample with underfitting using a kinect

6.7 Overfitting and Underfitting results

Overfitting and Underfitting are common problems for training in machine learn-
ing. Overfitting refers that the model fit the data almost 100%, which means that the
model have noise and random fluctuations taken into account. The problem with
this is that the model cannot be used with new data or sample and the model only
works too well in the training data.

In machine learning, it is better to have a model that has a constant performance
with new data than a model that only works with the initial training data. The model
mustn’t explain 100% of the data, it must explain enough (like 80%) to be used with
new training sets and have a constant performance.

In the case of underfitting, the model is not good enough to be used. In machine
learning, an underfit model is not a suitable model and have a poor performance on
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the training data.
In this case, it was taken 400 replicates in each position, but only it was taken

into account the last estimation of those 400 replicates. The samples were taken in 41
positions each 10mm. Using these training data, the machine learning algorithm is
going to be used with those 41 position estimations and with 20 positions in order to
know the performance of the underfit models.

In Table 6.3 are shown how the fit models (where all the data of samples was
taken into account) have a significant or slightly better performance than the underfit
models (where only half of the data was taken into account).

Table 6.3: Results of fit and underfit models for marker’s position estimation

Results of fit and underfit models for marker’s position estimation
Camera Method Reduction of error
Camera Logitech Underfit proposed method 62%

Fit proposed method 87%
Camera Acteck Underfit proposed method 97.84%

Fit proposed method 98.33%
Kinect Underfit proposed method 97.97

Fit proposed method 98.97%



Chapter 7

Conclusions

A novel method for estimating marker position under semi-controlled environment
in which the lighting conditions, brightness and contrast level change dynamically is
proposed. This method uses multiple regression technique based on machine learn-
ing using as variables: the light measurements and estimations of marker’s positions.
The proposed method based on machine learning is to learn the relationship between
the light and the marker’s position estimations. The advantage of this method is
the reduction of noise caused by light and other factors as extrinsic and intrinsic pa-
rameters of the camera. After the first training process, this method can be used in
an uncontrolled environment where the light changes. The accuracy of the estima-
tions using this method increases as the training sets increases. A better tracking can
be performed after the first training. In our study case, it was used the proposed
method to increase the accuracy of the estimation of marker’s position for the track-
ing of pieces using markers of QR pattern, where a pick-and-place robot receives
the piece (or marker’s) position in order to grab the piece and place it in their place
(for assembly). The accuracy of the estimations of the marker’s position in the ex-
periments goes from 99% to 99.25%. In the case of underfitting, the accuracy of the
estimations of the marker’s position in the experiments goes from 98.18% to 99.64%.

7.1 Contributions

This research was presented as a solution for a particular problem in the area of track-
ing. In augmented reality, there is not much research of maker’s tracking in aug-
mented reality using cameras or kinect. Furthermore, there isn’t any research about
the effect of light on marker’s tracking. Indeed, it was studied the effect of light in
different marker’s positions in order to know how relevant for the error reduction
or marker’s position estimation is. The experiments were taken using ground truth
(CNC machine tool guide) in different position in a range of 400mm with different
light conditions.

69
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7.2 Initial questions

In this research it was proposed several questions that in this work should be an-
swered.

1. How to reduce error or noise of the position estimation of a marker?

2. Does the light affect the marker’s position estimation?

3. How to measure the effect of light in the marker’s position estimation?

The marker’s position estimations have noise of different factors. The extrinsic
and intrinsic parameters of the camera cause noise to the marker’s position estima-
tions. Another variable that cause noise to the marker’s position is the brightness,
illumination and occlusion. In order to get a reduction of this noise, it was proposed
to measure the light in order to get a measurement to reduce the noise of the illumi-
nation and brightness. Furthermore, it was proposed to use machine learning and
multiple regression technique in order to learn the noise cause by the light and other
noise. After studying the data, it was concluded that the data has a normal distri-
bution, then a linear multiple regression was proposed in order to do predictions of
marker’s position, which is key to get a better estimations.

It was studied the data of the samples under different light conditions, where
the light changes dynamically and has a big variation depending on the position in
the real world. As a result, it was concluded that the data can be subdivided into
groups. Each group should have the same variance of error of marker’s position
estimation. Using these groups, it was set each light range. It was concluded that the
best way to have more accuracy was to have multiple predictor functions for each
light range for marker’s position estimation. The proposed approach improves the
accuracy of the camera-pose estimation under lightning conditions that can change
dynamically.

In this experiment, the light conditions were different in each sample taken,
which affected the position estimations, but the noise of light conditions and camera
parameters was significantly reduced using the machine learning approach. The po-
sition error does not have a constant tendency because it depends on many factors
such as the camera parameters and the lighting conditions. Additionally, our method
improves the results when more training data is given.

In order to measure the effect of brightness, illumination and darkness, it is
proposed to measure brightness of light reaching the marker before it is reflected,
which is measured in lux. The sensitive cell always faces the camera. The Figure 7.1
is depicted how to take a light measurement of the marker using a luxmeter.
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Figure 7.1: Light measurement system

The reduction of error is achieved because of the key elements as multiple lin-
ear regression, the divided data by light range, and the measurement of brightness
or illumination noise. It was studied the patterns of the data (marker’s position esti-
mations using ARToolKit libraries) under different light conditions. In this research,
it was concluded that the data has a normal distribution. Furthermore, it was es-
tablished the light ranges that are used to divide the data. Then, it was established
the right type of model for this data, i.e. multiple linear regression. It was concluded
that machine learning is the best way to learn and get better estimation for marker’s
position estimation (based on the distribution of the data).

7.3 Limitations

Although this method increases the accuracy (in the experiments), which goes from
98.18% to 99.64%, this method have some limitations of usage. The camera cannot
detect the marker when it is out of range (when the light is under 40 lux or when its
above the 310 lux). The system needs an initial training to work. Another limitation
is the amount of training sets that is given to the system because the system depends
on the training set in order to get better predictor function. Furthermore, the occlu-
sion problem wasn’t studied in this research. The noise of the extrinsic and intrinsic
parameters of the camera are not measured in this research.

Another limitation of this method is that the conditions of the training set. The
samples of the marker’s position estimation are taken in different distances from the
camera to the marker. The predictor functions generated using this method only
works under the same range of distance that the training sets are taken. In this exper-
iment, the training sets are taken from 220 mm to 1060 mm.
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7.4 Scope of Applicability

This method is used in order to get a better tracking of the marker. In this experiment,
it was used the marker to locate pieces to be assembled, and are grabbed and placed
using a pick-and-place robot. The position in marker’s coordinates is converted to
the pick-and-place robot coordinates. The marker’s position estimations are used to
pick-and-place the piece (to be assembled) using the robot.

In Figure 7.2 is depicted the pieces that must be grabbed and placed using the
arm manipulator. The pieces have a marker to locate the position of each piece.

Figure 7.2: Study case: Pieces to be assembled

In Figure 7.3 is depicted the pick-and-place robot, the camera system, and the
pieces to be placed in their respective place.

Figure 7.3: Study case: Pick-and-place robot and camera system

In Figure 7.4 is depicted the vision system used to estimate the position of each
piece to be assembled.
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Table 7.1: Tracking system approaches

Treatments Light changes Method Multiple cameras

Rabbi’s approach [53] X Multiple files
Maidi’s approach [41] Statistical method
Herout’s approach [28] Mathematical method
Dhiman’s approach [16] Algebraic method X
Yamauchi’s approach [74] Algebraic method
Freeman’s approach [24] Statistical method
Wang’s approach [70] Hierarchical contour analysis
Our’s approach X Statistical method

Figure 7.4: Study case: Vision system interface

7.5 Comparative issues

In Table 7.1 are shown the different approaches for tracking markers for Augmented
Reality. There are different methods used based in different techniques. These meth-
ods use statistical analysis, mathematical methods, algebraic method, and so on.
Only one of these methods mentioned above take into account the light changes.
This system uses stereo vision (multiple cameras).

This new approach of using machine learning for fitting AR marker estimations
taking into account light measurement is a novel way to reduce noise and under-
stand better the relationships between light measurement and AR marker position
estimations.

7.6 Future research

Future research will be focused on studying the light noise and the noise of the ex-
trinsic and intrinsic parameters of the camera. Future research of the measurement
of the noise is very important to increase the accuracy of the marker’s tracking.
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The marker’s tracking problem is going to be studied to increase the accuracy
and be used in the industry, medical applications, or other application that need more
accuracy.

Future research of the light noise under different distances from the camera to
the marker must be done. Furthermore, the study of different types of the effect of
light in the marker’s tracking.



Appendix A

Optimal Linear Prediction

In linear regression, a response variable, called Y, is estimated using a p-dimensional
vector of prediction variables or features ~X . In order to find the optimal predictor
function, it is used the conditional expectation of the p-dimensional vector of predic-
tion variables or features ~X , as shown in equation A.1.

r(~x) = E[Y |~X =~x] (A.1)

The conditional expectation r(~x) is approximated by a linear function of ~x, say
~x · β . This approximation is a decision (or choice) (for a person or the automated
program). This approximation can be accurate. Using the Taylor series, the function
r(~x) can be expanded about a point, say~u:

r(~x) = r(~u)
p

∑
i=1

(
∂ r
∂xi

∣∣∣∣
~u

)
(xi−ui)+O(||~x−~u||2) (A.2)

or, in more compact vector calculus notation,

r(~x) = r(~u)+(~x−~u) ·∇r(~u)+O(||~x−~u||2) (A.3)

In optimization of the predictor function, the points ~x are close to ~u, then the
terms O(||~x−~u||2) are small, so the linear approximation is good. In order to find the
best function, the mean-squared error must be minimized again:

MSE(β ) = E[(Y −~X ·β )2] (A.4)

Going through the optimization is parallel to the one-dimension case, with the
conclusion that the optimal β is

β =V−1Cov[~X ,Y ] (A.5)

where V is the covariance matrix of ~X , i.e., Vi j = Cov[Xi,X j], and Cov[~X ,Y ] is the
vector of covariances between the predictor variables and Y,i.e. Cov[~X ,Y ]i =Cov[Xi,Y ].
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Appendix B

Optimal linear predictor

In order to estimate β , the following probabilistic assumptions are needed: firstly,
the observations (~Xi,Yi) are independent for different values of i, with unchanging
covariances. Then, the sample covariances will coverge on the true covariances:

1
n

XTY →Cov[~X ,Y ] (B.1)

1
n

XT X →V (B.2)

where as before X is the data-frame matrix with one row for each data point and
one column for each feature, and similarly for Y.

So, by continuity,

β̂ = (XT X)−1XTY → β (B.3)

and it is a consistent estimator.
Furthermore, the residual sum of squares

RSS(β )≡
n

∑
i=1

(yi−~xi ·β )2 (B.4)

is going to be minimized. The minimizer is the same β̂ we got by plugging in the
sample covariances. In this case, there is no need probabilistic assumptions.
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Appendix C

ARToolKit-Kinect code for marker’s
position estimation

The solution to get the marker’s position using a kinect or a camera is written in C++.
The solution project is composed of the next files:

1. main.cpp

2. MyKinect.cpp

3. MyKinect.h

4. MyVector.h

5. Math.h

6. Common.h

7. Util.h
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#ifdef _WIN32 
#include <windows.h> 
#endif 
#include <stdio.h> 
#include <stdlib.h> 
#ifndef __APPLE__ 
#include <GL/gl.h> 
#include <GL/glut.h> 
#else 
#include <OpenGL/gl.h> 
#include <GLUT/glut.h> 
#endif 
#include <AR/gsub.h> 
#include <AR/video.h> 
#include <AR/param.h> 
#include <AR/ar.h> 
 
//#include "Common.h" 
#include "MyKinect.h" 
#include "HandDetectorOpenNI.h" 
 
/* set up the video format globals */ 
 
#ifdef _WIN32 
char   *vconf = "Data\\WDM_camera_flipV.xml"; 
#else 
char   *vconf = ""; 
#endif 
 
int             xsize = 640; 
int   ysize = 480; 
int             thresh = 100; 
int             count = 0; 
 
int             mode = 1; 
char           *cparam_name    = "Data/MyCameraParameter4.dat"; 
ARParam         cparam; 
char           *patt_name      = "Data/patt.g"; //"Data/patt.hiro" 
int             patt_id; 
int             patt_width     = 40.0; 
double          patt_center[2] = {0.0, 0.0}; 
double          patt_trans[3][4]; 
 
float   size = 50.0f; 
int   displayMode =1; 
bool   drawFromKinect = false; 
 
//MyKinect object 
MyKinect  g_MyKinect; 
HandDetectorOpenNI g_HandDetectorOpenNI; 
 
static void   init(void); 
static void   cleanup(void); 
static void   keyEvent( unsigned char key, int x, int y); 
static void   mainLoop(void); 
static void   draw( double trans[3][4] ); 
 
void ClickPointerFunction() 
{ 
 size += 10.0f; 

APPENDIX D. MAIN.CPP
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} 
 
int main(int argc, char **argv) 
{ 
 printf("Sample1\n"); 
 glutInit(&argc, argv); 
       init(); 
 
 //init for Kinect 
 g_MyKinect.Init(); 
 
 g_MyKinect.StartGeneratingAll(); 
  
 arVideoCapStart(); 
        argMainLoop( NULL, keyEvent, mainLoop ); 
 return (0); 
} 
 
static void   keyEvent( unsigned char key, int x, int y) 
{ 
    /* quit if the ESC key is pressed */ 
    if( key == 0x1b ) { 
        printf("*** %f (frame/sec)\n", (double)count/arUtilTimer()); 
        cleanup(); 
        exit(0); 
    } 
 
    if( key == 'c' ) { 
        printf("*** %f (frame/sec)\n", (double)count/arUtilTimer()); 
        count = 0; 
 
        mode = 1 - mode; 
        if( mode ) printf("Continuous mode: Using arGetTransMatCont.\n"); 
         else      printf("One shot mode: Using arGetTransMat.\n"); 
    } 
 if(key == '1') 
  displayMode = 1; 
 if(key == '2') 
  displayMode = 2; 
 if(key == '3') 
  displayMode = 3; 
 if(key == 'k') 
  drawFromKinect = true; 
 if(key == 'c') 
  drawFromKinect = false; 
} 
 
/* main loop */ 
static void mainLoop(void) 
{ 
    static int      contF = 0; 
    ARUint8         *dataPtr; 
    ARMarkerInfo    *marker_info; 
    int             marker_num; 
    int             j, k; 
 
 //update new data 
 g_MyKinect.Update(); 
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 if(drawFromKinect) 
 { 
  //get image data to detect marker 
  if( (dataPtr = (ARUint8 *)g_MyKinect.GetBGRA32Image()) == NULL 
) { 
   arUtilSleep(2); 
   return; 
  } 
 } 
 else 
 { 
  /* grab a vide frame */ 
  if( (dataPtr = (ARUint8 *)arVideoGetImage()) == NULL ) { 
   arUtilSleep(2); 
   return; 
  } 
 } 
  
 
    if( count == 0 ) arUtilTimerReset(); 
    count++; 
 
    /* detect the markers in the video frame */ 
    if( arDetectMarker(dataPtr, thresh, &marker_info, &marker_num) < 0 ) 
{ 
        cleanup(); 
        exit(0); 
    } 
 
 if(drawFromKinect) 
 { 
  //option . You can choose many display mode. image, Depth by 
Color, depth mixed image 
  if(displayMode == 2) 
   dataPtr = (ARUint8 *)g_MyKinect.GetDepthDrewByColor(); 
  else 
   if(displayMode == 3) 
    dataPtr = (ARUint8 
*)g_MyKinect.GetDepthMixedImage(); 
 } 
 
       argDrawMode2D(); 
       argDispImage( dataPtr, 0,0 ); 
 
       arVideoCapNext(); 
 
    /* check for object visibility */ 
    k = -1; 
    for( j = 0; j < marker_num; j++ ) { 
        if( patt_id == marker_info[j].id ) { 
            if( k == -1 ) k = j; 
            else if( marker_info[k].cf < marker_info[j].cf ) k = j; 
        } 
    } 
    if( k == -1 ) { 
        contF = 0; 
        argSwapBuffers(); 
        return; 
    } 
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    /* get the transformation between the marker and the real camera */ 
    if( mode == 0 || contF == 0 ) { 
        arGetTransMat(&marker_info[k], patt_center, patt_width, 
patt_trans); 
    } 
    else { 
        arGetTransMatCont(&marker_info[k], patt_trans, patt_center, 
patt_width, patt_trans); 
    } 
    contF = 1; 
 
    draw( patt_trans ); 
 
    argSwapBuffers(); 
} 
 
static void init( void ) 
{ 
    ARParam  wparam; 
/***********************************VIDEO********************************
**************/ 
    /* open the video path */ 
    if( arVideoOpen( vconf ) < 0 ) exit(0); 
    /* find the size of the window */ 
    if( arVideoInqSize(&xsize, &ysize) < 0 ) exit(0); 
    printf("Image size (x,y) = (%d,%d)\n", xsize, ysize); 
/***********************************VIDEO********************************
**************/ 
    /* set the initial camera parameters */ 
    if( arParamLoad(cparam_name, 1, &wparam) < 0 ) { 
        printf("Camera parameter load error !!\n"); 
        exit(0); 
    } 
 
    arParamChangeSize( &wparam, xsize, ysize, &cparam ); 
    arInitCparam( &cparam ); 
    printf("*** Camera Parameter ***\n"); 
    arParamDisp( &cparam ); 
 
    if( (patt_id=arLoadPatt(patt_name)) < 0 ) { 
        printf("pattern load error !!\n"); 
        exit(0); 
    } 
 
    /* open the graphics window */ 
    argInit( &cparam, 1.0, 0, 0, 0, 0 ); 
} 
 
/* cleanup function called when program exits */ 
static void cleanup(void) 
{ 
    arVideoCapStop(); 
    arVideoClose(); 
    argCleanup(); 
    //clean MyKinect 
    g_MyKinect.Exit(); 
} 
 
static void draw( double trans[3][4] ) 
{ 
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    double    gl_para[16]; 
    GLfloat   mat_ambient[]     = {0.0, 0.0, 1.0, 1.0}; 
    GLfloat   mat_flash[]       = {0.0, 0.0, 1.0, 1.0}; 
    GLfloat   mat_flash_shiny[] = {50.0}; 
    GLfloat   light_position[]  = {100.0,-200.0,200.0,0.0}; 
    GLfloat   ambi[]            = {0.1, 0.1, 0.1, 0.1}; 
    GLfloat   lightZeroColor[]  = {0.9, 0.9, 0.9, 0.1}; 
     
    argDrawMode3D(); 
    argDraw3dCamera( 0, 0 ); 
    glClearDepth( 1.0 ); 
    glClear(GL_DEPTH_BUFFER_BIT); 
    glEnable(GL_DEPTH_TEST); 
    glDepthFunc(GL_LEQUAL); 
     
    /* load the camera transformation matrix */ 
    argConvGlpara(trans, gl_para); 
 //printf("%.2f  %.2f  %.2f\n", trans[0][3], trans[1][3], 
trans[2][3]); 
    glMatrixMode(GL_MODELVIEW); 
    glLoadMatrixd( gl_para ); 
 
    glEnable(GL_LIGHTING); 
    glEnable(GL_LIGHT0); 
    glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
    glLightfv(GL_LIGHT0, GL_AMBIENT, ambi); 
    glLightfv(GL_LIGHT0, GL_DIFFUSE, lightZeroColor); 
    glMaterialfv(GL_FRONT, GL_SPECULAR, mat_flash); 
    glMaterialfv(GL_FRONT, GL_SHININESS, mat_flash_shiny);  
    glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient); 
    glMatrixMode(GL_MODELVIEW); 
    glTranslatef( 0.0, 0.0, size/2.0f ); 
    glutSolidCube(size); 
    glDisable( GL_LIGHTING ); 
 
    glDisable( GL_DEPTH_TEST ); 
} 
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#include "MyKinect.h" 
 
//-----------------------------------------------------------------------
------------------------------ 
//init 
//-----------------------------------------------------------------------
------------------------------ 
int MyKinect::Init() 
{ 
 XnStatus nRetVal = XN_STATUS_OK; 
 xn::EnumerationErrors errors; 
 nRetVal = context.InitFromXmlFile(SAMPLE_XML_PATH, &errors); 
 if (nRetVal == XN_STATUS_NO_NODE_PRESENT) 
 { 
  XnChar strError[1024]; 
  errors.ToString(strError, 1024); 
  printf("%s\n", strError); 
  return nRetVal; 
 } 
 else if (nRetVal != XN_STATUS_OK) 
 { 
  printf("Open failed: %s\n", xnGetStatusString(nRetVal)); 
  return nRetVal; 
 } 
 
 //config depth generator 
 nRetVal = context.FindExistingNode(XN_NODE_TYPE_DEPTH, depthGen); 
 CHECK_RC(nRetVal, "Find depth generator"); 
  
 //config image generator 
 nRetVal = context.FindExistingNode(XN_NODE_TYPE_IMAGE, imageGen); 
 CHECK_RC(nRetVal, "Find image generator"); 
 
 depthGen.GetMetaData(depthMD); 
 imageGen.GetMetaData(imageMD); 
 
  // Hybrid mode isn't supported in this sample 
 if (imageMD.FullXRes() != depthMD.FullXRes() || imageMD.FullYRes() 
!= depthMD.FullYRes()) 
 { 
  printf ("The device depth and image resolution must be 
equal!\n"); 
  return -1; 
 } 
 
 // RGB is the only image format supported. 
 if (imageMD.PixelFormat() != XN_PIXEL_FORMAT_RGB24) 
 { 
  printf("The device image format must be RGB24\n"); 
  return -1; 
 } 
 
#ifdef USE_USERDETECTOR 
 //config user generator 
 nRetVal = context.FindExistingNode(XN_NODE_TYPE_USER, userGen); 
 if (nRetVal != XN_STATUS_OK) 
 { 
  nRetVal = userGen.Create(context); 
  CHECK_RC(nRetVal, "Find user generator"); 
 } 
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 //init userDetector 
 userDetector = new UserDetector(&userGen, &userStatus); 
#endif 
 
 depthGen.GetAlternativeViewPointCap().SetViewPoint(imageGen); 
 
#ifndef USE_MIRROR 
 context.SetGlobalMirror(FALSE); 
#endif 
 
 //context.StartGeneratingAll(); 
 return 1; 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
void MyKinect::StartGeneratingAll() 
{ 
 context.StartGeneratingAll(); 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
void MyKinect::Update() 
{ 
 context.WaitAnyUpdateAll(); 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
void MyKinect::Exit() 
{ 
#ifdef USE_USERDETECTOR 
 delete userDetector; 
#endif 
 context.Shutdown(); 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
unsigned char * MyKinect::GetBGRA32Image() 
{  
 depthGen.GetMetaData(depthMD); 
 imageGen.GetMetaData(imageMD); 
 
 const XnDepthPixel* pDepth = depthMD.Data(); 
 const XnUInt8* pImage = imageMD.Data(); 
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 const XnRGB24Pixel* pImageRow = imageMD.RGB24Data(); 
 unsigned char* pBuffRow = imageBGRA32Buf + imageMD.YOffset(); 
 
 for (XnUInt y = 0; y < imageMD.YRes(); ++y) 
 { 
  const XnRGB24Pixel* pImage = pImageRow; 
  unsigned char* pBuff = pBuffRow + imageMD.XOffset(); 
 
  for (XnUInt x = 0; x < imageMD.XRes(); ++x, ++pImage) 
  { 
    pBuff[0] = pImage->nBlue; 
    pBuff[1] = pImage->nGreen; 
    pBuff[2] = pImage->nRed; 
    pBuff[3] = 0; 
    pBuff +=4; 
  } 
  pImageRow += imageMD.XRes(); 
  pBuffRow += imageMD.XRes()*4; 
 } 
 
 return imageBGRA32Buf; 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
unsigned char * MyKinect::GetDepthDrewByColor() 
{ 
 depthGen.GetMetaData(depthMD); 
 const XnDepthPixel* pDepth = depthMD.Data(); 
  
 // Calculate the accumulative histogram (the yellow display...) 
 xnOSMemSet(depthHist, 0, MAX_DEPTH*sizeof(float)); 
 
 unsigned int nNumberOfPoints = 0; 
 for (XnUInt y = 0; y < depthMD.YRes(); ++y) 
 { 
  for (XnUInt x = 0; x < depthMD.XRes(); ++x, ++pDepth) 
  { 
   if (*pDepth != 0) 
   { 
    depthHist[*pDepth]++; 
    nNumberOfPoints++; 
   } 
  } 
 } 
 
 for (int nIndex=1; nIndex< MAX_DEPTH; nIndex++) 
 { 
  depthHist[nIndex] += depthHist[nIndex-1]; 
 } 
  
 if (nNumberOfPoints) 
 { 
  for (int nIndex=1; nIndex< MAX_DEPTH; nIndex++) 
  { 
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   depthHist[nIndex] = (unsigned int)(256 * (1.0f - 
(depthHist[nIndex] / nNumberOfPoints))); 
  } 
 } 
 
 xnOSMemSet(depthDrewByColorBuf, 0, sizeof(depthDrewByColorBuf)); 
 
 const XnDepthPixel* pDepthRow = depthMD.Data(); 
 unsigned char* pBuffRow = depthDrewByColorBuf + depthMD.YOffset(); 
 
 for (XnUInt y = 0; y < depthMD.YRes(); ++y) 
 { 
  const XnDepthPixel* pDepth = pDepthRow; 
  unsigned char* pBuff = pBuffRow + depthMD.XOffset(); 
 
  for (XnUInt x = 0; x < depthMD.XRes(); ++x, ++pDepth) 
  { 
   if (*pDepth != 0) 
   { 
    int nHistValue = depthHist[*pDepth]; 
    pBuff[2] = nHistValue; 
    pBuff[1] = nHistValue; 
    pBuff[0] = 0; 
    pBuff[3] = 0; 
    } 
    pBuff += 4; 
  } 
  pDepthRow += depthMD.XRes(); 
  pBuffRow += depthMD.FullXRes()*4; 
 } 
 
 return depthDrewByColorBuf; 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
unsigned char * MyKinect::GetDepthMixedImage() 
{ 
 xnOSMemSet(depthMixedImageBuf, 0, sizeof(depthMixedImageBuf)); 
 
 depthGen.GetMetaData(depthMD); 
 const XnDepthPixel* pDepth = depthMD.Data(); 
 const XnDepthPixel* pDepthRow = depthMD.Data(); 
 unsigned char* pBuffRow = depthMixedImageBuf + depthMD.YOffset(); 
 unsigned char* pImgRow = imageBGRA32Buf + depthMD.YOffset(); 
 
 for (XnUInt y = 0; y < depthMD.YRes(); ++y) 
 { 
  const XnDepthPixel* pDepth = pDepthRow; 
  unsigned char* pBuff = pBuffRow + depthMD.XOffset(); 
  unsigned char* pImg = pImgRow + depthMD.XOffset(); 
 
  for (XnUInt x = 0; x < depthMD.XRes(); ++x, ++pDepth) 
  { 
   if (*pDepth != 0) 
   { 
    pBuff[2] = pImg[2]; 
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    pBuff[1] = pImg[1]; 
    pBuff[0] = pImg[0]; 
    pBuff[3] = 0; 
   } 
   pBuff += 4; 
   pImg += 4; 
  } 
 
  pDepthRow += depthMD.XRes(); 
  pBuffRow += depthMD.FullXRes()*4; 
  pImgRow += depthMD.FullXRes()*4; 
 } 
 
 return depthMixedImageBuf; 
} 
 
//-----------------------------------------------------------------------
------------------------------ 
// 
//-----------------------------------------------------------------------
------------------------------ 
void MyKinect::GetImageSize(int *xSize, int *ySize) 
{ 
 *xSize = (int)depthMD.FullXRes(); 
 *ySize = (int)depthMD.FullYRes(); 
} 
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#ifndef _MYKINECT_H_ 
#define _MYKINECT_H_ 
 
#include "Common.h" 
 
#ifdef USE_USERDETECTOR 
 #include "UserDetector.h" 
 #include "PlayerStatus.h" 
#endif 
 
class MyKinect 
{ 
private: 
 unsigned char imageBGRA32Buf[640*480*4];   //BGRA 
 unsigned char depthDrewByColorBuf[640*480*4];  //BGRA 
 unsigned char depthMixedImageBuf[640*480*4];  //BGRA 
 float   depthHist[MAX_DEPTH]; 
 
public: 
 //OpenNI 
 Context   context; 
 
#ifdef USE_USERDETECTOR 
 UserGenerator userGen; 
 PlayerStatus userStatus; 
 UserDetector* userDetector; 
#endif 
 
 DepthGenerator depthGen; 
 ImageGenerator imageGen; 
 DepthMetaData depthMD; 
 ImageMetaData imageMD; 
 
public: 
 MyKinect(){} 
 ~MyKinect(){} 
 
 int Init(); 
 void StartGeneratingAll(); 
 void Update(); 
 void Exit(); 
 
 unsigned char * GetBGRA32Image(); 
 unsigned char * GetDepthDrewByColor(); 
 unsigned char * GetDepthMixedImage(); 
 void GetImageSize(int *xSize, int *ySize); 
}; 
 
#endif 
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#ifndef _MYVECTOR_H_ 
#define _MYVECTOR_H_ 
 
#include "Common.h" 
#include "Math.h" 
 
class XV3 : public XnVector3D { 
public: 
        // ctors 
        XV3() { X = Y = Z = 0; } 
        XV3(float x, float y, float z) { X=x, Y=y, Z=z; } 
        XV3(float* v) { X=v[0], Y=v[1], Z=v[2]; } 
        XV3(const XnVector3D& v) { X=v.X, Y=v.Y, Z=v.Z; } 
 
        // object lifecycle 
 
        XV3& assign(float x, float y, float z) { X=x, Y=y, Z=z; return 
*this; } 
        XV3& assign(float* v) { X=v[0], Y=v[1], Z=v[2]; return *this; } 
        XV3& assign(const XnVector3D& v) { X=v.X, Y=v.Y, Z=v.Z; return 
*this; } 
        XV3& operator=(const XnVector3D& v) { assign(v); return *this; } 
 
        // add, sub, mul, div 
 
        XV3& operator+=(const XnVector3D& v) { X+=v.X, Y+=v.Y, Z+=v.Z; 
return *this; } 
        XV3 operator+(const XnVector3D& v) const { return XV3(X+v.X, 
Y+v.Y, Z+v.Z); } 
 
        XV3& operator-=(const XnVector3D& v) { X-=v.X, Y-=v.Y, Z-=v.Z; 
return *this; } 
        XV3 operator-(const XnVector3D& v) const { return XV3(X-v.X, Y-
v.Y, Z-v.Z); } 
 
        XV3& operator*=(float a) { X*=a, Y*=a, Z*=a; return *this; } 
        XV3 operator*(float a) const { return XV3(X*a, Y*a, Z*a); } 
 
        XV3& operator/=(float a) { X/=a, Y/=a, Z/=a; return *this; } 
        XV3 operator/(float a) const { return XV3(X/a, Y/a, Z/a); } 
 
        XV3 operator-() const { return XV3(-X, -Y, -Z); } 
 
        // products 
 
        float dot(const XnVector3D& v) const { return X*v.X + Y*v.Y + 
Z*v.Z; } 
 
        float dotNormalized(const XV3& v) const { return dot(v) / 
magnitude() / v.magnitude(); } 
 
        XV3& crossM(const XnVector3D& v) { assign(Y*v.Z-Z*v.Y, Z*v.X-
X*v.Z, X*v.Y-Y*v.X); return *this; } 
        XV3 cross(const XnVector3D& v) const { return XV3(Y*v.Z-Z*v.Y, 
Z*v.X-X*v.Z, X*v.Y-Y*v.X); } 
 
        // magnitudes 
 
        /** squared magnitude */ 
        float magnitude2() const { return X*X + Y*Y + Z*Z; } 

APPENDIX D. MYVECTOR.H

89



 
        float magnitude() const { return sqrt(magnitude2()); } 
 
        /** squared distance */ 
        float distance2(const XnVector3D& v) const { return (*this - 
v).magnitude2(); } 
 
        float distance(const XnVector3D& v) const { return 
sqrt(distance2(v)); } 
 
        // normalizations 
 
        XV3& normalizeM() 
        { 
                float m = magnitude(); 
                return assign(X/m, Y/m, Z/m); 
        } 
 
        XV3 normalize() const 
        { 
                float m = magnitude(); 
                return XV3(X/m, Y/m, Z/m); 
        } 
 
        // other derivables 
 
        XV3& interpolateM(const XnVector3D& v, float alpha = 0.5f) 
        { 
                return assign(::interpolate(X, v.X, alpha), 
::interpolate(Y, v.Y, alpha), ::interpolate(Z, v.Z, alpha)); 
        } 
 
        XV3 interpolate(const XnVector3D& v, float alpha = 0.5f) const 
        { 
                return XV3(::interpolate(X, v.X, alpha), ::interpolate(Y, 
v.Y, alpha), ::interpolate(Z, v.Z, alpha)); 
        } 
}; 
 
#endif 
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#ifndef _MATH_H_ 
#define _MATH_H_ 
 
#include "Common.h" 
 
#define _USE_MATH_DEFINES 
#include <math.h> 
 
inline float interpolate(float x1, float x2, float alpha = 0.5f) 
{ 
        return x1 + (x2 - x1) * alpha; 
} 
 
inline int square(int i) 
{ 
        return i * i; 
} 
 
inline float square(float f) 
{ 
        return f * f; 
} 
 
inline float DEG_TO_RADIAN(float deg) 
{ 
 return (float)(deg*M_PI/180.0f); 
} 
#endif 
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#ifndef _COMMON_H_ 
#define _COMMON_H_ 
 
#include <XnOpenNI.h> 
#include <XnCodecIDs.h> 
#include <XnCppWrapper.h> 
 
using namespace xn; 
 
//#define USE_USERDETECTOR 
//#define USE_MIRROR 
 
#define MAX_DEPTH 10000 
#define SAMPLE_XML_PATH "Data/SamplesConfig.xml" 
 
#define CHECK_RC(nRetVal, what)        
  \ 
 if (nRetVal != XN_STATUS_OK)        
 \ 
 {            
    \ 
  printf("%s failed: %s\n", what, xnGetStatusString(nRetVal));\ 
  return nRetVal;         
   \ 
 } 
 
 
#endif 
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#ifndef _UTIL_H_ 
#define _UTIL_H_ 
 
#include "Common.h" 
 
const float CONFIDENCE_THRESHOLD = 0.5f; 
#ifndef USE_MACRO 
inline bool isConfident(XnSkeletonJointPosition jointPos) { 
        return jointPos.fConfidence >= CONFIDENCE_THRESHOLD; 
} 
 
inline bool isConfident(XnSkeletonJointOrientation jointOrientation) 
{ 
        return jointOrientation.fConfidence >= CONFIDENCE_THRESHOLD; 
} 
#else 
#define isConfident(jointPos) ((jointPos).fConfidence >= 
CONFIDENCE_THRESHOLD) 
#endif 
 
#ifndef USE_MACRO 
inline bool i2b(int i) { return !!i; } 
#else 
#define i2b(i) (!!(i)) 
#endif 
 
#ifndef USE_MACRO 
inline float b2fNormalized(unsigned char b) { return b/255.0f; } 
#else 
#define b2fNormalized(b) ((b)/255.0f) 
#endif 
 
#endif 
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Appendix D

Machine learning code for marker’s
position estimation

The solution to get the marker’s position using the proposed approach is written in
C Sharp. The solution project is composed of a main.cs file.
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using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using MathNet.Numerics; 
using MathNet.Numerics.LinearRegression; 
using MathNet.Numerics.LinearAlgebra; 
using MathNet.Numerics.LinearAlgebra.Double; 
using Excel = Microsoft.Office.Interop.Excel; 
using System.Data; 
using System.Configuration; 
using System.Collections; 
using System.Web; 
using System.Web.Security; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.WebControls.WebParts; 
using System.Web.UI.HtmlControls; 
using System.Data.OleDb; 
using System.IO; 
 
 
 
 
namespace multipleregression 
{ 
    class Program 
    { 
 
        static void Main(string[] args) 
        { 
                         
            String[] gz = Column(3); 
            String[] rx = Column(4); 
            String[] ry = Column(5); 
            String[] rz = Column(6); 
            String[] lux = Column(7); 
 
            Double[] dgz = Array.ConvertAll(gz,Double.Parse); 
            Double[] drx = Array.ConvertAll(rx, Double.Parse); 
            Double[] dry = Array.ConvertAll(ry, Double.Parse); 
            Double[] drz = Array.ConvertAll(rz, Double.Parse); 
            Double[] dlux = Array.ConvertAll(lux, Double.Parse); 
 
 
            var X = DenseMatrix.OfColumns(new Vector<double>[] { 
DenseVector.OfArray(drx), DenseVector.OfArray(dry), 
DenseVector.OfArray(drz), DenseVector.OfArray(dlux) }); 
            var y = DenseVector.OfArray(dgz); 
 
            var betha = MultipleRegression.QR(X, y); 
 
            double[][] xdata = new double[][] { drx,dry,drz,dlux}; 
            double[] ydata = dgz; 
 
            Console.WriteLine(betha); 
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            var R2 = GoodnessOfFit.RSquared(xdata.Select(x=> 
betha[0]+betha[1]*x[0]+betha[2]*x[1]+betha[3]*x[2]+betha[4]*x[3]),ydata); 
            Console.WriteLine(R2.ToString()); 
 
 
        } 
 
        public static string[] Column(int col) 
        { 
            Microsoft.Office.Interop.Excel.Application xlsApp = new 
Microsoft.Office.Interop.Excel.Application(); 
 
            if (xlsApp == null) 
            { 
                Console.WriteLine("EXCEL could not be started. Check that 
your office installation and project references are correct."); 
                return null; 
            } 
 
            //Displays Excel so you can see what is happening 
            //xlsApp.Visible = true; 
 
            Excel.Workbook wb = 
xlsApp.Workbooks.Open("C:\\Users\\Cristy\\Desktop\\Kinect-ARToolKit-
master\\Samples\\KinectOnly\\Sample1\\Sample1\\test.xlsx", 
                0, true, 5, "", "", true, Excel.XlPlatform.xlWindows, 
"\t", false, false, 0, true); 
            Excel.Sheets sheets = wb.Worksheets; 
            Excel.Worksheet ws = (Excel.Worksheet)sheets.get_Item(1); 
 
            Excel.Range firstColumn = ws.UsedRange.Columns[col]; 
            System.Array myvalues = 
(System.Array)firstColumn.Cells.Value; 
            string[] strArray = myvalues.OfType<object>().Select(o => 
o.ToString()).ToArray(); 
            return strArray; 
        } 
    } 
} 
 
 
            /* 
            ReadExcel readerObj = new ReadExcel(); 
 
            // "C:\\Users\\Cristy\\Documents\\Visual Studio 
2015\\Projects\\multipleregression\\multipleregression\\bin\\Debug\\Book1
.xls" 
 
            OleDbConnection excelConnection = null; 
            OleDbDataAdapter adapter = null; 
 
            OleDbConnection cn = new OleDbConnection(); 
            DataTable schemaTable; 
 
 
            cn.ConnectionString = "Provider=Microsoft.ACE.OLEDB.12.0;Data 
Source=C:\\Users\\Cristy\\Documents\\Visual Studio 
2015\\Projects\\multipleregression\\multipleregression\\bin\\Debug\\Book1
.xlsx;Extended Properties='Excel 8.0;HDR=YES;'"; 
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            cn.Open(); 
 
            schemaTable = 
cn.GetOleDbSchemaTable(OleDbSchemaGuid.Tables,new Object[] { null, 
null,"ID","TABLE"}); 
 
            for (int i = 0; i < schemaTable.Columns.Count; i++) { 
                
Console.WriteLine(schemaTable.Columns[i].ToString()+":"+schemaTable.Rows[
0][1].ToString()); 
            } 
            cn.Close(); 
            Console.ReadLine(); 
             
            try 
            { 
                excelConnection = new OleDbConnection(); 
                excelConnection.ConnectionString = 
"Provider=Microsoft.ACE.OLEDB.12.0;Data 
Source=C:\\Users\\Cristy\\Documents\\Visual Studio 
2015\\Projects\\multipleregression\\multipleregression\\bin\\Debug\\Book1
.xlsx;Extended Properties='Excel 8.0;HDR=YES;'"; 
                excelConnection.Open(); 
                DataTable dtTables = new DataTable(); 
 
                //to get the schema of the workbook. 
                dtTables = excelConnection.GetSchema(); 
              
 
 
                //get the tables in the workbook 
                dtTables = 
excelConnection.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, null); 
 
                for (int i = 0; i < dtTables.Columns.Count; i++) 
                { 
                    
Console.WriteLine("Columns"+dtTables.Columns[i].ToString()); 
                } 
 
                for (int i = 0; i < dtTables.Rows.Count; i++) 
                { 
                    
Console.WriteLine("Rows"+dtTables.Rows[i].ItemArray[2].ToString()); 
                   // 
Console.WriteLine(dtTables.Rows[i]["ID"].ToString()); 
                    Console.ReadLine(); 
                } 
 
                 
 
                String[] excelSheets = null; 
                if ((dtTables != null)) 
                { 
                    excelSheets = new String[dtTables.Rows.Count]; 
                    int i = 0; 
 
 
 
                    // Add the sheet name to the string array. 
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                    foreach (DataRow row in dtTables.Rows) 
                    { 
                        excelSheets[i] = row["TABLE_NAME"].ToString(); 
 
                        Console.WriteLine(excelSheets[i]); 
                        i++; 
                    } 
                } 
                DataSet ds = new DataSet(); 
 
                //prepare dataset from the tables in the workbook 
                foreach (string sheet in excelSheets) 
                { 
                    OleDbCommand cmd = new OleDbCommand(); 
                    cmd.Connection = excelConnection; 
                    cmd.CommandText = "Select * from [" + sheet + "]"; 
                    DataTable dtItems = new DataTable(); 
                    dtItems.TableName = sheet; 
 
                    adapter = new OleDbDataAdapter(); 
                    adapter.SelectCommand = cmd; 
 
                    // adapter.FillSchema(ds 
                    adapter.Fill(dtItems); 
                    ds.Tables.Add(dtItems); 
                } 
            } 
 
            finally 
            { 
                adapter.Dispose(); 
                excelConnection.Dispose(); 
            } 
 
 
        } 
 
 
        public partial class ReadExcel : System.Web.UI.Page 
        { 
            public ReadExcel() 
            { 
                Page_Load(); 
            } 
            protected void Page_Load() 
            { 
                ImportExcel("C:\\Users\\Cristy\\Documents\\Visual Studio 
2015\\Projects\\multipleregression\\multipleregression\\bin\\Debug\\Book1
.xls"); 
                ImportExcel2007("C:\\Users\\Cristy\\Documents\\Visual 
Studio 
2015\\Projects\\multipleregression\\multipleregression\\bin\\Debug\\Book1
.xlsxc"); 
            } 
 
            //Read To Excel 97-2003 File 
            private Boolean ImportExcel(String strFilePath) 
            { 
                if (!File.Exists(strFilePath)) return false; 
                String strExcelConn = "Provider=Microsoft.Jet.OLEDB.4.0;" 

APPENDIX E. MAIN.CS

98



                + "Data Source=" + strFilePath + ";" 
                + "Extended Properties='Excel 8.0;HDR=Yes'"; 
                OleDbConnection connExcel = new 
OleDbConnection(strExcelConn); 
                OleDbCommand cmdExcel = new OleDbCommand(); 
                try 
                { 
                    cmdExcel.Connection = connExcel; 
 
                    //Check if the Sheet Exists 
                    connExcel.Open(); 
                    DataTable dtExcelSchema; 
                    //Get the Schema of the WorkBook 
                    dtExcelSchema = 
connExcel.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, null); 
                    connExcel.Close(); 
 
                    //Read Data from Sheet1 
                    connExcel.Open(); 
                    OleDbDataAdapter da = new OleDbDataAdapter(); 
                    DataSet ds = new DataSet(); 
                    string SheetName = 
dtExcelSchema.Rows[0]["TABLE_NAME"].ToString(); 
                    cmdExcel.CommandText = "SELECT * From [" + SheetName 
+ "]"; 
                    //Range Query 
                    //cmdExcel.CommandText = "SELECT * From [" + 
SheetName + "A3:B5]"; 
 
                    Console.WriteLine(); 
 
                    da.SelectCommand = cmdExcel; 
                    da.Fill(ds); 
                    connExcel.Close(); 
                    return true; 
                } 
                catch 
                { 
                    return false; 
                } 
                finally 
                { 
                    cmdExcel.Dispose(); 
                    connExcel.Dispose(); 
                } 
            } 
            //Read To Excel 97-2007 File 
            private Boolean ImportExcel2007(String strFilePath) 
            { 
                if (!File.Exists(strFilePath)) return false; 
                String strExcelConn = 
"Provider=Microsoft.ACE.OLEDB.12.0;" 
                + "Data Source=" + strFilePath + ";" 
                + "Extended Properties='Excel 8.0;HDR=No'"; 
                OleDbConnection connExcel = new 
OleDbConnection(strExcelConn); 
                OleDbCommand cmdExcel = new OleDbCommand(); 
                try 
                { 
                    cmdExcel.Connection = connExcel; 
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                    //Check if the Sheet Exists 
                    connExcel.Open(); 
                    DataTable dtExcelSchema; 
                    //Get the Schema of the WorkBook 
 
    dtExcelSchema = connExcel.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, 
null); 
                    connExcel.Close(); 
 
                    //Read Data from Sheet1 
                    connExcel.Open(); 
                    OleDbDataAdapter da = new OleDbDataAdapter(); 
                    DataSet ds = new DataSet(); 
                    string SheetName = 
dtExcelSchema.Rows[0]["TABLE_NAME"].ToString(); 
                    cmdExcel.CommandText = "SELECT * From [" + SheetName 
+ "]"; 
 
                    //Range Query 
                    //cmdExcel.CommandText = "SELECT * From [" + 
SheetName + "A3:B5]"; 
 
                    da.SelectCommand = cmdExcel; 
                    da.Fill(ds); 
                    connExcel.Close(); 
                    return true; 
                } 
                catch 
                { 
                    return false; 
                } 
                finally 
                { 
                    cmdExcel.Dispose(); 
                    connExcel.Dispose(); 
                } 
 
            } 
        } 
     
    }  
} 
    */ 
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Appendix E

Marker’s position estimations and
light measurements

The samples were taken using two different cameras with different resolution and a
kinect. The data taken are the following:

1. Marker’s position estimation samples using a Logitech Camera

2. Marker’s position estimation with three different approaches using a Logitech
Camera

3. Marker’s position estimation sample using a Kinect

4. Marker’s position estimation with three different approaches using a Kinect
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Marker	
position	in	z-
direction(mm) Sample	1 Sample	2 Sample	3

Light	
measurem-
ent	on	

sample	1

Light	
measurem-
ent	on	

sample	2

Light	
measurem-
ent	on	

sample	3
220 n/a n/a 15.0111 n/a n/a 235
230 n/a n/a 14.35089 n/a n/a 239
240 n/a 23.5996 16.1964 n/a 279 231
250 n/a 25.0029 16.18826 n/a 241 256
260 n/a 23.5033 17.64176 n/a 267 251
270 n/a 24.6639 15.73986 n/a 256 240
280 n/a 27.3303 19.21728 n/a 253 239
290 n/a 26.0913 19.41742 n/a 263 234
300 n/a 29.375 21.11121 n/a 224 240
310 n/a 29.9891 19.23355 n/a 236 233
320 n/a 26.3706 19.14162 n/a 238 222
330 n/a 26.9443 21.28199 n/a 245 220
340 n/a 34.1309 21.43634 n/a 214 220
350 n/a 30.7957 22.64834 n/a 218 205
360 n/a 31.3784 23.50922 n/a 224 225
370 n/a 28.6336 15.43759 n/a 255 227
380 n/a 32.9572 21.94681 n/a 207 221
390 n/a 29.3429 28.01275 n/a 206 215
400 n/a 33.9061 23.34109 n/a 216 229
410 n/a 33.7833 29.15536 n/a 232 210
420 n/a 39.3724 30.00048 n/a 203 194
430 n/a 34.8804 23.05413 n/a 228 185
440 n/a 47.0189 29.55238 n/a 213 201
450 n/a 32.6214 28.49078 n/a 224 168
460 n/a 33.0015 29.93659 n/a 220 168
470 n/a 40.9683 32.88354 n/a 211 178
480 n/a 28.6755 32.50513 n/a 207 170
490 n/a 33.5173 32.40691 n/a 203 157
500 n/a 41.8524 35.47276 n/a 195 166
510 n/a 31.7933 30.76759 n/a 194 166
520 40.70677 43.5899 29.01133 270 210 177
530 40.32662 38.1273 33.1881 274 186 166
540 41.20622 21.5459 3.303736 84 183 155
550 45.68391 32.1548 3.627462 94 155 160
560 43.65714 29.9311 21.87836 90 203 150
570 50.40752 35.2754 20.31003 94 195 146
580 39.11388 36.5422 6.568803 303 205 163
590 52.30216 36.0124 3.815341 87 168 140
600 59.24441 45.4997 3.969592 82 163 135

APPENDIX F. ARTOOLKIT-CAMERA LOGITECH MARKER’S POSITION ESTIMATION
SAMPLES AND LIGHT MEASUREMENT
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Marker	
position	in	z-
direction(mm) Sample	1 Sample	2 Sample	3

Light	
measurem-
ent	on	

sample	1

Light	
measurem-
ent	on	

sample	2

Light	
measurem-
ent	on	

sample	3
610 34.3214 33.1234 8.791145 97 182 135
620 47.24361 36.8222 4.270113 82 156 116
630 55.22807 44.0509 n/a 87 132 n/a
640 54.10155 28.9228 n/a 78 124 n/a
650 35.76732 n/a n/a 89 n/a n/a
660 52.5987 n/a n/a 82 n/a n/a
670 29.59228 n/a n/a 84 n/a n/a
680 48.88712 n/a n/a 79 n/a n/a
690 29.07539 n/a n/a 82 n/a n/a
700 40.53143 n/a n/a 84 n/a n/a
710 23.58767 n/a n/a 285 n/a n/a
720 50.17313 n/a n/a 76 n/a n/a
730 26.28451 n/a n/a 235 n/a n/a
740 22.94787 n/a n/a 70 n/a n/a
750 18.97103 n/a n/a 240 n/a n/a
760 12.45333 n/a n/a 70 n/a n/a
770 -9.22997 n/a n/a 270 n/a n/a
780 9.733734 n/a n/a 69 n/a n/a
790 -32.5058 n/a n/a 237 n/a n/a
800 -4.62657 n/a n/a 67 n/a n/a
810 -29.9479 n/a n/a 233 n/a n/a
820 -30.5333 n/a n/a 73 n/a n/a
830 -44.0617 n/a n/a 273 n/a n/a
840 -27.887 n/a n/a 227 n/a n/a
850 -13.0692 n/a n/a 64 n/a n/a
860 -20.9957 n/a n/a 204 n/a n/a
870 -27.136 n/a n/a 64 n/a n/a
880 -23.1735 n/a n/a 204 n/a n/a
890 -28.844 n/a n/a 66 n/a n/a
900 -54.8585 n/a n/a 213 n/a n/a
910 -50.902 n/a n/a 66 n/a n/a
920 -60.0326 n/a n/a 203 n/a n/a
930 -58.8562 n/a n/a 67 n/a n/a
940 -67.5129 n/a n/a 216 n/a n/a
950 -69.1366 n/a n/a 60 n/a n/a
960 -125.741 n/a n/a 193 n/a n/a
970 -95.4772 n/a n/a 151 n/a n/a
980 -85.0467 n/a n/a 151 n/a n/a
990 -81.7366 n/a n/a 137 n/a n/a
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Marker	
position	in	z-
direction(mm) Sample	1 Sample	2 Sample	3

Light	
measurem-
ent	on	

sample	1

Light	
measurem-
ent	on	

sample	2

Light	
measurem-
ent	on	

sample	3
1000 -74.9101 n/a n/a 153 n/a n/a
1010 -69.8427 n/a n/a 144 n/a n/a
1020 -62.3518 n/a n/a 166 n/a n/a
1030 -79.4263 n/a n/a 146 n/a n/a
1040 -82.0197 n/a n/a 41 n/a n/a
1050 -91.6475 n/a n/a 156 n/a n/a
1060 -79.9165 n/a n/a 145 n/a n/a

APPENDIX F. ARTOOLKIT-CAMERA LOGITECH MARKER’S POSITION ESTIMATION
SAMPLES AND LIGHT MEASUREMENT
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Position	detection	error(mm)
Marker	position	in	z-direction Proposed	method Simple	linear	regression ARToolKit	approach

220 0.168981333 -0.403286201 15.01109975
230 -0.146408264 -0.117970635 14.35089175
240 -0.184955137 -1.204366516 16.19640375
250 0.794057786 1.28895276 16.1882615
260 0.036329615 -0.945080279 17.641756
270 -0.58827236 0.142668583 15.73986
280 0.451188545 -0.42385778 19.217282
290 1.253588298 1.424298332 19.41741775
300 0.612355066 -0.829802001 21.11121
310 0.526554001 1.149252804 19.23355325
320 -0.609664664 -0.25114929 19.141621
330 -0.714199638 -1.826783959 21.281994
340 -0.350137118 -0.746660368 21.4363445
350 -2.399032181 -5.134853462 22.64834425
360 1.39019869 1.45367399 23.509224
370 -1.460486261 3.493992688 15.437591
380 -0.00338742 1.121193036 21.9468145
390 -0.86552779 -5.180399637 28.012749
400 -1.534848371 -2.168249947 23.34109475
410 0.974826034 -1.585811487 29.15536
420 2.452478828 1.144258924 30.00047925
430 0.35257623 3.791239936 23.054126
440 -0.156215221 -2.586841789 29.552377
450 -1.515632226 3.035957835 28.490775
460 -0.226262638 3.461408932 29.93658875
470 -2.469974152 1.980452697 32.88354025
480 0.718992163 3.500394119 32.505126
490 -0.869773894 -0.812921153 32.4069095
500 4.365994169 5.44118671 35.472763
510 6.782369717 7.270002222 30.76759275
520 -2.188456667 1.1808721 29.01133175
530 -1.650310661 -0.684342872 33.188101
540 1.018790329 1.186943452 3.3037365
550 -1.97779335 -1.385061322 3.6274625
560 -1.166098472 -3.63077959 21.87835825
570 2.027245466 -1.700224173 20.31002625
580 -0.261186801 -0.901127054 6.56880275
590 0.116244677 -4.677004604 3.815341
600 -4.465523756 -9.185376563 3.96959175
610 1.031379265 3.930552176 8.791145
620 0.729996831 0.384649386 4.27011325

APPENDIX F. CAMERA LOGITECH MARKER’S POSITION ESTIMATION WITH THREE
DIFFERENT APPROACHES
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REAL	X REAL	Y REAL	Z X Y Z LUX
0 0 260 -43.840878 23.0565944 367.160763 238
0 0 270 -43.894012 23.3144769 382.306179 237
0 0 280 -44.17854 23.4678216 399.593157 232
0 0 290 -43.581208 23.422925 409.30541 225
0 0 300 -44.078577 23.7655017 428.728294 229
0 0 310 -44.358826 24.1121366 447.136147 202
0 0 320 -44.529291 24.241763 462.976867 221
0 0 330 -44.002088 24.1864164 472.638536 230
0 0 340 -44.137876 24.3623766 489.271979 235
0 0 350 -44.301503 24.6864183 506.200059 234
0 0 360 -44.114543 24.6460688 519.440789 218
0 0 370 -43.906858 24.3613373 533.774565 220
0 0 380 -44.593209 25.0809339 553.922792 216
0 0 390 -44.417708 25.0972793 568.038123 217
0 0 400 -44.204287 25.1627831 578.501239 222
0 0 410 -44.040086 25.3328317 593.103707 216
0 0 420 -43.711545 25.3931632 605.931612 218
0 0 430 -44.60539 25.7478512 631.976291 249
0 0 440 -44.164647 25.5475602 642.345935 224
0 0 450 -44.708618 26.1547278 662.742176 236
0 0 460 -44.358131 25.8731287 673.081575 231
0 0 470 -44.844406 26.402026 692.949312 222
0 0 480 -44.657471 26.2644332 707.650991 205
0 0 490 -44.798378 26.8464246 725.656811 227
0 0 500 -45.147546 27.118082 746.397804 222
0 0 510 -45.356992 27.2826375 760.886326 213
0 0 520 -44.605388 27.2397107 768.859265 237
0 0 530 -45.218802 27.5096579 793.435321 192
0 0 540 -39.769783 23.8974641 810.911381 175
0 0 550 -38.859464 23.4121206 815.195268 199
0 0 560 -39.313024 23.9788091 839.374853 200
0 0 570 -38.498372 23.7074716 842.203122 175
0 0 580 -39.052541 24.0475115 868.455434 161
0 0 590 -36.201736 22.581818 828.038779 180
0 0 600 -36.152184 22.7527335 842.220296 179
0 0 610 -36.412076 22.823994 860.101176 184
0 0 620 -37.699918 23.6692139 914.813577 194
0 0 630 -37.88221 24.2248813 933.551041 130
0 0 640 -35.541779 22.8973077 891.350872 168
0 0 650 -34.586158 22.6713506 896.800142 183
0 0 660 -37.80087 24.5907794 1000.13437 187

APPENDIX F. ARTOOLKIT-KINECT MARKER’S POSITION ESTIMATION AND LIGHT
MEASUREMENT
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Position	detection	error(mm)
Marker	position	in	z-direction Proposed	method Simple	linear	regression ARToolKit	approach

260 0.918252062 2.747339583 107.1607626
270 1.461686078 5.288696451 112.3061791
280 1.054869972 -0.004167818 119.5931569
290 -0.462591728 5.111409532 119.3054105
300 0.741004574 2.289538065 128.7282945
310 2.835699638 2.579290457 137.1361471
320 1.860358156 -0.337025148 142.9768668
330 -0.282713285 3.626310829 142.6385364
340 -0.110821909 2.578663052 149.271979
350 1.405733328 5.419083203 156.2000587
360 -0.283388465 2.45325001 159.4407886
370 -3.495250015 -6.521629011 163.774565
380 0.409236183 -1.732780757 173.9227922
390 -0.478434474 -2.036251285 178.0381232
400 -2.827975577 -1.111057835 178.5012385
410 -2.113838298 3.042652506 183.1037074
420 -2.506730185 7.096089392 185.9316118
430 0.159248656 -0.416453849 201.9762913
440 -3.075070393 -4.291513408 202.3459353
450 0.665313301 0.951015697 212.7421764
460 -3.940453333 -6.566272379 213.0815747
470 -0.707168893 -3.701403366 222.9493118
480 -2.406784946 -9.245755779 227.6509909
490 1.923209084 3.73340656 235.6568113
500 4.145387682 2.025653845 246.3978042
510 2.695289501 -2.472743106 250.8863264
520 0.838684841 6.944739024 248.8592651
530 -2.406340512 -1.144511299 263.4353211
540 1.726873774 1.361298251 270.9113813
550 0.543665978 -1.046756539 265.1952676
560 2.09389733 5.80930359 279.3748533
570 5.389294908 5.192099561 272.2031223
580 -1.346386862 2.715015725 288.4554336
590 1.269864473 -4.412708241 238.0387791
600 2.068361914 -2.697468011 242.2202956
610 -7.421309709 -9.345948969 250.1011761
620 -6.410103352 -0.457794538 294.8135774
630 -1.06016818 6.99161656 303.5510413
640 -5.795696914 -6.868604656 251.3508724
650 3.186167534 -0.065872663 246.8001423
660 4.310641796 17.74686475 340.1343667

APPENDIX F. KINECT MARKER’S POSITION ESTIMATION WITH THREE DIFFERENT
APPROACHES
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REALX REALY REALZ X Y Z LUX
0 0 250 -13.212406 23.5685584 322.78812 250
0 0 260 -13.176233 24.1656811 334.882 232
0 0 270 -13.088633 24.4559183 346.764059 228
0 0 280 -12.841844 25.3642813 360.920361 238
0 0 290 -12.596118 25.9963314 373.291932 217
0 0 300 -12.593733 26.2985485 388.654452 223
0 0 310 -12.346492 26.9076104 400.612222 235
0 0 320 -12.115846 27.4241366 413.028004 232
0 0 330 -12.04161 27.8601067 426.12914 221
0 0 340 -11.883244 28.5226653 439.627473 200
0 0 350 -11.729891 28.8352062 451.64089 208
0 0 360 -11.608048 29.8684968 465.394521 221
0 0 370 -11.384594 30.2658361 478.408636 206
0 0 380 -11.367928 30.7642696 491.452391 199
0 0 390 -11.056548 31.2986886 505.313771 215
0 0 400 -10.742736 31.6135149 515.654447 203
0 0 410 -10.770684 32.4277889 529.225385 199
0 0 420 -10.72502 33.2719594 546.966379 185
0 0 430 -10.634324 33.8430247 560.037709 178
0 0 440 -10.309235 34.8839423 577.006641 194
0 0 450 -10.140754 35.1573779 589.164353 200
0 0 460 -13.600903 37.7040878 598.175603 188
0 0 470 -13.861614 38.7763859 615.972071 185
0 0 480 -14.037326 39.6865246 630.756107 173
0 0 490 -14.074742 41.0937299 648.239158 165
0 0 500 -13.975764 41.5985651 656.230469 172
0 0 510 -12.44381 39.6542137 657.132098 86
0 0 520 -12.934264 39.0955064 687.487488 98
0 0 530 -13.105588 42.6462035 689.272447 26
0 0 540 -12.671468 39.9739835 687.74345 78
0 0 550 -13.383992 40.6279459 713.846672 79
0 0 560 0.46245098 30.062735 727.723656 96
0 0 570 -6.5082398 30.9788379 738.160467 34
0 0 580 -6.2802514 27.8512903 741.546091 53
0 0 590 -6.3130768 26.1271932 759.543115 32
0 0 600 -5.6835003 25.9139272 783.241039 52
0 0 610 -4.7889825 29.6417868 784.330721 77
0 0 620 -4.1300532 29.8267992 808.195314 62
0 0 630 -3.9220269 26.3209619 824.959257 96
0 0 640 -2.9241181 26.0678683 818.666602 135
0 0 650 -3.1046967 26.8705698 830.611323 110

APPENDIX F. ARTOOLKIT-CAMARA ACTECK MARKER’S POSITION ESTIMATION AND
LIGHT MEASUREMENT
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Position	detection	error(mm)
Marker	position	in	z-direction Proposed	method Simple	linear	regression ARToolKit	approach

250 1.490746927 1.354706232 72.78811992
260 0.171026269 0.868192685 74.88200004
270 -0.67992184 -0.06005575 76.76405883
280 -0.595941862 0.163825762 80.92036104
290 0.102758366 -0.014959371 83.29193163
300 0.716735183 1.414593946 88.65445192
310 -0.186409506 0.00958423 90.61222182
320 -0.033597372 -0.599654209 93.02800419
330 -0.15456364 -0.455338717 96.12913985
340 0.579257542 0.203386407 99.62747293
350 -0.166759918 -0.958867513 101.6408898
360 -1.881193613 -1.181880937 105.3945213
370 -0.543644772 -0.961964034 108.4086363
380 1.181643506 -1.000529003 111.4523914
390 -0.417232711 -1.034717942 115.3137712
400 -0.250353314 -2.895743566 115.6544468
410 -1.655304862 -2.728104754 119.2253846
420 -0.061628149 0.891976215 126.9663794
430 -1.173536667 0.858578367 130.0377088
440 1.951969633 3.021590233 137.0066406
450 1.573266163 2.039865459 139.1643532
460 -1.589645679 -2.027035507 138.1756029
470 1.169225896 1.216220392 145.9720711
480 0.713103868 2.48081932 150.7561067
490 1.687437263 5.537870299 158.2391579
500 -2.130153099 1.269534247 156.2304687
510 -1.551862563 -4.814266518 147.1320984
520 11.96932908 8.097561407 167.4874877
530 -0.835787615 0.245004275 159.2724467
540 -9.008608856 -11.41594183 147.7434504
550 0.431242915 -1.870455161 163.8466724
560 3.213893257 3.403322372 167.7236563
570 -0.045388414 1.953753078 168.1604672
580 -5.451858668 -4.916363617 161.5460915
590 -1.919786809 -0.04978423 169.5431151
600 6.493077865 7.584200608 183.2410394
610 -3.714912942 -3.434370717 174.3307213
620 3.394070402 5.170450691 188.1953143
630 8.715056912 8.195094182 194.9592575
640 -4.720587826 -7.480813963 178.6666017
650 -6.989747029 -7.980597886 180.611323

APPENDIX F. CAMARA ACTECK MARKER’S POSITION ESTIMATION WITH THREE
DIFFERENT APPROACHES
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Appendix F

Marker’s position estimation functions

The samples taken was used to generate fit and underfit models for the proposed
method and the simple linear regression approach. Furthermore, it was used three
types of cameras:

1. Logitech C920 with a resolution of 1920 x 1080 RGB @ 30fps

2. Camera web ACTECK CW-760 standard with a resolution 640 x 480 RGB @
30fps

3. Kinect Xbox 360 with a resolution 1280 x 960 RGB @ 12fps
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APPENDIX F. MARKER’S POSITION ESTIMATION FUNCTIONS 111

Marker’s position estimation function
Camera Method Function

Camera Acteck

Simple linear
regression

Zdist = 22.010 + 0.1169X − 0.3371Y +
0.76148Z−0.02785LUX

Proposed
method

For Range #1: Zdist = 28.77− 0.2211X −
0.4591Y +0.74884Z +0.03541LUX
For Range #2: Zdist = −3.56 − 1.556X −
2.016Y +0.8325Z +0.1002LUX
For Range #3: Zdist = 189.02 + 8.460X −
2.511Y +0.75508Z−0.04121LUX

Kinect
Simple linear
regression

Zdist = 356.96 + 22.222X − 31.605Y +
0.37113Z +0.04709LUX

Proposed
method

For Range #2 Zdist = 502.70 + 25.891X +
36.036Y +0.24152Z +0.06975LUX
For Range #3 Zdist = 97.18 + 5.552X +
8.704Y +0.56697Z−0.00732LUX

Table F.1: Marker’s position estimation functions

Marker’s position estimation function with underfitting
Camera Method Underfitting function

Logitech camera
Simple linear
regression

Zdist = 63.97 + 0.0X + 0.0Y + 0.92849Z −
0.2695LUX

Proposed
method

For Range #2: Zdist =−62.5+0.0X +0.0Y +
1.1455Z−0.2403LUX
For Range #3: Zdist = −18.28 + 0.0X +
0.0Y +0.95227Z +0.06004LUX

Acteck camera

Simple linear
regression

Zdist = 37.07 + 1.0691X + 0.0262Y +
0.73752Z−0.04349LUX

Proposed
method

For Range #1: Zdist = 61.47 + 1.303X +
0.078Y +0.6983Z +0.04107LUX
For Range #2: Zdist = 50.7586−2.58014X −
2.22990Y +0.762931Z +0LUX
For Range #3: Zdist = 228.8 + 8.639X −
4.888Y +0.84677Z−0.08781LUX

Kinect
Simple linear
regression

Zdist = 389.11 + 23.363X + 34.738Y +
0.334Z−0.1121LUX

Proposed
method

For Range #2: Zdist = 734.02 + 6.127X −
18.76Y +0.6624Z−0.2322LUX
For Range #3: Zdist = 95.44 + 5.919X +
9.861Y +0.55817Z−0.03262LUX

Table F.2: Underfit marker’s position estimation functions



Appendix G

ARToolKit algorithm (to get position
data)

Algorithm 5 ARToolKit algorithm (to get position data)

1: Open the file with name trainingData
2: Read and Save marker file into marker1 variable
3: Detect camera
4: if camera is detected then
5: loop//for video streaming
6: Grab an image of the video stream and Save it into image variable
7: //Detect marker and Save the marker information into marker_info vari-

able
8: arDetectMarkerLite(dataPtr, thresh,&marker_in f o,
9: &marker_num)

10: //ARToolKit function to estimate marker’s position
11: arGetTransMat(marker_info, target_center, target_width, target_trans)
12: //ARToolKit function to get the inverse of the marker’s
13: //position and orientation.
14: arUtilMatInv(target_trans,cam_trans)
15: Save x-y-z position into the file trainingData
16: Close file named trainingData
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Appendix H

Machine learning algorithm (for
training)

Algorithm 6 Machine learning algorithm (for training)

1: Open the file with name trainingDataForLightRange-X for input
2: Read and Save training data matrix A[i,k] ( which is an m x n matrix with the

XYZ positions, the light measurements, and the ground truth of z-position)
3: Read and Save the first element of each list in the variables x[0],y[0],z[0],lux[0] and

zgroundTruth[0]
4: Close file named trainingDataForLightRange-X
5: //Gaussian elimination
6: for integer k= 1 to min(m,n) do:
7: //Find the k-th pivot
8: imax := argmax (integer i = k to m, abs(A[i,k]))
9: if A[imax,k] = 0 then

10: error "Matrix is singular!"
11: swap rows(k, imax)
12: //Do for all rows below pivot:
13: for integer i = k+1 to m do:
14: f := A[i,k]/A[k,k]
15: Do for all remaining elements in current row:
16: for integer i = k+1 to n do:
17: A[i, j] := A[i, j]−A[k, j]∗ f
18: //Fill lower triangular matrix with zeros:
19: A[i,k] := 0
20: //Save the coefficients of the model on the vector p
21: p[i] = A[i, j]/A[i, i]
22: //Compute the error of the model
23: error = zgroundTruth[0]− p[0]− p[1]∗ x[0]− p[2]∗ y[0]− p[3]∗ z[0]− p[4]∗ lux[0]
24: //Save the error in the variable p[0]
25: p[0] = error
26: //Start optimization process
27: optimizationLossFunction(&p)
28: PRINT the model in the form Y=p[0]+p[1]x+p[2]y+p[3]z+p[4]lux
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Abstract The optical tracking information in manufac-
turing can provide valuable support and time saving for
autonomous operations, but ill environment conditions pre-
vent a better performance of vision systems. In this work, a
method for estimating object position under semi-controlled
environment where lighting conditions change dynamically
is proposed. This method incorporates regression analysis
that combines light measurement and an augmented real-
ity (AR) system. Augmented reality (AR) combines virtual
objectswith real environment. Furthermore, every AR appli-
cation uses a video camera to capture an image including a
marker in order to place a virtual object, which gives user an
enriched environment. Using a tracking system to estimate
the marker’s position with respect to the camera coordinate
frame is needed to positioning a virtual object. Most research
studies on tracking system for AR are under controlled envi-
ronment. The problem is that tracking systems for markers
are sensitive to variations in lighting conditions in the real
environment. To solve this problem, a method is proposed to
better estimate a marker position based on regression analy-
sis, where lighting conditions are taken into account. Our
approach improves the accuracy of the marker position esti-
mation under different lighting conditions. The experimental
data obtained under a laboratory context with changes on
light condition are fitted with this approach with an accuracy
of 99%.
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1 Introduction

In the field of Interactive Design [1], numerous prototyping
techniques have emerged, including virtual and augmented
reality solutions. Prototyping techniques enhance cognitive
interactions between the user and the future product, and
these techniques supports decision making in design and
manufacturing [2]. Virtual and augmented representations
are useful for analyze engineering defaults, analyze new
ideas, and allowing the brainstorming of ideas in the design
process. However, the primary focus of this research is
to improve augmented reality experience by improving its
fidelity tracking. In order to enhancing the experience of the
end-product user and have a stable 3Dmarker tracking, while
is using augmented reality for prototyping.

Augmented reality (AR) [3] combines virtual objectswith
real world environment, where the users interact in real-
time with it. As shown in Fig. 1, Augmented Reality lies
on the right of Real Environment, which means that real
world environment is augmented by adding virtual objects.
A continuum between the real environment and the virtual
environment is shown.

In order to distinguish between the different terms used
in Fig. 1, a brief explanation of what Real Environment,
Augmented Reality, Augmented Virtuality and Virtual Envi-
ronment is given, these are full-developed on [4].

– Virtual reality (VR) environment is a completely syn-
thetic world (with virtual objects), in which the user
(participant observer) is immersed.
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Fig. 1 Miligram’s reality-virtuality (RV) continuum [4]

Fig. 2 Sample markers of ARToolKit

Fig. 3 ARToolKit example of augmented reality [6]

– Real environment (RE) consists solely the view of the
real world when is viewed directly in person, or via some
sort of a (video) display.

– Mixed reality (MR) environment combines the real world
with the virtual world in a single display.

– Augmented reality (AR) refers to an indirect or direct
view of the real world environment is augmented by add-
ing virtual computer-generated information to it in real
time.

– Augmented Virtuality (AV) refers to merging of real
world objects into virtual worlds.

In fact every AR application uses a camera to identify a
marker in order to place over it a virtual object. Different
types of markers, used by ARToolKit, are shown in Fig. 2.
As shown in Fig. 3, the real environment is augmented using
these markers and a virtual object.

The main problem for AR systems is the inaccurate esti-
mation of the position and pose of the marker in the real
environment. The estimation of position and pose in real time
is called tracking. In a tracking problem, markers are used
commonly to superposed a virtual object, as Fig. 3. In AR,

there are many types of markers, where the type of marker
depends on the used toolkit. These toolkits are ARToolKit
[5], ARToolkitPlus [7], ARTag [8], A Library for Virtual and
Augmented Reality (ALVAR) [9], Designer’s Augmented
Reality Toolkit (DART) [10], etc.

The world’s most widely used tracking library for aug-
mented reality is ARToolKit [5]. This library provides an
easy way to develop AR applications. Furthermore, com-
puter vision algorithms are used in AR applications to solve
the tracking problem.

The main challenge is that ARToolKit needs an accurate
tracking system that estimates the marker coordinates with
respect to the users viewpoint (or camera pose). In most
cases, the accuracy of marker tracking is either ignored,
assumed to be a constant value, or determined using an
interpolation scheme (where error is previously measured).
Most research studies on the tracking system for AR are
under controlled environment. The problem is that tracking
systems formarkers are sensitive to variations in lighting con-
ditions in the environment. To solve this problem, a novel
method approach for marker position estimation based on
machine learning is proposed and lighting conditions are
taken into account. The proposed approach improves the
accuracy of the marker position estimation under lighting
conditions that change dynamically. In this work, the camera
used only recognize markers under a light range of 40–310
lux.

In the following section, a brief definition of interactive
design is given. Furthermore, a brief description of related
work about different techniques used to estimate the marker
position is given. Ultimately, the proposed solution and the
results of the experiments are given.

2 Interactive design

The interactive design consists in making design choices
from the possible interactions that could exist between the
product and its environments, necessarily including Human
[2]. The prototype used in the design process could be
physical or virtual. The usage and adaptation of new aug-
mented reality, augmented virtuality and virtual techniques
to enhance and to enrich the experience of the interaction
between the product and its user. Deeper layers of interac-
tion with the real world, virtual-objects, virtual simulations,
and the product-end user by using these technologies. Fur-
thermore, there is also the haptic technology (which is an
augmented reality technology) that is the vibration and sen-
sation added to interaction with graphics. This technology
is commonly used within a virtual reality setting to enhance
the experience. Blending together all these technologies, it
creates a whole new experience for the user, which leads the
making-decision process.
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3 Related work

Tracking systems for markers (fiducials) are used in AR
applications. The tracking system can identify the marker
using a camera in order to place the virtual object over the
marker. There are many kinds of markers, where each toolkit
has its own marker type. Most research studies are about
different tracking systems on ARToolkit or another toolkit.

Rabbi et al. [11] extended the functionality of ARToolKit
to a semi-controlled or uncontrolled environment using mul-
tiple files, which are recorded in different environmental
conditions. This approach improved the marker tracking per-
formance under different lighting conditions, brightness and
contrast level. This approach may increase processing time,
which is controlled by implementing a priority queue. This
queue provides a priority to the pattern that is mostly used
for tracking in the environment.

Maidi et al. [12] developed a hybrid approach for pose
estimation, which mixes an iterative method based on the
extended Kalman filter (EKF) and an analytical method with
a direct resolution of pose parameters computation. This
approach improves stability, convergence and accuracy of
the pose parameters.

Herout et al. [13] introduced an improved design of
the Uniform Marker Fields and an algorithm for their fast
and reliable detection. This marker field is designed to be
detected and to be recognized for camera pose estimation:
in various lighting conditions, under a severe perspec-
tive, while heavily occluded, and under a strong motion
blur. This marker field detection harnesses the fact that
the edges within the marker field meet at two vanishing
points and that the projected planar grid of squares can
be defined by a detectable mathematical formalism. The
modules of the grid are gray-scale and the locations within
the marker field are defined by the edges between the
modules. The detection rates and accuracy are slightly bet-
ter and faster compared with state-of-the-art marker-based
solutions.

Dhiman et al. [14] developed a cooperative localization
method (called mutual localization), which uses two cam-
eras (each one with a fiducial marker in a sensor specific
coordinate frame), in order to estimate the 6-Degrees of free-
dom pose of multiple cameras. Using this approach, it can
be obviated the common assumption of sensor ego-motion.
This approach uses an algebraic formulation to estimate the
pose of the two-cameramutual localization setup under these
assumptions. This approach can localize significantly more
accurately than ARToolKit.

Yamauchi et al. [15] studied the position and pose error
detected by an augmented reality system (using ARToolKit
library). As shown in Fig. 4, the marker is perpendicular to
the line of sight of the camera. The characteristics of the
marker detection are summarized as follows. The position

Fig. 4 Marker coordinates and camera coordinates [15]

of a marker is determined with sufficient accuracy for the
directions perpendicular to the line of sight of the camera.
The rotation angle of a marker around the line sight (of the
camera) is also determined accurately. However, the posi-
tion of the marker in the line of sight direction cannot be
accurately determined. The detection error in this direction
was revealed to be proportional to the square of the distance
between the camera and the marker. The pose angles other
than the rotation angle are also difficult to determine accu-
rately.

Freeman et al. [16] proposed a method for predicting
marker-tracking error in order to quantify the accuracy of
themarker position. This statistical approach uses amodified
Scaled Spherical Simplex Unscented Transform (SSSUT)
algorithm in order to establish the maximum and minimum
error of the marker-position estimations (estimated by the
augmented reality system).

Wang et al. [17] presented a coarse-to-fine marker detec-
tion algorithm with sub-pixel edge localization. In this work,
it is proposed a marker with a dot pattern, which is detected
and matched to a predefined descriptor in a fast way using a
simple threshold and hierarchical contour analysis. The algo-
rithm yielded a feature detection error of less than 0.1 pixel
(up to noise level σn ! 0.35 ) with real-time performance.

In Table 1, the differences between each approach describ-
ed above are shown.

Most of these approaches used for marker detection do
not take into account many factors as light intensity, bright-
ness and contrast. Rabbi’s approach takes into account light
intensity, but this approach may increase processing time
according to the number of pattern files. The main problem
is the noise of the marker position estimation, which depends
on the illumination and the rotation of the marker. In this
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Table 1 Tracking system
approaches

Treatments Light changes Method Multiple cameras

Rabbi’s approach [11] X Multiple files

Maidi’s approach [12] Statistical method

Herout’s approach [13] Mathematical method

Dhiman’s approach [14] Algebraic method X

Yamauchi’s approach [15] Algebraic method

Freeman’s approach [16] Statistical method

Wang’s approach [17] Hierarchical contour analysis

Our’s approach X Statistical method

paper, it is proposed to use machine learning in order to find
the correlation between lighting conditions and position esti-
mation of the marker.

4 Marker tracking using ARToolKit

ARToolKit uses a camera to identify a marker in order to
track it and place over it a virtual object. As shown in Fig. 2,
different patterns are around thick black edges.

The marker tracking process is as follows: first, the mark-
er image is converted to a black and white binary image,
which is called threshold, using a threshold value (in order to
know if the pixel is going to be black or white). Second, the
black square of the marker is detected. Third, the position of
the four corners of the marker are estimated, which are used
to estimate the center position of the marker as well marker
pose.

ARToolKit uses functions arDetectMarker and arGet-
TransMat to detect and to estimate the position and pose
of a marker. The arDetectMarker function detects the black
edges of the marker as well as the pattern inside it, which is
registered in the app. The arGetTransMat function identifies
the position and pose of a marker, which is represented by a
matrix, as shown in Eq. (1).
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The
(
x′, y′, z′) coordinates represent the transformmatrix

of the camera relative to the marker frame coordinates. The
transform matrix p is multiply by the vector of the marker
coordinates relative to the camera coordinates (xm, ym, zm).

The marker pose is represented by three rotation angles
called pitch !, yaw φ and roll ω, which denote rotations
around the x, y, z axes, respectively. The rotation angles are
calculated from the components of the transform matrix in
Eq. (1) as follows:

! = tan−1
(
p21
p11

)
(2)

φ = tan−1
(
p32
p33

)
(3)

ω = sin−1 (p31) (4)

5 Machine learning method

In machine learning, the most common technique used,
depending of the problem, is the multiple linear regression.
Multiple linear regression is used to predict the value of a
variable y (called criterion variable) using multiple variables
(xi, . . . , xm) (called predictor variables). These predictor
variables could be known or unknown. When the predictor
variables are known, it is called supervised machine learning
and the predictor variables are called labeled variables.When
the predictor variables are unknown, it is called unsuper-
vised machine learning. This leads to the following multiple
regression function:

h (x1, . . . , xm) = !0 +
∑

m
i=1!i xi (5)

where !0 is called the intercept and the !i are called coef-
ficients.

The process of learning consists on using mathematical
algorithm in order to optimize the predictor function h(xi),
which is an estimation of the criterion variable y. For the
optimization process, it is used training examples, which are
input data of both predictor variables (x1, . . . , xm) and cri-
terion variable y, which is known in advance.

The loss function, as shown in Eq. (6), is used to mea-
sure the improvement of the predictor function h(xt,i ). The
input ! represents all of the coefficients that we are using
in the predictor function. In this case we are using only two
coefficients !0 and !1.

J (!0,!1) =
1
2m

m∑

i=1

(
h

(
xt,i

)
− y

)2 (6)
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The loss function and training examples are used to know
the difference between the criterion variable y and the esti-
mated value h (x1, . . . , xm), which is called error, in order
to measure the improvement of the predictor function. In the
optimization process, the intercept !0 and the coefficients
!i are changed constantly in order to converge on the best
values that minimize the error.

6 Proposed solution

In supervised machine learning, the program is trained on
a pre-defined set of labeled training data, which is used to
reach an accurate predictor function when given new data.
Each training example is a pair consisting of input data and
a desired output value (called supervisory signal). In the
proposed approach, it is going to be used labeled training
examples where the outcome is marker position data and
the variables are estimated marker position and light con-
dition. The light label is subdivided into n subsets in order
to produce n inferred functions. The system learns different
predictor functions according to the intensity light range that
the environment has in this moment. Using this approach, the
noise caused by the light and other factors is minimized and
estimations of marker position can be done.

The proposed method needs an initial preparation offline
before using this method properly in order to make any
marker position estimations. Firstly, before taking any sam-
ple, it is needed to prepare the experimental setup (as shown
in Fig. 7)with the luxmeter tool, the camera (LogitechC920),
the marker (fiducial), the computer (2.8 GHz Intel Core i7
MacBook Pro), CNC rail (for training), and stages (to fix
these tools). Secondly, the samples (of estimatedmarker posi-
tions under different light conditions) are taken and saved in
a text file when the fiducial along the CNC rail is moving and
the light measurement is taken with a luxmeter tool. It was
used CNC rail in order to get the ground-truth position of the
marker. The data is divided into three categories of light range
and saved into three different files. Thirdly, the data saved in
a text file by the ARToolKit application is the input of the
machine learning application written in c++, which made
the regression analysis with the data. Algorithm 1 shows the
training process using multiple linear regression to generate
a model for each range light. The machine learning applica-
tion returns predictor functions for each light range. These
predictor functions are used to estimate the marker position.

The light range used in this work was chosen through the
statistical analysis of the sample data taken. In the analysis of
the data, it was found that three groups have the same mean
error. In the light range from 40 to 100 lux, the mean marker
position error was of 40.69 mm. In the light range from 100
to 200 lux, it was found that the mean marker error was of
40.13 mm. In the light range from 200 to 310 lux, it was

found that the mean marker position error was of 69.76 mm.
Then, these three groups of light measurement are used in
our experiment as three range light.

Algorithm 1Machine learning algorithm (for training)
1: Open the file with name trainingDataForLightRange-X for input
2: Read and Save training data matrix A[i,k] ( which is anm x nmatrix

with the XYZ positions, the light measurements, and the ground
truth of z-position)

3: Read and Save the first element of each list in the variables
x[0],y[0],z[0],lux[0] and zgroundTruth[0]

4: Close file named trainingDataForLightRange-X
5: //Gaussian elimination
6: for integer k= 1 to min(m,n) do:
7: //Find the k-th pivot
8: imax := argmax (integer i = k to m, abs(A[i, k]))
9: if A[imax , k] = 0 then
10: error “Matrix is singular!”
11: swap rows(k, imax )
12: //Do for all rows below pivot:
13: for integer i = k + 1 to m do:
14: f := A[i, k]/A[k, k]
15: Do for all remaining elements in current row:
16: for integer i = k + 1 to n do:
17: A[i, j] := A[i, j] − A[k, j] ∗ f
18: //Fill lower triangular matrix with zeros:
19: A[i, k] := 0
20: //Save the coefficients of the model on the vector p
21: p[i] = A[i, j]/A[i, i]
22: //Compute the error of the model
23: error = zgroundTruth[0]− p[0]− p[1]∗x[0]− p[2]∗ y[0]− p[3]∗

z[0] − p[4] ∗ lux[0]
24: //Save the error in the variable p[0]
25: p[0] = error
26: //Start optimization process
27: optimizationLossFunction(&p)
28: PRINT the model in the formY=p[0]+p[1]x+p[2]y+p[3]z+p[4]lux

Figure 5 depicts the proposed method. Firstly, the system
receives as input the sample data under different position and
light conditions. The light measurements are taken with a
luxmeter tool. Initial marker position estimations (or sample
data) are taken using ARToolKit application. In Algorithm 2
is shown the process for getting the marker’s position. Sec-
ondly,machine learning system (Algorithm1) builds amodel
to fit the marker position data using the initial position esti-
mations and light condition data. The training is finished
when the system stops receiving training examples (or sam-
ples). Thirdly, the system find the best predictor function for
marker position estimation.

In the proposedmachine learning system, amultiple linear
regression algorithm is used. The system learns from pre-
vious computations and new training examples in order to
produce new models for AR marker position estimation. As
shown in Fig. 6, The training process ends when the system
stops receiving training data.
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Algorithm 2 ARToolKit algorithm (to get position data)
1: Open the file with name trainingData
2: Read and Save marker file into marker1 variable
3: Detect camera
4: if camera is detected then
5: loop//for video streaming
6: Grab an image of the video stream and Save it into image

variable
7: //Detect marker and Save the marker information into

marker_info variable
8: ar DetectMarker Lite(dataPtr, thresh,&marker_in f o,
9: &marker_num)
10: //ARToolKit function to estimate marker’s position
11: arGetTransMat(marker_info, target_center, target_width,

target_trans)
12: //ARToolKit function to get the inverse of the marker’s
13: //position and orientation.
14: arUtilMat Inv(target_trans, cam_trans)
15: Save x-y-z position into the file trainingData
16: Close file named trainingData

Experiments were conducted to determine the accuracy
of optical tracking using this proposed method. The experi-
mental setup is shown in Fig. 7. A fiducial (marker) with a 40
mm was fixed in a rail of a CNC machine. A video camera
(Logitech c920) was fixed in front of the fiducial. A profes-
sional luxmeter was placed next to the fiducial. The video
camera and the fiducial were adjusted using stage support in

Fig. 5 Machine learning system for AR marker position estimation

Fig. 6 Optimization process of predictor

Fig. 7 Experimental setup

order to have their axes aligned. The experiment consists in
keeping constant the x- and y-positions of the fiducial when
the fiducial along the CNC rail is moving. Using a video
camera (Logitech c920) with a resolution of 1080p, images
were processed by a computer to get the xyz positions of the
fiducial using ARToolKit functions. Using a luxmeter, the
light of the fiducial area was measured. Three experiments
were repeated under different light conditions while the z-
direction was incremented by 10 mm. The samples of xyz
positions estimated by ARToolKit were taken using dynamic
light changing in order to find a predictor function for marker
position estimation taking into account light variable.

Yamauchi et al. [15] shows that the position errors (using
ARToolKit libraries) in the x- and y- directions are relative
small and that the errors in the z-direction are large. So, the
z-position error is the only error variable that is going to be
analyzed in this work. Three different samples were taken
in order to clarify the position error of the fiducial position
(estimated by ARToolKit functions) in the z-direction using
dynamic light changing. Figs. 8, 9, and 10 shows the exper-
imental results of position detection error on Sample 1, 2,
and 3 respectively. In the first experiment, the fiducial was
moving through z-direction from 520 to 1060mm. In the sec-
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Fig. 8 Experimental results of position detection error on Sample 1

Fig. 9 Experimental results of position detection error on Sample 2

ond experiment, the fiducial was moving through z-direction
from 240 to 640mm. In the third experiment, the fiducial was
moving through z-direction from 220 to 620mm. In addition,
the light conditions change dynamical from the range 41–303
lux. In this experiment, it was found that out the range of 41–
303 lux the camera system cannot detect the marker.

7 Experiment and results

In sample 1, Fig. 8, the light range used in this sample goes
from 41 to 303 lux, where the light changes dynamically and
randomly. In this sample, the mean of the marker position
error using ARToolKit approach is −10.49 mm.

In sample 2, Fig. 9, the light range used in this sample goes
from124 to 279 lux,where the light changes dynamically and
randomly. In this sample, the mean of the marker position
error using ARToolKit approach is −49.70 mm.

In sample 3, Fig. 10, the light range used in this sample
goes from 116 to 256 lux, where the light changes dynami-
cally and randomly. In this sample, the mean of the marker
position error using ARToolKit approach is 20.58 mm.

In these three samples, it was found that the light condi-
tions change themarker position estimation usingARToolKit
libraries. The mean of the marker position error was not con-
stant in these samples because of the light conditions were
different in each sample. In our proposed approach, the light
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Fig. 10 Experimental results of position detection error on Sample 3

Fig. 11 Experimental results of position detection error on Sample 3 using three different approaches

condition variable is taken into account in order to have better
marker position estimations.

In the statistical analysis of the samples, it was found that
the data has a normal distribution. It was used the Ander-
son-Darling normality test on the three samples in order to
know if the samples have a normal distribution. It is possible
to use multiple linear regression in order to generate models
to estimate marker’s position, because the data came from a
normal distribution.

Figure 11 shows the position error of the marker position
in z-direction using three different approaches in sample 3,
which are ARToolKit approach, simple regression approach,
and the proposed approach. The ARToolKit approach refers
to get estimations of marker position using ARToolKit

libraries. The simple regression analysis approach refers to
generate predictor functions of the data without be classified
by light range. The proposed approach consists in classify the
data by light range and then do a multiple regression analysis
to the data. In this experiment, the three light ranges used are
from 40 to 100, 100 to 200 and 200 to 310 lux.

As shown in Fig. 11, it was found that using the proposed
method and taking into account light conditions, the error of
position estimation can be reduced. The mean of the position
error using this approach is of 2.657 mm, additionally, the
mean of the position error usingARToolKit approach is 20.58
mm. Using this approach, it is obtained better results than
using only ARToolKit approach. Furthermore, this approach
has better results if the training set is increased. The position
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error was reduced 87% in this scenario. Furthermore, nearly
99% of the total variability in the response variable (marker
position) is accounted for by the estimated marker position
byARToolKit and the light measurement. In this experiment,
the regression line models have a R2 = 0.99 that indicates
a strong linear relationship between the ground truth and the
predictor variables (the estimated marker position and the
light conditions).

8 Conclusions

A novel method for estimating marker position under semi-
controlled environment in which the lighting conditions,
brightness and contrast level change dynamically is pro-
posed. Augmented reality combines virtual models with the
real environment. The light condition changes dynamically
and has a big variation depending on the position in the
real world, furthermore under some light range the marker
position estimation has the same variance. The proposed
approach improves the accuracy of the camera-pose estima-
tion under lightning conditions that change dynamically.

In this experiment, the light conditions were different in
each sample taken, which affected the position estimations,
but the noise of light conditions and camera parameters was
significantly reduced using the machine learning approach.
The position error does not have a constant tendency because
it depends onmany factors such as the camera parameters and
the lighting conditions. Additionally, our method improves
the results when more training data is given.

This new approach of using machine learning for fitting
AR marker estimations taking into account light measure-
ment is a novel way to reduce noise and understand better
the relationships between light measurement and ARmarker
position estimations.
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