Regulador de Voltaje de Línea Basado en Deslizamiento de Fase

Asesores: Mto. Rodrigo Regalado García
Dr. Roeb García

AUTORES

Juan Angel Acosta Meza
Ernesto Terrazas Prieto

México, D.F. Mayo de 2011
CAPÍTULO 1 INTRODUCCIÓN ... 3
1.1. ANTECEDENTES ... 3
1.2. PROBLEMÁTICA .. 3
1.3. JUSTIFICACIÓN .. 4
1.4. OBJETIVOS ... 4
1.5. ALCANCES ... 5
1.6. METODOLOGÍA .. 5

CAPÍTULO 2 MARCO LEGAL .. 6
2.1. NORMA OFICIAL MEXICANA PARA INSTALACIONES ELÉCTRICAS ... 6
2.2. DE LOS CIRCUITOS DERIVADOS DE AUTOTRANSFORMADORES .. 7

CAPÍTULO 3 MERCADO ... 8
3.1. MERCADO Y ESTADO ACTUAL DE REGULADORES DE VOLTAJE .. 8
3.2. MÉXICO .. 8
3.3. ÁMBITO INTERNACIONAL .. 9

CAPÍTULO 4 DISTINTOS TIPOS DE REGULADORES DISPONIBLES ACTUALMENTE 11
4.1. REGULADORES FERRORESONANTES ... 11
4.2. REGULADORES DE CONMUTACIÓN ELECTRÓNICA ... 12
4.3. REGULADORES IMPULSADOS POR TIRISTORES .. 13
4.4. REGULADORES DE MOTOR (VARIAC) .. 13

CAPÍTULO 5 MARCO TEÓRICO ... 16
5.1. CORRIENTE Y VOLTAJE ALTERNOS ... 16
 Característica de una onda sinusoidal .. 16
5.2. ARMÓNICOS ... 17
 Distorsión Armónica Total (THD) ... 18
 Límites Para la Distorsión Armónica Para el Voltaje ... 19
 Límites Para la Distorsión Armónica Para el la Corriente .. 19
5.3. MODULACIÓN POR ANCHO DE PULSO (PWM) ... 21
 Generación de una señal PWM .. 21
 Ciclo de trabajo (Duty Cycle) .. 22
 Índice de Modulación y Relación de frecuencias .. 22
 Puente H ... 23
 Operación ... 24
 Construcción ... 24
 Justificación Para el Uso de MOSFETs ... 27
5.4. PRINCIPIO DE SUPERPOSICIÓN ... 28
 Características de las Ondas .. 28

CAPÍTULO 6 DESARROLLO TÉCNICO ... 29
DIAGRAMA DE FLUJO .. 29
MEDICIÓN DE LA AMPLITUD DEL VOLTAJE DE LÍNEA ... 29
DESLIZAMIENTO DE LA FASE .. 32
 Potenciómetro Digital .. 33
GENERACIÓN DE LA SEÑAL SPWM ... 38
PUENTE H .. 41
 Buses de corriente directa .. 42
 Drivers de MOSFETs ... 43
 Puente H de MOSFETs ... 44
FILTRO PASA-BAJAS ... 44
ACOPLAMIENTO A LA LÍNEA .. 46

CAPÍTULO 7 RESULTADOS .. 49
DESLIZAMIENTO DE LA FASE .. 49
GENERACIÓN DE SPWM .. 51
Capítulo 1 INTRODUCCIÓN

1.1. Antecedentes

Uno de los autores de este proyecto, Ernesto Terrazas Prieto, ha sufrido durante varios años, mínimo cinco, un cobro injusto por el servicio de energía eléctrica. En su casa habitan cuatro personas y la mayor parte del tiempo no se encuentra en ella. El consumo de energía eléctrica mayor se da durante la mañana y en las noches que es cuando la mayoría de los inquilinos se encuentran en la casa. Sin embargo, los cobros recibidos por parte de la Comisión Federal de Electricidad han sido excesivamente altos, alrededor de $5000.00 MXN, en promedio por bimestre. Es por ello que en primera instancia se decidió desarrollar un medidor de voltaje, mejor conocido como wattómetro, que fuera digital y que tuviera la capacidad de almacenar la información de consumo eléctrico en una base de datos. Así mismo, informar al usuario cuando el consumo está pasando los límites establecidos por el usuario. A la vez, el dispositivo sería capaz de mandar la información de consumo por medio de Internet a la Comisión Federal de Electricidad, para que así se reciba la cantidad a pagar y se pudiera realizar el pago en línea. Sin embargo, después de realizar investigación teórica para determinar la viabilidad del proyecto, se encontró que ya había sido desarrollado por la Empresa IUSA encargado de proveer los medidores de luz a la Comisión Federal de Electricidad.

Por lo tanto fue necesario descartar la idea original del proyecto del medidor de consumo dado que sería muy difícil competir contra una empresa tan sólida como lo es IUSA y que a la vez ya ha ganado la licitación para proveer estos nuevos reguladores digitales a la Comisión Federal de Electricidad. Se decidió cambiar de proyecto, pero siempre siguiendo la línea de uso eficiente de la energía.

1.2. Problemática

El siguiente proyecto pretende resolver la problemática que existe en México con las variaciones de voltaje a las cuales se enfrentan los usuarios finales en las casas habitación. Uno de los problemas principales con respecto al voltaje en las casas mexicanas es que prácticamente nunca se mantiene constante. Estas variaciones pueden resultar perjudiciales para la mayoría de los circuitos eléctricos o electrónicos ya sea que estas variaciones sean incrementos o decrementos de voltaje [1]. Así mismo, al tener dichas variaciones se puede llegar a pagar más dinero por el servicio eléctrico cuando se puede pagar menos por lo mismo y sin riesgos para los equipos eléctricos y electrónicos.
1.3. Justificación

Con la realización del siguiente proyecto se pretende que gran parte de la población mexicana cuente con un voltaje de línea constante en su hogar. Esto se pretende lograr al desarrollar un prototipo funcional que sea eficiente, en regular la tensión, y que sea accesible en términos monetarios, menor a los $5000.00 MXN.

Se espera que con el uso de este regulador los daños que actualmente sufren los equipos eléctricos y electrónicos en el hogar disminuyan considerablemente.

Así mismo los autores pretenden contribuir al uso eficiente de la energía al asegurar que los aparatos eléctricos y electrónicos, conectados al regulador propuesto, están funcionando en los voltajes nominales de operación establecidos por sus fabricantes. Esto es dado la preocupación que existe hoy día por utilizar la energía disponible de la manera más eficiente posible y así comenzar a revertir el impacto ecológico que sufre el planeta actualmente.

Como interés personal de los autores, se realiza este proyecto para contar con tecnología cien por ciento mexicana en las técnicas modernas para la regulación del voltaje de línea monofásica en los hogares mexicanos.

1.4. Objetivos

Objetivo General

Desarrollar un prototipo funcional capaz de mantener constante el voltaje de línea monofásica, para evitar las variaciones de voltaje, lográndolo a un costo accesible para su comercialización y lograr un uso eficiente de la energía.

Objetivos Específicos

1. Obtener el valor del voltaje de línea recibido.
2. Realizar el deslizamiento de la fase de la señal de control
3. Generar una SPWM de forma análoga
4. Implementación del Puente H con la SPWM
5. Diseño e implementación del filtro pasa-bajas
6. Acoplamiento de la señal de control a la línea
7. Realizar pruebas del regulador con carga
1.5. Alcances

Este proyecto tendrá los siguientes alcances:

1. El prototipo obtendrá el valor de la magnitud del voltaje de línea
2. El prototipo llevará a cabo el deslizamiento necesario para que el voltaje de línea sea constante.
3. La corriente que el prototipo entregará a la línea en el acoplamiento, será proporcional al voltaje que se tenga que compensar.

Este proyecto no contempla las siguientes actividades:

1. El prototipo jamás entregará a la línea la corriente total demandada por la casa.
2. El prototipo no funcionará como sistema de respaldo en caso de que se interrumpa la tensión, simplemente actuará como regulador.

1.6. Metodología

Medición de la variable física correspondiente, el voltaje de línea

1. Acondicionar la señal recibida para que pueda ser leída por el puerto analógico del microcontrolador.
2. Generar código dentro de microcontrolador para medir constantemente el valor de voltaje recibido.

Corrección de la fase de señal de control

1. Deslizar la fase de la señal de control utilizando electrónica digital-analógica.
2. Controlar la cantidad de corriente que entra al potenciómetro digital.

Acoplamiento a la línea de alimentación del hogar

1. Generar SPWM en donde la señal fundamental tenga la misma frecuencia que la señal de la línea.
2. Obtener la misma SPWM pero de mayor amplitud con la ayuda del puente H.
3. Síntesis de la señal sinusoidal con el uso de un filtro pasa-bajas de primer orden.
4. Acoplamiento a la línea con el uso de un transformador.
Capítulo 2 MARCO LEGAL

En México, como en la mayoría de los países del mundo, existen normas estandarizadas para diversos procesos o instalaciones. En el caso de este proyecto es necesario tomar en cuenta todo lo referente a los estándares publicados por el Gobierno Federal Mexicano en cuanto a las normas para instalaciones eléctricas y su utilización. En este caso, el documento base para conocer todas estas regulaciones será la Norma Oficial Mexicana para Instalaciones Eléctricas, la cual a partir de ahora se mencionará como NOM-001-SEDE-2005, Instalaciones Eléctricas (utilización) [2].

2.1. Norma Oficial Mexicana para Instalaciones Eléctricas

En esta norma se contemplan sólo los estándares correspondientes para instalaciones eléctricas que funcionen por debajo de los 600 volts nominales de corriente alterna o hasta los 1500 volts de corriente continua. Lo cual, funciona adecuadamente para este proyecto, ya que la implementación del mismo se hará en residencias que requieren mucha menor cantidad de voltaje. La frecuencia contemplada para los circuitos dependientes de la corriente alterna es de 60 Hz o 60 ciclos por segundo.

El objetivo principal de esta norma es evitar que, debido a una mala instalación eléctrica, animales o personas puedan sufrir descargas eléctricas de manera directa o indirecta que pongan en peligro su vida. Así mismo, se pretende evitar cualquier riesgo de sobrecalentamiento en la instalación que puede terminar en un incendio y que a la vez ponga en peligro la vida de los ocupantes del recinto.

Dentro de la norma se especifica que el material de los conductores eléctricos debe ser el cobre. El tamaño del conductor depende del área transversal del mismo y deberán expresarse en mm2 o de acuerdo a su equivalente según la American Wire Gauge, AWG por sus siglas en inglés. Ver apéndice I para la equivalencia entre los valores AWG y los mm2 y en donde se identifica la corriente máxima que puede fluir por cada cable.

Así mismo, la instalación de estos cables se debe hacer en lugares alejados de la humedad, gases o agentes corrosivos. La unión de estos cables debe ser por medio de conectores a presión, como lo son las clavijas utilizadas cotidianamente o los cables que van atornillados a alguna superficie, o en su defecto unirlos mecánicamente primero y después con soldadura. Estas uniones deben estar debidamente aisladas con material similar al que aísla los cables.

Las instalaciones eléctricas en interiores que estén abiertas a personal no calificado deben estar encerradas en una bóveda o compartimiento cuya apertura sea sólo mediante una cerradura. Esto para asegurar la seguridad de las personas no calificadas que puedan llegar a sentir curiosidad por el
funcionamiento de la instalación. Por lo tanto, la instalación del dispositivo resultante de este proyecto, deberá ser instalado bajo esta normatividad y fuera del alcance o manipulación de los usuarios.

2.2. De los Circuitos Derivados de Autotransformadores

En la NOM-001-SEDE-2005, Instalaciones Eléctricas (utilización) se especifica que los alimentadores no deben derivarse de autotransformadores a menos que éstos tengan un conductor conectado directamente a tierra física, para protección, del suministro del autotransformador.

La función de estos transformadores no debe ser otra más que la de mantener el voltaje de línea constante en la entrada de la alimentación. Con lo anterior se puede determinar que el hecho de implementar el presente regulador en la entrada del hogar para mantener un voltaje constante es legal en territorio nacional mexicano.
Capítulo 3 MERCADO

Hoy en día existen diferentes tipos de reguladores de voltaje y varían desde el marco teórico y accionamiento, eficiencia de regulación, respuesta a transitorios, características térmicas o hasta tamaño físico. Es necesario entender esta diversidad de reguladores de voltaje para entender mejor el concepto y funcionamiento de este proyecto.

En esta sección se describirán los diferentes tipos de reguladores comerciales que existen hoy en día, tanto en México, como en un ámbito internacional. Primeramente se hablará de la situación actual en México y la necesidad de contar con reguladores de voltaje para uso tanto en el hogar como en la industria.

3.1. Mercado y estado actual de reguladores de voltaje

Hoy en día, la información con respecto a datos concisos es escasa, pero el análisis hecho por Frost & Sullivan muestra que en el año 2003, el mercado de reguladores de voltaje generó $203.3 millones de dólares (mdd) y se estima que para el 2010, se alcanzarán cifras de hasta $277.7 mdd. [3]. Este artículo menciona el gran potencial que tiene el mercado de reguladores debido a las diferentes tecnologías que conforman a los distintos tipos de reguladores como los reguladores ferroresonantes, los buck-boost, entre otros.

Más aún, se menciona que debido a que Estados Unidos y Europa cuentan con infraestructuras eléctricas confiables, la producción de dichos reguladores tiene más potencial para ocurrir en países en vías de desarrollo [3]. Para México, estas son buenas noticias porque la situación actual del país permite que se desarrolle tecnología para la fabricación de dichos aparatos, y el mercado, tanto nacional como internacional, es bastante fuerte. Tan sólo en Estados Unidos de Norteamérica la empresa Deloitte realizó una encuesta en la que los resultados revelaron que los usuarios del servicio eléctrico están dispuestos a pagar hasta un 5% más en las tarifas de energía si ésta es renovable o limpia [4]. Lo novedoso que propone este proyecto tiene un gran potencial, ya que se distingue entre los diferentes tipos de reguladores actuales. Cada tecnología de reguladores de voltaje tiene sus ventajas y desventajas, y el introducir una nueva alternativa de tecnología al mercado que sigue creciendo puede tener grandes resultados.

3.2. México

La mayor parte de este país cuenta con una infraestructura eléctrica muy pobre, que es consecuencia tanto de tener instalaciones eléctricas obsoletas y/o viejas que requieren ser reemplazadas, pero al mismo tiempo de la consecuencia
de contar con una gran sobrepoblación primordialmente en las secciones urbanas del país. La capital de México junto con la zona conurbada cuenta con una gran aglomeración poblacional, 24 millones de habitantes aproximadamente [5], teniendo secciones de la ciudad con grandes densidades de vivienda, que a su vez afectan la distribución eléctrica. Muchas veces ocurren eventos a lo largo de la ciudad como festividades religiosas, o eventos particulares en donde la gente literalmente se cuela de los cables de luz, mejor conocido como “diablitos”, para proveer electricidad a dicho evento [6]. Las variaciones de voltaje son muy evidentes cuando se tiene una gran demanda eléctrica, y esto tiene repercusiones en la instalación eléctrica de cada vivienda, comercio o industria. Con pequeñas variaciones como picos de tensión, o caídas de tensión momentáneas, los aparatos eléctricos sufren, ya que están diseñados para operar dentro de un rango específico [1]. Más aún, cuando se tiene un voltaje constantemente por debajo o por arriba del nivel nominal, se ven afectados todos los aparatos eléctricos por igual, reduciendo su vida útil. Qué tan rápido se deterioran los aparatos dependerá del porcentaje de cambio que exista en el nivel de voltaje.

En México existen diferentes compañías que producen reguladores de voltaje para hogar, comercio, industria u oficina, pero también existen reguladores de voltaje particulares para aparatos eléctricos como el televisor, la computadora, el sistema de videojuegos o para lo que el usuario desee conectar y proteger. Algunas de las compañías que ofrecen estos productos de protección de equipo eléctrico contra descargas y variaciones de voltaje en México son Koblenz, Max Power, Villa Industrias, entre otros. Estas compañías ofrecen diversas soluciones para proteger equipo eléctrico, y los reguladores que proveen llegan a tener un funcionamiento distinto.

Como nota histórica, México contaba con una frecuencia de red eléctrica de 50 Hz hasta el año 1976, cuando el Comité de Unificación Eléctrica culminó el proceso de transición hacia el cambio a 60 Hz como la frecuencia eléctrica estándar en América del Norte [7].

3.3. Ámbito Internacional

A nivel internacional existen distintas familias que ofrecen reguladores de voltaje, pero es importante recalcar el hecho de que muchos países primermundistas no tienen la necesidad de implementar reguladores de voltaje para vivienda como ocurre en México [3]. Esto tiene que ver con el hecho de que a pesar de tener ciudades y zonas urbanas con mucha o poca densidad poblacional, la infraestructura que tienen está bien diseñada y mantenida para soportar una aglomeración ciudadana. El uso de reguladores de voltaje como el que se busca crear con este proyecto está enfocado para usarse en lugares que compartan la misma situación que existe en México con densidades poblacionales elevadas e infraestructura eléctrica deficiente.

Algunas de las compañías internacionales que fabrican reguladores de voltaje para vivienda o industria son Powerex Enterprise Co., LTD., Utility
Systems Technologies, Inc., entre otras. Cabe mencionar que muchas de las compañías internacionales que fabrican reguladores de voltaje los hacen enfocados a la industria y no tanto hacia la vivienda. Una infraestructura pobre en altas densidades poblacionales crea inestabilidad eléctrica que propicia una necesidad de utilizar un regulador.

Independiente del hecho que los reguladores de voltaje se utilicen por una infraestructura eléctrica deficiente, es necesario mencionar que cuando existen cargas críticas en un sistema se presenta una situación en donde se necesita de regulación de voltaje. Cuando se habla de industria, precisamente se está hablando de cargas críticas, como la de los alternadores, motores, turbinas, máquinas de industria pesada, y todo aquello que consuma potencia elevada, en el rango de los kilowatts.
Capítulo 4 DISTINTOS TIPOS DE REGULADORES DISPONIBLES ACTUALMENTE

Existen diversos tipos de reguladores de voltaje y lo que los distingue es el marco teórico, funcionamiento y accionamiento de los mismos. A continuación se detallan los diferentes tipos de reguladores:

4.1. Reguladores Ferroresonantes

De los reguladores más utilizados y conocidos en las últimas décadas, están los reguladores ferro resonantes, también llamados transformadores de voltaje constante (o CVT por sus siglas en inglés)[8]. Su funcionamiento se basa en uno de los conceptos de un transformador: la saturación de flujo magnético en el hierro cuando la corriente eléctrica del embobinado primario es suficientemente alta. Cuando esto sucede, no se ve un incremento de voltaje en el embobinado secundario cuando existen futuros incrementos de corriente en el primario. En este aspecto, un transformador opera como un regulador de voltaje, pero para cuestiones prácticas, es inútil utilizar un transformador así ya que la saturación de flujo magnético ocurre cuando la corriente en el primario se acerca a un corto-circuito [8]. Con base en esto, se crea el regulador ferroresonante: un transformador operando en saturación.

Imagen 4.1.1: Gráfica de voltaje de entrada vs. voltaje de salida de un transformador ferroresonante. La línea roja describe la zona de saturación.

Un regulador ferroresonante recibe su nombre debido a la resonancia que ocurre en su conexión secundaria. Existe un capacitor en la salida del

embobinado secundario, y cuando la reactancia del embobinado secundario es igual a la reactancia del capacitor, los dos alcanzan un estado de resonancia, que produce una salida mayor que la pura relación de vueltas del transformador. Como un transformador mantiene una relación de vueltas entre el primario (N1) y el secundario (N2), la relación N1:N2 permite saber el comportamiento del voltaje y la corriente. Debido a la resonancia que ocurre en el transformador del regulador ferroresonante cuando hay saturación magnética (por ejemplo, cuando existe un pico de voltaje en el suministro de energía eléctrica), hay una salida controlada en el circuito del embobinado secundario. El circuito secundario es mucho más complejo que simplemente un capacitor en paralelo al embobinado secundario, ya que se busca proveer un voltaje en corriente alterna constante [8].

Un inconveniente de este tipo de reguladores es su dependencia con la frecuencia. Un cambio del 1 % en la frecuencia de entrada produce un cambio del 1.5 % en el voltaje de salida [8]. Además, cuando no hay carga después del regulador, o una carga muy pequeña, el regulador ferroresonante se vuelve muy ineficiente. Su mejor punto de operación es cuando hay una demanda de carga continua.

4.2. Reguladores de Conmutación Electrónica

Uno de los reguladores que tienen una gran eficiencia, bajo costo y poco peso son los de conmutación electrónica [8]. Su funcionamiento y accionamiento son sencillos. Se cuenta con un transformador que tiene en el secundario un controlador electrónico que cerciora que el voltaje de salida esté siempre en el rango deseado. Cuando un cambio en el primario causa un cambio en el secundario, el controlador toma las medidas necesarias y conmuta adecuadamente un cambio en el devanado o “tap” del embobinado para lograr la relación de vueltas adecuada y así obtener el voltaje deseado.

![Diagrama de un regulador de conmutación electrónica con servomotor](http://www.ustpower.com/Support/Voltage Regulator Comparison/Electronic Voltage Regulator/Electronic Tap Interruptoring Voltage Regulator Operation.aspx)

Imagen 4.2.1: Diagrama de un regulador de conmutación electrónica con servomotor

Existen diversos tipos de reguladores de conmutación electrónica, pero se basan en el mismo principio: algunos modifican el tap del primario, algunos modifican el tap del secundario, Imagen 4.2.1., otros cuentan con un servomotor para hacer el cambio de tap, u otros que controlan electrónicamente el cambio para mayor rapidez de respuesta. En fin, las variantes de los reguladores de conmutación de voltaje dan algunas cualidades, adquieren algunas deficiencias, pero su funcionamiento es prácticamente el mismo. Algunos requieren de un transformador de aislamiento, protegiendo el circuito del controlador, otros no cuentan con dicho aislamiento porque utilizan un autotransformador (que a su vez, no permite un aislamiento físico del suministro de electricidad). Estos reguladores de voltaje, debido a que son controlados por electrónica, son muy veloci, livianos, no son ruidosos, entre otras características [8]. Una de las deficiencias de estos reguladores es lo que se llama en inglés tap dancing; el constante bailoteo del tap que controla la salida de voltaje en el secundario cuando el suministro de energía es muy variante. Estos cambios constantes pueden afectar gravemente los circuitos eléctricos o electrónicos de las cargas que estén siendo protegidas por el mismo regulador.

4.3. Reguladores Impulsados por Tiristores

 Otro tipo de reguladores son aquellos que tienen una regulación controlada por electrónica de tiristores. Estos tiristores están en pares, en una configuración específica para permitir que la onda de salida no se deforme tanto. Un par de tiristores está controlando el límite superior del voltaje regulado, mientras que el otro par de tiristores controla el límite inferior del voltaje. Cada par de tiristores está conectado a su propio tap en un autotransformador. La señal de salida está regulada, aunque puede ser de una calidad pobre para ciertas aplicaciones. Requirirá de un filtro de salida dicho circuito para poder proveer una señal senoidal limpia.

 De las desventajas de este tipo de regulación está el hecho que se introduce una cantidad considerable de distorsión en el voltaje de salida, afectando la carga si es que no se cuenta con un filtro de salida que limpie la señal [8]. También, dependiendo de las cargas que se conecten a dicho regulador, puede afectar el funcionamiento y vida útil de los tiristores. Estas deficiencias en este tipo de reguladores los hacen menos comunes que los dos reguladores mencionados anteriormente.

4.4. Reguladores de Motor (Variac)

 De los reguladores de voltaje automáticos más viejos, están los reguladores de variac controlados por un motor. Estos cuentan con un autotransformador con un tap variable, controlado por un motor. Tienen un circuito de monitoreo en la salida, que al detectar cambios de voltaje indeseados, controla el movimiento del motor hacia el lado correcto, deslizando la escobilla y
a su vez cambiando el valor del voltaje de salida debido al cambio en la relación de vueltas [9]. A continuación se muestra una imagen de dicha escobilla deslizante:

Imagen 4.4.1 : Escobilla (powerstat) deslizante sobre el autotransformador (variac). Esta escobilla es deslizada por un motor en el centro del variac

A pesar de ser viejos y prácticamente obsoletos por su tiempo de respuesta sumamente largo [8] lo que lo vuelve ineficiente con cambios repentinos de voltaje, su funcionamiento y accionamiento es sumamente básico para proveer una idea de cómo funcionan la mayoría de los reguladores. Hoy en

día con los circuitos de estado sólido, es posible implementar un regulador basado en estos descritos que cumple con los requisitos de tiempo de respuesta casi inmediatos. Otro aspecto importante que hace que estos reguladores sean ineficientes, es el hecho que la escobilla puede estar tocando varias espiras de cobre, cuando la situación óptima es que esté tocando solamente uno.
Capítulo 5 MARCO TEÓRICO

A continuación se describen algunos conceptos que se consideran útiles para la comprensión de este proyecto. Cabe mencionar que los conceptos siguientes son una definición básica de los mismos. Por ello, en caso de querer profundizar se recomienda al lector realizar una investigación más a fondo. Así mismo, se asume que el lector cuenta ya con conocimientos básicos de electricidad y electrónica para comprender estos conceptos.

5.1. Corriente y voltaje alternos

La corriente eléctrica es el flujo de carga eléctrica por unidad de tiempo que se recorre en un material, por lo general metálico. Se expresa en Coulombs sobre segundo (C/s) y su unidad es el Ampere (A) para el sistema métrico decimal [10].

La corriente alterna es aquella en las que la magnitud y dirección de una señal eléctrica varían en el tiempo de manera cíclica. La señal más común y más utilizada de este tipo es la forma sinusoidal, aunque también existe de otros tipos como los son la triangular o la cuadrada. Una de las grandes ventajas de la corriente alterna es que se puede utilizar para transmitir grandes cantidades de potencia en distancias muy largas [11]. Es por ello que es la corriente utilizada en todo el mundo para la distribución de energía eléctrica.

Característica de una onda sinusoidal

Una de las razones principales por la que la onda sinusoidal es sumamente utilizada, es porque está perfectamente definida de manera matemática y gráfica. Su expresión matemática está dada de la siguiente forma:

\[V(t) = V_0 \sin (wt) \]

Donde:

- \(V_0 \) es la amplitud en volts de la señal. Este valor es el valor pico que alcanza la señal sinusoidal.
- \(wt \) es el argumento y se descompone en \(w \) que es la frecuencia angular, dada en radianes/segundo y \(t \) es el tiempo en segundos. Esta frecuencia angular se puede expresar en términos de la frecuencia o periodo en el cual se repiten, lo que logra que sean cíclicas. Por lo tanto, la frecuencia angular se puede expresar de la siguiente forma:

\[w = 2\pi f \]
Esto es porque la señal sinusoidal se repite cada 2π radianes y en donde la frecuencia está dada por:

$$f = \frac{1}{\tau}$$ \hspace{1cm} 5.3.

La expresión matemática dada en la ecuación 5.1. responde a la forma simplificada de una señal sinusoidal. En realidad la expresión adecuada es la siguiente: [11]

$$V(t) = V_0 \sin (wt + \varphi)$$ \hspace{1cm} 5.4.

Se puede observar que a diferencia de la ecuación 5.1., la ecuación 5.4. cuenta con un elemento adicional en el argumento. A este elemento se le conoce como la fase de la señal. El efecto que tiene la fase en la señal resultante es que puede generar un atraso o retraso de la señal [11]. En términos de este proyecto, el concepto de fase es de suma importancia, ya que es éste quien permitirá manipular la señal de control a voluntad de los autores.

5.2. Armónicos

Cuando la señal resultante de un sistema, en el caso que deba ser sinusoidal, tiene variaciones con respecto a la sinusoidal que se espera obtener, se dice que la señal está distorsionada [12].

Para poder contemplar como distorsión armónica las deformaciones presentes dentro de una señal, se debe cumplir lo siguiente: [12]

- La señal debe ser periódica, es decir que debe tener la misma forma en cada ciclo de la señal.
- Debe ser permanente. Debe presentarse en cualquier instante de tiempo, por lo tanto, no es pasajera.
- La señal debe tener valores definidos dentro del intervalo.

Para comprender este concepto es necesario identificar el Teorema de Fourier que dice que una función periódica puede componerse por una suma de funciones sinusoidales. En todo caso siempre existirá la primera armónica, a la cual también se le denomina fundamental, la cual tiene la misma frecuencia que la original, y las demás que tendrán una frecuencia múltiplo de la fundamental. [12]

Cabe mencionar que en el caso de las señales simétricas sólo existirán armónicas de múltiplo impar a la frecuencia de la fundamental. Para las ondas asimétricas, pueden existir tanto armónicas de múltiplo par o impar de la fundamental. [12] Así mismo, es importante identificar que las distorsiones armónicas se deben a las cargas no lineales, como lo son semiconductores, y no a las cargas lineales como lo son las resistencias, capacitares e inductores.
Distorsión Armónica Total (THD)

Término que se utiliza para identificar la distorsión armónica presente en la señal y se define como el radio de la suma de las potencias de los componentes armónicos y de la potencia de la señal con la frecuencia fundamental. Mientras más pequeña sea esta relación, se tiene una salida mucho más limpia y mucho más cercana a la frecuencia deseada, que es la fundamental. [13]

Para el cálculo del THD es necesario conocer los valores de voltaje, corriente o potencia tanto de la fundamental como de los armónicos presentes. El cálculo responde a la siguiente ecuación:

$$ THD_1 = \frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + \ldots + V_n^2}}{v_1} $$

5.5.

La ecuación 5.5 muestra la forma para calcular el THD con respecto a la frecuencia fundamental del voltaje medido. Se puede expresar en términos de sumatoria como se expresa en la ecuación 5.6 a continuación.

$$ THD_1 = \frac{\sqrt{\sum_{h=2}^{n} V_h^2}}{v_1} $$

5.6.

Así mismo se puede obtener el valor de THD con respecto a la corriente o a la potencia, simplemente se tiene que sustituir el valor de corriente o potencia en lugar del valor de voltaje.

Para mayor comodidad, se expresa el valor de THD como un porcentaje entre el 0 y el 100% [12]. La expresión queda de la siguiente manera.

$$ THD_1 = \frac{\sqrt{\sum_{h=2}^{n} V_h^2}}{v_1} \times 100\% $$

5.7.

Lo que se quiere con el valor del THD es que sea lo menor posible o lo más cercano a cero. De esta forma, se garantiza que la distorsión armónica causada por la presencia de señales con frecuencia múltiplo de la fundamental será lo menor posible y afectará menos el resultado del sistema. [13]
Límites Para la Distorsión Armónica Para el Voltaje

En México existe la especificación CFE L0000-45 denominada "Perturbaciones Permisibles en las Formas de Onda de Tensión y Corriente del Suministro de Energía Eléctrica" y estipula los niveles máximos de distorsión armónica que puede tener un sistema eléctrico [12]. Los valores son los siguientes:

<table>
<thead>
<tr>
<th>Nivel de tensión en la acometida (V_n)</th>
<th>Distorsión Armónica Individual</th>
<th>Distorsión Armónica Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_n ≤ 1kV</td>
<td>5.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>1 ≤ V_n ≤ 69kV</td>
<td>3.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>69 ≤ V_n ≤ 138kV</td>
<td>1.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>V_n > 138kV</td>
<td>1.0%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Tabla 5.1. Límites de distorsión Armónica de voltaje según la CFE L0000-45

En Estados Unidos de Norte América existe la norma IEEE 519 denominada "Prácticas Recomendadas y Requerimientos Para el Control de Armónicos en Sistemas Eléctricos de Potencia" [12]. Al igual que la CFE L0000-45 establece los valores máximos de distorsión armónica que puede tener el sistema. Los valores son los siguientes:

<table>
<thead>
<tr>
<th>Nivel de tensión en la acometida (V_n)</th>
<th>Distorsión Armónica Individual</th>
<th>Distorsión Armónica Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ≤ V_n ≤ 69kV</td>
<td>3.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>69 ≤ V_n ≤ 161kV</td>
<td>1.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>V_n > 161kV</td>
<td>1.0%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Tabla 5.2. Límites de distorsión armónica de voltaje según la IEEE 519

Límites Para la Distorsión Armónica Para el Corriente

De igual forma que existen límites para la distorsión armónica para el voltaje, también existen estos límites para la corriente. Los valores permisibles

se muestran a continuación en la tabla 5.3. según la CFE L0000-45 y en la tabla 5.4. según la IEEE 519.

Tabla 5.3. Límites de distorsión armónica de corriente según la CFE L0000-45

<table>
<thead>
<tr>
<th>(\frac{I_a}{I_n})</th>
<th>TDD</th>
<th>(h<11)</th>
<th>(11\leq h<17)</th>
<th>(17\leq h<23)</th>
<th>(23\leq h<35)</th>
<th>(h\geq35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_a < 20)</td>
<td>5.0%</td>
<td>4.0%</td>
<td>2.0%</td>
<td>1.5%</td>
<td>0.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>(20 \leq I_a < 50)</td>
<td>6.0%</td>
<td>7.0%</td>
<td>3.5%</td>
<td>2.5%</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>(50 \leq I_a < 100)</td>
<td>12.0%</td>
<td>10.0%</td>
<td>4.5%</td>
<td>4.0%</td>
<td>1.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>(100 \leq I_a < 1000)</td>
<td>15.0%</td>
<td>12.0%</td>
<td>5.5%</td>
<td>5.0%</td>
<td>2.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>(I_a \geq 1000)</td>
<td>20.0%</td>
<td>15.0%</td>
<td>7.0%</td>
<td>6.0%</td>
<td>2.5%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

| \(V_a \leq 69 \) kV |
|-----------------|-----|-----|-----|-----|-----|-----|
| \(I_a < 20 \) | 2.5% | 2.0% | 1.0% | 0.75% | 0.3% | 0.15% |
| \(20 \leq I_a < 50 \) | 4.0% | 3.5% | 1.75% | 1.25% | 0.5% | 0.25% |
| \(50 \leq I_a < 100 \) | 6.0% | 5.0% | 2.25% | 2.0% | 0.75% | 0.35% |
| \(100 \leq I_a < 1000 \) | 7.5% | 6.0% | 2.75% | 2.5% | 1.0% | 0.5% |
| \(I_a \geq 1000 \) | 10.0% | 7.5% | 3.5% | 3.0% | 1.25% | 0.7% |

| \(69 \) kV < \(V_a \leq 161 \) kV |
|-----------------|-----|-----|-----|-----|-----|-----|
| \(I_a < 50 \) | 2.5% | 2.0% | 1.0% | 0.75% | 0.3% | 0.15% |
| \(I_a \geq 50 \) | 3.75% | 3.0% | 1.5% | 1.15% | 0.45% | 0.22% |

Tabla 5.4. Límites de distorsión armónica de corriente según la CFE L0000-45

<table>
<thead>
<tr>
<th>(\frac{I_a}{I_n})</th>
<th>TDD</th>
<th>(h<11)</th>
<th>(11\leq h<17)</th>
<th>(17\leq h<23)</th>
<th>(23\leq h<35)</th>
<th>(h\geq35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_a < 20)</td>
<td>5.0%</td>
<td>4.0%</td>
<td>2.0%</td>
<td>1.5%</td>
<td>0.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>(20 \leq I_a < 50)</td>
<td>6.0%</td>
<td>7.0%</td>
<td>3.5%</td>
<td>2.5%</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>(50 \leq I_a < 100)</td>
<td>12.0%</td>
<td>10.0%</td>
<td>4.5%</td>
<td>4.0%</td>
<td>1.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>(100 \leq I_a < 1000)</td>
<td>15.0%</td>
<td>12.0%</td>
<td>5.5%</td>
<td>5.0%</td>
<td>2.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>(I_a \geq 1000)</td>
<td>20.0%</td>
<td>15.0%</td>
<td>7.0%</td>
<td>6.0%</td>
<td>2.5%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

| \(V_a \leq 69 \) kV |
|-----------------|-----|-----|-----|-----|-----|-----|
| \(I_a < 20 \) | 2.5% | 2.0% | 1.0% | 0.75% | 0.3% | 0.15% |
| \(20 \leq I_a < 50 \) | 4.0% | 3.5% | 1.75% | 1.25% | 0.5% | 0.25% |
| \(50 \leq I_a < 100 \) | 6.0% | 5.0% | 2.25% | 2.0% | 0.75% | 0.35% |
| \(100 \leq I_a < 1000 \) | 7.5% | 6.0% | 2.75% | 2.5% | 1.0% | 0.5% |
| \(I_a \geq 1000 \) | 10.0% | 7.5% | 3.5% | 3.0% | 1.25% | 0.7% |

| \(69 \) kV < \(V_a \leq 161 \) kV |
|-----------------|-----|-----|-----|-----|-----|-----|
| \(I_a < 50 \) | 2.5% | 2.0% | 1.0% | 0.75% | 0.3% | 0.15% |
| \(I_a \geq 50 \) | 4.0% | 3.5% | 1.75% | 1.25% | 0.5% | 0.25% |

5.3. Modulación por Ancho de Pulso (PWM)

Es una técnica moderna utilizada para controlar la potencia entregada a la carga al controlar el voltaje y corriente promedio que se le entrega. La potencia promedio entregada a la carga se controla al realizar el encendido y apagado de un interruptor que se encuentra entre el voltaje de alimentación y la carga. De esta forma, mientras más tiempo se encuentre encendido el interruptor y permite el flujo de corriente hacia la carga, mayor será la potencia disponible para la misma. Al contrario, mientras más tiempo se encuentre apagado el interruptor, menor será la potencia disponible para la carga[16].

Generación de una señal PWM

Una de las formas más sencillas de obtener una señal PWM es por medio de la comparación de dos ondas, una moduladora o fundamental y la portadora. Cuando la señal portadora es más grande en magnitud que la señal fundamental, la salida será un estado bajo y cuando la magnitud de la señal portadora sea menor que la magnitud de la fundamental, la salida será un estado alto [16]. En la imagen 5.1. se aprecia de manera gráfica lo descrito anteriormente.

![Imagen 5.1 Comparación entre onda sinusoidal (fundamental) y onda triangular (portadora) para la obtención de señal PWM](image)

En la imagen 5.1. se puede apreciar que cuando la magnitud de la señal fundamental es mayor en magnitud que la señal portadora, la salida tiene un

estado alto. Al contrario, cuando la magnitud de la señal fundamental, es menor que la de la señal portadora, la salida tiene un estado bajo.

En la práctica esta comparación se puede llevar a cabo con el uso de semiconductores, como lo son los comparadores. En sus entradas se encuentran la señal moduladora o fundamental y la portadora. A la salida, el comparador permite al usuario elegir los voltajes de estado en alto y en estado bajo que se deseen.

Ciclo de trabajo (Duty Cycle)

Se entiende como el tiempo que una señal se encuentra en estado alto con respecto tiempo total que dura la señal [17]. Su expresión matemática está representada de la siguiente manera:

\[D = \frac{t}{T} \]

5.8.

En donde \(t \) es el tiempo que dura la señal en alto y \(T \) es el periodo de la señal. Generalmente la expresión del ciclo de trabajo se hace en términos de porcentajes del 0 al 100 %. La expresión queda de la siguiente forma.

\[D = \frac{t}{T} \times 100\% \]

5.9.

En la ecuación 5.9. se tiene la expresión correspondiente para el ciclo de trabajo en términos de porcentajes. Cuando el valor del ciclo de trabajo es del 50% se tiene una señal simétrica en donde el tiempo que dura encendida es el mismo tiempo que dura apagada. Si el valor del ciclo de trabajo es igual al 100%, entonces se tiene una señal que todo el tiempo se encuentra en estado alto. Por último, si se tiene un ciclo de trabajo del 0%, entonces se tiene una señal que todo el tiempo se encuentra en estado bajo.

Al variar el ciclo de trabajo se puede controlar la potencia que se entregará a la carga.

Índice de Modulación y Relación de frecuencias

A la relación entre la amplitud de la señal portadora y la señal de referencia o fundamental se le conoce como índice de modulación [19]. Se expresa como:

\[m_v = \frac{A_0}{A_c} \]

5.10.
En la ecuación 5.10, se expresa el índice de modulación, el cual corresponde al cociente entre la amplitud de la señal de referencia entre la amplitud de la señal portadora. Este valor tiene que ser un valor entre 0 y 1. Si el índice de modulación es menor o igual a uno, entonces amplitud de la señal de salida es directamente proporcional al voltaje del bus de alimentación [20].

\[V_o = m_s V_{dl} \]

5.11

En la ecuación 5.11 se expresa el voltaje de salida en términos del índice de modulación y del voltaje de alimentación, que en el caso de un puente h, es el voltaje en el *drain* de los MOSFETs.

Si el índice de modulación es mayor a 1, entonces la relación deja de ser lineal y por lo tanto también la salida [20].

Como ya ha sido mencionado, la técnica PWM genera un componente con la frecuencia de la señal fundamental y armónicos múltiplos de la señal fundamental al analizarlo con una transformada de Fourier [18]. Para minimizar estos armónicos desde la generación de la señal PWM existe una relación entre la frecuencia de la señal portadora y la frecuencia de la señal fundamental, es decir \(f_c / f_0 \). En donde \(f_c \) es la frecuencia de la señal portadora y \(f_0 \) es la frecuencia de la señal fundamental.

La resultante de la relación de frecuencias entre la portadora y la fundamental debe ser un número entero. Esto es para evitar la aparición de sub-armónicos por debajo de la frecuencia de la fundamental [18].

La frecuencia de la señal portadora, debe ser un múltiplo impar de la frecuencia de la señal moduladora. Esto es principalmente para asegurar que los primeros armónicos tengan una frecuencia mayor o por lo menos igual a la frecuencia de la fundamental, pero nunca por debajo [18]. Así mismo, cuando se utiliza una señal triangular para la generación de la señal PWM es muy recomendable que la frecuencia de la señal portadora sea múltiplo impar de la frecuencia de la señal moduladora. Esto es porque de esta manera se logra que la primera armónica después de la fundamental, sea de una frecuencia por lo menos tres veces más que la fundamental [18].

Puente H

Es un circuito electrónico que permite aplicar a la carga un voltaje en cualquiera de las dos direcciones, positiva o negativa [21].

Su nombre es debido principalmente a la forma de H que tiene el esquemático del circuito.
Operación

Si en el circuito de la imagen 5.2. permitimos que los interruptores S1 y S4 estén cerrados mientras que S2 y S3 se encuentran abiertos, entonces la corriente fluirá a través del motor de izquierda a derecha. Por el contrario, si se cierran S2 y S3 y se dejan abiertos S1 y S4, la corriente fluirá a través del motor de derecha a izquierda. Con esto es posible que la carga sea capaz de recibir dos voltajes diferentes en signo, pero iguales en magnitud.

Cabe aclarar que la carga sólo verá uno de estos dos voltajes en un instante dado. De igual manera, es sumamente importante que por ningún motivo se cierran al mismo tiempo S1 y S2 ó S3 y S4, ya que esto provocaría un cortocircuito entre el voltaje de alimentación del puente H y tierra.

Imagen 5.2. Diseño básico de un Puente H

Construcción

Para la construcción de un Puente H se necesitan dispositivos semiconductores capaces de remplazar a los interruptores la imagen 5.2. Dentro de los más utilizados están los transistores del tipo BJT o del tipo MOSFET. Generalmente, cuando se utilizan transistores del tipo BJT se utilizan transistores PNP en la parte superior del puente y NPN en la parte inferior del puente. En el caso en que se utilicen transistores tipo MOSFET es recomendable que tanto en la parte superior como inferior del puente se utilicen de canal N. Esto es porque los MOSFETS de canal P tienen una resistencia de encendido tres veces mayor que aquellos de canal N. Así mismo, comercialmente, los de canal N

tienen una tolerancia mayor a la corriente que aquellos de canal P y su fabricación es más sencilla, lo que los hace más económicos [21].

En la imagen 5.3. se muestra un puente H construido con transistores BJT's.

Imagen 5.3. Puente H construido utilizando transistores BJT

Se puede observar que cada mitad del puente H tiene una señal de control en común en la base de sus transistores. Sin embargo, esta señal de control es complementada con respecto a la señal de control de la otra mitad del puente. Esto es para que se logre la saturación de los transistores necesarios.

En la tabla 5.5. se muestra la tabla de verdad del puente H.

<table>
<thead>
<tr>
<th>Entrada</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Sentido de la corriente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>De positivo a negativo de la carga</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>De negativo a positivo de la carga</td>
</tr>
</tbody>
</table>

Tabla 5.5. Tabla de verdad de puente H construido con BJT
Como se mencionó anteriormente, cuando se construye un puente H con transistores tipo MOSFET es necesario que sean de canal N. La construcción de estos es un poco más compleja ya que aquellos transistores que se encuentran en la parte superior (T1 y T3 de la imagen 5.4.) requieren tener una diferencia de potencial entre el gate y source. Para ello, en el mercado existen drivers encargados de proveer este voltaje de manera flotada y no con respecto a tierra. La conexión de la señal de control difiere un poco con respecto a las del puente H construido con BJT. Esto es debido a que ahora los cuatro transistores son del tipo N. Para ello, la señal de control está conectada ahora directamente al gate de los transistores T1 y T4 para que la corriente fluya en un sentido y la misma señal de control, pero negada, está conectada al gate de los transistores T2 y T3 para el flujo de corriente en otro sentido.

Imagen 5.4. Puente H construido con transistores tipo MOSFET canal N

La tabla de verdad para el funcionamiento de este puente H se muestra a continuación.

<table>
<thead>
<tr>
<th>Entrada</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Sentido de la corriente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>De positivo a negativo de la carga</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>De negativo a positivo de la carga</td>
</tr>
</tbody>
</table>

Tabla 5.6. Tabla de verdad de puente H construido con MOSFET canal N
Justificación Para el Uso de MOSFETs

La razón por la cual se utilizarán MOSFETs en este proyecto es porque cumplen con los requerimientos de conmutación en frecuencias altas y funcionan muy bien en los valores de voltaje y corriente establecidos para el proyecto. A continuación se muestra en la imagen 5.5. una comparación entre diferentes transistores de potencia y sus tolerancias de voltaje y frecuencia.

Imagen 5.5. Regiones de operación de semiconductores de potencia en voltaje vs. frecuencia.11

Como se puede apreciar en la imagen 5.5. son los MOSFETs los que pueden funcionar a frecuencias altas, en el orden de los MHz y funcionan en voltajes de casi 1 KV. Este voltaje es un voltaje muy superior al que se va a utilizar en este proyecto al igual que la frecuencia de conmutación.

Así mismo, en cuestiones de corriente, tienen la capacidad de funcionar en las corrientes necesarias para este proyecto. Lo anterior se muestra en la imagen 5.6.

Imagen 5.6. Regiones de operación de semiconductores de potencia en corriente vs. frecuencia\(^{12}\)

En la imagen 5.6. se puede observar que los MOSFETs funcionan bien en corrientes de magnitud grande, muy arriba de las especificadas para este proyecto las cuales son de alrededor de 5 A.

5.4. Principio de Superposición

Cuando dos o más ondas coinciden en el mismo espacio, la onda resultante es la suma algebraica de las ondas individuales. A esto se le llama principio de superposición. [15] La superposición es una característica y propiedad única del movimiento de las ondas.

Características de las Ondas

Se denominan ondas mecánicas aquellas que se desplazan a través de un medio deformable o elástico, a diferencia de aquellas que no requieren ningún medio para su propagación[14]. Las ondas se pueden clasificar en dos diferentes tipos, dependiendo de la manera en la que se mueven sus partículas con respecto a la dirección de propagación de la onda. Si el movimiento de las partículas es perpendicular con respecto a la dirección de la propagación de la onda se clasifica como una onda transversal. Por el contrario, si el movimiento de las partículas es en el mismo sentido que la propagación de la onda, se habla de una onda longitudinal[14].

Capítulo 6 DESARROLLO TÉCNICO

En el presente capítulo se hará una descripción detallada de la manera en la que fueron implementadas cada una de las partes que componen al proyecto.

Para introducir al lector a la parte técnica de este proyecto es necesario comenzar con un diagrama de flujo del mismo, el cual se presenta a continuación.

Diagrama de Flujo

![Diagrama de flujo del regulador de voltaje](Imagen 6.1. Diagrama de flujo del regulador de voltaje)

En la imagen 6.1. se puede observar la secuencia mediante la cual funcionara el regulador de voltaje propuesto en este proyecto. A continuación se presenta una explicación detallada de cada una de ellas.

Medición de la Amplitud del Voltaje de Línea

La primera etapa del sistema es la medición de la amplitud actual del voltaje de línea. Esta medición es la que va a indicar cuál es la corrección necesaria que se tiene que llevar a cabo para mantener el voltaje de línea en un valor nominal. Debido a que el microcontrolador va a tener que leer dicho valor del voltaje de línea actual, es necesario atenuar el voltaje a un rango aceptable para el microcontrolador, es decir, que este en un rango de 0 a 5 volts. Por lo tanto, se utiliza un transformador que baje el voltaje de línea de 127 volts rms a 12 volts rms. A través de una rectificación de onda completa compuesta por dos
diodos, y unos capacitores para filtrar y solamente permanecer con un pequeño rizo de voltaje. Después, este rizo se atenua lo necesario para poder tener un valor de voltaje entre 0 y 5 volts para introducir en la entrada analógica del microcontrolador. Un juego de dos amplificadores operacionales, uno de atenuación, y otro como seguidor, nos permite tener en la salida de dicho circuito un voltaje de aproximadamente 1.67 volts cuando el voltaje de entrada es exactamente 127 volts rms. A continuación se muestra un diagrama esquemático de dicho circuito, al igual que una gráfica de los valores de voltaje.

Imagen 6.2. Diagrama esquemático circuito rectificador/atenuador

Imagen 6.3. Gráfica de circuito rectificador/atenuador
Como se puede observar en las dos imágenes anteriores, un voltaje de 127 volts rms tiene un voltaje pico de 179.61 volts, y el voltaje de rizo en los capacitores es de 7.86 volts. Este voltaje es atenuado con un factor de 4.7 (ya que se escogieron valores comerciales de resistencias; 470k y 100k) y resulta un voltaje de 1.67 volts; un voltaje apropiado para el microcontrolador. No obstante, debido a que el convertidor analógico-digital integrado al microcontrolador tiene una resolución de 10 bits, va a tener que hacerse una conversión para poder hacer sentido del valor leído.

Una resolución de 10 bits significa que el voltaje leído por la entrada analógica del microcontrolador va ser un valor entero de 0 a 1023. El extremo inferior, es decir un valor entero de 0, significa que el valor de voltaje leído es de 0 volts, mientras que en el extremo superior, es decir 1023, significa que el voltaje leído es de 5 volts. Por lo tanto, una regla de tres aplica para este caso:

\[
\frac{5 \, V}{V_{\text{out}}} = \frac{1023}{x}
\]

Por lo tanto, para el caso de 127 volts rms, que nos da un voltaje de 1.67 volts, se va a tener un valor de:

\[
\frac{5 \, V}{1.67} = \frac{1023}{x}
\]

\[
5x = 1023(1.67)
\]

\[
x = \frac{1708.41}{5} = 341.68 \approx 341
\]

Es importante notar que son número enteros los que se leen por el microcontrolador, así que se tiene que truncar el valor. Entonces, cuando el microcontrolador lea un valor entero de 341 por su entrada análoga, sabe que el voltaje de línea es el óptimo (aproximadamente 127 volts rms), y no es necesario regular el voltaje. Cuando suba este valor entero por encima de 341, indica que el voltaje de línea esta en sobretensión. Inversamente, cuando es menor a 341 el entero, el voltaje de línea es uno de subtensión. La ecuación de la regla de tres se puede simplificar a la siguiente fórmula, realizando su respectivo truncado:

\[
x = 204.6(V_{\text{out}})
\]

A continuación se muestra una tabla que consiste en los valores de voltaje de línea y sus valores atenuados en la entrada analógica del microcontrolador, y una vez aplicada la ecuación anterior, el valor entero que se interpreta ante dicho voltaje de entrada.

<table>
<thead>
<tr>
<th>Voltaje de línea</th>
<th>Voltaje pico</th>
<th>Voltaje atenuado (Vout)</th>
<th>Valor entero</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Vrms</td>
<td>141.42 V</td>
<td>1.29 V</td>
<td>263</td>
</tr>
<tr>
<td>120 Vrms</td>
<td>169.71 V</td>
<td>1.51 V</td>
<td>308</td>
</tr>
<tr>
<td>126 Vrms</td>
<td>178.19 V</td>
<td>1.66 V</td>
<td>339</td>
</tr>
<tr>
<td>127 Vrms</td>
<td>179.61 V</td>
<td>1.67 V</td>
<td>341</td>
</tr>
<tr>
<td>128 Vrms</td>
<td>181.02 V</td>
<td>1.69 V</td>
<td>345</td>
</tr>
<tr>
<td>150 Vrms</td>
<td>212.13 V</td>
<td>2.00 V</td>
<td>409</td>
</tr>
</tbody>
</table>

Tabla 6.1. Valores enteros de voltajes de línea leídos por el microcontrolador
Deslizamiento de la Fase

Esta etapa es una de las más importantes del sistema. Es en esta en la que se lleva a cabo la función que corresponde al principio de funcionamiento del regulador de voltaje, el deslizamiento de la fase. Cabe mencionar, que una de las ideas principales del proyecto es evitar el uso de componentes mecánicos. Lo anterior para evitar que en el sistema se tengan componentes que puedan presentar desgaste, fricción y calor. Es por ello que se tomó la decisión de realizar esta etapa de una manera meramente electrónica. A continuación se muestra el circuito utilizado como desviador de fase.

Imagen 6.4. Circuito desviador de fase

Como se mencionó anteriormente, esta etapa tiene que ser puramente electrónica. Dentro del circuito desviador de fase existe un potenciómetro. Si se selecciona un potenciómetro mecánico o incluso un potenciómetro de precisión, se tendría justo lo que no se quiere: algo mecánico dentro del sistema. Además del hecho que la manipulación de dicho potenciómetro sería difícil sin la ayuda de otro elemento mecánico, por ejemplo un motor. Es por ello que se eligió el uso de un potenciómetro digital, el cual puede ser controlado por medio de un microcontrolador.

Debido a que la teoría de superposición de ondas menciona que dos ondas desfasadas una de otra con un ángulo de 90 grados, no se superponen, es necesario fijar el valor de ángulo desfasamiento a 90 cuando el regulador esté operando pero no regulando (indicándonos que el voltaje de línea no requiere de una regulación). La ecuación que rige el ángulo de desfasamiento del circuito anterior es:

$$\theta = 2 \tan^{-1}(2\pi f RC)$$
Es importante observar que el ángulo de desfase no puede llegar a 180 grados porque se indetermina la ecuación (se requeriría un capacitor o una resistencia irreal). Si escogemos un capacitor de 2 microfaradios, consideramos una frecuencia de línea de 60 Hz y buscamos un ángulo de 90 grados, tendremos que posicionar el potenciómetro digital con un valor de:

\[R = \frac{\tan(90/2)}{120\pi(0.000002)} = 1,326.29 \text{ ohms} \]

Por otro lado, el ángulo máximo de desfase con este arreglo de un potenciómetro de 5 k-ohms y capacitor de 2 microfaradios será de:

\[\theta = 2 \tan^{-1}(120\pi(5000)(0.000002)) \]
\[\theta = 2 \tan^{-1}(3.7699) \]
\[\theta = 150.28^\circ \]

Potenciómetro Digital

Para poder obtener un sistema de estado sólido, se decidió utilizar un potenciómetro digital para evitar el uso de componentes mecánicos. El dispositivo utilizado es fabricado por Microchip® y tiene las siguientes características.

Potenciómetro digital de 7/8 bits con memoria volátil. Disponible en valores de 5 k-ohms, 10 k-ohms, 50 k-ohms y 100 k-ohms. En el caso de este proyecto se utilizó el correspondiente al valor de 5 k-ohms pues es el valor necesario según los cálculos realizados en la sección anterior. A continuación se muestran los valores de voltaje y corriente para su óptima operación.

Voltaje V_DD con respecto a V_SS	-0.6 V a 7.0 V
Voltagen en (P0B, P0W, P0A y SDI/SDO)	-0.3 V a V_DD + 0.3 V
Corriente Máxima a través de V_SS	100 mA
Corriente Máxima a través de V_DD	100 mA
Corriente máxima en (PxA, PxB, PxW)	2.5 mA
Resistencia del wiper	75 ohms

Tabla 6.2. Valores de voltaje y corriente para la óptima operación del potenciómetro digital.

Como se puede observar en la tabla 6.2, a través del potenciómetro digital no pueden fluir corrientes alternas y sobre todo tiene la gran desventaja que a través de las terminales del potenciómetro sólo pueden fluir 2.5 milíamperes como máximo. Esta es una corriente sumamente baja y la señal con la que
estamos trabajado, una señal sinusoidal, tiene corriente alterna. Es por ello que para evitar el daño al circuito integrado del potenciómetro digital, fue necesario atenuar la señal a medir hasta estar dentro de un rango de 500 mV pico y lo más importante, añadirle un voltaje de offset de 2.5 Volts para que el potenciómetro la lea como corriente directa. Lo antes descrito está representado en el circuito de la figura 6.5.

![Circuito de Atenuación](image-6.5.png)

Imagen 6.5. Circuito acondicionador de señal para la entrada del potenciómetro digital.

Para atenuar la señal original, correspondiente a la sinusoidal de 6V rms de entrada, es necesario utilizar un amplificador operacional en su configuración inversora pero en atenuación. Esto se logra al tener una resistencia en la entrada inversora de mayor magnitud que la resistencia de retroalimentación. En la primera parte del circuito de la imagen 6.5. se logra invertir la señal y atenuarla 20 veces del valor original, además de lograr que esté referenciada a un voltaje de corriente continua de 2.5 Volts. La segunda sección del circuito de la imagen anterior es la encargada de llevar a cabo el deslizamiento de la fase de la señal. La señal que entra al potenciómetro es la que se muestra en la imagen 6.6.
Imagen 6.6. Señal de salida atenuada y señal de salida con el deslizamiento de la fase realizado.

En la imagen 6.6. se puede apreciar la salida VF1 de la etapa inicial del circuito de la imagen 6.5. La señal está referenciada con respecto a un voltaje de corriente directa de 2.5 volts y tiene una amplitud de 300 mV rms aproximadamente. Posteriormente, se observa en la señal Vout la misma señal referenciada a un voltaje positivo de corriente directa, de 300 mV rms de amplitud aproximadamente, pero ya con un deslizamiento en la fase con respecto a la señal original.

A continuación se muestra el diagrama de conexiones del potenciómetro digital de Microchip® utilizado en este proyecto.

Imagen 6.7. Diagrama de conexiones del potenciómetro digital MCP4152 de Microchip13

En donde la conexión 1, es la que permite hacer una selección para activar o no el circuito integrado. En este caso, es una conexión activa en nivel bajo, por lo que si se quiere que el circuito integrado funcione se tiene que conectar a un nivel bajo de voltaje, es decir a tierra o 0 volts. En el caso que no se quiera utilizar el circuito integrado, se tiene que conectar a un nivel alto de voltaje.

La conexión 8 y 4 corresponden a la alimentación. En donde VDD tiene que ser más positivo que VSS y la diferencia de potencial entre estos dos no puede superar los 7 volts como se muestra en la tabla 6.2. P0A, P0B Y P0W corresponden a las tres terminales del potenciómetro.

Las terminales 2 y 3, SCK y SDI/SDO respectivamente, son utilizadas para controlar de manera digital al dispositivo. En la entrada 2 se utiliza una señal de reloj la cual es utilizada para indicarle al dispositivo que la entrada o salida de un bit por la conexión 3 ha sido concluida. En la imagen 6.8. se puede apreciar un diagrama de tiempos escribir o leer los datos del potenciómetro.

Imagen 6.8. Escritura y lectura en comandos de 16 bits.

En la imagen 6.8. se puede apreciar que para que un bit pueda entrar o salir por el puerto 3, es necesario que la señal del puerto 2, SCK, tenga un flanco de bajada que permita la sincronización de la entrada o salida de datos. En la tabla 6.3. se expresa la manera en que se ingresan los datos y los comandos al potenciómetro digital.

Nota 1: V_{IH} is supported for compatibility with the MCP414X/8X and MCP424X/6X devices high voltage operation.

Tabla 6.3. Formato de la palabra de control para escribir en el potenciómetro digital.

Donde los 4 bits de dirección de memoria (AD3, AD2, AD1, AD0) para el caso de este proyecto se pueden considerar indiferentes sin importar el valor que tengan. Los siguientes dos bits, llamados bits de comando, son utilizados para definir la acción que se llevará a cabo en el potenciómetro. Estas acciones son las siguientes: Escribir datos, Incrementar, Decrementar, Leer Datos y sus combinaciones son como se muestran en la tabla 6.4.

<table>
<thead>
<tr>
<th>Bits de Comando</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 C0</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>Escribir Datos</td>
</tr>
<tr>
<td>0 1</td>
<td>Incrementar</td>
</tr>
<tr>
<td>1 0</td>
<td>Decrementar</td>
</tr>
<tr>
<td>1 1</td>
<td>Leer datos</td>
</tr>
</tbody>
</table>

Tabla 6.4. Combinaciones de los bits de comando y sus acciones.

En el caso de este proyecto es necesario utilizar la primera combinación, en donde C1 y C0 tienen el valor de 0, de esta forma se escribe un valor al potenciómetro digital.

Ahora que ha sido explicada la manera para enviar instrucciones al potenciómetro digital, supongamos que queremos lograr un deslizamiento de la fase de la señal de 90° como se expresa en la ecuación 6.7. De esa misma ecuación, se sabe que el valor necesario de resistencia es de 1326 ohms. Por lo tanto con una regla de tres podemos obtener el valor decimal que tiene que ser enviado como dato al potenciómetro de manera binaria.

\[
\frac{(1326 - 75) \times 255}{5000} = 63.81 \approx 64
\]

6.11.

En la ecuación 6.11. se observa que para obtener la misma señal pero deslizada en fase 90° con respecto a la original es necesario enviar el valor de 64 en binario a los datos que recibe el potenciómetro digital. La cantidad de 75 ohms que le son restados al valor necesario de resistencia para lograr el
deslizamiento deseado es debido a la resistencia *per se* con la que cuenta el wiper descrita anteriormente en la tabla 6.2.

A continuación en la tabla 6.5. se muestra la palabra de control que debe ser enviada al potenciómetro digital para lograr un deslizamiento de la fase de 90° en la señal.

| Byte de Comando | | | | | | | | | | | | | | | |
|-----------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| AD3 | AD2| AD1| AD0| C1 | C0 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Dirección de Memoria | | | | | | | | | | | | | | | |
| Bits de comando | | | | | | | | | | | | | | | |
| Bits de Datos | | | | | | | | | | | | | | | |

Tabla 6.5. Palabra de control para lograr un deslizamiento de 90° en la señal.

Generación de la señal SPWM

Una vez que el circuito anterior lleve a cabo el deslizamiento de fase necesario para la corrección (o en su defecto, que no requiera de una corrección el voltaje de línea y se mantenga con un ángulo de 90 grados con respecto a la línea), es necesario generar la señal SPWM (sinusoidal pulse width modulation por sus siglas en inglés), o modulación por ancho de pulso senoidal.

Para hacer esto, es necesario utilizar un comparador, y utilizar dicha señal senoidal junto con una señal triangular para generar a la salida del comparador una señal SPWM. Para ello, es necesario generar una fuente triangular, de mayor frecuencia y con un factor de frecuencia impar (con respecto a la señal senoidal). El siguiente circuito es un generador de ondas triangulares:
Imagen 6.9. Circuito generador de ondas triangulares

Este circuito utiliza la siguiente ecuación para determinar la frecuencia de la triangular (dicha señal se ubica en el nodo indicado por el medidor Vout en la imagen anterior):

\[f_{osc} = \frac{1}{T} = \frac{R_2}{4R_1RC} \]

Donde R2 es la resistencia de retroalimentación del segundo amplificador operacional (200k-ohms en la imagen), R1 es la resistencia de la entrada no-inversora del segundo amplificador operacional (100k-ohms en la imagen), R y C son las resistencias en el primer amplificador operacional y tienen valores de 1,000 ohms y 20 nanofaradios.

Una vez fijados los valores, se obtiene una onda triangular con la frecuencia de 20,000 Hz. A continuación se muestra una gráfica con dicha señal:
Una vez que se obtiene la frecuencia deseada, es necesario fijar la amplitud de la senoidal y la triangular para poder generar una SPWM adecuada. Es necesario que el índice de modulación de amplitud sea menor que uno pero mayor que cero. De lo contrario, la señal SPWM no tendrá la forma necesaria para generar una senoidal en el puente H. Para ello, decidimos amplificar la señal senoidal y triangular para que el índice de modulación sea de aproximadamente 0.8. Esto con el fin de que nuestra señal SPWM tenga siempre una forma consistente y no presente los siguientes defectos (cuando el índice es igual o mayor que uno):

Imagen 6.10. Gráfica de generador de onda triangular

Imagen 6.11. Gráfica de onda SPWM indeseada (índice de modulación = 1.0)
Utilizando un índice de 0.8, se obtiene la siguiente señal SPWM:

![Diagrama de señal SPWM](image)

Imagen 6.12. Gráfica de onda SPWM óptima (índice de modulación = 0.8)

Debido a que se está sintetizando una señal senoidal a partir de un puente H, es necesario generar una misma señal SPWM como la mostrada anteriormente, pero invirtiendo las entradas del comparador. Esto con el fin de generar una SPWM idéntica a la original, pero complementada. Los MOSFETs operan en pares, por lo que un par debe estar recibiendo la señal de una SPWM, y el otro par debe recibir señal de la otra SPWM. De esta forma, el primer par prende cuando el otro par está apagado, y viceversa.

Puente H

La siguiente etapa, a la que referirá como la etapa de potencia, consiste de los siguientes elementos:

- Buses de corriente directa
- Drivers de MOSFETs
- Puente H de MOSFETs

A continuación se detallan cada uno de estos elementos:
Buses de corriente directa

Para generar una onda senoidal a partir de un puente H, se necesita generar de antemano el alto voltaje en corriente directa que se utilizará para sintetizar una onda sinusoidal después del filtro. Por lo tanto, se necesita rectificar el voltaje de la acometida para generar dicho voltaje. Para esto, se necesita de un puente de diodos capaz de manejar la corriente máxima que puede circular en esta etapa de potencia, a través de los MOSFETs y el filtro. Debido a esto, es preferible manejar un alto voltaje, para minimizar la corriente que fluye a través de los MOSFETs y el filtro. Rectificando y filtrando dicho voltaje de la acometida nos dará aproximadamente 170 volts de corriente directa listos para utilizarse en el puente H.

A continuación se muestra un esquemático de la rectificación del alto voltaje y la filtración del mismo:

![Imagen 6.13. Esquemático de la generación del bus de corriente directa de 170 volts](image)

Imagen 6.13. Esquemático de la generación del bus de corriente directa de 170 volts

![Gráfica de rectificación y filtración del bus de corriente directa](image)

Imagen 6.14. Gráfica de rectificación y filtración del bus de corriente directa
Este voltaje de 170 volts aproximadamente serán los que alimentan a los drains de los MOSFETs altos en el puente H.

Drivers de MOSFETs

Como ya fue mencionado en la sección de Marco Teórico en la etapa de puente H es necesario el uso de un circuito integrado llamado driver para poder lograr la saturación adecuada de los MOSFETs utilizados en el puente H. El modelo de este driver es el IR2111 de International Rectifiers y tiene las siguientes características.

- Driver para medio puente H
- Funcionamiento con un voltaje en el bus de hasta 600 V de corriente directa.
- Referencia de voltaje flotada para el gate del MOSFET de la parte superior del puente.
- Provee un voltaje de 10 a 20 volts para la entrada de los gates de los MOSFETs.
- Corriente de salida en los puertos de 420mA.
- Utilizado para saturar MOSFETs de canal N.

A continuación se muestra el esquemático de conexión del driver IR2111 de International Rectifiers para medio puente H.

![Esquemático del driver IR2111](image)

Imagen 6.15. Esquemático del driver IR2111 conectado a un medio puente H

En la imagen anterior se puede apreciar el diagrama de conexiones del IR2111. Es un circuito integrado que cuenta con ocho pines para conexión. Donde el pin 1, denominado \(V_{CC} \), es el pin para la alimentación del circuito. La alimentación puede ser de hasta 25 volts de corriente directa. El pin 2, es el destinado para la entrada de la señal de control que será la que rija el encendido y apagado de los MOSFETs. El pin 3 es el destinado para la entrada de voltaje común, mejor conocido como tierra, equivalente a 0 volts. El pin 4 es el destinado para proporcionar la señal de control al gate de MOSFET de la parte inferior del
medio puente H. El pin 5 y el pin 7 tienen como función junto con el capacitor y diodo de bootstrap de generar la referencia de voltaje flotada para que el gate del MOSFET superior vea el voltaje adecuado para su saturación. El pin 6 es el que proporciona la señal de control para el gate del MOSFET superior del medio puente H.

Puente H de MOSFETs

Finalmente, se completa la etapa de potencia por el puente H mismo, compuesto de cuatro MOSFETs de canal N. Las entradas de drain de los dos MOSFETs de arriba se conectan directamente al bus de corriente directa de 170 volts. Las entradas de source de los dos MOSFETs de abajo se conectan a tierra. Entre los MOSFETs se ubica la carga, que en nuestro caso consiste de un filtro pasivo compuesto de un inductor y un capacitor. A continuación se muestra el diagrama del puente H:

Imagen 6.16. Esquemático del puente H

Filtro Pasa-Bajas

La siguiente etapa del regulador de voltaje está compuesta por un filtro del tipo pasa-bajas, es decir, que sólo dejará pasar aquellas señales cuya frecuencia sea menor o igual que la frecuencia de corte establecida. Aquellas con frecuencia mayor, serán atenuadas. Es importante mencionar que este filtro se puede lograr de dos maneras distintas, con elementos pasivos o con elementos
activos. Dentro de los elementos pasivos se encuentran las resistencias, inductores y capacitores, mientras que los elementos activos contemplan a los semiconductores y circuitos integrados. En el caso de este proyecto, no es recomendable utilizar elementos activos dado que el voltaje y corriente manejados a la salida del regulador son de una magnitud que los circuitos integrados no pueden manejar. Por ello, el filtro se realizará con elementos pasivos.

El tipo de filtro a utilizar, como ya se mencionó, es un filtro pasa-bajas de primer orden. La configuración de este filtro es como se muestra a continuación.

![Imagen 6.17. Configuración básica de un filtro pasa bajas LC](image)

Si se realiza un análisis de corrientes por medio de nodos se tiene que:

\[
\frac{V_o - V_i}{jwL} + \frac{V_o}{jwC} = 0
\]

Agrupando términos de la ecuación 6.13., se tiene:

\[
V_o \left(\frac{1}{jwL} + jwC \right) = \frac{V_i}{jwL}
\]

\[
\frac{V_o}{V_i} \left(\frac{1 + (jwL)(jwC)}{jwL} \right) = \frac{1}{jwL}
\]

Simplificando los términos, la ecuación para la ganancia de este sistema queda como se muestra a continuación.

\[
\left| \frac{V_o}{V_i} \right| = \frac{1}{1 - LCw^2}
\]
Acoplamiento a la línea

Para la última etapa del regulador, es necesario realizar el acoplamiento de la señal senoidal de control a la línea. Esto se logra por medio de un transformador, en donde los extremos del primario se conectan a la salida del filtro pasa-bajas, y el secundario se conecta en serie con el voltaje de línea. La siguiente imagen muestra el concepto de superponer dos señales senoidales, por medio de un acoplamiento de un transformador:

![Imagen 6.18. Esquemático de un acoplamiento básico con un transformador](transformador_diagram.png)

Cuando la fase del voltaje de control (el voltaje generado por el regulador) es de 90 grados con respecto a la fase de la línea, la superposición es nula:

![Imagen 6.19. Gráfica de resultado de acoplamiento con ángulo de fase de 90 grados](grafica_resultado.png)
Cuando el ángulo de fase del voltaje de control es de 0 grados, es decir, está completamente en fase con la de línea, ocurre una superposición completamente constructiva, y el voltaje de control se suma directamente al de la línea. Es importante resaltar el hecho de que el transformador tiene una relación de 5:1. En otras palabras, el número de vueltas del primario (el lado del regulador) es 5 veces mayor que el número de vueltas que el secundario (el lado de la línea). Esto significa que un voltaje de 170 volts pico (aproximadamente 120 volts rms), genera un voltaje de 34 volts pico en el secundario (aproximadamente 25 volts rms). Por lo tanto, el voltaje resultante en la línea debe ser de 204 volts pico. A continuación se muestra una imagen ilustrando dicha superposición:

![Imagen 6.20. Gráfica de resultado de acoplamiento con ángulo de fase de 0 grados](image)

Por último, se puede ver el caso opuesto, en donde el voltaje de control se ubica a 180 grados de desfasamiento con respecto a la línea. En este caso, el voltaje resultante en la línea se reduce por el mismo valor de 34 volts pico (o 25 volts rms). Es importante recalcar el hecho de que el desviador de fase en la etapa digital-análoga no puede llegar a 180 grados porque requeriría una resistencia o capacitor infinitamente grande. Sin embargo, la imagen muestra dos ondas sinusoidales de 170 volts pico. La segunda onda, denominada Vcontrol, en realidad tiene un voltaje pico de 34 volts porque la relación del transformador es de 1:5. Es por esto, que la superposición destructiva, Vout, tiene una amplitud de 135 volts pico aproximadamente.
En conclusión, moviendo la fase entre 0 y 150° (nuestro límite actual, si utilizamos un capacitor de 2 microfaradios), podemos sumar o restar el voltaje de control al voltaje de línea cuando éste necesite de una regulación. En el caso en donde no se requiera regulación (voltaje de línea de 120 volts rms), mantendremos dicho voltaje de control a 90 grados de desfaseamiento.
Capítulo 7 RESULTADOS

Después de llevar a cabo diversas pruebas en el laboratorio se obtuvieron diferentes resultados. Muchos de estos resultados tienen gran relación con los calculados de manera teórica y en simulaciones. Sin embargo, existen otros, como es el caso del filtro pasa-bajas, en donde el resultado práctico difiere mucho del resultado teórico. A continuación se presentarán los resultados de cada una de las etapas mencionadas en el capítulo 6 correspondiente al desarrollo técnico.

Deslizamiento de la Fase

El circuito desviador compuesto por un amplificador operacional LM301, unas resistencias, un capacitor y un potenciómetro, es una de las partes más importantes de este proyecto. La razón principal es el hecho de que se puede desviar y generar una sinusoidal con frecuencia idéntica a la de la línea. El gran problema que se tuvo a principios de este proyecto fue el hecho de generar una sinusoidal que pudiera contemplar el cruce por cero de la señal de la línea, y generar una sinusoidal desviada adecuada. A pesar de que las variaciones de frecuencia de la línea son pequeñas (de 59.7 a 60.3 Hz aproximadamente), como lo hemos visto en el osciloscopio cuando fijamos el trigger de la señal a la red eléctrica, no se pueden despreciar. Si fijáramos una señal desviada con frecuencia de 60 Hz exactos, veríamos una pequeña variación de voltaje en la línea (porque nunca es de 60 Hz exactos). La razón a la que se debe esto es que si la línea es menor a 60 Hz, la señal de control (de 60 Hz exactos) estaría corriendo más rápido que la línea, y se observarían unas variaciones en la superposición. Lo mismo ocurre cuando la línea tiene una frecuencia mayor a 60 Hz, pero en este caso la línea es la que corre más rápido.

Con este circuito relativamente sencillo y fácil de operar, se puede olvidar uno de dicho obstáculo. Esta es la razón principal y justificación de porque se deseó utilizar este circuito. No obstante, se presenta un obstáculo nuevo debido a que se deseó utilizar un potenciómetro (con el fin de generar un regulador de voltaje completamente de estado sólido).

El potenciómetro digital es sencillo de controlar: se requiere de una señal de chip-select para indicarle al circuito integrado que se está a punto de enviar un valor en serial del microcontrolador, una señal de reloj para sincronizar dicha transmisión serial, y una señal de datos para indicar la función que se desea tomar, al igual que el valor del potenciómetro que se desea. Pero el problema es el hecho de que por el potenciómetro no pueden fluir más de 2.5 miliamperes, y también el hecho de que no se introducir una señal de corriente alterna cuando la alimentación del potenciómetro es de cero a cinco volts. Por lo tanto, se solucionó dicho problema de la siguiente manera:

Para minimizar la corriente que fluye a través del potenciómetro se atenuó la señal sinusoidal que fluirá por el potenciómetro. En toda esta etapa digital/análoga del regulador, se utiliza un transformador de 127 a 12 volts, y
especificamente para esta etapa del deslizamiento de la fase, se utiliza la mitad de estos 12 volts (debido a que se conecta del devanado central hacia un extremo del transformador). Estos 6 volts rms (8.49 volts pico) se tienen que atenuar porque la corriente que fluye a través del potenciómetro sería de 2.5 milliampere cuando el valor del potenciómetro es de 2.4 k-ohms; por lo tanto, se desperdicia la mitad del potenciómetro. Para resolver esto, se diseñó un circuito atenuador, que al mismo tiempo le da una componente en corriente directa, para que se pueda introducir al potenciómetro. De otra manera, se hubiera tenido que utilizar una alimentación del potenciómetro de -2.5 volts a 2.5 volts, que hubiera sido innecesario e impreciso ya que no existen circuitos reguladores de voltaje de dicho valor.

Una vez que se tiene el voltaje atenuado y con referencia de corriente continua, se puede introducir al potenciómetro. Debido a que nuestra relación de atenuación es de 20 (300 milivoltos rms), se puede determinar el límite inferior de operación del potenciómetro de la siguiente forma:

\[R = \frac{V}{I} = \frac{0.3}{0.0015} = 120 \text{ ohms} \] \hspace{1cm} (7.1)

Esto significa que el valor mínimo de resistencia que se puede tener en el potenciómetro es de 120 ohms. Y si se considera que la resistencia predeterminada del wiper del circuito integrado es de valor típico de 75 ohms (según la hoja de especificaciones), podemos calcular el valor entero mínimo a enviarle al potenciómetro y definirlo como un límite para prevenir quemar el potenciómetro digital. A continuación se calculan los pasos que hace un incremento unitario del valor enviado al potenciómetro:

\[R = \frac{5000}{256} = 19.53 \text{ ohms} \] \hspace{1cm} (7.2)

Por lo tanto, el valor entero mínimo que se puede enviar al potenciómetro es de:

\[\text{Entero}_{\text{min}} = \frac{120 - 75}{19.53} = \frac{45}{19.53} = 2.304 \approx 3 \] \hspace{1cm} (7.3)

Se necesita redondear hacia arriba porque debido a que envían valores enteros (de 0 a 255), el valor de 2 no es suficiente para alcanzar los 120 ohms. Por lo tanto, con esto podemos calcular la nueva resistencia mínima a la cual el potenciómetro se puede posicionar. Al mismo tiempo, podemos calcular el valor de fase mínimo. A continuación se demuestra:

\[R_{\text{min}} = 75 + 19.53(3) = 133.59 \text{ ohms} \] \hspace{1cm} (7.4)

Por lo tanto, de la ecuación del desviador de fase, y utilizando un capacitor de 2 microfaradios, se tiene:

\[\theta_{\text{min}} = 2 \tan^{-1}(2\pi f R_{\text{min}} C) \] \hspace{1cm} (7.5)

\[\theta_{\text{min}} = 2 \tan^{-1}((120)(133.59)(0.000002)) \] \hspace{1cm} (7.6)

\[\theta_{\text{min}} = 2 \tan^{-1}(0.1007) = 2(5.75) = 11.50^\circ \] \hspace{1cm} (7.7)
Sabemos que según la ecuación 6.10, el ángulo de desfasamiento máximo es de 150.28°. Por lo tanto, los rangos de regulación de nuestro dispositivo se rigen por estos dos valores. El valor del capacitor se puede ajustar porque el aumentar el valor del capacitor, recorre este rango hacia arriba; es decir, un capacitor más grande que el escogido nos fijaría un límite inferior de desfasamiento mayor que 11.50°, y al mismo tiempo, el límite superior del desfasamiento máximo sería mayor que 150.28°. Por lo tanto, en base a las pruebas de cargas cuando se acople el regulador de voltaje, se podrá determinar el capacitor más adecuado para el desviador de fase. Por el momento, se utilizará un capacitor de 2 microfaradios.

Generación de SPWM

Una vez que se tiene la señal desviada, es necesario eliminarle el componente de corriente directa, es decir, quitarle los 2.5 volts de corriente directa, los cuales se escalaron para poder utilizar adecuadamente el potenciómetro digital. Para esto, se diseñó un filtro circuito sencillo, compuesto de un capacitor, 2 resistencias y un amplificador operacional. A continuación se muestra dicho circuito:

![Imagen 7.1. Circuito para eliminar referencia de corriente directa](Image)
A continuación se puede observar cómo, en efecto, el circuito elimina la componente de corriente directa, y deja los 0.3 volts rms tal como entraron al amplificador operacional que atenuó para el desviador de fase.

Imagen 7.2. Gráfica mostrando como la salida (Vout) vuelve a tener referencia en cero

Ahora solamente es cuestión de darle una ganancia para poder llevarlo al comparador, que, junto con la señal triangular, nos generará una onda SPWM. Para ello, se diseña un circuito de ganancia, exactamente como el circuito atenuador de la entrada, pero esta vez invirtiendo las resistencias de entrada con las de la retroalimentación. Ahora se tiene una ganancia de 20; en otras palabras, se vuelven a tener los 6 volts rms (8.49 volts pico). La señal triangular se generó a partir de un circuito compuesto de dos amplificadores operacionales, un integrador inversor con un circuito Schmitt trigger no-inversor. La señal triangular se tiene que amplificar también, y en este caso, tiene que ser mayor que la sinusoidal para poder tener una SPWM adecuada, tal como se demostró en el desarrollo técnico. Para ello, se realizó un circuito como el que utiliza la sinusoidal, pero con valores resistivos distintos. Es importante, para ambos casos, que la ganancia que se le da a las señales, no exceda los voltajes de alimentación de los amplificadores operacionales, por que de ser así, se saturan y sus salidas no nos serán útiles. La ganancia de la triangular es de aproximadamente 1.5 (6.6 k-ohms en la entrada con una retroalimentación de 10 k-ohms). Esta nos genera una triangular a la salida de dicho circuito integrado con amplitud de aproximadamente 11 volts pico. Una vez que tenemos nuestras dos señales del comparador, es solamente cuestión de llevarlas al comparador y obtener una SPWM a la salida. A continuación se muestra una imagen de la SPWM obtenida:
Debido a que estamos en realidad utilizando una frecuencia de triangular de 20 kHz, no es posible distinguir la SPWM fácilmente como se muestra en la imagen anterior, así que por cuestiones de visibilidad, se modificó la frecuencia de la triangular hacia un valor de aproximadamente 3 kHz, para poder apreciar la SPWM. La razón por la cual se están utilizando 20 kHz, fue porque a medida que íbamos implementando el filtro de salida del puente H, fue necesario aumentar la frecuencia hacia una que no fuera audible para el ser humano.

Puente H

Esta etapa representa una de las etapas que más tiempo y esfuerzo consumió en la realización de este proyecto. Una de las razones principales es que a pesar de comprender el concepto de bootstrap en el driver IR2111 para la señal de activación de los MOSFETs de la parte superior del puente, no se tenía una comprensión clara de cómo obtener los valores adecuados de capacitores para generarla. La manera más eficiente para obtener dichos valores fue por medio de la práctica. Cómo se menciono en el marco teórico anteriormente, la activación de los MOSFETs de la parte baja del puente H es sencilla, puesto que la señal de activación que entra al gate del MOSFET se mide con respecto a tierra. Lo anterior permite tener una diferencia de potencial suficiente para la activación del MOSFET inferior, sin importar el voltaje que tenga el bus de corriente directa. No obstante, la activación del MOSFET de la parte superior del puente H requiere tener un voltaje mínimo entre el source y el gate para poder operar y este voltaje sí varía junto con el voltaje del bus de corriente directa.

En la práctica se decidió probar diferentes valores y tipos de capacitores, tanto electrolíticos como de poliéster, para determinar cuál de ellos permitía una activación adecuada de los MOSFETs. No fue sino hasta la inserción de un diodo zener en paralelo con el gate y source de los MOSFETs del puente H que se logró
la activación adecuada. Lo descrito anteriormente, se muestra en la imagen a continuación.

Imagen 7.4. Puente H con diodos Zener de 15 volts en paralelo con los gates y source de los transistores.

Imagen 7.5. Circuito de bootstrap aplicado en el driver IR211

En la imagen anterior se puede apreciar el circuito de bootstrap a utilizar en el driver IR211 para el medio puente H. En la práctica los valores de los capacitares utilizados son los siguientes: entre Vcc y COM el capacitor es electrolítico de 22 microfaradios a 50 volts y entre VB y VS el capacitor es electrolítico y de 10uF a 50 volts. De esta manera al introducir la señal SPWM en el pin IN del IR211 se obtiene la misma señal que entró por IN entre los pines VS y VB y entre la salida LO y tierra se obtiene la misma señal pero complementada. Esto asegura que sólo uno de los MOSFETs estará encendido en un momento en el medio puente H.
Para lograr el acoplamiento de dos medios puentes H para lograr obtener un puente H completo, fue necesario el uso de dos drivers. Cada uno de estos drivers se encarga del buen funcionamiento de su medio puente H. Cada puente H tiene que recibir la misma señal en su entrada IN sólo que uno la recibe si cambios, mientras que el otro la recibe complementada. De esta forma se logra que sólo un MOSFET de cada medio puente H conduzca y que la corriente fluya de la parte alta de un medio puente H a la parte baja del otro medio puente H.

La señal de activación que llega a uno de los drivers se muestra en la siguiente imagen.

Imagen 7.6. Señal de entrada para uno de los drivers IR2111 de medio puente H.

La señal de entrada del otro driver para medio puente H es exactamente igual pero complementada.

Al lograr activar los MOSFETs del puente H de esta forma, lo que se logra en la salida (midiendo entre la salida del primer medio puente H y la salida del segundo medio puente H) es la misma señal SPWM pero con voltajes tanto positivos como negativos de la magnitud del bus de corriente directa que alimenta al puente H. Lo anterior se muestra en la siguiente imagen.
Imagen 7.7. Señal SPWM en la salida del puente H

En la imagen anterior se puede apreciar la misma señal SPWM generada en la etapa anterior, con la diferencia que esta alcanza valores tanto positivos como negativos. Tiene un valor pico positivo de 178 Volts y al comportarse de manera simétrica, tiene un valor pico negativo de -178 Volts. Así mismo la frecuencia de esta señal de salida en el puente H depende directamente de la frecuencia que tenga la señal triangular que se utilizó para generar la señal SPWM en la etapa anterior.

A continuación se muestra el puente H implementado de manera física ya en PCB.

Imagen 7.8. puente H implementado en PCB

En el fondo de la imagen anterior se pueden apreciar un par de capacitores electrolíticos de 470 uF a 250 volts. Éstos son utilizados para lograr
filtrar las variaciones de voltaje que se producen en el puente H debido a la conmutación de los transistores. Estos capacitores están conectados de la entrada de voltaje del bus de cada medio puente a tierra.

Filtro Pasa-Bajas

Como se menciono en el capítulo 6, el filtro pasa-bajas a utilizar fue un filtro LC de primer orden cuya función de transferencia es la siguiente:

\[\frac{V_o}{V_i} = \frac{1}{1 - f_c w^2} \]

y en donde la frecuencia de corte está dada por:

\[f_c = \frac{1}{2\pi \sqrt{LC}} \]

Para poder determinar los valores necesarios de inductor y capacitor a utilizar en el filtro se despejó de la ecuación de ganancia el término LC quedando como se muestra a continuación.

\[LC = \frac{1}{\left(\frac{A}{w^2} \right)} \]

En donde \(A = \left| \frac{V_o}{V_i} \right| \) y \(w = 2\pi f \)

Posteriormente se calculó el valor necesario del término LC para poder tener un filtro que corte a diferentes frecuencias. Estos resultados se muestran en la tabla siguiente.

<table>
<thead>
<tr>
<th>Frecuencia de corte</th>
<th>Ganancia en decibeles</th>
<th>Ganancia en V/V</th>
<th>Valor del término LC</th>
<th>Valor de inductor</th>
<th>Valor de Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Hz</td>
<td>-3 dB</td>
<td>0.7079</td>
<td>106.66 x 10^{-6}</td>
<td>75 mH</td>
<td>1.42 mF</td>
</tr>
<tr>
<td>100 Hz</td>
<td>-3 dB</td>
<td>0.7079</td>
<td>38.398 x 10^{-6}</td>
<td>75 mH</td>
<td>511.97 uF</td>
</tr>
<tr>
<td>120 Hz</td>
<td>-3 dB</td>
<td>0.7079</td>
<td>26.665 x 10^{-6}</td>
<td>75 mH</td>
<td>355.53 uF</td>
</tr>
<tr>
<td>180 Hz</td>
<td>-3 dB</td>
<td>0.7079</td>
<td>11.851 x 10^{-6}</td>
<td>75 mH</td>
<td>158.01 uF</td>
</tr>
<tr>
<td>300 Hz</td>
<td>-3 dB</td>
<td>0.7079</td>
<td>4.266 x 10^{-6}</td>
<td>75 mH</td>
<td>56.88 uF</td>
</tr>
<tr>
<td>500 Hz</td>
<td>-3 dB</td>
<td>0.7079</td>
<td>1.525 x 10^{-6}</td>
<td>75 mH</td>
<td>20.33 uF</td>
</tr>
</tbody>
</table>

Tabla 7.1. Valores necesarios de L y C para diferentes frecuencias de corte.

Como se puede observar en la tabla anterior, los valores de capacitores son de gran magnitud. Por eso mismo, no se pueden conseguir en el mercado, ya que tienen que ser capacitores no polarizados pues manejan corriente alterna. El valor más grande de este tipo de capacitores que se puede conseguir con
facilidad es el de 4.7 uF. El valor de 75 mH del inductor es el que se obtuvo al fabricar el inductor de manera artesanal. Se logró al enrollar en un toroide de 20 mm de diámetro interior y 30 mm de diámetro exterior un alambre magneto de calibre #16 de 5 metros de longitud. Una imagen del mismo ya fabricado se muestra a continuación.

Imagen 7.9. Inductor de 75mH fabricado de manera artesanal por los autores del proyecto.

Al contar con este inductor y el capacitor de 4.7 uF se logra obtener la siguiente ganancia a una frecuencia de 60 Hz.

\[
\frac{V_o}{V_i} = \frac{1}{1 - LC\omega^2} = \frac{1}{1 - LC(2\pi f)^2} = \frac{1}{1 - (75\text{mH})(4.7\mu\text{F})(120\pi)^2} = 1.053\frac{V}{V} \quad 7.11.
\]

Lo cual en decibeles equivale a:

\[
G_{dB} = 20\log(A) = 20\log(1.053) = 0.448\text{db} \quad 7.12.
\]

En las dos ecuaciones anteriores, se puede observar que la ganancia que nos da el filtro utilizado es prácticamente unitaria. Esto quiere decir al filtrar la señal fundamental, es decir la sinusoidal con 60 Hz, debe dejarla pasar prácticamente con la misma amplitud con la que entra. Sin embargo, en los resultados prácticos esto no es así. Lo anterior se muestra en la imagen a continuación.
Imagen 7.10. Señal sinusoidal de salida después del filtro pasa bajas.

En la imagen anterior se puede apreciar que la salida después del filtro pasa-bajas es una señal sinusoidal con una frecuencia de 60.02 Hz y una amplitud de 106 V pico. Sin embargo, la amplitud debería ser de 137 V pico ya que la amplitud en el puente H fue de 130 V pico. Por lo tanto por la ganancia de 1.053 V/V, la salida debería ser de 137 V pico.

Sin embargo, la distorsión armónica total en esta señal es baja. Al medir el THD con el instrumento para la medición de la calidad de la energía eléctrica Fluke 42B se obtuvo un valor del 3%, el cual es muy bueno para los estándares nacionales (8%) y los estándares de la IEEE (5%). El resultado se muestra en la siguiente imagen.
Imagen 7.11. THD del 3 % en la señal sinusoidal después del filtro pasa-bajas.

En la imagen anterior se puede apreciar el valor del THD=3.0% en la señal sinusoidal de salida después del filtro. Se puede observar que la señal fundamental tiene una amplitud del 100% y sólo existe un armónico el cual es el tercero de 180 Hz con una amplitud muy pequeña comparado con el de la fundamental.

Con lo anterior se demuestra que el filtro pasa-bajas propuesto para filtrar la señal sinusoidal con frecuencia igual a la de línea contenida en la SPWM que sale del puente H, funciona de manera adecuada hasta los 106 V pico. Sin embargo, aún no se ha podido obtener de manera práctica, la misma señal sinusoidal pero con una amplitud de 170 V pico.

Acoplamiento a la Línea

Esta etapa comprende la parte final del regulador. Es aquí donde se tiene que acoplar la señal sinusoidal de control a la línea para posteriormente retroalimentar al sistema y regular el voltaje. Sin embargo, esta etapa no ha podido ser completada debido a que la salida del secundario del transformador para el acoplamiento a la línea no tiene la calidad deseada en la señal. En el primario del transformador, es decir la salida del filtro pasa-bajas, se tiene la siguiente señal.
Imagen 7.12. Señal de entrada en el primario del transformador para el acoplamiento a la línea.

Se puede observar que la señal que entra al primario del transformador es una señal sinusoidal con poco ruido y baja en armónicos como se muestra en los resultados del filtro pasa-bajas. Sin embargo, esta señal se ve afectada al pasar por el transformador con el cual se hará el acoplamiento a la línea.

El transformador de salida tiene como especificación el recibir 125 volts rms en el primario para transformarlos a 25 volts rms en el secundario. La potencia del mismo está especificada para 625 Watts. Es decir, en el lado del primario puede funcionar hasta con 5 amperes con un voltaje de 125 V rms y en el lado del secundario se tendrá un voltaje de 25 V rms pero con una capacidad de hasta 25 amperes. La corriente máxima que será demandada al puente H por el primario del transformador podrá alcanzar hasta los 5 amperes de amplitud sin dañar al sistema, puente h o al bus de alimentación de corriente directa.

El voltaje de salida en el secundario debe tener la misma forma de onda que el voltaje en el primario pero con una amplitud cinco veces menor. Sin embargo, el resultado es el siguiente.
Imagen 7.13. Señal de salida en el secundario del transformador que se acopla a la línea.

En la imagen anterior se puede observar que la señal de salida del secundario del transformador tiene similitud con la señal de entrada en el primario del mismo, con la excepción que en la de salida se aprecia demasiado ruido montado en la señal sinusoidal.

La amplitud de esta señal de salida alcanza los 25 volts pico es decir un poco más que cinco veces menos el voltaje del primario. Sin embargo, la frecuencia se ve afectada por la presencia de las señales montadas en la señal fundamental. Una vez que se logren eliminar esos armónicos será posible llevar a cabo el acoplamiento de esa señal a la línea.

Al continuar con las pruebas de laboratorio, se logró obtener la señal de salida del secundario del transformador limpia y se acopló a la línea. Posteriormente se utilizó un variac para modificar el voltaje de entrada en la línea de la acometida, simulando altibajos de voltaje. Lo anterior mas el uso de la rutina de control dentro del microcontrolador permitió que a la salida se contara siempre con un valor constante de voltaje aun cuando existían variaciones de 12 volts rms por encima o por debajo del valor nominal. La resultante se muestra en la imagen a continuación:
Imagen 7.14. Medición del voltaje después del variac, simulando un voltaje alto

La imagen anterior muestra el valor de voltaje que llega a la acometida, y se observa en el multímetro que es un valor alto. Se encuentra aproximadamente 10 volts rms por encima del valor nominal. Al observar la resultante, después del acoplamiento del regulador, se aprecia que el voltaje regulado se mantiene en un valor constante. Es decir, a pesar de tener un voltaje alto en la entrada, a la casa le entrará un voltaje regulado.

Imagen 7.15. Señal resultante después de la regulación de un voltaje alto en la acometida

La imagen anterior muestra que el voltaje ha sido regulado satisfactoriamente, otorgando un voltaje de 126 volts rms. Este nivel de voltaje es el ideal para la alimentación de los aparatos de la casa.
Imagen 7.16. Medición del voltaje después del variac, simulando un voltaje bajo

En este caso, se puede observar como el multímetro despliega un valor de voltaje bajo, simulando una caída de tensión en la acometida. Se encuentra 12 volts rms por debajo del valor nominal que debe haber en la línea. La resultante a continuación muestra como el valor se mantiene constante.

Imagen 7.17. Señal resultante después de la regulación de un voltaje bajo en la acometida

Como se puede observar, el voltaje se logra mantener en su rango aceptable, desplegándonos un voltaje de 126 volts rms, que sigue siendo aceptable para la alimentación de los aparatos de la casa.
Imagen 7.18. THD de la señal resultante

En esta última imagen, se puede observar como el valor del THD sigue estando dentro de los valores nominales según las normas mexicanas.
Capítulo 8 CONCLUSIONES

Al concluir el proyecto, se puede decir que el principio de regulación por medio de deslizamiento de fase y superposición de ondas, funciona.

El hecho que la señal sinusoidal después del filtro alcance solamente los 106 V pico puede deberse a que las líneas de flujo magnético se saturan en el inductor. Lo anterior puede responder también al hecho que la frecuencia de la señal SPWM tenga que aumentar cuando se aumenta el voltaje del bus de alimentación del puente H. Esto es debido a que el flujo magnético en el inductor se define como una relación de voltaje entre frecuencia. Por lo tanto, si se aumenta el voltaje del bus de alimentación del puente H, se tiene que aumentar la frecuencia de la señal SPWM para compensar el cambio y así mantener el flujo magnético constante y sin saturación. Una de las posibles propuestas para evitar lo anterior, es el uso de un inductor realizado con un núcleo de aire. De esta forma se garantiza una mayor capacidad para el flujo magnético pues es muy difícil lograr la saturación del aire.

El ruido presente en la señal sinusoidal en el secundario del transformador para realizar el acoplamiento a la línea puede deberse a armónicos de frecuencias muy altas. El aparato para la medición de la calidad de la corriente eléctrica Fluke 42B no tiene un rango tan alto para la medición de armónicos. Puede ser debido a ello que en la pantalla de dicho aparato se lea un THD tan bajo (1.4%) y en la pantalla del osciloscopio se vea una señal tan contaminada. Se tendrá que evaluar este resultado al reemplazar el inductor utilizado en el filtro pasa-bajas y de ser posible hacerlo con un inductor con núcleo de aire para evitar la saturación del flujo magnético.

Sin embargo con los últimos resultados obtenidos se concluye que el principio de regulación propuesto en este proyecto es viable. No obstante, deben realizarse más pruebas con el sistema al funcionar con carga y observar su comportamiento. Así mismo, se deben realizar pruebas de la respuesta dinámica del sistema y en caso que sea deficiente, trabajar en su mejora.
Referencias

http://metis.umh.es/jacarrasco/docencia/ep/Tema3/DCAC.pdf

Apéndice I. Tabla de equivalencias para cable AWG y el diámetro en milímetros

A continuación se muestra una tabla de equivalencias para el diámetro de los cables entre la nomenclatura de AWG y los diámetros del cable en milímetros.

En donde:

Dia-mils: Equivale al diámetro en milésimas de pulgada.

TPI: Número de vueltas por pulgada. Dato útil para los embobinados.

Dia-mm: Diámetro en milímetros.

Ohms/Kft: Resistividad del cable por cada mil pies.

Lb/Kft: Peso del cable en libras por cada mil pies.

*Amps: Corriente nominal que puede fluir por el cable.

MaxAmps: Corriente Máxima aceptada para circular por el cable.

<table>
<thead>
<tr>
<th>AWG</th>
<th>Dia-mils</th>
<th>TPI</th>
<th>Dia-mm</th>
<th>Circ-mils</th>
<th>Ohms/Kft</th>
<th>Ohms/Lb</th>
<th>Lb/Kft</th>
<th>*Amps</th>
<th>MaxAmps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>459.99</td>
<td>21.74</td>
<td>11.684</td>
<td>211592</td>
<td>0.049</td>
<td>0.0001</td>
<td>640.48</td>
<td>282.12</td>
<td>423.18</td>
</tr>
<tr>
<td>0</td>
<td>409.63</td>
<td>24.142</td>
<td>10.405</td>
<td>167800</td>
<td>0.0618</td>
<td>0.0001</td>
<td>507.93</td>
<td>223.73</td>
<td>335.6</td>
</tr>
<tr>
<td>0</td>
<td>364.79</td>
<td>27.413</td>
<td>9.2657</td>
<td>133072</td>
<td>0.0779</td>
<td>0.0002</td>
<td>402.8</td>
<td>177.43</td>
<td>266.14</td>
</tr>
<tr>
<td>0</td>
<td>324.85</td>
<td>30.783</td>
<td>8.513</td>
<td>105531</td>
<td>0.0983</td>
<td>0.0003</td>
<td>319.44</td>
<td>140.71</td>
<td>211.06</td>
</tr>
<tr>
<td>1</td>
<td>289.29</td>
<td>34.567</td>
<td>7.732</td>
<td>83690</td>
<td>0.1239</td>
<td>0.0005</td>
<td>253.33</td>
<td>111.59</td>
<td>167.38</td>
</tr>
<tr>
<td>2</td>
<td>257.62</td>
<td>38.817</td>
<td>6.5436</td>
<td>66369</td>
<td>0.1563</td>
<td>0.0008</td>
<td>200.9</td>
<td>88.492</td>
<td>132.74</td>
</tr>
<tr>
<td>3</td>
<td>229.42</td>
<td>43.588</td>
<td>5.8272</td>
<td>52633</td>
<td>0.197</td>
<td>0.0012</td>
<td>159.32</td>
<td>70.177</td>
<td>105.27</td>
</tr>
<tr>
<td>4</td>
<td>204.3</td>
<td>48.947</td>
<td>5.1893</td>
<td>41740</td>
<td>0.2485</td>
<td>0.0012</td>
<td>126.35</td>
<td>55.663</td>
<td>83.48</td>
</tr>
<tr>
<td>5</td>
<td>181.94</td>
<td>54.964</td>
<td>4.6212</td>
<td>33101</td>
<td>0.3133</td>
<td>0.0031</td>
<td>100.2</td>
<td>44.135</td>
<td>66.203</td>
</tr>
<tr>
<td>6</td>
<td>162.02</td>
<td>61.721</td>
<td>4.153</td>
<td>26251</td>
<td>0.3951</td>
<td>0.005</td>
<td>79.46</td>
<td>35.001</td>
<td>52.501</td>
</tr>
<tr>
<td>7</td>
<td>144.28</td>
<td>69.308</td>
<td>3.6484</td>
<td>20818</td>
<td>0.4982</td>
<td>0.0079</td>
<td>63.014</td>
<td>27.757</td>
<td>41.635</td>
</tr>
<tr>
<td>8</td>
<td>128.49</td>
<td>77.828</td>
<td>3.2636</td>
<td>16509</td>
<td>0.6282</td>
<td>0.0126</td>
<td>49.973</td>
<td>22.012</td>
<td>33.018</td>
</tr>
<tr>
<td>9</td>
<td>114.42</td>
<td>87.396</td>
<td>2.9063</td>
<td>13092</td>
<td>0.7921</td>
<td>0.02</td>
<td>39.63</td>
<td>17.456</td>
<td>26.185</td>
</tr>
<tr>
<td>10</td>
<td>101.9</td>
<td>98.14</td>
<td>2.5881</td>
<td>10383</td>
<td>0.9989</td>
<td>0.0318</td>
<td>31.428</td>
<td>13.844</td>
<td>20.765</td>
</tr>
<tr>
<td>11</td>
<td>90.741</td>
<td>11.02</td>
<td>23.048</td>
<td>8233.9</td>
<td>12.596</td>
<td>0.0505</td>
<td>24.924</td>
<td>10.978</td>
<td>16.468</td>
</tr>
<tr>
<td>12</td>
<td>80.807</td>
<td>12.375</td>
<td>20.525</td>
<td>6529.8</td>
<td>15.883</td>
<td>0.0804</td>
<td>19.765</td>
<td>87.064</td>
<td>13.06</td>
</tr>
<tr>
<td>13</td>
<td>71.961</td>
<td>13.896</td>
<td>18.278</td>
<td>5178.3</td>
<td>20.028</td>
<td>0.1278</td>
<td>15.675</td>
<td>69.045</td>
<td>10.357</td>
</tr>
<tr>
<td>14</td>
<td>64.083</td>
<td>15.605</td>
<td>16.277</td>
<td>4106.6</td>
<td>25.255</td>
<td>0.2031</td>
<td>12.431</td>
<td>54.755</td>
<td>82.132</td>
</tr>
<tr>
<td>15</td>
<td>57.067</td>
<td>17.523</td>
<td>14.495</td>
<td>3256.7</td>
<td>31.845</td>
<td>0.323</td>
<td>98.579</td>
<td>43.423</td>
<td>65.134</td>
</tr>
<tr>
<td>16</td>
<td>50.82</td>
<td>19.677</td>
<td>12.908</td>
<td>2582.7</td>
<td>40.156</td>
<td>0.5136</td>
<td>78.177</td>
<td>34.436</td>
<td>51.654</td>
</tr>
<tr>
<td>17</td>
<td>45.257</td>
<td>22.096</td>
<td>11.495</td>
<td>2048.2</td>
<td>50.636</td>
<td>0.8167</td>
<td>61.997</td>
<td>27.309</td>
<td>40.963</td>
</tr>
<tr>
<td>18</td>
<td>40.302</td>
<td>24.813</td>
<td>10.237</td>
<td>1624.3</td>
<td>63.851</td>
<td>1.2966</td>
<td>49.166</td>
<td>21.657</td>
<td>32.485</td>
</tr>
<tr>
<td>19</td>
<td>35.89</td>
<td>27.863</td>
<td>0.9116</td>
<td>1288.1</td>
<td>80.514</td>
<td>2.0648</td>
<td>38.991</td>
<td>17.175</td>
<td>25.762</td>
</tr>
<tr>
<td>20</td>
<td>31.961</td>
<td>31.288</td>
<td>0.8118</td>
<td>1021.5</td>
<td>10.153</td>
<td>3.2832</td>
<td>30.921</td>
<td>13.62</td>
<td>20.43</td>
</tr>
<tr>
<td>22</td>
<td>25.346</td>
<td>39.453</td>
<td>0.6438</td>
<td>642.44</td>
<td>16.143</td>
<td>8.3009</td>
<td>19.446</td>
<td>0.8566</td>
<td>12.849</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>23</td>
<td>22.572</td>
<td>44.304</td>
<td>0.5733</td>
<td>509.48</td>
<td>20.356</td>
<td>13.199</td>
<td>15.422</td>
<td>0.6793</td>
<td>10.19</td>
</tr>
<tr>
<td>24</td>
<td>20.101</td>
<td>49.75</td>
<td>0.5106</td>
<td>404.03</td>
<td>25.669</td>
<td>20.987</td>
<td>12.23</td>
<td>0.5387</td>
<td>0.8081</td>
</tr>
<tr>
<td>25</td>
<td>17.9</td>
<td>55.866</td>
<td>0.4547</td>
<td>320.41</td>
<td>32.368</td>
<td>33.371</td>
<td>0.9699</td>
<td>0.4272</td>
<td>0.6408</td>
</tr>
<tr>
<td>26</td>
<td>15.94</td>
<td>62.733</td>
<td>0.4049</td>
<td>254.1</td>
<td>40.815</td>
<td>53.061</td>
<td>0.7692</td>
<td>0.3388</td>
<td>0.5082</td>
</tr>
<tr>
<td>27</td>
<td>14.195</td>
<td>70.445</td>
<td>0.3606</td>
<td>201.51</td>
<td>51.467</td>
<td>84.371</td>
<td>0.61</td>
<td>0.2687</td>
<td>0.403</td>
</tr>
<tr>
<td>28</td>
<td>12.641</td>
<td>79.105</td>
<td>0.3211</td>
<td>159.8</td>
<td>64.898</td>
<td>134.15</td>
<td>0.4837</td>
<td>0.2131</td>
<td>0.3196</td>
</tr>
<tr>
<td>29</td>
<td>11.257</td>
<td>88.83</td>
<td>0.2859</td>
<td>126.73</td>
<td>81.835</td>
<td>213.31</td>
<td>0.3836</td>
<td>0.169</td>
<td>0.2535</td>
</tr>
<tr>
<td>30</td>
<td>10.025</td>
<td>99.75</td>
<td>0.2546</td>
<td>100.5</td>
<td>103.19</td>
<td>339.18</td>
<td>0.3042</td>
<td>0.134</td>
<td>0.201</td>
</tr>
<tr>
<td>31</td>
<td>89.276</td>
<td>128.71</td>
<td>0.2268</td>
<td>79.702</td>
<td>130.12</td>
<td>539.32</td>
<td>0.2413</td>
<td>0.163</td>
<td>0.1594</td>
</tr>
<tr>
<td>32</td>
<td>79.503</td>
<td>125.78</td>
<td>0.2019</td>
<td>63.207</td>
<td>164.08</td>
<td>857.55</td>
<td>0.1913</td>
<td>0.0843</td>
<td>0.1264</td>
</tr>
<tr>
<td>33</td>
<td>70.799</td>
<td>141.24</td>
<td>0.1798</td>
<td>50.125</td>
<td>206.9</td>
<td>1363.6</td>
<td>0.1517</td>
<td>0.0668</td>
<td>0.1003</td>
</tr>
<tr>
<td>34</td>
<td>63.048</td>
<td>158.61</td>
<td>0.1601</td>
<td>39.751</td>
<td>260.9</td>
<td>2168.1</td>
<td>0.1203</td>
<td>0.053</td>
<td>0.0795</td>
</tr>
<tr>
<td>35</td>
<td>56.146</td>
<td>178.11</td>
<td>0.1426</td>
<td>31.524</td>
<td>328.99</td>
<td>3447.5</td>
<td>0.0954</td>
<td>0.042</td>
<td>0.063</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>200</td>
<td>0.127</td>
<td>25</td>
<td>414.85</td>
<td>5481.7</td>
<td>0.0757</td>
<td>0.0333</td>
<td>0.05</td>
</tr>
<tr>
<td>37</td>
<td>44.526</td>
<td>224.59</td>
<td>0.1131</td>
<td>19.826</td>
<td>523.11</td>
<td>8716.2</td>
<td>0.06</td>
<td>0.0264</td>
<td>0.0397</td>
</tr>
<tr>
<td>38</td>
<td>39.652</td>
<td>252.2</td>
<td>0.1007</td>
<td>15.723</td>
<td>659.63</td>
<td>13859</td>
<td>0.0476</td>
<td>0.021</td>
<td>0.0314</td>
</tr>
<tr>
<td>39</td>
<td>35.311</td>
<td>283.2</td>
<td>0.0897</td>
<td>12.469</td>
<td>831.78</td>
<td>22037</td>
<td>0.0377</td>
<td>0.0166</td>
<td>0.0249</td>
</tr>
<tr>
<td>40</td>
<td>31.445</td>
<td>318.01</td>
<td>0.0799</td>
<td>98.88</td>
<td>1048.9</td>
<td>35040</td>
<td>0.0299</td>
<td>0.0132</td>
<td>0.0198</td>
</tr>
</tbody>
</table>

Tabla A-1. Diámetros de cable según la AWG 1 y su equivalencia en milímetros

En las especificaciones de la Tabla 1, podemos observar que a medida que aumenta el número del cable con referencia al estándar AWG la corriente que puede soportar el mismo es menor. Por lo que si se requiere el uso de corrientes elevadas, es necesario el uso de un cable con número AWG pequeño.
Apéndice II. Póster

REGULADOR DE VOLTAJE DE LÍNEA BASADO EN DESLIZAMIENTO DE FASE

AUTORES:
Juan Angel Acosta Meza 1124106 | Ernesto Terrazas Prieto 1124000
Assessores:
Mtr. Rodrigo Regalado García | Dr. Roeb García Arrazola

Abri 2011

PROBLEMÁTICA
La subtensión y sobretensión de voltaje, al igual que las variaciones del mismo, ocasionan daños y deterioros a la vida útil de los electrodomésticos y aparatos eléctricos.

OBJETIVO GENERAL
Desarrollar un prototipo funcional capaz de mantener constante el voltaje de línea monofásica para evitar las variaciones de voltaje, obteniéndolo a un costo accesible para su comercialización y lograr un uso eficiente de la energía.

OBJETIVOS ESPECÍFICOS
- Obtener el valor del voltaje de línea recibido
- Realizar el deslizamiento de la señal
- Generar una SPWM de forma análoga
- Implementación del Puente H con la SPWM
- Diseño e implementación del filtro pasa-bajas
- Implementar el acoplamiento a la línea
- Pruebas del regulador con carga

RESULTADOS

CONCLUSIONES
- Un incremento unitario en el potenciómetro equivale a 19.5 Ω y 0.735° en el deslizamiento de la fase.
- El puente H alcanza los 170 voltas requeridos.
- Conforme aumenta el voltaje del bus del puente H, disminuye la frecuencia a la cual el filtro pasa-bajas entra en resonancia.
- Aumentar el voltaje del puente H sin que el filtro pasa-bajas distorsione la señal sinusoidal de salida.
- Mantener el THD < 8% aún cuando el voltaje del puente H aumente.

TRABAJO A FUTURO
- Mantener el THD < 8%
- Aumentar el voltaje del puente H sin

Tabla A-2. Póster de proyecto