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Abstract 

This thesis present a novel adaptive fuzzy controller for the regulation of speed on 
induction machines with direct torque control. A state-of-the-art study is presented on 
induction machine drives involving the use of intelligent control techniques. PID control 
with decoupled gains is used to regulate the speed of the machine. Genetic algorithm and 
genetic programming techniques are used for severa! offline optimizations and later FCM is 
introduced for online optimization on the limits of fuzzy membership functions. Finally 
simulations on Simulink and LabVIEW are presented, results and conclusions are 
discussed. 
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l. Introduction 

Induction machines are among, if not the most, widely used of all the electric 
motors. Because they are so widely used, they are worth understanding. They are simple to 
build, rugged, and offer a reasonable asynchronous performance: the torque-speed curve is 
manageable, have a stable operation under load and their efficiency is almost always 
satisfactory. 

In addition to their current economic importance, induction machines may find 
applications in new designs not similar to the ones currently found. An example could be 
very high speed motors for gas compressors, with squirrel cage or with solid iron rotors. 
The following -Table 1- shows the use of induction motors in different applications. 

Table l. 

Conveyors 
Cranes 
Elevators 

Induction Motor Applications [46]. 

An induction machine is a type of asynchronous machine powered by alternating 
current where power is supplied to the rotating device by means of electromagnetic 
induction. An electric motor converts electrical to mechanical power in its rotating part 
called -rotor. There are severa! ways to supply power to rotors, in a direct current machine 
the power is supplied to the armature directly from the source; while in an induction motor 
the power is induced into the rotating device. 

The induction motor could be described by stator and rotor as the main parts; Figure 
shows a simple figure of an induction machine, as it can be seen, rotor and stator are 

coaxial. The stator has a polyphase winding slots while rotor can have either a winding or a 
cage also in slots. 

A controller is a device that observes and regulates the operational conditions of a 
system. Operational conditions or most commonly referred as the output variables, can be 
affected by changing the input variables. Thus, a motor controller is a device ( or a group of 
devices) which purpose is to regulate or control in sorne predetermined behavior the 
performance of an electric motor [62]. 



Chapter 1 lntroduction 

Figure l. Lateral view of an lnduction Machi ne. 

Orives with high performance that control instantaneous electromagnetic torque for 
induction motors and other altemating current motors, have been in use for severa) decades. 
Thanks to the pioneers on vector control like Blaschke and others [ 1], [28] and [3 8] vector 
control based drives have become a standard on industry. 

Direct torque control was developed in the l 980's by Depenbrok [ I 3 ], Takahashi 
and Noguchi [64] and the most significant industrial contribution to direct torque controlled 
drives has been made by Siemens however at present only ABB has a commercially 
available direct torque controlled drive [67]. 

Artificial intelligence -Al- based control techniques have been very popular since 
the decade of the 1990's given that most of these techniques do not need any model to be 
designed; howev~r very few industrial applications use them, the ability of research to 
impact products <loes not depends on finding the best solution, but on finding the right 
problem and solve it in a commercial way [ l O]. 

As researchers, we should recognize capabilities by new techniques and theories 
and then point their applications to specific market segments where there are critica) needs 
for those capabilities [ l O]. Despite the fact that research has been a very populated brand of 
research for more than 60 years, the incredible complexity of human behavior makes 
applications as Ha/ 9000 in: 2001 A Space Odyssey [36] still far from reality [30], [31 ]. 

Al is here, just not as we have expected; todays Al <loes not tries to recreate the 
brain. lnstead it uses ali kinds of computer sciences techniques, sensors and sophisticated 
algorithm to master specific tasks. Google [23] search uses Al to interpret human queries; 
automated robots in warehouses deliver items to humans [39]. Al is not just hype, as many 
real working applications use it [32], [39]; though we still have to develop systems that 
span the full spectrum of intelligent behavior. 
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Intelligent control methods can be classified in two main categories [68]: fully 
based intelligent control regulators and classical or advanced regulators supervised by 
artificial intelligence based functions. For the first category the fuzzy controllers developed 
by Mamdani and Takagi-Sugeno are the most popular. 

Other approaches consist in the use of Artificial Neural Networks to replace 
classical regulators. Neuro-Fuzzy control systems combine the strengths of both systems 
and overcome the weaknesses of them when used alone. Since the response of these 
controllers cannot be considered as optimal, Genetic algorithms can be used to supervise 
and optimize the response ofthem [21], [54], [56] and [68]. 

Finally, modem control techniques are often based on the elimination or the 
reduction of number of sensors in applications. In this way, hardware sensors are replaced 
by software based on parameter identification, estimation, observation and/or signal 
injection [6]. 

1.1. Vector Control Systems 

Although there are severa} kinds of induction motor control, vector control -Ve
and direct torque control -DTe- are the most widely used. ve drives where introduced in 
Germany by Blaschke [ 4], Hasse [28] and Leohhard [38] in 1972 which have achieved a 
high level of maturity and have become increasingly popular on a wide range of 
applications. DTe was introduced and in Japan by Takahashi [64], [65] and in Germany by 
Depenbrock [13] in 1984 and 1985 respectively, however only one industrial company 
makes drives with this technology. 

Other types of induction machine control are: Individual ehannel Design, a novel 
framework that allows analysis and synthesis of multivariable control systems by applying 
classical techniques based on Bode/Nyquist plots. Such controlling system generates the 
appropriate reference voltage signals for the inverter via a space-vector which in tum, 
provides the voltage signa Is for the terminals of an induction motor [ 40]. 

Limitations of field oriented controls such as DTe and ve at low speed operations 
in sensorless applications are due to parameter variations, integral drift and noise. A wide 
range of nonlinear methods for feedback control, state estimation and parameter 
identification has emerged. Among them, sliding-mode control [59] gained wide 
acceptance due to the use of straightforward fixed nonlinear feedback control functions, 
which operate effectively over a specified magnitude range of system parameter variations 
and disturbances. 

The essential property of the sliding-mode control is that the discontinuous feedback 
control switches on one or more manifolds in the state space. Ideally, the switching of 
control occurs at infinitely high frequency to eliminate the deviations from sliding 
manifolds. In practice, the switching frequency is not infinitely high due to the finite 
switching time of power electronics and combined with the effects of un-modeled dynamics 
causes undesired chattering of the control [58]. 
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1.1.1. lnduction Machine Control 

Induction machines -IM- are considered the workhorse of the industry because they 
are simple and rugged. However the control structure of an induction motor is complicated 
given that the stator field is revolving. Further complications arise given that the rotor 
currents and flux cannot be directly monitored on the squirrel-cage induction machine. 

Torque is similarly produced in direct current (d.c.) and altemating current (a.c.) 
machines. However this was not discovered before 1970, which is why vector controlling 
techniques where not early proposcd. lt was first implied that in order to monitor 
instantaneous electromagnetic torque -EMT- of an induction machine, it was necessary to 
monitor rotor currents and position. Later, by using space-vector theory it was proven that 
EMT of an IM can also be expressed as the product of flux-producing and torque-producing 
currents as in d.c. machines [67]. 

lf flux oriented reference frame is employed, stator current components are 
transforrned to a new rotating frame, which rotates together with a selected flux-linkage 
space vector. There are three main possibilities for the selection of the flux-linkage vector, 
which can either be: stator-flux-linkage, rotor-flux-linkage and magnetizing-flux-linkage 
vector. Hence, the terrninology for the control name is derived: stator-flux, rotor-flux and 
magnetizing-flux-oriented control. 

Consequently the instantaneous EMT can be expressed with the following equation: 

t'" = c1 lirl< where for linear magnetic conditions, c1 is a constant, ¡,¡1 ¡ is the modulus of 

the flux-linkage space vector that depends on the frame of reference, i{.. is the torque 

producing stator current that also depends on the flux oriented reference frame. We can see 
that it is similar to the equation of a separately exited d.c. machine which is 

te = ci1 i" = C11f/fia · 

1.1.2. Basics of DTC Orives 

In a DTC drive flux linkage and electromagnetic torque are controlled directly and 
independently by selecting the optimum mode for the inverter. This selection is made to 
maintain the flux and EMT errors within their respective hysteresis bands. It is also made to 
obtain a fast torque response, low inverter switching frequency and low harrnonics. The 
optima! selection table for the inverter can be obtained by making physical considerations 
of the stator flux space vector, the available switching vectors and the required torque and 
flux references. 

Figure 2 shows the diagram of a DTC for induction motors using stator flux, other 
forrns are possible (rotor or magnetizing flux) but this is one of the most common. The IM 
obtains energy from a voltage source inverter -VSI- the stator flux and EMT are restricted 
with their corresponding hysteresis bands, two and three levels respectively. The outputs of 
the comparators are used by the inverter switching table, which also uses inforrnation of the 
sector in which the stator flux space vector is located. 
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Figure 2. Diagram of stator based DTC for induction machi ne drive. 

Estimators for EMT and flux are required; the latter can be obtained similarly as in 
vector control: by integrating the terminal voltages. Although at low frequencies large 
errors are obtained due to variations in stator resistance, noise and drift. This is one of the 
reasons to use other types of estimation systems like observers. 

Observers tolerate parameter variations and their accuracy can be increased using 
online parameter estimators. lt is also possible to use a joint state and parameter observers 
to calculate values like stator flux, stator resistance and rotor speed among others. For stator 
flux it is not necessary to monitor stator voltages since they can be reconstructed by reading 
d.c. link voltage and knowing the state of the inverter switching table. 

Table 2. 

Ádvantages 
No need of additional PWM technique -------,.,.~ No need of coordinate transformations -------No need of voltage decou 1mg circuits '-------------The number of controllers is reduced 
Precise flux vector position is not needed ----=-~----:---c-c.,~--"~ 
Sfator flux •and electromagnetic torque are the. 
controlled variables · 
Pulse Width Modulation is unnecessary Short control cycle ( < 25 µs) is needed for its 

digital implementation --oro,_ __________ ......., _ _, ...---~~--- -~-,.,, 

High harmonic content in phase currents that 
increments with bi@ s eeds and _P-artial loads 

__ ..._. _________ _ 
Torque is linear ------High performance torque control at low stator · 
freq_!Jencies 

Predictors are also used to estímate the vector on the inverter. Advantages and 
disadvantages of DTC can be seen in Table 2. The main features of DTC are listed below: 
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l. Flux and EMT can be controlled independently and directly. 
2. Stator currents and voltages are controlled indirectly. 
3. The fonns of stator fluxes and stator currents have an approximate sinusoidal fonn. 
4. Has excellent torque dynamic response and reduced oscillations. 
5. The inverter switching frequency depends on the flux and torque hysteresis bands. 

1.1.3. Sensorless Orives 

Reducing hardware complexity, costs, increasing mechanical robustness, reliability 
and increased noise immunity can be achieved by eliminating sensors in a.c. drives. 
Furthermore, additional advantages can be obtained like elimination of electromechanical 
sensors, which increment system maintenance requirements and inertia. In small sized 
motors it is impossible to use EMT sensors, also in low powers drives the cost of the sensor 
could be equal or higher than the cost of the drive and motor. 

Drives that operate in hostile environments or high speed applications cannot use 
speed sensors. Estimation of speed and position can be achieved by using software based 
estimators (based on stator currents and voltages measured) due to the fact that real time 
processors continue to decrease in cost an size. In summary, Table 3 contains the main 
objectives of a sensorless drive and Table 4 contains the main techniques of sensorless 
control for induction machines. 

lt can be foreseen that sensorless drives with DTC and intelligent control will soon 
emerge in the fonn of integrated drives. The development of micro and power electronics, 
in conjunction with digital signa! processing and intelligent control are topics with great 
research potential, that will introduce revolutionary changes in the drive industry. 

Table 4. Main techniques of sensorless control for IM. 

Estimator using thirq harmonic voltages · 
Estimator us1ng salienc effects 
Mode1-reference adáP.tive S)'.Stem_s,,...,...M_' RA..._.., S 
Observers (Leunberger, Kalman) 
Estiinators usíng Intelligent Control (ANN, Fuzzy Logic", Neuro Fuzzy'Systenis) 

1.2. State of the Art 

This work proposes a direct torque control scheme for induction machines, however 
it is not the first and only one proposed. DTC was originally proposed by Depenbrock [13], 
Takahashi and Noguchi [64] in 1984. Through the pass of time, ffJmerous contributions 
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have been made and severa} variations have emerged. In order to contrast the relevance of 
this thesis, recent applications and related research in the fields are discussed below. A 
diagram of the· classification of induction motor control methods is shown in Figure 3 
(based on the original in a paper by Buja [6]). 

1 ·- .• ---,. 
______ [ ___ -

[scalar bascd Conrr~ 

V/F ,=, 1 

¡;:::~ iw,)j 

¡--~,~r~~~-~~equ-cn-cy ~~,:·r:I 1 ,_ --- ~- r~- -- ~· 
--~] 

[-Vcclor bascd Conlrol] 

~~~- _____ l __ =:J _ ----- -~L -

c-dbac~ [:irecl Torque l Passivily _ j 
anza110n Conlrol I bascd 
- ~ Conlrol 

~--~--

------ .t --
1 Rolor Flux Orienled 1 

Dirccl Torque 
Space - Vector 

Modula1ion 

Circular Flux 
Trajectory 

(Takahashi) 
___C =1 --- ~-;~:~:n~;~x 

Direcl[ lndirccl 1 ~---~ __ J ______ _ 

xagon Flux 
·rajectory 
epenbrock) 
-- ----------

(Blaschk:lJ __ (~asse) _J 
~--~---

Open Loop Nalural Ficld Closcd Loop Flux & J 
Orienlalion (fonsson) Ton¡ue Co~1~---

Figure 3. Classification of lnduction Motor Control Methods. 

1.2.1. Conventional DTC Contributions 

Recent contributions to the field include a combination of DTC and space vector 
modulation -SVM, which produces better quality in steady state performance and in a wide 
speed range. lt also reduces torque ripple at low speeds, which is an inconvenience of 
conventional DTC. 

This is the case of the research conducted by Zhifeng Zhang et al. [74] which 
propose a sensorless DTC-SVM scheme for IM, with a full order speed adaptor stator flux 
observer and a speed-adaptive law. The observer gain matrix is based on state feedback H 

00 

control theory [60]. They guarantee the stability and robustness of the observer even at very 
low speeds, but so far only simulations results have been presented. 

Zaid S. A. and his colleagues at the University of Cairo conduct research on an 
improved DTC algorithm for IM drives [70]. They consider two main drawbacks of 
conventional DTC: the first one is the variation of switching frequency according to the 
amplitude of hysteresis bands and motor operating speed; the second one is that the 
selection of voltage vectors is not optimized for fast torque response. Their study proposes 
a new DTC scheme which enables fast torque response and constant switching frequency, 
with simulation and hardware implementation results. 

Efficiency optimization on IM drives is a major subject of research based on their 
extensive use in industry. Masood Hajian and his team at the lsfahan University of 
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Technology on lran, conduct research on an adaptive nonlinear sensorless DTC drive with 
energy optimization [42]. They present a novel model based on minimization loss 
approach, combined with an improved search based method for efficiency optimization and 
backstepping DTC control for IM drives. They claim that the proposed controller has fast 
tracking capabilities of rotor flux and electromagnetic torque. 

On predictive direct torque control for a.c. machines professor Pacas and his team at 
the University of Siegen, Germany conducts research since several years ago. The PDTC 
algorithm [16], [45], [48] calculates the switching times of an active space phasor one step 
in advance, such that in steady state the torque time area under and over the torque 
reference has the same size. 

This way switching frequency can be kept constant and sampling frequency <loes 
not have to be as high as in the digital implementation of conventional DTC. Their work 
also includes sensorless techniques [ 45]. As the one for synchronous reluctance machines 
with rotor saliency, that produces reluctance torque casing motor inductances dependent of 
the shaft position and providing a way to sense rotor position. 

Their work also includes elimination of the rotor sensor at low and zero speed based 
on a test voltage signal injection technique, which allows calculating rotor position signals 
at very low speeds, including zero speed [45]. Their work also includes fault tolerant 
control systems that detect broken bars in the rotor and other types of failures. These are 
detected by the appearance of harmonics in sorne machine variables, as well as an 
increment of the losses that can lead to complete damaging of the machine [16], [66]. 

Predictive DTC is a very extensive line of research at this time, and there are man y 
contributions on the field as the one of Jef Beerten at K. U. Leuven in Belgium. He 
proposes a predictive algorithm [3] that can be easily implemented as an extension of the 
basic DTC. lt <loes not requires additional motor parameters, only previously calculated 
values of electromagnetic torque and flux and reduces torque and flux ripples. 

More recently predictive DTC is including model predictive control (MPC) 
approaches to improve the performance on drives. MPC is inherently computational 
demanding, as an underlying optimization problem needs to be solved. Tobias Geyer and 
others at the University of Auckland in New Zeland propose a MPDTC scheme [22], which 
claims that the major benefits are superior performance in terms of switching frequency. 

This control scheme reduces the switching frequency by an average of 25% 
reaching up to 50% compared to ABB industrial drive ACS6000, while better respecting 
torque and flux hysteresis bounds [22]. Sorne of the key features of the control system are: 
extrapolation, computations performed online, admissible switching sequence and the use 
of nonlinear model prediction. 
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1.2.2. Intelligent Control with DTC Contributions 

As it can be seen in section 1.2.1 vast research in the field of DTC is been done, 
including predictive models, nonlinear control approaches and sensorless control, among 
many others. But what about the contributions that include intelligent control techniques? 
Below, sorne of the most novel proposals and solutions are discussed. 

A literature survey in [ 68] indicates that applications of intelligent control to electric 
drives mainly discuss speed or position controllers based in fuzzy logic or neural networks. 
Although these are important applications, there are many more possibilities for a much 
wider range of applications based on intelligent control, as shown in Table 5. 

There have been numerous contributions to DTC control aided by intelligent 
control; such as the direct torque neuro fuzzy control for induction motor drives [25], 
proposed by Grabowski at the University of Warsaw in 1998. They propose two discrete 
DTC schemes based on neuro-fuzzy control, the first a neuro-fuzzy switching time 
calculator (STCC) and the second an incremental neuro-fuzzy controller with space vector 
modulator. The first method reduces sampling time with the same results as classical DTC; 
the second reduces sampling time and the switching frequency is constant. 

Other applications include the use of a neural network for speed estimation of an 
induction motor using DTC [52] by Pedro Ponce in 2001. A small structured neural 
network is used as speed estimator of an induction machine using DTC, which leads to 
short off-line training and processing times. lt has the advantage of not increasing the 
complexity of the whole control system. 

Table 5. Apphcat10ns of lntelligent Control on Variable Speed Orives (a.c. and d.c). 

Replace classical controllers (speed, position and otbers) for intelligent controllers. . 
Ncw and combined control structures based on conventional and intclligent control like: intelligent 
control universal drives, intelligent control electronic motors 
Firing signal eneration schemes and new switching v"""e,,.ct_o_r_s_,ch,_e_m_e_s_..,..._....,...._,...._,,,__ ...... .....----.. ...... , 

Com ensat10n of non linear effects in discontinuous operation of the con verter --------------Para meter estimation im roved observers,. harmonic~ effi.ciency among many others_)_·_· _._ ___ .,. 
Self-commissionmg systems 
Virtual sensors based on intelligent control techni 
Condition momtonng and diagnosis -----·-Machine design , "------Models, mcludmg steady state and transient states 
Self-re airing and ~elf-constructing controllers :::;1::;:Jl:Jl.F.l]Pí]f¿f]Jii;J.~l:JEJJEJJ.Ji¡ 
Fault detection and localization 

Later in 2004 Cheng-Zhi proposed a DTC scheme optimized by fuzzy neural 
networks [9] making emphasis at low speeds, where the problems are more pronounced. 
The fuzzy neural network is optimized by a genetic algorithm to avoid local minima. They 
claim that it can infer stator voltage vectors reasonably good, its control is easy and 
dynamic response of torque and rotating speed is fast; it also improves the low speed 
performances of direct toque system. 
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In more recent times Rajaji and others at the University of Sathyabama at the India 
presented an ANFIS model of an induction motor drive used for modeling, estimation and 
control [56]. They estimate up to eleven parameters of a non-linear model and can be used 
for on-line compute of the model on drives or as an estimator. There are other records of 
similar works that are based on fuzzy observers for the stator resistance, such as [33]. 

At the University of Shenyang Ligong at China Hongkui Li is working on a Fuzzy 
DTC scheme [29] that optimizes the stator flux reference, which also uses a fuzzy logic 

. controller to select voltage vectors. The inputs to the fuzzy controller are error of EMT and 
error on stator flux and the output is the corresponding voltage vector. 

Reduction of torque ripple is achieved in the whole speed range, simulations are 
prcscnted. His work and of his team also includes other development of flux observers for 
sensorless DTC schemes that uses a dynamic neural network to design the observer gain 
matrix, which can be adjusted online [70]. 

At the University of Science and Technology in Qindao China, Meie Sui and his 
team are working on a sensorless direct space vector modulation DTC for induction motors, 
based on fuzzy control and model reference adaptive control [44]. They propose an 
adaptive law based on fuzzy logic which adjusts the gain on the model and estimates speed. 
They claim the results are superior to classical estimators. 

As of industrial applications, currently Hitachi has a drive in the market, the -J300-
which incorporates fuzzy logic. Hitachi claims it to be the first one using it. The main 
fea tu res of the J300 are sensorless vector control, efficiency and auto-tuning, among others. 
According to Hitachi, the drive intelligent inverter takes into account the characteristics of 
motor and the system and ensures accurate torque control through an entire range of 
frequency. 

The J300 also includes an acceleration and deceleration fuzzy control. There is also 
a drive by Yaskawa, the VS-6 I 6G5, a general purpose inverter which contains flux vector 
control for induction machines. According to Yaskawa, it contains a magnetic flux observer 
that is based on intelligent neuro-control. 

1.3. Motivations 

In the past, direct current motors were extensively used in applications where 
variable speed was necessary. D.C. motors can be controlled very easily by varying field 
and armature currents and controlling their flux and torque. However d.c. motors require 
frequent maintenance because of the existence of brushes and commutator, they also have 
limited capabilities for high speed and high voltage operation conditions. 

The disadvantages presented on d.c. machines can be easily overcome by altemating 
current machines, which have simple and rugged structures. They also eliminate the need of 
maintenance, are robust and immune to heavy overload and are of smaller dimensions when 
compared to d.c. motors. Variable speed a.c. drives can be used to replace d.c. motors, 
because of their commutator limits, or when needed in hazardous environments. lt is 

21 



Chapter 1 Introduction 

expected that with the rapid development of micro and power electronics, torque control for 
different kinds of a.c. machines will become a commonly used technique. 

Direct Torque Control -DTC- has an excellent dynamic behavior; compared to 
Vector Control, the DTC algorithm is less complex and is more tolerant to parameters 
variations. For these reasons DTC, has become attractive to industrial companies that 
develop altemating current drives. Conventional DTC has a simple structure and is easily 
implementable; drives that use DTC have exceptional dynamic perforrnance [ l]. 

With the most recent contributions to digital processing and microelectronics, 
induction motor drives have reached the status of modem technology. Every time more 
complex and robust algorithms are developed and can be implemented thanks to the power 
processing capabilities of new technology. 

Intelligent control techniques emulate characteristics of biological systems and 
novel capabilities. These control techniques can provide products with the important 
competitive edge that companies seek. Although severa) applications are described in 
literature, few become laboratory prototypes and only a handful becomes final products. 
Thus, the ability of research work to impact products is not centered on finding the best 
solution, but in finding the correct problem and solving it in a commercial way [ l O]. 

The application of intelligent based control methods has had the greatest impact on 
the aerospace industry, but it is most likely that this tendency will change in the near future. 
In many cases, the application of intelligent control to drive systems leads to significantly 
reduced development times. lt also helps avoid classical control theory limitations such as: 
complex mathematical models, relying on simplifications and assumptions, may contain 
parameters difficult to measure and that may change significantly during the operation; ali 
of these can make impossible to determine a mathematical model. 

Even further, classical control theories suffer Iimitations of form, due to the nature 
of the controlled system (linearity, time-variance, etc.) These problems can be easily sol ved 
by intelligent control. IC techniques can be used even when analytical models are not 
known. They are also less sensitive to parameter variations making them more robust than 
classical control systems. Finally Table 6 presents the key advantages of intelligent 
controllers and estimators [68]. 

Thanks to the widespre_ad of digital signa) processors, the development of more 
advanced drives has become possible. Given that the greatest advancements of variable
speed drives have taken place in parallel with the advances of semiconductor devices. 
Variable speed drives are the most important commercial application of modem power 
electronics. The revenue generated by electronic industry in 20 l O in the world was of 
$1200 billion euros and it is expected to grow 1298 billion euros [14]. Table 7 contains the 
market of fuzzy logic applications. 
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Table 6. Key advantages of artificial intelhgence controllers and estimators. 

Mathematical model ofllie lant riot regúired for·their design 
When properly tuned, they can Jead to improved performance 
Can be .... desigged based on linguistíc infonnation from hlµnan ,experts 
Can be designcd on the basis of response data in the absencc of cxpcrt know Jedgc 
Can gencralize information, becoming independent of particular characteristics. of the systems 
Can adapt to ncw information as it bccornes available 
Can provide solutions to éontrol 'P.roblems imposs.Íble to, cpnveñti9naÍ control 
Havc good noisc rejcction capabilitics 
Are inexpensive to implement 
Are easy to extcnd and modify 

Table 7. 

1989 · World 
1993 World 

"i995 
2000 Europe 7 USO billion 

1.4. Objectives 

·1 úSD million ' --= 10 USO million 
800 USD million 
3 USO billion 

2 USD billion 
' . 

8 USD billion 

The purpose of this work is to research, develop and implement a direct torque 
control for three phase induction motors, control rotor speed and improve the control 
system using intelligent control techniques. As it has presented in section 1.2, most of the 
research and applications has been done on artificial neural networks and fuzzy logic in the 
specific case of motor control. The purpose of this work is to apply artificial intelligence 
techniques not previously done to motor control, like evolutionary algorithms and 
clustering techniques. 

1.4. t. Specific Objectives 

More specific objectives are: 

Develop conventional Direct Torque Control. 
Create speed controllers based on intelligent control techniques. 
Enhance the response of the speed controllers. 
Tests and results on simulations and experimental prototype. 

1.5. Outline of the Chapters 

This thesis is organized as follows: Chapter 1 is a brief description on the state of 
the art and the objectives of this work. Chapter 2 describes the theoretical foundations 
about vector control and more specific information about DTC and other conventional 
control techniques. Chapter 3 describes the theory of intelligent control used for the 
development of this work. Chapter 4 is the description of the proposed and developed 
system, the desired controlling schemes, proposed algorithms and the implementation 
process. Chapter 5 describes tests and results; finally, Chapter 6 presents conclusions and 
future work. 
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2. Theoretical Foundations 

The theoretical foundations used in this thesis are presented in this chapter. The 
principies of various fonns of Direct Torque Control systems can be understood by 
comparing the production of electromagnetic torque in d.c. and a.c. machines; for these 
purposes space phasors must be understood first. 

With the help of them it is possible to fonnulate space-phasor model of a.c. 
machines and in our case, induction machines. Later, the model of the Induction Machine 
and its equations are explained, the theory of conventional Direct Torque Control 1s 
presented and finally conventional PID control theory is developed in this chapter. 

2.1. The Space Phasor 

In order to correctly understand and design torque control systems, it is necessary a 
model with dynamic response of the machine to be controlled. The model must preferably 
incorporate ali important dynamic effects occurring during steady state and transient 
operation. lt should also be valid for arbitrary time variations of voltages and currents 
supplied by the converter that feeds the machine. 

Such models can be obtained by the utilization of space phasor theory, which is 
closely related to two axis theory of electrical machines. The space phasor has sorne 
advantages such as being simple and compact; leading to very clear physical pictures of the 
modeled machines. 

With the aid of space phasor theory, a three phase system in a given arbitrary frame 
of reference being described by phase quantities (currents, voltages, flux linkages) can be 
replaced by a resulting space phasor of their respective quantity. lt is also possible to 
introduce the space phasor by using the two axis theory; originally introduced by Park. 

2.1.1. Equations of Transformation of Two-axis Theory 

In late 1920s [ 49] Park introduced a new approach to machine analysis where he 
fonnulated a change of variables. This approach replaced variables associated with the 
stator winding of the synchronous machine for virtual windings rotating on par with the 
rotor. As a result, he transfonned stator variables to a frame of reference fixed to the rotor. 
These transforrnations eliminate time varying inductances from the voltage equations of the 
machine which occur due to: electric circuits in relative motion and with varying magnetic 
reluctances. 
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2.1.1.1. Transformation to Stationary Frame of Reference 

For simplification purposes a change of variables that transform the three-phase 
variables of stationary circuit elements to an arbitrary frame of reference can be expressed 
as follows: 

f . = T ¡· 
. slJIJO s. s.lBC 

whcrc f~i!Jo = [fo 
T [ . 

./,,._.fBC = f,_,, 

T =Il:~:: s 3 
1/2 

d0 
(l)=-

dt 

/:Q fo] 
lB ./,,C] 

cos( 0-2n/3) 

sin(0-2n/3) 

1/2 

And for the inverse transformations: 

cos( 0+ 2n/3)1 
sin( 0 + 2n/3) 

1/2 

l 
cos0 

r,- 1 = cos( 0-2n/3) 

cos( 0+ 2n/3) 

sin0 

sin(0-2n/3) 

sin ( 0 + 2n /3) 

1/21 1/2 

1/2 

0= f wdt 

cqn ( 1) 

cqn (2) 

eqn (3) 

eqn (4) 

eqn (5) 

eqn (6) 

eqn (7) 

In the above equations f represent any of the variables in the machine (voltage, 

current, flux ... ), the superscript T denotes transposition of the matrix and the subscript s 
denotes everything associated to the stationary frame of reference. The angular 
displacement 0 must be continuous however; the angular velocity úJ associated with the 
change of variables is unspecified. 

The frame of reference may rotate at any angular speed or remain stationary. lt is 
convenient to visualize the transformation equations as trigonometric relationships between 
variables. As shown in Figure 4, where J,0 and J,Q are orthogonal rotating at angular 

velocity úJ and f;..,, f 8 and fe are stationary each displaced by 120°. Finally the total 

instantaneous power expressed in 3 axes is denoted by eqn (8) and in 2 axes by eqn (9). 

P 3( . . 2 . ) =- V l +V l + V l sDQO 
2 

s/) sD sQ sQ sO sO 

eqn (8) 

eqn (9) 

Where: The 3/2 factor is used because of to the constant used in eqn (4). As it can be seen 
the total power is independent of the frame of reference which is being evaluated. 

25 



Chapter 2 Theoretical Foundations 

Figure 4. Transformation ofStationary Frame ofRcfercnce. 

2.1.1.2. Most Common Reference Frames 

With the Park transfonnation, the frame of reference can be arbitrarily set, yet the 
most commonly used in the analysis of electric machines and power systems are: the 
arbitrary, stationa,y, rotor and synchronous, more infonnation can be seen in Table 8. 

Table 8. Common Frames ofReference. 
Name S eed Variables Trahsform Characteristics· · 

Arbitrary O) hDQO T, 
Variables are referred to an arbitrary frame of 
reference. 

· Stationary· o Variables aré referrea to the stationary frame 
of reference. 

Rotor J,;QO T' Variables are referred to the rotor frame of w,. s reference. 

Synchronous (f)e h~go re Variables are referred to the syncbronously 
s rotating frame of reference. 

2.1.1.3. Transformation Between Reference Frames 

Sometimes it is useful to transfonn from one frame of reference to another, without 
involving the main variables of transfonnation. Let x denote the reference frame from 
which the variables are being transfonned, and y denote the reference frame to which the 
variables are being transfonned. Severa] trigonometric identities are used to reach eqn ( 13), 
referred as vector rotator: 

rr rr I' 
J sDQO - s J sABC 

TY = .TTl"T< 
s s 
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eqn (10) 

cqn (11) 

eqn (12) 
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cos( 0r -0,) -sin( 0, -0,) o 
xrr = sin( 0, -0,) cos( 0, -0,) o cqn (13) 

o o 

2.1.2. Space Phasors of Stator 

After the space phasor theory being introduced, severa! space phasors will be 
introduced, which are necessary for the development and understanding of the altemating 
current machines with a smooth air gap. 

2.1.2.1. Space Phasor of Stator M.M.F.s and Stator Currents 

If (.,, i,n and (e are instantaneous current values in stator phases A, B and C, the 

stator current space phasor, T, is defined by: 

..,.. 2[. . . ] 2[. . 2· J 1 =- 1 +1 +1, =- 1 +m +a 1. s 3 s.-1 sB s(. ) sA sB s( 

a= e¡2,7,,_1 

eqn (14) 

eqn (15) 

Where: eqn (14) is the complex space phasor of the three phase stator currents in the 
complex plane, in a stationary reference frame fixed to the stator. eqn ( 15) shows the spatial 
operator. The real axis of the stator is denoted by sD corresponding to Direct-axis 
terrninology of the stator. 

The stator current space vector expressed in the stationary reference frame fixed to 
the stator can be seen in eqn ( 16). Depending on place of edition of the book, sometimes 

the notation is i,a and _i,11 instead of i,0 and i_,Q . In symmetrical three-phase machines the 

direct and quadrature axis stator currents i,0 and (º are related to the actual three phase 

stator currents: 

i = i +j"i .,· .,/J sQ 

i_,0 = e [ i11 - 1/ 2(8 - 1/ 2(c] 

i,Q = c.fi/2(i,8 -(e) 

cqn(l6) 

cqn (17) 

cqn(l8) 

Where: e is a constan t. For the non-power-invariant forrn of the transforrnation, the value of 

e= 2/3, and for the power-invariant forrn e= .fifj. Similarly, the instantaneous zero

sequence current component of the stator current is defined by eqn (19); where for non

power-invariant k = 1/3 and for power-invariant k = 1/ ,fj. 

i = k [i + i + i ] sO .d sB sC cqn (19) 
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2.1.2.2. Space Phasor of Rotor M.M.F.s and Rotor Currents 

The rotor current phasor is denoted by eqn (20) expressed in the rotor reference 
frame (real axis denoted by ra and imaginary axis by r/3). The speed of the reference 

frame is ru,. as in eqn (5). The definition is similar to the stator space phasor in the 

stationary reference frame. 

-:- _ 2 [. . . ] _ 2 [. . 2. J-1-=-1 -.fa, ,,. - 3 ,,.A + l,.s + l,.c - 3 ,,A + a,,.s + a ,,.e - ,,. e cqn (20) 

Thus, it is possible to generalize, and it follows the definitions of the space-phasor 
quantities in their own reference frames. Let i,.ª and i,.p be the instantaneous values of the 

three-phase rotor currents ( direct and quadrature axis components) similar to eqn ( 16) and 
eqn ( 17) represented by eqn (21) and eqn (22): 

ira =c[i,. .. , -J/2irB -J/2i,.c] 

i,.¡, = cJ3/2(i,.8 -i,.c) 

cqn (21) 

eqn (22) 

Where: e= 2/3 for the non-power invariant form of the transformation. Then the space 

phasor of the rotor currents in the rotor reference frame is given by Error! Reference 
source not found .. 

~- = i,.a + }i,11 eqn (23) 

2.1.3. Flux Linkage Space Phasors 

Now the space phasors for flux linkages of stator and rotor will be presented in 
different frames of reference. lt is also possible to define stator flux linkage in terms of the 
instantaneous values of the flux linkages f//, of the three stator windings; it will be defined 

for severa] reference frames. 

2.1.3.1. Flux Linkage Space Phasor in Stationary Reference Frame 

For the stationary reference frame fixed to the stator, the flux linkage can be 
expressed as in eqn (24) with the instantaneous values of phase variable flux linkages in 
eqn (25), eqn (26) and eqn (27). 

if}, = 2/3 ( if},.,, + aif},8 + a2if}.,c) 

ij}_<A = LJ'-"' + M),8 + MJ,c + M,,. COS 0,.irA 

+M"' cos ( 0,. + 21r/3)i,.8 + M,,. cos ( 0,. + 41r/3) i,.c 
lfsB = LJ,8 + M/,A + M.Jsc + M,,. COS 0,.i,B 

+ M.,r COS ( 0,. + 2íT /3) i,-C + M_,,. COS ( 0,. + 4Jr /3) i,-A 
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eqn (24) 

eqn (25) 

eqn (26) 
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ifisc = LJ,c + MJ,8 + M.J,A + M_,. COS 0)rc 
+M

5
,. cos( 0,. + 27r/3)irA + M_,, cos( 0,. + 41[/3)i,8 

eqn (27) 

Where: I, is the self-inductance of the stator phase winding, M, is the mutual inductance 

between stator windings and M,, is the maximum value of stator-rotor mutual inductance. 

By substituting in eqn (25), eqn (26) and eqn (27) in eqn (24) yields to the following: 

- = L T + L ? = L T + L T e10' 'l's s s m r s s m r eqn (28) 

Where: Ls = I,. - M_, is the total three-phase stator inductance and L,,, is the three phase 

magnetizing inductance: Lm = ( 3/2) MI/". 

Stator flux linkage space phasor gives the modulus and phase angle of the peak of 
the sinusoidal stator flux distribution on the air-gap. There are two space phasor 

components: the first ( L_,T) is the self-flux linkage space phasor of stator phases caused by 

stator currents. The second ( L,,l) is a mutual flux linkage space phasor expressed m 

stationary reference frame and is caused by rotor currents. 

lt is important to remember that eqn (28) is general even for nonlinear conditions. 
We can also represent the stator flux in terms of the 1//so and 1//.,Q components, as shown in 

eqn (29); which by consequence gives the definition of eqn (30) and eqn (31). 

i/i., = ifiso + j ifisQ 

i/i.,D = LJ,D + LmirD 
,-¡; = L i + L i 
't' sQ s sQ III rQ 

eqn (29) 

eqn (30) 

eqn (31) 

2.1.3.2. Rotor Flux Space Phasor In Rotating Reference Frame 

The space phasor of the rotor flux expressed in its natural reference frame (fixed to 
the rotor), and rotating speed cv,. is defined by eqn (32), where lf/,A, f/1,..4 and f//,..4 are the 

instantaneous values of the rotor flux in the rotor phases. In terms of instantaneous values 
of stator and rotor currents can be expressed as shown in eqn (33), eqn (34) and eqn (35). 

i/i,. = 2/3 ( i/i,._., + aiji,.¡¡ + a2
ifi,.c) 

- - - -
i/i,._., = L,.i,._., + M,.i,.8 + M),.c + MI/" cos 0,.i_,.4 

+M"" cos( 0,. + 21[/3) (e+ M,,. cos( 0, + 41[/3 )i,8 
- - - -

- -Li+M·+M· M 0· lf/,.n - ,. rB ,.l,..4 ,.l,.c + sr COS ,.l_,B 

+ M,,. cos ( 0,. + 21[ /3) i_,A + M" cos ( 0, + 41[ /3 kc 
i/i,.(. = L),.c + M,.i,.A + M,.irB + M". COS 0J,c 
+M" cos( 0,. + 21[/3)is8 + M5 ,. cos( 0,. + 41[/3)i,.1 
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eqn (32) 

eqn (33) 

eqn (34) 

eqn (35) 
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Where: L,. is the rotor self-inductance of the rotor winding and Mr is the mutual 

inductance between two rotor phases. If in eqn (33), eqn (34) and eqn (35) are substituted in 
eqn (32) a lot of simplification is obtained as can be seen in eqn (36). 

i¡J,. = L,.~ +L,,? eqn (36) 

Where: L,. = L,. - M,. is the rotor inductance (three phase) and ~ is the space phasor of the 

stator currents referenced to the rotor. 

The two terms presented in eqn (36) contain the space phasor ( L,T) which is the 

rotor self-flux space phasor ( exclusively given by rotor currents) and; the space phasor 

( L,i) which is the mutual flux space phasor in the stator reference frame produced by 

stator currents. Defining the rotor flux in the two axis components f// rafi , as in eqn (3 7) and 

defining the rotor flux components as eqn (38) and eqn (39). 

1//,. = lfra + Ílf,¡J 

1//ra = L,.i,a + L,,J,D 
i¡J,.11 = L,.i,.11 + L111 i,0 

2.1.4. Space Phasors of Voltages 

eqn (37) 

eqn (38) 

eqn (39) 

Space phasors for stator and rotor voltages can be defined similarly to current and 
flux phasors. The stator voltage phasor in the stationary reference frame is defined in eqn 
( 40); while the rotor voltage space phasor in the reference frame in the rotor is in eqn ( 41 ). 

11, = 2/3 [ U,A + GU,8 + a
2
U,C J = U,D + ju,Q eqo ( 40) 

ii,. = 2/3[ ii,.A +aii,B +a
2
ii,c J =u,.ª+ Jurp eqn (41) 

Where: all the ii,. and ii, are the instantaneous values of stator and rotor voltages and ii,DQ 

and ii,.ap are the corresponding direct-quadrature axis components. The relationship 

between three phase and quadrature phase voltages is shown in eqn ( 42) in matrix form. 

l
u J l l -1/2 -I/2Jlu J u::: = ¾ O J?,/2 J?,/2 u:: 
Uso 1/2 1/2 1/2 U,c 

eqn (42) 

2.1.5. Electromagnetic Torque Generation in A.C. Machines 

In general, in a symmetrical smooth air gap a.c. machine the generation of 
electromagnetic instantaneous torque can be expressed by eqn ( 43) the cross product of flux 
linkage and current phasors, which similar to the d.c. machine equation. lt can also be 
written as in eqn (44) using Euler forms of the vectors. 
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eqn (43) 

cqn (44) 

cqn (45) 

Where: li, 1 and l~I are the magnitude of the stator flux and rotor current space phasors. y 

is the torque angle, when y= 90º the maximum torque is obtained as in eqn (45). 

To derive the Torque equation of the induction machi ne the. energy and work will be 
analyzcd; energy stored in a coupling field may be written as in eqn (46). Energy stored in 
leakagc inductances <loes not form part of the energy stored in the coupling field; 

magnctical linearity is assumed in the machine so the energy field W1 is equal to the 

coenergy W, .. 

The change of mechanical energy to a rotational system is described in eqn ( 4 7), 
here T,_,,,, is the positive electromagnetic torque for motor action and 0,.

111 
is the angular 

displacement of the rotor. Flux linkages, currents, W1 and W,., are expressed as function of 

electrical angular displacement 0,. as seen in eqn ( 48). 

W l ·2 (L L ) . L' ., l ·2 (L L ) .=-1 . - +1 . I +-1 . -/ 
2 

sA/J( s Is sAIJ( sr rAIJC 
2 

rA/J( ,. Ir 

dW,n = -T,_,md0,m 

eqn (46) 

eqn (47) 

eqn (48) 

Where: Pis the number of poles in the machine. Because of the equality W
1 

= W,., 
electromagnetic torque may be evaluated as in eqn (49). When eqn (46) is substituted into 

eqn (49) it yields the electromagnetic torque in eqn (50) [Newton·meters]. Finally torque 

and rotor speed can be related by eqn (51 ). 

( ) 
p aw(i ,e.) 

T i 0 =-· ' .1 ' 
em 1' ,. 2 ae ,. 

T = p i2 .ABC ~L' i' 
em 2 s.-18( a0 SI' rABC 

2 
T',,m - TL = J - d üJ,. p 

r 

eqn (49) 

eqn (50) 

eqn(51) 

Where: J is the inertia of the rotor and TL is the load torque on the shaft of the IM 
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2.2. The Induction Machine: Modeling and Control 

A symmetrical induction machine (Figure 5) expressed in terms of machine 
variables is presented. A wye (Y) connected, symmetrical induction machine is considered, 
with identical and sinusoidal distributed windings 120° apart where Ns stands for the 

number of turns and r, is the stator resistance. Rotor windings are also identical and 

sinusoidal distributed and 120º apart, N, stands for the number of turns and r,. is the stator 

resistance. Thus the voltage equations are expressed in eqn (52). 

V = ¡ R + alflsrARC 
srAHC srABC srABC at eqn (52) 

This equation is valid for stator and rotor, where V,,.Aac denotes the voltage vector, f.,,.Aac is 

the current vector and R.,,.,,8c is the resistance. For magnetically linear systems flux linkages 

can be expressed with eqn (53) and eqn (54). 

s=Ll'+Lr f//s S.\' ·mr 

,.=Ll'"+LJ'" '1/,. r r m s 

eqn (53) 

eqn (54) 

Where: L_,. (eqn (55)) and l,. (eqn (56)) are the self-inductance of stator and rotor phase 

windings respectively and L
111 

is the mutual inductance. L1s and Lm,· are correspondingly 

the leakage and magnetizing inductances of the stator windings. 

L1, and L
111

, are for the same rotor windings; finally Ls, is the amplitude of mutual 

inductances between stator and rotor windings, with the relationships in eqn (58). If other 
variables like voltages or currents are referred to the stator, eqn (59) is used. l L,, +l,.,, -l/2L

111
,. -1/2 l,,,,] 

L,. = - 1/2 L
111

., L1., + L,,,., -l/2L,,,_, 

-1/2L
111

, -1/2L,,,., Lis+ L,,,., 

eqn (55) 

l L,, + l., -1/2 L,,,,. -1/2 l,.,,] 
l,. = -1/2L,,,,. L1,.+L,,,,. -1/2L,,,,. 

-1/2L,,,,. -1/2 L,,,, L1,. + L
111

,. 

cqn (56) 

cose,. cos(~.+
2
;) cos( 0,. -

2
;) 

LIT = ILITI cos( 0,. -
2
;) cose, cos(e,.+

2
;) eqn (57) 

cos( 0,. + 
2
;) cos( 0,. -

2
;) cose,. 

L,,,.\. =Ns¿ 
N SI" ,. 

eqn (58) 
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2.2.1. Mathematical Model in Stationary Reference Frame 

As shown in Section 2.1. l, we can write the model variables in an arbitrary 
reference frame; here they will be written in the two axis stationary reference frame. It is a 
vector model in D-Q reference frame for a symmetrical squirrel cage induction machine. It 
does not include the magnetic circuit model and it is considered to be balanced. 

v = r i + dl/f,v eqn (60) 
. dlfl,Q eqn (61) V =rl +--sD s sD di sQ -' sQ di 

O . dl/f,o eqn (62) . dij!,.º eqn (63) v,-o = = r,.1,.0 + -- - rJJ,.1/f,.Q v,.Q = O = 1~.1,-Q + --+ OJ,.1/f,n 
dt dt 

1/1,o = L.J,-o + Lmi,D eqn (64) 1/f,Q = L)_,Q + L111 i,.0 eqn (65) 

1/1 rD = L,.irD + Lm(D eqn (66) 1/f,.0 = L,.i,.º + l,,,i_,.0 eqn (67) 

T 3P ( . . ) -- l - l 
em - 2J 1/f,o sD lflsQ sQ eqn (68) OJ, = ru,li¡, + O)r eqn (69) 

Here stator voltages are eqn ( 60) and eqn ( 61 ), rotor voltages are eqn ( 62) and eqn 
(63), which are equal to zero. Flux linkages for stator and rotor are eqn (64), eqn (65), eqn 
(66) and eqn (67). Electromagnetic torque is described by eqn (68). Finally stator, rotor and 
slip rotational speeds are related by eqn (69). A block diagram of the model is shown in 
Figure 6, here F;,DQ are the interna! equations that govem the model previously described. 

r------------------1 -i- -{I}---
1 \ji ~D 

-1 - I,o 
. rs_r-l F;J-~--

L_ _____ _, 

Electrical Part 

1 
1 
1 
1 

1 
1 

1 

1 ~---------------
~~ 

:Tem
11 3P COr _I + - • ---- __ .. 

1 : - 2(Js+f3) 
}-·-¡-·- ___ __J 

1 1 
I I TL 
: : Mechanical Part 
1 ~---------------
¡ 
1 
1 

Figure 6. Block diagram of induction motor model in stator referencc frame. 
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2.2.2. Direct Torque Control for lnduction Machines 

Direct Torque Control comes up with the work of Takahashi [64] and Depenbrock 
[ 13] in the middle of l 980's. lt must be emphasized that it was meant to be an analog 
implementation. A diagram of OTC is shown in Figure 7 it is made in two basic stages. 

The first stage has two hysteresis bands, one for the elcctromagnctic torquc and thc 
other for the stator flux. A voltage vector that fulfills torque and stator flux requirements 
must be selected. This voltage vector is selected by using hysteresis bands for stator flux 
with two possible states and electromagnetic torque with three possible states. The resulting 
state is the comparison between the limits of the bands and the real instantaneous values, as 
shown in Figure 8. 

Yo 

//;:e.e~" 
-~---,'( '\\ 

-~ -¡-/( .·l·· .. M· .·· .·!'! 
\\ 1.• 

~ T \\_ ;:::, 
1 

1 

Figure 7. Simplificd DTC Scheme for IM Orive. 
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D 
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D 
[ 

-1 
b) Elcctromagnetic Torque 

Figure 8. Hystcrcsis bands. 

Values of ~"' and lf/., are taken from the stationary DQ model and then compared 

with their respective hysteresis bands, thus, generating the necessary data to make the 
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decision on what voltage vector will keep them inside their hysteresis bands. The hysteresis 
bands are hard limits for the comparison of the real value of the element being compared. If 
this element is outside the limits of the hysteresis bands, action must be taken to maintain it 
inside the limits, as shown in Table 9. 

Table 9. Hystcresis bands for f//., and 7',,
111 

For lf/s as in Figure 8.a: 

lf/ca, < lf/rer min ---+ 1 and lf/s i 
'Y cal >, 'Yref max ---+ o and f//s .J, 
. . ' 

For T,,m as in Figure 8.b: 

T;,,,, col < T,_,,,, n/ min ---+ 1 and T,_,,,i" i 

T > T ---+ - l and T -J... em cal 4!111 r~f max em 

The second stage on the DTC execution is to calculate the adequate voltage vector. 
The position of the voltage vector must be taken into consideration, although not precisely 
but just the sector in which it resides (Figure 1 O.b ). This way the voltage vector (which is 
normally implemented by using fixed tables) can be selected and sent to the voltage source 
inverter. This control strategy does not require of a coordinate transformation thus, 
simplifies the control algorithm. 

The motor decoupling is made by a simple on-off control law, which uses selection 
tables using the relative voltage vectors and then switches the semiconductors in the 
voltage source inverter. In DTC, stator flux and electromagnetic torque can be measured or 
estimated, if they are estimated the signals in the terminals of the motor are used. Flux can 
be estimated as shown in eqn (70), which can be written in an incremental discrete form as 
in eqn (71 ), depreciating the losses in the stator resistance. 

111 = f V -r i "f's S SS 

/'i,. lf/s = /'i,.f ( V., ) 

cqn (70) 

eqn (71) 

lt can be seen from eqn (71) that a change in the stator voltage is proportional in 
magnitude and sense to the stator flux vector. lt is for this reason that DTC uses voltage 
source inverters -VSI- for the control of the stator flux. 

2.2.2.l. Voltage Source Inverters in DTC 

lt is possible to control stator flux and electromagnetic torque through the control of 
the voltage source inverter, as it is shown in Figure 9, it has eight possible states shown in 

Figure 1 O. The switching state is defined with the switching functions (Su, S11 , Sw) when 

its value is one -1- the switch is set to positive voltage and when it is set to zero -0- it is a 
negative voltage. 

Each switching state generates a voltage space phasor, six of them are active voltage 

space phasors -A V- ( v" v2 , v3 , v4 , i\, v6 ) and the other two are zero voltage space phasors 
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-ZV- named (v0 , v7 ). Each inverter vector voltage can be described by eqn (72); in Table 

l O the states of the inverter and the voltages in DQ reference frame are shown. 

Using Table l O the position of every voltage phasor in DQ frame can be 
determined, this way it can be detennined which phasors will increment the stator flux and 
electromagnetic torque. This information can be seen in Table 11, here an arrow up meaos 
an increment in flux or torque, an arrow down means a decrement and a horizontal line 
meaos a null effect. 

-

l\ 

L1 O----- -
L2 o---a-----t----1 

L3 o------

/' 

Yoc 
+ ·e 

Figure 9. Threc-phase power convcrter conncctcd to the stator ofthe lnduction Machi ne 
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Figure 1 O. VSI switching modes. 
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Table 10. Inverter states and voltage rclationship of V oc in DQ reference frame 

L VSI State Brancb A Voltage D 
Yo o o 
V1 o 2/3 
V1 o 1/3 

o 1 ' o 1/3 o 
V-1 o -2/3 -1/JJ 

o 1 -1/3 -1/JJ 
o 1 J/3 
1 1 o e 

Table 11. lnverter states and voltage relationship of V 0c in DQ reference frame 

2.3. PID: Proportional Integral Derivative Control 

Despite of decades of research on developing new control methods, PID controllers 
are the most widely used on industry, due to its simplicity and popularity. Even though, 
PID controllers do not have a satisfactory response on nonlinear systems, such as the 
induction machine. 

PID is implemented in many different forms, as a standalone controller, as part of 
bigger control scheme or a hierarchical distributed process control system. The PID control 
scheme can be approached in many different ways, it can be viewed as a device which 
operates with very few rules, and it can also be analytically approached [2]. 

2.3.1.1. Feedback Principie 

The feedback idea is very simple and yet very powerful, its application has resulted 
in major advances in control, and communications, among other branches of engineering. 
Assume for a moment that a process variable increases every time a manipulated variable is 
decreased. This type of feedback is known as negative feedback, shown in Figure 11, 
because the manipulated variable moves in opposite direction of the process variable. 

The reason feedback systems are interesting is because feedback makes the process 
variable close to the set point, regardless of disturbances and variations of the process 
characteristics. 

Figure 11. Process with feedback controller 
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2.3.1.2. On-Off Control 

Feedback can be arranged in many different ways. The simplest way to describe a 
feedback is using on-off control, a law that implies the maximum corrective action is 
always used. As shown in eqn (73) and previously shown in Figure 11, where e is the 
control error described in eqn (74). 

{

Uma, 
U= 

umin 

if e>O 

if e< O 

e = Y,c, roi111 - Y 

cqn (73) 

cqn (74) 

This type of feedback is called on-off control, is simple and there are no parameters 
to choose. It will often succeed in keeping the process variable closer to the set point, but it 
will oscillate. 

2.3.2. PID Control Theory 

A PlD controller is the result of the sum of three terrns, proportional, integral and 
dcrivative errors, as shown in eqn (75). Where: e is the control error described previously in 
eqn (74), K is the proportional gain, 7; is the integral time and r;, is the derivative time. 

u(t)=K[e(t)+_!_ Je(r)dr+T;, de(t)] 
'f¡ o dt 

cqn (75) 

2.3.2.1. ProportionalAction 

The oscillation effect caused by on-off control is caused because the system over 
reacts and because any kind of change, even the most subtle, the manipulated variable will 
change over the entire range. This can be avoided using proportional control, because the 
response of the controller is proportional to the control error. The response is linear and 
saturated with positive and negative limits. 

The saturation limits must be set, and the linear range can be specified by giving the 
slope of the characteristic or giving the range where the response is linear. The range is 
nonnally centered in the set point, a proportional controller acts like an on-off controller for 
large errors, and it produces static or steady state error, not taking the process variable to 
the set point [2]. 

2.3.2.2. Integral Action 

One of the main drawbacks of proportional control is that it generates a steady state 
error, meaning that the controlled variable will never reach the set point. This can be 
corrected with an integral action, which main function is to make sure that the process 
output agrees with the set point in steady state. The integral action works as follows: with a 
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small positive error the control signal will increase and with a negative error the control 
signal will decrease [2]. 

2.3.2.3. Derivative Action 

The derivative action will improve the stability of the loop. Because of the process 
dynamics, it will take sorne time before a change in the control variable be noticeable to the 
process, thus the control will be late in correcting the error [2]. The action of the derivative 
action may be interpreted as if the control is made proportional to the predicted process 
output, made by extrapolating the error by the tangent to the error curve as in Figure 12. 

e(t) 

-·-····· -·· .. ··------------------ ... 
Figure 12. Intcrprctation ofthe derivativc action as a predictivc control. 

2.3.2.4. Improved PID Control 

There are severa] variations of the PID control law described in eqn (75) which will 
substantially increase the performance of the controller. The non-interactive forrn of the 
PID algorithm which is a more general expression of the PID [2], is shown in Figure 13 and 
transfer function in eqn (76), which is used in this thesis. The reason to call it non
interactive [2] is because the integral time does not influence the derivative part and vice 
versa. 

G(s)=K[t+-
1 +sTd] 

sI; 

l ti:(::::~;~ ~ u 

L1 Derivative ~~( 
Figure 13. Non-interacting [2] form ofthe PID control. 
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3. Intelligent Control 

Intelligent Control -IC- techniques emulate characteristics of biological systems, 
offcring the possibilities to create control techniques with novel capabilities. Today's 
competitive environment is an excellent place for these control techniques because they can 
provide competitive edge capabilities sought by every company out there. Even though 
many applications have been described in the literature, only a minority becomes real 
products [ l O], (39]. 

lntelligent Control is the synergy of Artificial lntelligence -Al- and Control. Al can 
be defined as the ability of a computer to perform tasks usually related to intelligent beings. 
Control is the branch of Mathematics and Engineering which deals with design, 
identification and analysis of systems headed for controlling them to make them behave in 
a desired way (54]. 

Artificial intelligence has made significant advances on intelligence regarding 
expertise, planning, interaction, vision, coordina/ion, regulation, and reaction. However 
there is still a gap in the common sense region. Creating systems able to make sensible 
decisions about unfamiliar everyday situations in non-specialized domains is still a very 
difficult mission (30]. 

After the massive earthquake in Japan on March 11 of 2011 severa! reactors on the 
Fukushima nuclear energy plant were damaged. We would have expected robots could be 
sent to repair the damaged reactors (26]. However severa! problems have to be considered 
and tackled by researchers befare robots can act in a situation like this. The damaged 
reactor represents very challenging environments for the robots having collapsed structures 
and rough terrain. 

Obstacles as simples for humans as closed doors (27] can represent majar problems 
to robots. Despite Japan being the nation with the worlds most advanced humanoid robots, 
they are still research projects; they can walk, dance, climb stairs but not perform complex 
tasks. And even though two PackBots from iRobot were sent to inspect the reactors (26], 
[32] they are tele-controlled robots. So, there is still a gap in Al and intelligent control of 
real world applications that must be filled, because we have underestimated the complexity 
of human in tell igence. 

lntelligcnt control is designed to create control methods providing a degree of 
intelligence and autonomy in their control decisions giving them the ability to refine their 
performance. This makes intelligent control the fastest growing area in control systems on 
the last years. The main tools of intelligent control used in this thesis are presented in the 
following sections of this chapter. 
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3. l. Fuzzy Logic 

Uncertainty and ambiguity makes the world a complex place, as human's, evolution 
gave us intellect and the capacity of thinking making able to address complex, ambiguous 
and uncertain problems. All of this is possible because we can use reason with incomplete 
and vague information. 

Professor Lofti A. Zadeh introduced the seminal paper on fuzzy set theory in 1965 
[72], with constant novel developments on the field all around the world. Japan has been 
the leader on implemented applications of the fuzzy theory. On western cultures the 
interpretation given to fuzzy theory is not good given that we are married to the crisp idea 
of yes orno, and that the concept of fuzziness gets a negative connotation. 

3.1.1. Fuzzy Logic Concepts 

As said by professor Zadeh in his article on fuzzy logic: To begin with, fuzzy logic is 
not fuzzy. Fuzzy logic is precise. Basically, fuzzy logic is a precise logic of imprecision [sic] 
[73]. A more precise and formal description would be that fuzzy logic is a reasoning system 
in which objects are classes with unsharp limits. Thus, unsharpness of class boundaries 
may be equated tofitzziness. 

Fuzzy logic may be seen as a generalization of the classical, bivalent logic; where 
no degrees of truth are permissible. In multivalued logic, degrees of truth are permitted but 
fuzzy logic goes even further. In fuzzy logic everything is allowed to be a matter of degree 
or, to have a membership degree. Moreover, degrees are allowed to be fuzzy. 

The basic idea in fuzzy logic is the concept of a fuzzy set. A fuzzy set, F, in a 
universe U, U = {u} is a class of elements belonging to U with unsharp limits; which limits 
are precised through association with a membership function. The membership function 
relates with each element u, of U, is the degree of membership in F. Degrees of 
membership are numbers in the unit interval and more generally, elements of a lattice [73]. 

Two basic concepts of fuzzy logic are graduation and granulation. Graduated 
objects are classes with unsharp limits, known as fuzzy sets. Granulated partitions a set 
(fuzzy or crisp) converted into granules, which is typically a fuzzy set. Granulation can be 
seen as a generalization of quantization. As an example granulation applied to the 
temperature variable results in fuzzy sets labeled cold, warm and hot. 

Granulation brings about the notion of a linguistic variable: a variable whose values 
are fuzzy sets with linguistic labels. Most of the fuzzy logic applications use the notion of a 
linguistic variable. We then proceed by asking a question q in the form: What is the value 
of variable Q? The answer to this question is obtained from an information set /; a 
collection of propositions mostly from world knowledge. 

To obtain the answer to q questions two steps are involved. In the first step the 
propositions in / are to be defined. In the second step these propositions are computed, 
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giving us an answer to q. Here fuzzy logic is used to define and compute propositions p; 
being it represented as a generalized constraint. 

A generalized constraint is an expression of the form: X is R where X is the 
constrained variable, R is the constraining relation and r is an identical variable whose 
values define the way in which R constrains X. In natural language constraints are mostly 
possihilistic, but probabilistic and veristic can also be found [73]. 

On the second step the computation is carried out as follows: assuming that 1 is a 
collection of generalized constraints X;,i = 1, ... ,n. The answer to q, Ans(q/1) is expressed as 
a function of X;: 

Ans( q/ I) = J(X1, •• • ,X
11

) 

The values of X; are not known but we know R;, the constraints in the values of X;. 
So we can apply the Extension Principie of fuzzy logic to complete the constrained value of 
Ans(q/1), the answer that we are looking for. Fuzziness is prevalent in the reality; although 
in science models are widely based in classical logic. An extensively unrecognized fact is 
that classical logic being intolerant to imprecision is not the right logic to deal with the 
fuzziness of reality; what it is best suited for this purpose is fuzzy logic [73]. 

3.1.2. Fuzzy Logic Controllers 

A fuzzy logic systems is one type of approximate reasoning system, it can be 
considered a type of intelligent non-linear approximator. A non-linear function can be 
estimated by using a finite set of fuzzy rules. A fuzzy function estimation with a finite 
number of rules can approximate any continuous function on a close doma in with any grade 
of precision. 

Rules define each bounded region; the fuzzy approximator covers the curve with 
rule regions and adds average regions that overlap. The number of required rules grows 
exponentially with the number of inputs and the degree of precision required or desired. 
The most general form of the rule is the following: 

JF antecedents THEN consequences. 

With this in mind, it will be easier to explain a fuzzy logic approximator or 
controller. At least three main stages must be performed in fuzzy logic in order to obtain a 
result. On the first stage the variables have an uncertainty metalinguistic level. Thus, the 
universe of discourse of each variable is classified in fuzzy sets related to a label for 
example: cold, warm, hot. 

The nonnal, crisp variables go through the process of fitzz(fication (Figure 14) 
which converts the crisp values to fuzzy values with a membership degree in the [O, 1 J 
range. The purpose is to determine in which degree the crisp value fits in a fuzzy set, 
characterized by membership functions. 
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In the second stage, linguistic rules used to infer are proposed ( nonnally proposed 
by an expert). These will set a structure to make the system behave in an adequate manner 
according to the reference model. The set of inference rules defines a consequence by 
assigning a membership degree to a fuzzy set characterizing the outputs. There are many 
possibilities on a fuzzy inference system that can be used with different operators, sorne of 
the most widely used are described in Table 12. 

Table 12. 

Name 

AND 

Fuzzy lnference Operators 

Description 
T-norm operator for intersections, minimum, algebraic product. lt is 
used to obtain the firing strengths of an individual rule with antecedents 
joined by AND. ---T-cononn operator for unions, maximum, algel5raic sum. lt is used to . 

OR 

lmplication 

,Aggregate 

obtain the firing strengths of an individual- rule with antecedents joined 
b OR. __ _ 

A T-norm operator for minimums, algebraic products, bounded products, 
among many others. lt is used to obtain qualified consequent 
membershi functions based on given firing strengths 
Usually a T-cónorm operator for maxirnums, algebraic products, 
bounded sums, among many more. · Used . for aggregating qualified 
c~nsequents membership functions into an overall output of the M.F. 

The third and final stage is a process to detennine the optimum output values, it 
begins once the consequences are obtained and is known as defuzzifiction. This process 
converts fuzzy membership values, which come from the consequences of the inference 
rule, to crisp values again. To do so, previously established membership functions for each 
one of the outputs are used to obtain a measurable value. 
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Figure 14. Fuzzification Process of a0 
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Figure 15. Fuzzy Logic Controller 
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Even though these are the three main parts of fuzzy systems, not ali the existing 
versions of fuzzy system make use of them, the principal fonn of fuzzy systems are 
Mamdami-, Sugeno- and Tsukamoto-type. Both Sugeno and Tsukamoto avoid the use of 
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defuzzifiers and the Mamdami can be considered special cases of both of them, they will be 
further explained in the following sections. 

An advantage of fuzzy systems is that they does not require of a model of the plant 
or real time identification of parameters. lt will essentially apply linguistic control to 
automatic control. A list with the following applications has motivated the development of 
fuzzy logic in control systcms [55] are shown in Table 13. 

Table 13. Applications that havc motivatcd the dcvelopment of Fuzzy logic in control systems [55] 

~---·-"··-- ·· .. ,Autó.noinou~ Simplifi~d "Robust 
Adaptable Understandablc 

No model'planrrequired . Implementable .. 

3.1.2.1. Mamdami Fuzzy Controller 

The Mamdani is one type of fuzzy controller proposed in 1974 by E. H. Mamdani 
[ 41] to demonstrate that fuzzy if/then rules could regulate the model of a steam engine. This 
controller has the same diagram of Figure 15 and has three main parts: fuzzification, rule 
evaluation and defuzzification. lt works as the previously described controller. 

Severa! defuzzification techniques exist, in this thesis we use Center of Sums 
Method, for Mamdami controllers. In this method the output from each contributing rule is 
taken, and then we add ali of them. lt can be described by equation eqn (77) and graphically 
described in Figure 16. 

cqn (77) 

At the end the fuzzy controller will deliver crisp values, consequences of the 
linguistic rules previously created. With that the system will understand orders (inputs) and 
perform pertinent actions ( outputs ); ali of these process is illustrated in Figure 15. 

a b Clo c d 

Figure 16. Membcrship Function Dcfuzzification by Center ofSums. 
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3.1.2.2. Takagi-Sugeno Fuzzy Controller 

The Takagi-Sugeno is another kind of fuzzy controller [63) with no separate 
defuzzification block. In this controller the rule take the form that the consequence is a 
function of the input variables: 

IF x is A and y is B THEN z =f(r:, J). 

Where: x and y are input variables, A and B fuzzy sets,}r'r:, y) is a function in the consequent 
and z is the crisp output. To defuzzify, a crisp function (usually a polynomial) is weighted 
by the values of the fired rules. The product of the sum of the mínimum of the antecedents 
of every rule fired is divided by the value of the polynomial evaluated in that fired rule, ali 
this divided by the sum of the minimum of the antecedents of every rule fired -eqn (78). 

r 

¿[min Ji( a0 ) • Y( a0 )] 

u'=~i=~I ______ _ 
,. eqn (78) 

¿minp(a0 ) 

i=I 

Where: Y ( a0 ) can have any form, but it usually is a polynomial of n order that depends on 

the crisp inputs: Y(a0 , ••• ,an)=p0 +p1 ·a1 + ... +pn·a
11

• These polynomials can be 

calculated using regressions to adjust them to a desired form or function. 

When the function/ is constant (zero order shown in Figure 17) the special Sugeno 
system is obtained which can be seen as a special Mamdani type with singleton 
consequences. lt can be also obtained a special case of the Tsukamoto controller, where the 
consequent of each rule is specified by a membership function of a step crossing at a 
constant. 

Crisp 
Values 
Inputs, 
Orders 

3.1.2.3. 

[ lf-Then 
__ S_eJ~f Rules ~--~--

Fuzzification Defuzzification 

1X,t\ Inference :tu1. ~ 
Engine 

Membership Fuzzy Fuzzy 

Functions Values Values Singletons 

Figure 17. Takagi-Sugeno zero order fuzzy system. 

Tsukamoto Fuzzy Controller 
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This controller is similar in the the two first blocks of the other fuzzy controllers. 
However, the consequent of each rule is represented by a monotonic fuzzy membership 
function. This causes that the inferred output of each rule to be crisp. Similar to the case of 
the Sugeno controller the output is obtained as weighted average of individual rule outputs. 
A monotonic function is a function that only increases or never decreases and vice versa, 
which meaos that it always preserves its order. 
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Chapter 3 Intelligent Control 

3.2. Artificial Neural Networks 

Artificial Neural Networks -ANNs- are universal function approximators, capable 
of narrowly approximate complex functions and systems, including non-linear systems. 
Our brain is like a machine for information processing. AII the signals obtained from the 
senses running through the nervous system is the processed information. 

It is estimated that the brain consists of around 100 to 500 billion neurons [54]. 
These neurons are arranged in networks, depending on the objective, neurons can be 
hicrarchically organized or layered. Nervous cells or neurons are organized as computer 
networks; they communicate through a region called synapse. Neurons are mainly 
composcd by the axon and dendrites (Figure 18). 

Figure 18. Schcmatic of a Ncuron 

For simplified purposes, the way a neuron work can be seen where none or many 
electrical impulses are received through dendrites coming from other neuron. These 
electrical impulses are added and a resultant potential is obtained. Certain level must be 
obtained so the axon of this neuron generales an electrical impulse on its axon, otherwise a 
potential is not generated. 

In ANNs the artificial neurons are connected via weights, which give positive or 
negative value to the incoming signals. After that, the signals are summed and processed by 
evaluating the result in a function called activation fimction. The result can be then 
transmitted to other neurons; the process can be seen in Figure 19. 

Activation functions produce the output of the neuron taking into account the 
summed inputs. There are many activation functions; however the most used are Step, 
Linear, Sigmoidal and Hyperbolic Tangent, as shown in Figure 20. 

x, 

t . " 

Figure 19. Schematic of an Artificial Neuron 
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tr 11 / Ir ~ 
º ---· ºV ____ , ºLl _____ ~ 

f(s) f(s) f(s) 
a) Linear b)Step c)Hypcrbolic Tangen! and Sigmoidal 

Figure 20. Activation Functions of Artificial Ncurons approximated forms 

Neurons connect among them and create neural networks. The main concept behind 
ANNs is to simulate the behavior of the human brain in order to define an artificial 
computation and solve problems. ANN may have an advantage in speed over the human 
brain, given that modern processors operate at very high rates; however these processors do 
not work in parallel whereas the brain does. Table 14 shows sorne of the most important 
properties of ANNs. 

Table 14. 

Artificial neural networks can generalize data, but to do this they must be trained 
first. Training is the process where ANNs find the weights of each neuron to represent any 
given function. There are severa! training processes, one of the most important is the 
Backpropagation algorithm used in feed forward networks; this process derives from the 
fact that error wants to be minimized. 

To train a network sorne data samples are needed, with these data during the 
training process, the ANN measures the error between the desired output and the actual real 
output. In the case of backpropagation, the error is retro-propagated to see what weights 
have to be changed so the difference is minimized and optimize the weights, so the network 
gets trained. 

3.2.1. Artificial Neural Networks Classifications 

Just as in biological neurons, ANNs be classified depending on their different 
structures (Figure 21 ). Depending on the application, and they can also be classified by the 
learning procedure (Figure 22), as shown in Table 15. 
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Table 15. Classification of Artificial Neural Nctworks [54]. 
Name __ .,.____ nescri . tioQ 

By Structure shown in 

· Feed-Forward Networks 

Feedback Nctworks 

By Learning f'ro<;ess 

Supervised Nctworks 

Thern models use tlie mput signals that flow in the_ direction of the 
ouqmt signals. The outputs are_ · coósequences· ,of input signals and 
weights invoh;~d. , · • 1 , ·~ 
Similar to the fced forward nctworks with sorne ncurons having loop 
signals so the output signals are used in thc computation proccss. Thc 
outputs are the rcsult of a non-transient response 

~ e/,...•, -

. - . 
When the data that wants to be traincd is known thcn we can train a 
network by imposing inputs and outputs and the weights can be found . 

. · ' When tlie information is unknown, this model is used to find pattems 
.., 

Compctitive and 
Self-Organizing Networks 

a) Fced-Forward Network 

. in the in ut SP.ace in order to~ train it. . 
No infonnation is needcd to train thesc networks also; however 
neurons fight for a dedicatcd response by specific inputs. 

b)Fcedback Network 
Figure 21. Classification of Artificial Neural Networks by Structure. 

o 

a) Supervised Network 

b) Unsupcrvised Network 

e) Competitive and SOM Networks. 
Figure 22. Classification of Artificial Neural Nctworks by Lcarning Procedure. 
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3.2.1.1. Trigonometric Artificial Neural Networks: T-ANN 

Considering that conventional ANNs take time during the training process, they 
cannot be used in dynamic and real-time applications because of this. Sometimes the 
training algorithm will not converge and the ANN will not be able to assimilate the desired 
information. Taking this into account, trigonometric series can be used in ANNs. 

Trigonometric Fourier series consist in the sum of functions, multiplied by a 
coefficient added with a constant; the topology of a network based on these series can be 
seen in Figure 23. The advantage of using a trigonometric series in ANN's is that the 
weights of the network can be calculated using analytical methods. The error of the solution 
decreases as the number of neurons increases, which corresponds to the addition of 
harmonics in the series [54]. 

A detailed explanation of this topology can be found in [54]. lt has been proven by 
Joseph Fourier in his series [ 18] that they can model any periodic signal. For any given 
function f(x) it is said to be periodic iff(x) = f(x+ T) where T is the fundamental period of 
the signal. Knowing this, the function can be modeled using the Fourier series shown in 
equations eqn (79), eqn (80), eqn (81) and eqn (82). 

a X r. 

f (x )- -º--+¿(a,, cos( nx )+b,, sin ( nx )) = ¿Ak (x) 
2 11=1 n;;;;.J 

Qo = _!_ f T f ( X }1x 
rJo 
} T 

a,,= Tfo f(x)cos(nwx)ir 

l fT 
b,, = T Jo f ( x) sin ( nwx }1x 

Figure 23. Trigonometric Artificial Ncural Nctwork. 

50 

eqn (79) 

eqn (80) 

eqn (81) 

eqn (82) 



Chapter 3 Intelligent Control 

3.3. Neuro-Fuzzy Systems 

With the use of fuzzy systems the vague fonn of human reasoning can be 
represented by mathematical systems. Fuzzy logic gives us the possibility to understand the 
infonnation contained in the system. Most of the knowledge of fuzzy systems comes from 
human experts; which sometimes can be disadvantageous. 

Artificial neural networks learn from experience, can generalize and represent 
almost any kind of system. However, the information contained in the networks is difficult 
to understand. By combining ANNs and Fuzzy systems Neuro-Fuzzy systems are breed, 
combining the strengths of both systems the weaknesses of each individual system are 
complemcnted by the other's strengths. 

Neuro-Fuzzy systems can acquire knowledge automatically using the strengths of 
ANNs, and this infonnation is easy to understand by humans. The infonnation can be 
presented to the system, trained and no need of a human expert is required. 

Other uses of Neuro-Fuzzy systems is clustering, usually employed to initialize 
unknown parameters such as the number of membership functions or rules. They are also 
used to update the parameters, creating dynamic Neuro-Fuzzy systems. The main features 
and types of Neuro-Fuzzy systems are highlighted in Table I 6. 

Table 16. Main features and types ofNeuro-Fuzzy systems 

. Most useful characteristics ot;.thé two systems are,combiried -
The combination should perform in a way that thc resulting system should be more efficicnt 

. Neuralized fuzzy systems are fuzzy systems mapped to a neural network · 
Fuzzificd neural systcms are those where fuzzy concepts are introduced into ANNs 

3.3.1. Neuro-Fuzzy Controller with T-ANN's and FCM 

This Neuro-Fuzzy controller originally proposed in [50] is a controller based on 
Takagi-Sugeno inference method [63] but instead of using a polynomial function for the 
defuzzification process, T-ANN's are used (presented in 3.2.1.1 ). The schematic diagram of 
the controller is shown in Figure 24. This controller has the ability to shape the fonn of the 
membership functions depending on the data used, thus it is said that it can leam online. 

Cri.sp Fuzzification 
Values ~ 

lnp-uts:-_t .,.__ Membership 
Orders Functions 
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tuned with 
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G ------J lf- Then 
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--¡ Cri!,p 
Defuzzification Values 

based on e=-___ 1 
T k 

. S Outputs, 
a ag1- ugeno .,.___ A . 

. ctJons mference ----- -

method 
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---------------- -----------------¡l~U_se_I_-_A_NN __ '_s_to_l_~~-t_he_!~~ of_m_e_m_b_e_rsh_ip fu~cti~n_s J 
Figure 24. Ncuro-Fuzzy Controllcr with T-ANN's and FCM [50]. 
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3.3.1.1. Fuzzy Cluster Meaos 

Fuzzy Cluster Means -FCM- is a clustering method which splits a set of elements in 
smaller sets or clusters. While traditional clustering methods assume that each element can 
belong to only one class, in practice this is not true as clusters nonnally overlap and sorne 
elements can belong to severa] clusters. 

Clustering methods split a set of N elements X={x: 1, ... ,x:11) into e groups or clusters 
c=(¡./, ... ,¡l). Fuzzy set theory provides a natural way to describe clustering methods in a 
more real fonn using FCM. The FCM algorithm is described as follows: Fuzzy partition 
matrices M, for e classes and N data points are defined by three conditions 

M = {u E V cNII,2,3}: 

l. V 1 sis e µ;k E [ O, 1], 1 s k s N 
(" 

2. ¿µ;k = 1 V Is k s N 

e 

3. V 1 s i s e O < ¿ Ak < N 
K~I 

Textually these conditions means: the first is that the membership value for any 
element must be in the range of fuzzy set theory [O, 1]. The second implies that the sum of 
the membership degree on any element on e cluster must be one, so no element has more or 
less membership degree. Finally the third states that any cluster must be empty. 

The FCM algorithm {Table 17) will maximize the distance between the centers of 
the clusters and minimize the distances of the elements of a same cluster. The FCM criteria 
function is shown in eqn (83). d¡k is the inner product nonn (distance) defined by eqn (84). 

A is a positive definite matrix and m the weighted exponent: m E [ 1, oo). 

By assigning values to mande and defining the working sets, (U, V) can be a global 
mínimum of Jm(U, V) if eqn (85) and eqn (86) are fulfilled [54]. Parameter m determines the 
fuzziness of the clusters, the larger m the fuzziness of the clusters. I f m = 1 the algorithm 
becomes the crisp k-means version, and m = oo the algorithm is as fuzzy as possible; but 
usually m = 2 [54]. 
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Table 17. FCM Algonthm [54] 

l. Fi~ X ªJ?.ª _m, set p = o ~nd initialize u~) ' 

eqn (86) 

2. Calculate fuzzy centers for each cluster v(P) using eqn (86) 

· 3.: V pd~te fu~y partitioñ !!latri~ u(P) usiQ_g ;qn (85) · 
4. If 11u(p) _u(fl-l)II <E then, j ~ j + 1 and retum to step 2. 

The FCM algorithm is usually applied to shape the input membership functions, 
because most of the time the form of the output functions is known. After the algorithm is 
applied the shapes are trained to T-ANN's. Finally the defuzzification process is calculated 
with eqn (87). Here: r is the number of rules in the fuzzy system, µ;; 11µ1115 is the membership 
value of each rule and TANN,1efuzzi/irn1hm is the evaluation of the T-ANN's used for the 
defuzzification process. 

r 

I n1in f..l;;npulsTANNci,:(11::i/ication 

Output = _i=-
1
---,. -------

¿ min µiinputs 

cqn (87) 

3.4. Genetic Algorithms as Optimization Techniques 

Since the l 960's there has been an increasing interest to imitate life to develop 
algorithms for hard optimization problems. A now common term with related research 
topics is called evolutionary computation. Genetic Algorithms -GA 's- as powerful and 
broadly stochastic search and optimization techniques are perhaps the most widely known 
type of evolutionary computation methods today [21]. 

Genetic algorithms share an important characteristic with other opt1m1zation 
techniques. They are primarily global search techniques; they identify the optimum by 
searching the design space for the solution. A significant drawback of these techniques is 
that they require empirical tuning, based on the class of problems béing resolved. There is 
also no easy way to determine technique/problem-sensitive parameters to implement an 
automatic optimization technique [69]. 

There is a multitude of optimization techniques; among them calculus-based, 
enumerative and random are the most widely used. Calculus-based and enumerative can 
arrive to a reasonable good solution in small search spaces. Y et when confronted to search 
spaces of great size and wide variation their efficiency decrements drastically. They are 
insufficiently robust for complex problems involving huge search spaces [34]. GA 's are 
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exceptionally useful for handling ill behaved, discontinuous and non-differentiable 
problems [69]. 

One of the advantages of GA 's is that it uses stochastic operators instead of 
deterministic rules to search for the solution. Moreover, a GA considers multiple points in 
the search space simultaneously reducing the chance of converging to local minima, in 
which other algorithms may end up. Another attractive feature of GA is that it searches for 
many optimum points in parallel, since the evaluation of each point requires and 
independent computation [68]. 

Fuzzy systems and artificial neural networks are powerful intelligent control 
techniques that can be used to control different processes; however the response of these 
systems is not guaranteed to be optimum. Perhaps the problem is so complex that finding a 
solution will require a huge amount of time and computation, thus a quasi-optimal solution 
in a short period of time is a more real and reasonable approach. 

Here is where optimization techniques can be useful, GA's assimilate the way in 
which evolution works and can be used to perform optimization on other intelligent control 
techniques such as fuzzy and neuro-fuzzy systems. In the following sections this kind of 
optimization techniques will be presented. 

3.4.1. Genetic Algorithms Description 

Genetic Algorithms [24] are simple yet powerful general purpose stochastic 
optimization techniques. They are inspired by evolution of a population subject to 
reproduction, crossover and mutation in a selective environment where the fittest survive. 
GA combine the artificial survival of the fittest with genetic operators assimilated from 
nature, suitable to optimize ( can be minimize or maximize depending on the application 
and problem) a variety of problems. 

In mathematical terms, the goal of a GA is to optimize an objective function. They 
use the concept of Darwin's law of evolution, natural selection and genetics. One of the 
main advantage is that they are derivative free, meaning that they do not need functional 
derivative information to search for a set of parameters that will optimize a function. 

As an alternative, they rely on repeated evaluation of the objective function. In 
particular the optimum solution is obtained by investigation new solutions with three 
genetic operations: selection, crossover and mt.Ítation in a selective environment where the 
fittest survive. This technique is slower than derivative-based methods. However, the 
freedom of functional derivatives means that the objective function can be as complex as 
required [68]. 

The information processed by a GA is a population, the most common 
representation are binary fixed size strings (although many more representations exist [24]). 
Each individual in the population is a chromosome, representing multiple points in the 
search space. Each bit, part of an individual is an a/le/e or gene decoded by function to 
obtain the objective function value of the individual in the search space. 
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These functions are optimized by the GA and subsequently assigned a fitness value, 
proportional to its neamess to the desired solution. The main advantages and disadvantages 
of GAs are shown in Table 18. 

Table 18. Gcnctic Algon thms advantages and disadvantages 

Advantages 
Dcrivativc free tcchniquc 
Optimize continuous and discrete problems 
Considcr many points in search space simultaneously 
Parallel search procedure . 

Disadvantages 
Probabilistic 
Ex_Qef!sive computational resources. 
Pronc to premature convergencc 
Difficult to encode problems 

Use Stochastic operators in search procedurc 
Do not depend on analytical kiiowledge 

Slow, offlinc ºRtimization 
.__.. ......... ) f ighly depend~nt of the correct 

Robust, intuitivc operatio~ -·--

3.4.2. Genetic Algorithms Steps 

design· of the fitness function for 
optimum perfonnance 

Severa! fonns of Genetic Algorithms exists, however it can be said that methods 
considered as GAs have at least the following elements: population, selection, crossover 
and mutation. A GA can be seen on the diagram in Figure 25, is nonnally divided in the 
following steps or stages [54]: 

1. Jnitialization: Where the necessary elements such as constants and cycles are initialized 
and created. 

2. Selection: Selects individuals in the population by means of a fitness function, the fittest 
the chromosome the more times it will be selected. 

3. Crossover: lndividuals are selected, and mated to obtain offspring. 
4. Mutation: The offspring is then mutated, changing their genes. 

¡- -- . - ---··· - ·--· J 
lnitialization 

1 .. -...... ----- -

[~~let~}f ~ssci_v_eQ-{ ~~~~~;;-r--

no 

Figure 25. Genetic Algorithm diagram. 

3.4.2.1. lnitialization 

Individuals in the populations are randomly or heuristically generated. A population 
is a collection of randomly generated individual binary strings. The most used and general 
elements are described in Table 19. 
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Table 19. Genetic Algonthms Initialization parameters 

Parameter Descri tion 
Number of generations of the GA 

n Size of the arra y of bits re resentmg each individual 
PC Probabiliry of Crossing two individuals 
PM Probability of mutating an individual 

3.4.2.2. Selection and Fitness Function 

Prior to crossover and mutation operations, a careful selection of the individuals 
must be performed. There are severa) selection methods like rank based, toumaments, and 
probabilistic procedures. Rank based selection mechanisms rank the order of the fitness of 
the individuals. These types of selection methods are better for situations where it is easier 
to assign subjective seores rather than specifying an exact objective function. 

Toumament selection implies that two or more individuals compete for selection, it 
is rank based. The toumament may be done with or without reinsertion of competing 
individuals in the population. Roulette-wheel is also very popular, where the fittest 
individuals have more probability to be selected. 

In order to perform selection it is necessary to measure the perfonnance of the 
individuals. By selection we aim to maximize the performance of the population, here is 
where the Fitness Function is used. The search must be concentrated on the regions of the 
search space where the best individuals are located and found. For selection purposes a 
performance value is associated to every individual, representing thefitness of the function. 

A fitness function is usually used to measure the explicit performance of each 
individual, which take the form of bit strings being different points in the search space. The 
population is processed by the GA and is mainly driven by the response obtained to the 
fitness function. This function can be mathematical, a problem, or more generally, a certain 
task where the population is evaluated [54]. 

3.4.2.3. Crossover 

The crossover operation mates individuals by combining chromosomes segments. 
There are many variants of the crossover operation; one of the simplest is the one point 
crossover operation widely used in the binary encoded frameworks. As depicted in Figure 
26, two parents are selected then a crossing point is randomly selected. 

After that, the parents are cut at the selected point and their tails are exchanged to 
generate the offspring. The crossover operation depends on a crossing probability which is 
compared to a random number. The role of crossover operation is to ensure the exploration 
of the search space by generating new individuals and act as impetus to the search [ 54]. 

3.4.2.4. Mutation 

Classically, a mutation is denoted by an altered segment of DNA. Spontaneous 
mutation is normally not adaptive, and normally <loes not provide a selective advantage. 
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Changes may destroy the genome and lead to lethality. This kind of mutation is called 
silent or natural. However, neutral mutation may play a good role in evolution. 

Mutation is considered the second most important operator on genetic algorithms of 
binary type. The effect of this operator is to change a single bit (gene) in a chromosome 
(individual). lf it not were for this operator other individuals could not be generated through 
othcr mechanisms. The operation, a random bit is changed on an individual (as shown in 
Figure 27) it is executed if a random number is lower than the mutation probability. 

Crossing Point ---,., 

@IillJfil]j_Iill] 
Parents --~.. Offspring 

[IlfJQ]_-QIQIQ_UJ]J ITII[oJ~Q]-ol~Uill 
Figure 26. One point Crossing operation for Genetic Algorithms. 

Mutation Point "---

@D191IT(tCJ_Qll] -- ~ [6ITI0:PILIIT9JJJ 
Original Mutated 

Figure 27. Mutation opcration for Genetic Algorithrns. 

This completes the basic stages of a Genetic Algorithm, as shown in Figure 25, the 
execution is stopped until the completion of a condition is fulfilled, such as the number of 
generations, or because it is stopped manually. 

3.5. Genetic Programming as Optimization Technique 

Genetic Programing -GP- deals with the problem of autonomous programing, 
evolving the structure of computer programs; this technique provides a way for searching 
the best or jittest program to solve a problem. GP among many other techniques like GA 
are grouped under the tenn evolutionary computation, because they share the base of 
simulating evolution [54]. 

GP is a technique for auto-generating programs; it works very similarly to genetic 
algorithms by genetically breeding a population of programs and using Darwin's natural 
selection and biological inspired operators. The computer programs are represented as 
trees; their branches are then evolved to create the best solution. 

Jhon Koza proposed a variation of genetic algorithms in 1992 [20] that automated 
the process generation of genetic programming. While in conventional GA's the length of 
the chromosome is fixed and can restrict the search space, in GP the tree representation 
eliminates the problem of fixed size chromosomes making the search in a more organized 
fom1. More complex optimizations can be done with GP than with GA due to their more 
organized nature [5]. 
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3.5.1. Genetic Programing Algorithm 

lt can be seen that Genetic Programming is very similar to Genetic Algorithms 
because it contains biologically inspired operators. However, the differences cover sorne of 
the weaknesses of original GA 's as it will be further described. The stages of the algorithm 
are [35]: 

1. Generate an initial population of random functions (these are the computer programs) 
that will supposedly solve the problem. 

2. Execute each program in the population and assign a fitness value to it. 
3. Crea te new population programs which can be: 

i. Copy the best existing program. 
ii. Create new programs using crossover functions. 

iii. Create new programs by mutation. 
4. The best computer program, or the best solution found is designated as the result of the 

algorithm [54]. 

To understand the way genetic programming algorithm is executed, a very basic 
example is presented. We we want to create a function that will match the output of _/ in 
the [l, 2] range. The program can contain the following operators: {+,-,*,%} that is, add, 
subtract, multiply and divide operations. 

lf we apply genetic programming to solve the example previously described, we 
will have to create an initial population, it can be seen in Figure 28. Then the fitness of each 
individual must be evaluated, which is carried out as previously explained in section 
3.4.2.2. Selection is made by the toumament method because it selects the best individuals. 
Later, a new population must be generated using crossover and mutation operators. 

3.5.1.1. 

Q) /"'1 ~ 

G) x) 4 

2*x-2 
x+x*I 

Figure 28. lnitial population ofrandom individuals in a GP problem at generation zero. 

Genetic Programming Crossover 

The way crossover operator work depend on the representation of the individuals, 
since we are representing them by trees, we must use a crossover operator that will 
maintain coherence in their forms. It is also compared to a crossover probability, which is 
most of the time big to insure new individuals. 

Individuals can grow or diminish their form by interchanging bigger or smaller 
branches, eliminating the problem of fixed sized chromosomes. A simple crossover 
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operation is that two individuals (trees) interchange their branches, tn a way such that 
syntactic correctness is maintained [54], as can be seen in Figure 29. 

x+x*I 

Figure 29. GP crossovcr operation. 

Continuing with the example previously proposed, the resuh of a crossover 
operation of the initial population would be that of the Figure 29 where the branches of the 
individuals are interchanged. 

3.5.1.2. Genetic Programming Mutation 

There are severa! forms of mutation in genetic programming. lt is also compared to 
a mutation probability which is regularly very low otherwise it will cause chaos in the 
population. When the mutation operation is to be performed, one of the branches of the 
individual is mutated generating a new form in the branch and a new individual. This 
operation is illustrated in Figure 30, which shows a mutated individual of the example. 

(=-) (~ 
"-e-< [\ "-.. , 

(if- r9'J L~0-~h~r;> 
1
/t~~) 

\., _ _/ "~ ~ "-.. _j 2~-
1- 2 o 2 , ) · ~ 

- Mutation 1-- ( 2 ( X) 
Opcration x "·~ / '----

Figure 30. GP mutation operation. 

After the individuals are crossed and mutated, they have to be evaluated again to 
measure their fitness , The loop of crossover and mutation must continue until a certain 
condition is fulfilled, like a number of generations or because it is manually stopped, 
something similar to the genetic algorithm, 
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4. Intelligent Speed Control of IM Orives 

In this chapter the control system for the induction machine drives is described and 
implemented as shown in Figure 31, which shows a simplified DTC scheme for IM with 
closed loop speed controller. 

The closed speed loop is necessary for an optima! control of the motor speed. In the 
diagram, the speed controller is highlighted in a block with the broadest line. This speed 
control will regulate the electromagnetic torque reference of the DTC loop thus, indirectly 
regulating the speed. 

Yo 

Spccd --~-{~/\ S~~c:~rro~- Spced 
reíercncc 1v:J Control 

_- _ VSI -=~~0:;:) 
D1rcct ~ Inverter \ · · 

u - -Torque - - -- - J~ 
lf//:'' 1- ~-~-~l,.{8 ___ •-- - -

Control . !i!L -4 - --- - J 
- -~------ -<11--- ---[ Mo:-;~}-- -- .,.. _______ _ 

Figure 31 _ Simplified DTC for IM Drive with closed loop speed contrOller. 

Severa] controllers were developed and implemented (shown in Table 20) they are 
used in the speed control block shown in Figure 31. A conventional fuzzy Proportional 
Integral Derivative -PID- controller is the basis to be compared against the other intelligent 
control techniques all further explained in the following sections. 

Table 20. Control tcchniques used for speed control ofthe IM 

Fuzzy PID Controller 
Fuzzy PID Genetically Enhanced Controller ----""""~~ Neuro-Fuz~ PID Controller 
Adaptable Fuzzy PID Controller 

The implementation of the intelligent controllers was made in LabVIEW, with the 
aid ofthe Intelligent Control Toolkit for LabVIEW [51]. 

4.1. Conventional DTC for IM Orives 

The conventional direct torque control for induction machines (theory presented in 
section 2.2.2) was implemented in Simulink [61] and LabVIEW [37] both graphical 
simulation systems for non-linear systems, were differential equations can be written in the 
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form of blocks. The program of the motor model is based on the diagram shown in Figure 6 
and cquations 60 to 69 described in section 2.2.1. The program for the Motor model m 
Simulink is shown in Figure 32.a and in LabVIEW program is shown in Figure 32.b. 
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amp)i!~.•-
1: r~ t , 1 • . : 
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246.4438 --253.5562 

b) LabYIEW 

Figure 32. IM Motor Modcl simulation programs. 
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Figure 33. DTC Simulink Simulation. 

IPhil 

Tem_Ref 

Figure 34. LabYIEW DTC Simulation. 

1 Erre, 

The program of the DTC made in Simulink is shown in Figure 33 . Next the 
implementation of conventional DTC in LabVIEW was done; program is shown in Figure 
34. The tests and results of the simulations made with the programs presented in this 
section are presented in section 5.1. 
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4.2. Fuzzy PID Controller 

This controller (diagram shown in Figure 35) is based on the non-interactive 
improved PID version, as previously specified in section 2.3. The advantage of designing 
the controller this way results in a smaller controller, easily transferable to an embedded 
system. The control law is implemented with ú = ke+k e+k,e and the correction sent to 

I /J e 

the plant with eqn (88). 

u =ú+tiu eqn (88) 

Another reason to implement it this way is that a difference gives more inforrnation 
because they represent a reason of change. Digital systems saturate integrators and 
differences can be easily computed with subtractions. Each of the gains is based in a 
Mamdani fuzzy system, the diagram can be seen in Figure 36 and the theory is explained in 
section 3.1.2. 

Cri.lp 
Values 

¡1n~~~ge 

normal ization 
[-1. 1] 

Fuzzitication 

Membership 
Functions 

e· ~ ~ortional f J 
e-Jl_Integral ]--(+_)-...- u 

e ~[Derjvativ~J~ 
Figure 35. Fuzzy PID Controller 
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for desired 
output 

Figure 36. Fuzzy PID Controller componen! gains, P, 1, D. 

The inputs of the controller are norrnalized to the [-2,2] region. The fuzzy outputs of 
the controller are also in this range but scaled back to the desired range when defuzzified. 
Each of the fuzzy systems that represent a gain has three triangular membership functions 
for inputs and outputs. For each gain -proportional, integral and derivative- a system with 
three rules was created, generating a total of nine rules. The rules are shown in Table 21, 
the forrn of the rule is: 

IF input is membershipJunction THEN output is membershipJunction. 
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Table 21. 

lnputs 
' 
Negative 

Zcro 
· Positive 

lnputs, outputs and fuzzy rules for Fuzzy PID 

09!nuts for_ the three qjfferent Gains 
Positive Integral Derivative 

Zero 
Negative . 

· •. Negative . Po~itive-
Zcro Zero 

J;>Ósitive . Negative 

Once the response of each gain is calculated, the output is summed as shown 111 

Figure 35 and the control law sent to the plant is calculated with eqn (88). 

4.2.1.1. lmplementation of Fuzzy PID Controller 

The inputs are norrnalized by dividing them by 3 77, which is the top speed that the 
rotor can attain in radians per second. The output is scaled back with a constant of 200. The 
valucs for these constants are set empirically based upon knowledge from the user; the 
simulation program is shown in Figure 37. 

~ 
• 1! loo 1 Errcr • 

Figure 37. DTC and IM loop with Fuzzy PID Controller in LabVIEW. 

The block diagram of the controller can be seen in Figure 38.a. In Figure 38.b the 
block diagram for a gain is presented. Ali of the gains have the same structure only the 
defuzzification membership functions rules change according to the inforrnation presented 
in Table 21. Results for these controllers are shown in section 5.2. l. 

: b) I gain fuzzy controllcr 
Figure 38. Fuzzy PID Controller in LabVIEW. 
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4.3. Fuzzy PID Genetically Enhanced Controller 

The previous fuzzy PID was genetically enhanced in different parts of the system, 
as it can be seen in Figure 39. Specifically the enhanced parts were: the input and output 
normalization constants, the limits of the membership functions for inputs and outputs and 
the consequences of the fuzzy rules. 
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Il-· Then 1 1 . . 
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r ~~I_Li:-1 ' /yy\ ' ~ ' !\ /x\ ' 
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Valucs 

Outputs l_!~~~~j __ .,_ -f ¡'_J~-i~ ~-.---{ l~~;~~:e l- .,._ ___ 1 /__¡~vj,~\ :-- __ .,. __ _ 
1 1 1 b hº ,rangcscalíng,---0 

- - - - - Mcmbership F11zzv Fuzz_\' Mem c_rs 1p 1 "or desi·red 1 ran_ge . 11 . 1 . . ,, 
normalization FunctJOns Valucs Values I Functwns ¡ I t 1 1 

1 1 L L - - - - . - ..Ql!ll!U_ -_..l-!..._IL _____ I -

IThese blocks where genetically optimizedl 

Figure 39. Fuzzy PID Controller Genetically Enhanced. 

Enhancements were performed using first genetic algorithms and later genetic 
programming. With GA's, optimizations of the fuzzy controller are made first to the 
normalizing constants and second to the limits of ali the membership functions. Using GP, 
the optimizations were first made to the normalizing constants, using a more detailed and 
complex approach that will be explained in future sections and later optimization to the 
consequences of the set of rules. 

When an optimization process was performed, the other elements on the controller 
remained constant. After optimizations were successfully accomplished the new enhanced 
elements were used in the controller and considered in future optimizations processes. The 
optimizations obtained by the genetic algorithms and genetic programming on the scaling 
factors are also used in the controllers proposed on the next sections. 

The fitness is measured with the mean squared error calculated with eqn (89); which 
is the reference speed minus the real speed squared, ali of these samples summed and 
divided by the number of samples. The number of samples is the inverse of the step 
simulation time multiplied by the total simulation time eqn (90). 

. ¿ ( Speed,.ef - Speed,-ea,) 
2 

F1tness = ---------
#Samples 

# Samples = ( StepSimTime r' · Tota/SimTime 

4.3.1.1. PID Genetically Enhancements: Scaling Factors 

eqn (89) 

eqn (90) 

Normalization factors are very important since they dictate what portion of the 
decision table is used. They change membership functions uniformly over input/output 
domains, changing the controllers gain over the whole domain uniformly. 
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The scaling factors (Figure 40) were codified in different fonns: with 8 bit unsigned 
integers, later with 16 bit unsigned integers to make the range of search wider. These 
scaling factors move the effect of each gain over the entire range. 

4.3.1.2. 

-400 
·- L_ 

o 
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.... ;~al~1~-] 
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-2 o 

Figure 40. Scaling Rangcs for Inputs aml Outputs. 

PID Genetically Enhancements: Rule Consequences 

... 
2 

The consequences of the rules in the fuzzy controllers are optimized by genetic 
algorithms and genetic programing methods. The originally proposed consequences for the 
rules are shown in Table 21; the fuzzy clusters used in this consequences -Negative, Zero 
and Positive- can be changed. 

Each rule consequence is assigned a number: 0.- Negative, 1.- Zero and 2.- Positive; 
then this numbers are coded using 2 bit unsigned integers. As it can be seen in Table 22 the 
consequences may change to increase the performance of the controller. 

4.3.1.3. 

Table 22. 

·. li;tput.~ 

' Negative 
Zero Zero 

Positive · , Negative Positive 

PID Genetically Enhancements: Membership Functions 

The original membership functions are shown in Figure 41 ( on the left side ). The a 
limit is where the triangle begins, the e limit is where the triangle value is 1 and the b limit 
is where the triangle ends. 

The original membership functions are shown at the left of Figure 41 and in Table 
23. A constant is added to the limits of these functions: a 8 bit signed integer which is 
previously scaled down from a range of[-127, 128] to a smaller range like [-0.5, 0.5] or [-1, 
l ]. In this way the original membership functions limits and shapes can be changed by the 
optimization technique. 

Table 23. 

Function 

Negative 
Zero 

Positive 

Original Membership Functions 
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Figure 41. Membership Function codification in Gcnctic Algorithm. 

4.3.2. Implementation of Fuzzy PID Genetically Enhanced Controller 

The fuzzy PID is genetically enhanced in order to optimize its performance, as 
previously explained, the first optimizations were made using genetic algorithms and later 
using genetic programming; in this section the implementation process is explained; results 
for this controller are presented in sections 5.2.2 and 5.2.3. 

4.3.2.1. Enhancements using Genetic Algorithms 

The optimization was executed in different stages; eqn (91) and eqn (92) show the 
form of the individuals. In eqn (91 ), the numbers can be 8 or 16 bit unsigned integers. 
These individuals represent the input and output scaling factors. During this optimization 
stage the membership functions do not change. 

{ inputscale' output,cale} 

{~,~'~'~'~'~'~.s,~} 
eqn (91) 

eqn (92) 

Later the forms of the membership functions were enhanced, as shown in eqn (92). 
The numbers correspond to the constants that are added to the original limits of the 
membership functions and are signed integers. The values of the functions are varied in 
different ranges (Table 24). Using 8 bit or 16 bit signed integer numbers and divided by a 
scaling constant so the range is in the membership functions area; this has been explained 
more carefully in section 4.3.1.3. 

During this optimization stage the already optimized scaling factors were used, 
remaining constant during the optimization process. Finally Figure 42 shows the block 
diagram ofthe program made in LabVlEW. 

Table 24. Membership Functions Ranges. 

Scaling Factor 
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Figure 42. Block diagram ofGenetic Algorithm for the optimizations made in LabVIEW. 

4.3.2.2. Enhancements using Genetic Programming 

With genetic programming the optimization process for scaling factors was made 
more specific, using a constant for each gain in the PID controller. The selection method 
used was toumament, along with different sizes for the number representation. The 
individual represented by a tree is shown in Figure 43. lt is basically a tree with four 
branches; each one represents a scaling factor for the three inputs and one output. 

Figure 43. Scaling Factor trce form. 

!Best L Fitnm Graph! 

!Current l. Fitness Graphl 

b ___ ~ 
Figure 44. Block diagram ofGenetic Programing for scaling factors optimization in LabVIEW. 
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These inputs and outputs are then scaled back with their own optimized norrnalizing 
constant. The block diagram for the program is presented in Figure 44. The optimization of 
the consequences of fuzzy rules was perforrned after the optimization of scaling factors. 
The block diagram is similar to Figure 44, just with a different fitness function to evaluate 
rules performance. The individual represented by a tree is shown in Figure 45. 

/-- -" 
(Rules') 

\~d~':> 
_.-4cc-------------------r--------------- --------->---._ 

~~. ~-. .~~ 4i· fRuk'¡ (Ruk\ /R~ (Íluk'\ ¡,¡¡:~ fRu~ ~ (R~~ 
~ \}__) ~~) ~ \¿_,) \-~) \~:) ~2_) \2_,,; 

Figure 45. Rule optimization conscquences tree form. 

4.4. Neuro-Fuzzy PID Controller 

The same fuzzy controller shown in Figure 35 is programed with the Neuro-Fuzzy 
system scheme. The optimizations obtained by the genetic algorithms and genetic 
programming on the scaling factors are also used in this controller. With the FCM 
algorithm, this controller is able to adjust the forrn of its membership functions online. 

The theory of this controller is described in section 3.3.1 the diagram of the 
controller is shown in Figure 46. The original neuro-fuzzy system is based on the Takagi
Sugeno inference system. For this application the fuzzy system was based on the Mamdani 
inference system. The input and output membership functions are tuned with the FCM 
algorithm and can be of any forrn, since T-ANN's can be adjusted to any kind of shape as 
shown in Figure 4 7. 

If-Then 
Set of Rules 

Crisp Fuzzification Defuzzification Crisp 

Values /)(Y'\, /)(Y'\, Values 

Inputs, Membership Inference Membership ~puts, 
Orders Functions Engine Functions tions 

tuned with Fuzzy Fuzzy tuned with 
FCM Values Values FCM 

. ------------------ --------------------- ----------------==-========-------
[ Use T-ANN's to leam the forrn of membership functions] 

Figure 46. Neuro-Fuzzy PID Controller 
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Figure 4 7. Fuzzy membership functions tuncd with FCM and lcarnt with T ANN 's 

4.4.1. Adjusting Membership Function for Response Optimization 

The fonn of the membership functions can be updated and optimized by the use of 
the FCM algorithm. The fonn if the input membership functions are maintained during the 
execution of the controller, so the action of the controller is not changed and erroneous 
response is obtained. 

If the fonn of the input membership functions is changed, an error with a crisp value 
of zero may have a membership value on the fuzzy zero set. By altering the fotm of the 
membership functions it may end up having a membership value on the positive set, even 
though it is explicitly known to be negative. 

However, adjusting the fonn of the output membership functions will have a 
positive impact, since it will take action on the crisp output response of the controller. The 
response can be then pptimized depending on the input response, and for that a simple 
algorithm is proposed and explained in Table 25. 

Table 25. Algori thm for the adaption of membership functions for output opt1m1zation response 

1. Genera te a set of data in therange of action of the mell)bership functions · 
2. Eliminate data from the initial set around certain pomt 
3 .Adjust the form ofthe membersbip functions using FCM and T-ANN's 

The limits of the membership functions are updated as follows, according to the 
algorithm in Table 25. Because the range of operation of the membership functions is 
known: [-2,2], a set of data points in that range is generated. Next, elements around a 
certain point in the range are eliminated and the set is feed to the FCM algorithm, which 
will retum the fonn of the fuzzy sets. 

The algorithm can be seen applied in Figure 48 around the zero crisp value, the 
result is that the Zero fuzzy set is smaller while the Negative and Positive fuzzy sets are 
larger. This way output fuzzy membership functions are FCM tuned and the response of the 
controller can be optimized during the execution of the controller. 
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Figure 48. Fuzzy membership functions tuncd with algorithm shown in Table 25. 

4.4.1.1. Implementation of the Neuro-Fuzzy Controller 

The progtam of the Neuro Fuzzy controller is in Figure 49, based on the theory 
previously explained. In this program two main loops can be identified, the left one shows 
the simulation of the controller and de DTC-IM model. The right loop executes the FCM 
algorithm and tunes the form of the membership functions according to the information 
presented in section 4.4.1. Tests and results for this controller are in section 5.2.4. 

m 
Figure 49. Block diagram ofNeuro-Fuzzy controller simulation in LabVIEW 

4.5. Adaptable Fuzzy PID Controller 

This controller was proposed after the evaluation of the Neuro-Fuzzy controller, 
which was found to have sorne disadvantages for the control of speed in induction 
machines. 

Although the scheme of the controller was originally proposed as a Neuro-Fuzzy 
system (Figure 24) it was found that for this application the use ofthe T-ANN's would only 
increase of computational time without any additional increase in performance. lnstead, the 
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FCM algorithm is used and with this infonnation the limits of the triangular membership 
functions are adjusted, the diagram of the controller is shown in Figure 50. 

1 
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tuned with Fuzzy -------Fuzzy tuned with 
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------ ------------------ -------l~tof triangular membershipfu~~~limits 1 

Figure 50. Adaptable Fuzzy PID Controllcr 

Membership functions are updated following the methods explained in section 4.4. l 
with the difference that their fonns are not the same as the output of the FCM, but 
triangular shaped. The centers of the FMC clusters are used as the maximum value in the 
triangular membership functions. 

Later, the points where the functions begin and end are detected, to set the limits of 
the triangular functions; this can be better seen in Figure 51. This way the T-ANN's are 
eliminated and the triangular membership functions are shaped similar to the fuzzy clusters 
obtained by the FCM algorithm. 
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Figure 51. Membcrship functions for thc Adaptable Fuzzy PID Controller 
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4.5.1.1. Implementation of the Adaptable Fuzzy Controller 

By using adaptable triangular membership functions the control scheme was 
successful in regulating speed. The FCM system is still used but instead of using the fuzzy 
clusters obtained by the algorithm, only their limits are identified and triangular 
membership functions are used, program is shown in Figure 52. 

8J. , -
r.,, m1 ~J -. 0 .. 1 ' lill V ' 

····-· ·····--···-··· ·--·····------··-····-~·-·:··f:,-¡~_-••• _.:.··r~lg••-·l 

Figure 52. Block diagram of Adaptable Fuzzy controller simulation in LabVIEW 
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5. Simulations and Results 

In this chapter the results obtained from simulations are reported. The main 
simulation environments are Simulink [61] and LabVIEW [37]. Simulations were first 
carricd out in Simulink and later in LabVIEW [37]. Parameters consulted in [53] for the 
induction motor model used in the simulations are shown in Table 26. 

Table 26. Parametcrs for motor simulations. 
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5.1. Conventional DTC and Motor Model Simulations Results 

In this section results are presented for the simulations for the model of a 
symmetrical squirrel cage induction machine in the two axis stationary reference frame. It 
is a vector model in D-Q reference frame presented in section 2.2.1. Conventional DTC, 
used for the regulation of torque and flux, was also programed and evaluated. 

5.1.1. Simulink Motor Simulation 

The model was the tested with three sine signals with an amplitude of 400 V, 
frequency of 60 Hz and 120 electrical degrees apart to simulate a three phase voltage 
source. In Figure. 53 it can be seen the Stator Flux with a value closer to one. 
Electromagnetic torque start around 100 N*m and reach to zero. Speed go from zero to 
almost 400 rad/s or 3600 rpm and Stator currents go from peak of200 [A] to 15 [A]. 
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Figure 53. Simulink Motor Simulation. 

5.1.2. LabVIEW Motor Simulation 

The model programed was also tested with three sine signals of 60 Hz and 120 
electrical degrees apart to simulate a three phase voltage source. In Figure 54 it can be seen 
the voltage in the stator in two axis reference. Stator flux with a value closer to one, 
Electromagnetic torque start around 100 N*m and reach to zero. Speed go from zero to 
almost 400 rad/s or 3600 rpm and Stator currents go from peak of 200 [A] to 15 [A]. 
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Figure 54. LabYIEW Motor Model Simulation Results. 

5.1.3. DTC Simulink Simulation 

Simulations of the DTC in Simulink were carried out with the reference of the EMT 
was set to 100 N*m and Flux to 1 Wb. As it can be seen in the results in Figure 55 the DTC 
is able to control the EMT and Flux in the desired ranges (Figure 55.a and Figure 55.b), and 
as in almost every vector control technique, the plot of the flux in the complex plane looks 
Iike a circle. 

lt can also be seen that speed (Figure 55.c), increases constantly from zero to 300 
rad/s and the stator currents (Figure 55.d) remain constant, with an amplitude of 
approximately 125 [A] peak and the with a frequency inversely proportional to time. 
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Figure 55. DTC Simulink Simulation Results. 

5.1.4. LabVIEW DTC Simulation 
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The following step was the simulation conventional DTC in Lab VIEW. The 
references of the DTC where set to 100 N*m in EMT and l Wb for stator flux. As it can be 
seen in figure Figure 56 the form of the stator flux in the complex plane is also circular as 
any other vector controls. EMT is maintained around the reference with sorne slight 
decrement, the stator current has peak amplitude of approximately 125 A. And the 
frequency increases with time and finally the rotor speed increases to almost 300 rad/s with 
a constant slope. 
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Figure 56. LabVIEW DTC Simulation Results. a) Voltage Source. 

5.2. Simulations and Results of Intelligent Speed Controllers 

In this section the results of the intelligent speed controllers previously presented in 
chapter 4 are presented. The simulations had different speed references as can be seen in 
Table 27, for a total of l O seconds of simulation time. The solver is Euler with a fixed step 
time of 5E-5 sec. 

Speed [rad/~) 
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5.2.1. Simulation of Fuzzy PID Controller 

As previously explained in section 4.2.1.1 the input norrnalization constant is 377 
and the output constant is 200. In Figure 57.a the circular forrn of the stator flux is 
presented which is maintained during the whole simulation. 

Figure 57.b shows the first section of the speed reference and response, which is 50 
rad/s for 1 second; it can be seen that the controller is not able to take the motor to that 
speed reference. The next step reference lasts four seconds the response can be seen in 
Figure 58.a, the controller is able to take the reference to almost the reference it reaches 
298.75 rad/sjust at the end ofthe period. 
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Figure 57. Results for Fuzzy PID. 

In Figure 58.b the controller lowers the speed of the machi ne from 300 to 100 rad/s, 
the controller is able to lower the speed to 100.19 rad/s. The overall response is smooth as it 
can be seen from the output of the EMT if the machine in Figure 58.c. When the speed of 
the machine is closer to the reference the response of the controller is even smoother, which 
causes the motor to not reach the desired output. Finally, it can be seen that the controller 
needs to be tuned to obtain a better performance. 
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Figure 58. Results for Fuzzy PID. 

5.2.2. Simulation of Fuzzy PID Enhanced by Genetic Algorithms 

As presented in section 4.3 the optimization process using genetic algorithms was 
divided in two stages, first for the optimization constants and later for the limits of the 
membership functions; here the results will be presented in the same order. The detailed 
implementation of these programs is shown in section 4.3.2.1. 

The fitness function used (more details in section 4.3) is a simulation of the 
induction motor model with the DTC control scheme and the fuzzy PID loop controlling 
the speed. The reference of the speed is 377 rad/s which converted to rpm is 3600 rpm's, 
the max speed of the machine. The simulation is executed for 7 seconds, with a step size of 
0.2 milliseconds and solved with the Euler method; ali of this is considered to decrease the 
simulation time. 

As it can be seen in Figure 59, the rotor speed differs by sorne numbers but it 
remains accurate despite the broad step size. This is not considered a factor given that a 
smaller step time will mean a clear simulation, but the genetic algorithm will always 
optimize the controller and attempt to minimize the fitness value. 
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Figure 59. Fitness function simulation, Reference and Real speed values. 

On the first optimization stage the genetic algorithm was ran with a population of 20 
individuals, a Crossing probability of 0.9 and a Mutation probability of 0.05, toumament 
selection with half the population -1 O individuals- was used. 

On Table 28 the results are shown for the different ranges of the scaling factors. The 
first values are the user defined factors presented in section 4.2.1.1, which after running the 
fitness function results in a value of 24674. After that, the GA was executed severa! times 
with different search ranges. It can be seen that the input scaling factor value is in I 90's 
range, while the output scaling factor will always increase to the limit of the search range. 

Table 28. Genetic algonthm results for input and output scalmg factors opt1m1zation 

Generations In ut actor Out ut Factor Fitness 
377 200 24674 
189 256 24469 ......... _......._ ____ ..,..., .... ,., 
192 512 24459 
189 1024 24457 .2 

As it can be seen in Figure 60, the response from the controller with the enhanced 
values is better than the response of the values originally proposed. In Figure 60 images Ref 
means the speed reference of 377 rad/s, First is the response of the machine with the 
controller and the original scaling factors and Optimized is the response of the controller 
with the enhanced scaling factors obtained by the GA. 

From the Figure 60.a and Figure 60.b it can be seen that the response is clearly 
optimized, the response of the controller with the original values is smoother this causes 
that the induction machine not to get to the desired speed reference. However, the response 
of the optimized controller will take the induction machine to the desired speed ranges 
without any problem. 
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Figure 60. Fitness response of original and enhanccd scaling factors values. 

To compare with the same benchmark of Table 27, the response of the original 
fuzzy controller and the enhanced fuzzy controller were simulated. Figure 6 I shows the 
response of the controllers in the different stages of the test. From Figure 61.a we can see 
that the original fuzzy controller is unable to take the machine to the desired reference, but 
the optimized fuzzy controller has no problem to take it to the reference and maintain it 
there. 

Figure 6 I .b shows that both controllers are able to take the machine to the speed 
reference. The response of the original controller is smother and almost at the end of the 
speed range takes the motor to the desired reference while the enhanced controller has a 
faster response and can take the motor to the desired speed much more faster. 

Finally Figure 6 I .c shows the response of the controller during the whole evaluation 
period; it can be seen that the Genetic Algorithm was able successfully improve the 
response of the controller, making the response of the machi ne faster. 
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Figure 61. Results for Fuzzy and Enhanced Scaling Factors Fuzzy PID Controllcrs. 

After the optimization of the scaling constants, they were set to their optimum 
values and the GA was executed to optimize the form of the membership functions. The 
GA was executed for severa) times, results are shown in Table 29. On the first run, after 
142 generations with a scaling factor of 256 no improvements were found. 

The fitness of the individual is 24457.2 as previously found with ali its values in 
zero which shows that the search process becomes difficult. After later runs individuals 
with better response were found. The block diagram for this program is similar to the one in 
Figure 42, only the information used on the fitness function will change. 
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Table 29. 

-
22999.7 
2352L3 .~ 

In Figure 62 the forms of the enhanced membership functions of the candidate with 
the bcst fitness (22999. 77). lt can be se~n that the forms are un usual and something that 
would be hard to propase; the limits for each of the optimized candidates are shown in 
Table 30. 
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Figure 62. Enhanced forms ofMembership Functions for individual with fitness 22999.7. 

Table 30. Limits for enhanced mcmbership functions with Genctic Algorithms 

Fitness 
Left Left 

22999
_
77 

Negative -2.5 · Negative -l.4 
Zero -0.91 Zero -0.99 
Positive · . -0.31 · Positive -0.44 
Negativf -2 -0.062 -1.9 , 

23521.3 Zero .-0.99 0.56 -0.91 · 
Positive 0.078 0.98 Positive 0.44 

•, Negative -2) _.1 • ! 

' 
Negative -l.7 

24456;8, Zero -1 -0.42 1.2 Zero -0.99 . 
Positiile 0.18 0.93 l.~ 0.016 Positive 

-2 
-0.57 
0.85 
'-1.l 
0.0039 
0.7 

Right 
~0.01 
0.56 

. 2.2 
0.086 

, 1.4 
l.2 
0.0078 . 
l 
2 · 

1 

2.0 

Finally it can be seen in Figure 63 the response of the best candidate (fitness 
2299. 77) compared to the response of the first fuzzy controller. lt is clear that the response 
of the controller is better, however a small error can be found once the controller has taken 
the machine to the desired reference. In Figure 63.a were the reference is relatively small 
this error is more than the 10% -5.14- of the reference. 
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As the reference is changed and the value is increased it can be seen in Figure 62.b 
and Figure 62.c that approximately the same amount is about 5 more units of the desired 
speed reference where the machine will settle in steady state response. The importance of 
this steady-state error will depend on the final application. 
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Figure 63. Results for Fuzzy and Enhanced MFs Fuzzy PID Controllers. 

The steady-state error found on the response of the optimized forms of the 
membership functions shown in Figure 62; is given to the fact that the forms of these 
optimized membership functions is not symmetric. This symmetry was not considered on 
the design of the genetic algorithm, but it can be seen that the response is maintained in the 
best possible form as is desired, with a decrease in the fitness value. 
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5.2.3. Simulations of Fuzzy PID enhanced by Genetic Programing 

Optimizations made using Genetic Programming are also two, the first one for the 
nonnalizing constants and the second for the consequences of the fuzzy rules, the detailed 
implementation process is explained in section 4.3.2.2. 

The fitness function for thesc tests had a period of time of l O seconds, with a stcp 
time of 0.0002 second and was solved with the Euler method. Results of the GP are shown 
in Table 31. Several individuals were found with different combinations of bit size lengths 
and other parameters. The best individual found had a fitness value of 17119.8; Figure 64 
shows the results of this individual for the test presented in section 5.2. l and Table 27. 

Table 31. Genctic Progratrnrnng rcsults for input and output scalmg factors opt11rnzat1on 

# Bits Pop ScF 
Size 

lin T C Pr MPr Epochs Fitness ·. 
ScF 

10 12 
10 2 
10 16 
13·\: 24 
13 
13 
16 

Whe.re: 

14 
14 
24 

3 0.9 
3 0.9 . 
4 0.9 
6 0.9 "': · 

1. 0.9 
4 0.9 ~-

6 0.9 

0.02 147 21399.71 
o_.!)35 352 io655.92 
0.025 60 21399.7 
,0.01 35 . . i9261.2 
0.015 82 17119.8 512 
0.015 194 19247.7 6114 
0.01 206 19250.93 55378 

.. 
., 

y -

# Bits N umbcr of bits u sed to reprcscnt numbers in thc search sea ce 
Pop Size . Size· of the popú.lafion during the exécutiÓÚ of the áJgorithni:.. 

1 in T Number of individuals in the toumamcnt sclection method 

0.0002 
0.0005 
5. 7E-4 54277 

C Pr . Cróssover prob_ability of crossing two bi:_anches. of th.""e-s"a_m_e-:ki"""· n"""-d""in an individual 
M Pr Mutation probabili ty of mutatmg a bit in a branch ofthc individual 

. Epochs Nurilber of generations executed · ·- --·--'"''""-·""--"';;.::"'-'·-"• 
Fitness Fitncss of thc best individual found dunng that execution of the algorithm 

. . ScF Err Scaling Factor for the 'iii_put error in tlíe PIÓ controller -~·--· 
ScF dErr Scaling Factor for the input ofthe first dcrivatc ofthe error in the PID controllcr 

ScF d2Err ·séaling Factor for the 1Iiput ofthe second derivate ofthe error in the PID controller·. 
ScF Out Scaling Factor for thc output in thc PID controllcr 

Figure 64 shows that the controller takes the machine to the desired reference much 
faster and accurately that the originally proposed controller. On the subfigure Figure 64.a 
the controller is able to take the reference in a small period of time, something the original 
controller is not; these response is consistent in ali the optimized controllers. 

Figure 64.b again shows that the response of the optimized controller is much better. 
Finally Figure 64.c shows that both controllers are able to take the motor to the desired 
speed reference without any bigger difference. This results show that GP is able to 
successfully optimize the overall response of the controller and that it can deal with more 
complex problems than original GA's. 
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Figure 64. Results for enhanced Scaling Factors on Fuzzy PID Controllers. 

The opt1m1zation of the consequences of fuzzy rules was executed after the 
optimization of scaling factors. A different fitness function was designed: two separated 
simulations of I O seconds each with reference of 3 77 and -3 77 rad/s are used, the result 
fitness is summed. Why not use a single simulation of 20 seconds? Because the error is 
minimized but a desired response is not obtained. 

Table 32. Genetic Programmmg results fuzzy rule opt1m1zat10n 

PoP. Size I in T C Pr M, Pr Egochs Fitness Rules Changed 
20 6 0.9 0.1 19 17119.8 None 

10 5 0.9 0.1 

20 8 0.9 0.05 

8 0.9 0.05 

10 5 0.9 0.01 

25 ~ 17119.8 

10 17119.8 

11 17119.8 

85 17119.8 

86 

Derivative Gain: · 
Positive Positive Zero 

Positive Gain: 
Positive, Zero Positivc 

Derivative Gain: 
Positive, Zero, Positive. 

Positive Gain: . 
Négative, Negative, Negative 

Derivative Gain: 
Positive, Positive, Zero. 

Positive Gain: 
Zero, Zero, Positive 
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The results of this optimization are shown in Table 32, in the Rule Changed column 
are the changed consequences from the originally proposed in Table 21. As it can be seen 
from the results, the rule consequences from the Positive and Derivative Gain are changed, 
without a difference on the fitness. 

Positive and Derivative gains are related to the first error and second error 
derivativc. This is happening because these gains have almost no contribution to the action 
of the controller; thus allowing the genetic programming algorithm to change the 
consequences of the rules without altering the response of the controller. These rules can 
also be climinatcd without losing great performance of the controller. 

5.2.3.1. Simulations on Enhanced Controllers with Load 

Although the response of the controller has been optimized 1t 1s interesting to 
analyze what would happen if load is introduced to the controller. For that reason a simple 
test is shown in Table 33; after the controller has reached a desired speed, different loads 
are introduced to the machine. 

Table 33. Load Test. 

Time Range [s] Torque Load [Nm] 
[4.2, 5.5] 50 
[5.5, 9] 75 

From the result shown in Figure 65.a it can be seen that once the first amount of 
load is introduced to the machine the speed reference drops by almost l rad/s in difference, 
later once the load is increased the speed reference decreases even more. The decrease in 
the speed reference is not that big however this could be a factor depending on the 
application. 

If the second load is increased to 80 Nm, it can be seen in Figure 65.b that the 
controller fails to maintain the desired reference speed and speed reference beings to 
decrease, until the load is retired from the motor and the speed reference can be controlled 
agam. 
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Figure 65. Rcsult from enhanccd fuzzy controller with load. 

Results shown in Figure 65 show that although optimization has been made to the 
controllers, there are certain things out of the possibilities to be optimized by genetic 
algorithms. This kind of optimization needs to be done during the execution of the control 
system, so the controller cán adapt to the current conditions. 

Because it was found that the shapes of fuzzy clusters can be optimized online, 
genetic programming was not carried out for their optimization. 

5.2.4. Simulations of Neuro-Fuzzy Controller 

lmplementation of this controller is shown in section 4.4. l. l. The first test for the 
neuro-fuzzy controller was to create fuzzy clusters with the FCM algorithm by generating a 
set of points in the range of[-2,2]. Then this data set was feed to the FCM program and the 
fuzzy sets were generated. This information was used as the input and output membership 
functions in conjunction with the scaling factors found in the previous execution of the 
genetic programming algorithm. 
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Figure 66. Membcrship functions after the execution of FCM algorithm 
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After the FCM algorithm is executed the form of the membership functions is 
shown in Figure 66. The centers of the fuzzy clusters found by the algorithm are in 
[-1.4, O, 1.4]; these clusters are approximated by T-ANN's with 15 neurons each. After the 
execution of the FCM algorithm the membership functions are used in the controller, using 
thc spccd references of Table 27. 

After the membership functions are tuned the speed test was executed, showing very 
bad results -Figure 67. lt can be seen that the speed reference is totally out of reference. 
This response is attributed to the rounded form of the membership functions and that the 
negative and positive membership functions have very small membership value around 
zero. 

However, irregular boundaries -not commonly proposed by humans- can be used to 
control the machine as shown in Figure 62, were the GA found unusual limits for the 
mcmbership functions which would effectively control the speed of the machine with a 
small steady state error. But in the case of the FCM algorithm, its execution rules lead to 
symmetric fuzzy clusters. 
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Figure 67. Result of Specd control by thc Ncuro-Fuzzy Controller with FCM tuncd MFs. 

To probe that the response seen in Figure 67 is wrong because of the form of the 
membership functions tuned with FCM, the limits of the fuzzy clusters obtained by the 
FCM algorithm were detected. With those limits triangular membership functions were 
generated and trained to the Neuro-Fuzzy controller membership functions, as seen in 
Figure 68; for this operation 20 neurons were used. This new membership functions are 
used in the test. 

Once the triangular membership functions are adjusted to the limits of the clusters 
found by the FCM algorithm (Figure 68) the response of the controller is optimum and 
there is no malfunction. This is shown in Figure 69, this response is similar to the previous 
fuzzy controllers. 
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Figure 69. Result ofSpeed control by the Neuro-Fuzzy Controller with FCM triangular MFs. 

The next step is to prove the response of the controller by modifying the form of the 
membership functions as explained in section 4.4. l. As it is previously explained, 
information around a certain point is eliminated from the data set feed to the FCM 
algorithm so the shapes of the resulting fuzzy clusters are altered. 

The negated error was the element chosen to eliminate the data around it and create 
the new clusters. lf the response of the controller is analyzed, we will realize that depending 
on the size of the error the response will be directly proportional. lf the error is positive, the 
overall response of the controller needs to be positive to compensate and vice versa. 

Thus, by eliminating elements around the negated value of the error the size of the 
membership functions in which the controller is acting will be bigger, increasing the 
response of the controller. Once the controller takes the motor near the speed reference the 
size of the zero membership function will decrease; if perturbations such as loads are 
introduced to the machine will be compensated better by the control system. 
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Figure 70. Membership functions adjusted with FCM to optimize response ofthe controller using 
10 neurons for the T-ANN's. 

As shown in Figure 70 membership functions are adjusted on the fly by the FCM 
algorithm; on the images I O neurons were used to adjust the shapes of the MF's but in the 
speed control test 15 were used, to increase accuracy. 

The result of the test is shown in Figure 71 again it shows that the controller fails to 
regulate the speed of the motor, showing an enormous difference between the reference and 
the real value of the speed. The result shown in Figure 71 is again attributed to the irregular 
shapes of the fuzzy clusters obtained from the FCM algorithm, not being suitable for this 
application. 
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Figure 71 . Result of Speed control by the Neuro-Fuzzy Controller with FCM tuned MFs. 

5.2.5. Simulation of Adaptable Fuzzy Controller 

The implementation process of this controller is shown in section 4.5.1 .1 being the 
result of an adaption of the neuro-fuzzy controller not able to correctly regulate the speed 
on the IM drive. 
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The adjusted membership functions are shown in Figure 72. The first two subfigures 
Figure 72.a and Figure 72.b are the shapes of the triangular membership functions for the 
inputs. The shapes of the input MF's are optimized with the information of the fuzzy 
centers coming from FCM, the beginning and ending limits of the zero cluster. 

The limits of the output MF's are also optimized with the centers coming from 
FCM, the ending limit of negative cluster, beginning and ending of zero cluster, and 
beginning of the positive cluster as shown in subfigures Figure 72.c and Figure 72.d. 
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Figure 72 . Triangular membership functions adjusted with FCM algorithm. 

The results for the test presented in Table 27 are shown in Figure 73; as it can be 
seen the response of the controller is optima! being able to set the speed of the motor to the 
desired reference and update the limits of its membership functions on the fly. 
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Figure 73. Speed test for Adjustablc Fuzzy Controller. 

Simulations of Adaptable Fuzzy Controller with Load 

It has been proven that the response of the controller is optima) without loading the 
motor; however it is necessary to validate that the controller is also able to control the speed 
when the motor is loaded. The test shown in Table 33 was applied to the adaptable fuzzy 
controller. 

Frorn the results shown in Figure 74.a it can be seen that once the load perturbation 
is introduced the controller is able to regulate and rnaintain the speed, sorne ripple and noise 
is introduced but the error is rninirnurn. Later when the load is increased to 80Nrn, Figure 
74.b shows that the response of the controller is rnuch better than the non-adaptable version 
of the 'fuzzy controller. 

As can be appreciated in Figure 74.b, when the first load of 50Nrn is introduced, the 
online optirnized controller response does not changes; while the response of the normal 
fuzzy controller drops a bit but rernains constants. Later when the 80Nrn load is introduced 
the response of both controllers drops; however after sorne rnornents the online optirnized 
controller is able to cornpensate and the response begins to be corrected. 

The normal controller is not able to cornpensate and the response drops until the 
load is withdrawn. After the load is retired both controllers are able to cornpensate and 
correct the response. A srnall steady state error can be seen in the normal fuzzy controller, 
while the optimized controller does not show a steady state error. 
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Figure 74. Result from adjustable fuzzy controller with load. 

A second load test was designed, the speed reference is set to 100 rad/s after 2.2 
seconds a static load of 50Nm is introduced together with a dynamic sinusoidal load of 30 
Nm peak to peak summed to the 50Nm static load. The simulation is then run for 10 
seconds; results are shown in Figure 75. 

The response of the fuzzy controller with fixed MFs -normal- again is compared 
with the response of the controller with adjustable Mf s -optimized. As it can be seen from 
Figure 75 both responses are identical until the load is introduced. The response of the 
normal controller drops a little and shows sorne ripple while the response of the optimized 
controller remains without any visual perturbations. 
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6. Conclusions and Future Work 

This work presents a novel approach on intelligent control for the speed control on 
induction machines. In this chapter conclusions are presented and discussed, finally future 
work for a possible direction of the thesis is presented. 

As it was presented in the state-of-the-art research presented in chapters I and 2, 
there is a vast area were research can be done in the area of intelligent control applied to 
electric drives. Most of these applications require of great computational capabilities, which 
is getting easier to get at lower costs. 

6.1. Conclusions 

As the objectives of this thesis were proposed in section 1.4, the simulated 
implementation of direct torque control was carried out successfully. The successful 
implementation of the programs in Simulink validated the simulation, given that Simulink 
is a proven environment for simulations. 

Once the basic program was proven to work in Simulink it was transferred to 
Lab VIEW to compare the results and validate that the simulation worked correctly in this 
environment. Lab VIEW is just starting to provide too Is for control and complex differential 
equation simulations, but provides a faster development environment and prototype design. 

Severa) intelligent controllers were proposed, validated and analyzed. Optimization 
techniques were applied to these controllers; also modifications for online execution were 
proposed and included to further improve their performance. 

The design of ali the controllers was easy, given that fuzzy systems are easily 
understood by humans. The proposed PID decoupled topology was validated, and can be 
easily transferable to an embedded system. Of four controller proposed in chapter 4, three 
of them were able to control the speed of the machine effectively. 

The Neuro-Fuzzy controller was unable to correctly control the speed of the 
machine. This is attributed to the arbitrary shapes of the membership functions; and to the 
fact that speed is not directly controlled on the machine but through the control of torque. 
Yet the use of this controller gave us the chance to propose a similar topology with a better 
response and simpler design. 

The optimizations based on genetic algorithms and genetic programming proved to 
effectively optimize the fuzzy controllers. Genetic programing can deal with more complex 
forms of optimizations and yet find results faster than a similar but simple approach using 
genetic algorithms. These optimizations have to be carried offline due to the nature of 
evolutionary algorithms and their delayed response due to large search spaces. 



Chapter 6 Conclusions and Future Work 

However, thanks to the advancements in processing power and multiple cores 
computing this is something that was not possible to execute few years ago in reasonable 
time lapses. The simulation of a differential equation model is computationally expensive; 
nonetheless it is now possible to execute small time lapses executions in short periods of 
time. 

The controllers were systematically optimized with the aid of these algorithms, and 
sorne information was found to be irrelevant being discarded on the different stages of the 
optimization. Such is the case of the positive and derivative gains being eliminated by 
reducing its interaction, first during the Scaling factors optimization and next in the Rule 
consequences optimization. After applying these optimization techniques the contribution 
of these gains can be effectively eliminated. 

The online optimization proposed proved to correctly compensate unknown 
uncertainties introduced to the system and further improve the response of the controllers. 
Furthermore, this optimization can be executed online without introducing to many 
computational load, as it is executed with a I millisecond period. 

6.2. Future Work 

This work is intended to be published in one or two congresses, a joumal or 
transaction magazine and by a specialized editorial. lt is necessary to validate these 
algorithms in a prototype. During the development of this work a version of the DTC 
program that can be executed on the Real Time Machine of LabVIEW was developed and 
validated. This program can be executed on hardware with a real time operating system like 
the Compact RIO [ 11] from National lnstruments. 

Given that the speed controllers were developed in LabVIEW, they can also be 
executed in this system. So the complete control system proposed here can be executed on 
National Instruments hardware and software. Nevertheless this work is not limited to that 
brand and can also be programed on a small embedded system like a DSP or a FPGA card. 

As it was analyzed and proved in this thesis, the use of genetic programing to 
optimize fuzzy systems can provide very good results. A more complex task like the 
development and evolution of a complete fuzzy controller using could be an interesting 
next step. 

Eventually computational power will allow us to execute these optimization systems 
on small embedded systems that will be able to automatically adjust. lt would also be 
interesting to program the genetic optimization system on an FPGA card, executing the 
differential equation model of the machine on a DSP card or something similar. lt could 
eventually lead to the development of robust intelligent sensorless drives. 
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