INSTITUTO TECNOLOGICO Y DE ESTUDIOS

SUPERIORES DE MONTERREY
CAMPUS MONTERREY

DIVISION DE INGENIERIA Y ARQUITECTURA
PROGRAMA DE GRADUADOS EN CIENCIAS DE LA INGENIERIA

OPTIMAL WORKERS ALLOCATION FOR THE CROSSDOCKING - JUST IN TIME
SCHEDULING PROBLEM

THESIS

PRESENTED AS A REQUIREMENT
TO OBTAIN THE DEGREE OF:

DOCTOR OF PHILOSOPHY IN ENGINEERING

MAJOR IN INDUSTRIAL ENGINEERING

GUILLERMO ARTURO ALVAREZ PEREZ

MAY OF 2007

INSTITUTO TECNOLOGICO Y DE ESTUDIOS
SUPERIORES DE MONTERREY
CAMPUS MONTERREY

DIVISION DE INGENIERIA Y ARQUITECTURA
PROGRAMA DE GRADUADOS EN CIENCIAS DE LA INGENIERIA

The members of this committee recommend that the thesis of Guillermo
Arturo Alvarez Pérez be accepted as a partial requirement to obtain the
degree of:

Doctor of Philosophy in Engineering
Major in Industrial Engineering

Thesis committee:

José Luis Gonzalez Velarde, Ph. D.
Advisor

John Welsh Fowler, Ph. D. Jorge Limoén Robles, Ph. D.
Co-advisor Synodal

Neale Ricardo Smith Cornejo, Ph. D. Francisco Roman Angel Bello Acosta, Ph. D.
Synodal Synodal

APPROVED

Francisco Roméan Angel Bello Acosta, Ph. D.
Director of the Graduate Program in Sciences of Engineering

Dedicatory

To God

To my wife Azalea

To my daughter Andrea

To my parents Alfonso and Consuelo

To my siblings Alfonso, Erika and Diana

To all the people | love

To the President of México, Felipe de Jesus Calderdn Hinojosa

Acknowledgements

| am deeply grateful to my thesis advisor, Dr. José Luis Gonzalez Velarde, for his

help and guidance during all these years.

| am also grateful to the members of my thesis committee, Dr. John Welsh Fowler,
Dr. Jorge LimOn Robles, Dr. Neale Ricardo Smith Cornejo, and Dr. Francisco

Roman Angel Bello Acosta, for their comments and suggestions.

| thank all of the faculty members and classmates that are part of the Doctoral

Program in Industrial Engineering at Tecnolégico de Monterrey.

Finally, | want to acknowledge the financial support received from Tecnoldgico de

Monterrey through grant number CAT025 to carry out this work.

Abstract

In this work, a warehouse is allowed to function as a crossdock to minimize costs for
a scheduling problem. These costs are due to two factors: the number of teams of
workers hired to do the job, and the transit storage time for cargo. Each team of
workers has a fixed cost per working day, and the cargo can incur early and tardy
delivery costs. Then, the transit storage time for cargo is minimized according to Just
in Time (JIT) scheduling. The goal is to obtain both: the optimal number of teams of
workers in the crossdock and a schedule that minimizes the transit storage time for
cargo. An integrated model to obtain both the optimal number of teams of workers
and the schedule for the problem is written. The model uses the machine scheduling
notation to describe it. Since the problem is known as NP-hard, a solution approach
based on a combination of two metaheuristics, Reactive GRASP embedded in a
Local Search algorithm and Tabu Search (RGLSTS), is provided. The results
obtained from the exact method that uses the ILOG CPLEX 9.1 solver for 14 problem
instances and the results obtained from the RGLSTS metaheuristic algorithm for the

same problem instances are discussed.

This research has an important academic contribution because it involves the
development of a metaheuristic algorithm not previously applied to a relevant
problem that has not received attention. Besides, the source codes of the programs
that solve the problem are available for the reader and they can be modified

according to the user needs.

In the industry field, the algorithm mentioned above can be easily adapted in order to
be applied to a real problem (i.e., large transshipments in companies like Wal-Matrt,

HEB, among others).

Obtaining optimal or near optimal solutions for the problem of this work represents an
improvement in the movement or distribution of the workforce and products, reducing

this way, hiring costs, transportation costs and inventory costs.

Key words: Workers allocation, Just in Time scheduling, machine scheduling,

crossdocking, metaheuristics.

Contents

Chapter 1 T oY o To 1¥ o] £ o] o PRSP
..... 1
1.1 Thesis
SHUCTUIE ... et e e e 4
1.2
Y L] gToTe (o] (oo |V USSR 4
Chapter 2 Problem
DESCIIPLION ..ttt et e 6
2.1 Literature
REVIBW. ...ttt eenneees 8
2.2 Relationship of the Problem with Machine ...
Scheduling........ccccviiiiiiiie, 12
2.3 Model forthe
Problem........oo 17
Chapter 3 Heuristicsand
MELANEUIISTICS ..o eieeiiiiie et 26
3.1
HEUFISTICS. .. e ettt et bbb 26
3.2
MEtANEUIISTICS.\ e ettt 27
3.21

322Tabu
SEANCHN. .. 31
Chapter 4 Solution Approach for the Crossdocking - Just in Time Scheduling

PO D M
35

4.1 Solution

FOMM . 35

Chapter 5

Chapter 6

Appendixes

4.2 Exact Method of

SOIULION. ...

4.3 Alternative Method of

SOIULION. ...t
4.3.1 Solutions

(0d0] 015 (10 (o3 1]] o 1R

4.3.2 Solutions

IMPrOVEMENT.t

4.4 Computational
EXPEIMENTS. ...

4.4.1 Testing and Comparison of

RESUItS......ccv i

Solution Approach for the Optimal Workers Allocation for the
Crossdocking - Just in Time Scheduling
Problem.........coooo,
5.1 Exact Method of
SOIULION.
5.2 Alternative Method of
SOIULION....coiiiiiii
5.3 Model for the Problem (reduced

VEISION) ..ottt e e

(000 1o 1T =TT 0] o 1T

6.1 Future

Appendix 1 Linear and Integer

Programming..........ccoeuuiiniiiiiiiiiiii e

Appendix 2 Integer Programming Model for the Crossdocking - JIT
Scheduling Problem Instance shown in Table
41,

Appendix 4 Output of the RG Algorithm for a Crossdocking - JIT Scheduling

Problem

INSTANCE. ..ottt
Appendix 5 Output of the RGTS Algorithm for the Crossdocking - JIT

Scheduling Problem Instance shown in Appendix

Ao, 82
Appendix 9 Results of the RG and RGTS Algorithms for the 16

Crossdocking - JIT Scheduling Problem Instances shownin ...

Appendix 8............ 84
Appendix 11 Results of the RGLS and RGLSTS Algorithms for the first 14
Optimal Workers Allocation for the Crossdocking - JIT

Scheduling Problem Instances shown in Appendix ...

RS (=T = 1oL =

AV /1 -

List of Figures

1.1

2.1

2.2

2.3

2.4

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

51

5.2

53

a) Earliness function; b) Tardiness function; c¢) Earliness-tardiness function. These three

functions have a common due date d
A crossdock flow

a) A representation of the sources or predecessors of an outgoing container j; b) An example

of an S; matrix with 4 incoming containers and 2 outgoing containers
A more detailed flow for the crossdocking - JIT scheduling problem

Inbound or outbound area of the crossdocking - JIT scheduling problem seen as an

assignment - scheduling problem

Pseudo-code for a basic GRASP procedure

Pseudo-code for a basic Tabu Search procedure

Solution for a crossdocking - JIT scheduling problem instance: a) Assignment; b) Scheduling
Pseudo-code for the RG algorithm

An example of the ejection chain process: a) Before the movement of the joby;; b) After the

movement of the joby;

Graphical sequence of the output of an iteration of the RG algorithm for the inbound area of

the crossdock

Movements of the algorithm: a) InsertLeftSameMachine(m(i)); b)
InsertRightSameMachine(m(i)); C) InsertDifferentMachine(r(i), y); d)
ExchangeSameMachine(m(i)); €) ExchangeDifferentMachine(rri(i), 4(j))

Pseudo-code for the TS algorithm

RGTS solution: a) Tabular form; b) Machine-Job form; c) Graphical form (only inbound area)
Input file structure for the exact model algorithm and for the RGTS algorithm

Pseudo-code for the RGLS algorithm

Assignment of the initial values for the number of breakdown and buildup machines for the
RGLS algorithm

Neighborhood of the point (m, M). This point represents the current number of machines

rented in the inbound and outbound areas of the crossdock, respectively

Vi

List of Tables

2.1

4.1

4.2

4.3

4.4

4.5

4.6

51

5.2

53

Percentage of occupation of the technological coefficients matrix for different crossdocking -

JIT scheduling problem instances

Input data for a crossdocking - JIT scheduling problem instance with 4 incoming jobs and 2

breakdown machines, and 3 outgoing jobs and 2 buildup machines

Input parameters {r, p;, dj} for a crossdocking - JIT scheduling problem instance with 10

incoming jobs and 2 breakdown machines

Input data for a crossdocking - JIT scheduling problem instance with 10 incoming jobs and 2

breakdown machines, and 11 outgoing jobs and 3 buildup machines
Experimental results of our solution approach for the crossdocking - JIT scheduling problem

Comparison of results of our solution approach with other authors’ solution approach for the

crossdocking - JIT scheduling problem

Average objective values for the RG algorithm when using the 4 different greedy functions

separately

Experimental results for the complete version of the optimal workers allocation for the
crossdocking - JIT scheduling problem when using the integer programming solver ILOG
CPLEX 9.1 with default parameters

Experimental results of the optimal workers allocation for the crossdocking - JIT scheduling

problem when using the RGLSTS algorithm

Experimental results for the reduced version of the optimal workers allocation for the
crossdocking - JIT scheduling problem when using the integer programming solver ILOG

CPLEX 9.1 with specific parameters

Vii

Chapter 1

Introduction

Logistics, and particularly, inventory, transportation, scheduling, and workforce
allocation are important activities within factories and they play a central role in the
operations research field. Their study has led to the development of many models
and algorithms which have also been applied to other scientific, academic, and
industrial fields. These topics are complex and they involve many variables,
uncertainties, and costs. Most of the time, the objective is to optimize results, i.e. to
maximize profits or minimize costs, taking into consideration the available resources
assigned to it. Very often, to do this, it is necessary to use sophisticated models and
optimization techniques as well as powerful information technology [Crainic and
Laporte (1998)].

The scheduling activity is strongly related to manufacturing, inventory, and
transportation. Scheduling can help the manufacturing industry to reduce production
and inventory costs. Also, it can help the transportation industry to reduce
transportation costs. Obtaining optimal or near optimal solutions to problems related
to these areas represents an improvement in the production as well as in the
movement or distribution of the products. This is one of the reasons why the
scheduling area is so important nowadays [Rosas (1991)]. The study of scheduling
problems is not new. History, examples, notation, and references can be found in
Pinedo (2002).

In a simple model, scheduling involves the assignment of jobs to a single machine in
an optimal sequence (assignment-sequencing problem). Of course, this problem can
be as complex as needed. Some of the performance measures in which the

scheduling models have focused are: the maximum completion time or makespan

(Cmax), the total weighted completion time (3 w;C;), the maximum lateness (Lmax), the
number of tardy jobs (3 U;), the total tardiness (3 T;), and the total weighted tardiness
(>w;T;), among others. All these performance outputs are regular measures, this is,
the scheduling is non-decreasing in the completion times [Pinedo (2002)]. In other
words, if all completion times were reduced or stayed the same, the performance

measure would decrease or stay the same.

In particular, tardiness is a due date related regular measure and it has to do with
customer satisfaction and costs associated with the delivery time. There is another
due date related performance measure, called earliness, which is not a regular
measure and it also has to do with the delivery time, but in the opposite way of the
tardiness. Tardiness implies costs for jobs being completed after their due date,
leads to unsatisfied customers, and perhaps even a loss of sales because of the late
delivery. On the other hand, earliness implies additional inventory costs. This
situation has changed because of the appearance of the Just in Time (JIT)
philosophy, developed by Toyota Motor Company Ltd., which indicates that earliness
and tardiness must be considered together when measuring the performance of a
schedule [Rivera (1996)]. As mentioned before, earliness is not a regular measure,
so, an earliness-tardiness performance measure is not a regular one. Earliness,

tardiness, and earliness-tardiness functions can be seen in Figure 1.1.

a)

b)

E

J

Earliness

AN

Tardiness

d

c)

ET

Earliness-Tardiness

Figure 1.1 a) Earliness function; b) Tardiness function; c) Earliness-tardiness function. These three functions

have a common due date d

Scheduling to minimize both earliness and tardiness costs has been strongly
motivated by the adoption of the JIT concept in the manufacturing industry, which
aims to complete the jobs exactly at their due date, not earlier and not later. Some
other examples that include the concept of earliness-tardiness minimization are: the
harvest of crop products which should be conducted around the time of the crop, and
the production of perishable goods which should not be finished too early to avoid
their possible decay, and should not be finished too late to avoid missing the delivery
[Leung (2004)]. Under a JIT philosophy, it is highly desirable to have the jobs
finished by the exact time requested by the customer. Otherwise, the jobs that are
finished earlier or later than their due date will incur penalties. The objective of JIT
scheduling is then to obtain a schedule that minimizes those penalties and part of

this thesis deals with that objective.

This project is closely related to the work done by Li et al. (2004) but considering now
the workforce allocation task. It also has a relationship with the work done by Rosas
(1991).

In this thesis problem, when the workforce is known and fixed (purely
crossdocking - JIT scheduling problem), the results obtained by our algorithm which
uses an integer programming model [Nemhauser & Wolsey (1999)] taken from Li et
al. (2004) are compared to the results obtained by their algorithm for the 16 problem
instances presented in their work. Obviously, the objective values shown by both
versions must be the same when both algorithms reach the optimal value (sometimes
this is not possible due to computer memory limits). On the other hand, when the
workforce is unknown and variable (optimal workers allocation for the
crossdocking - JIT scheduling problem), a similar but extended integer programming

model is presented.

An important section of the project has to do with the development of a metaheuristic

algorithm [Diaz et al. (1996)] to find good solutions for big problem instances. This

metaheuristic algorithm is also used for problem instances with known optimal value

to determine how close its solutions are from the optimal ones.

1.1 Thesis Structure.

In chapter 2, the problem faced in this thesis is formally described. This chapter also

includes a literature review about some previous works related to this problem.

Chapter 3 talks about heuristic and metaheuristic methods in general and about the
GRASP and Tabu Search methods, the metaheuristics applied to the problem of this

thesis, in particular.

Chapter 4 includes a description of the approaches applied to find a solution for the
crossdocking - JIT scheduling problem (exact method and metaheuristic method).
The results obtained from the different solution approaches are discussed. Analysis

and comparisons are made.

Chapter 5 is very similar to Chapter 4, but applied to the bigger problem known as

the optimal workers allocation for the crossdocking - JIT scheduling problem.
In Chapter 6, conclusions and future work related to this project are mentioned.

Finally, some Linear Programming theory, an example of an MIP, the source codes
(written in C language) for all of the algorithms used in this work, the problem
instances, and the solutions obtained by the metaheuristic algorithms are shown in
the appendixes section. Some appendixes are not printed and they only appear in

electronic format in the CD at the end of this thesis.

1.2 Methodology.

In order to create this thesis, the following methodology was used:

. Bibliographic research about workforce allocation, crossdocking - JIT scheduling

and related works.
. Bibliographic research about problems complexity, heuristics, and metaheuristics.

. Bibliographic and technical research about ILOG CPLEX 9.1, which was the

software library used to run the problem instances for the exact model.

. Design, implementation, and execution of the algorithm that generates problem
instances that can be used as inputs for the exact model and for the metaheuristic

algorithm.

. Design, implementation, and execution of the exact model which finds an optimal

(when possible) feasible solution for a particular problem instance.

. Design, implementation, and execution of the metaheuristic algorithm which finds

a feasible solution for a particular problem instance.

. Design, implementation, and execution of the algorithm that converts a solution

from the metaheuristic into an initial solution for the exact method.

. Analysis of the obtained results and conclusions.

Chapter 2

Problem Description

Typically, storage and order picking are the main operations of the handling activity
in a warehouse. These operations are labor intensive and are expensive. Handling
costs and space utilization need to be considered when working with a warehouse.
Even more, warehouses need to be configured to handle equipment and an inventory
management system is required to have everything under control. Crossdocking tries
to reduce or eliminate these issues by reducing warehouses to purely transshipment
centers where receiving and shipping are its only functions. Shipments need to
expend very little time at crossdocks before being moved into the next level in the
supply chain. At crossdocks, inbound trucks arrive with cargo that is sorted,
consolidated, and loaded onto outbound trucks sent to manufacturing sites, retailers
or even another warehouse or crossdock. In a crossdock, the customer is

predetermined and there is no need for storage.

The crossdock can be divided into an import area where breakdown occurs and an
export area where buildup occurs. In the import area, incoming containers are broken
down, and in the export area, containers are built up after consolidation, if necessary.
Since incoming containers come from a number of suppliers, incoming cargo will
reach the crossdock at different times. Items, including breakdowns, are then either
sent away directly or sent to the export area to be loaded into outgoing containers.
Outbound cargo is shipped away by vehicles with scheduled departure times. So, in
this context, each incoming container has a release time and a due date and each

outgoing container has a due date. This situation is shown in Figure 2.1.

directly ship away after breadown -

/D outgoing
cargo
Exportare al F—

Incoming
cargo

ﬂ:”_. Import area
for Breakdown operation

for Buildup operation

i

directly ship away after breadown

crossdocking center

Figure 2.1 A crossdock flow - taken from Li et al. (2004)

Each incoming (outgoing) container is processed by a breakdown (buildup) team of
workers in the import (export) area. Since such teams are limited in number,
scheduling teams to jobs has to be precise. Timing is extremely important for
crossdocking. The idea is then to obtain a schedule to specify when to start
breakdown and when to complete buildup of all cargo where the goal is to complete
processing each container exactly at its due date. This is true for the purely
crossdocking - JIT scheduling problem where the number of teams of workers in

each side of the crossdock is a given parameter.

For the optimal workers allocation for the crossdocking - JIT scheduling problem, in
which the number of teams of workers in each side of the crossdock is an unknown
variable that has to be determined, the costs are due to two factors: the number of
teams of workers hired to do the job, and the transit storage time for cargo. Each
team of workers has a fixed cost per working day, and the cargo can incur, as
mentioned before, early and tardy delivery costs. The cost per working day of each
team of workers is the same for both sides of the crossdock, and, as it is known, the
transit storage time for cargo is minimized according to JIT scheduling. Then, the
complete goal is to obtain both: the optimal number of teams of workers in each side
of the crossdock and a schedule that specifies when to start breakdown and when to

complete buildup of all cargo.

2.1 Literature Review.

The first study related to JIT scheduling appeared with the work done by Sidney
(1977) who analyzed a scheduling problem for a single machine with earliness and
tardiness penalties, considering intervals for processing the jobs, and idle times. In
that paper, an earliness penalty occurs when a job starts before its target start time.
Tardiness penalty occurs when a job finishes after its target due date. A job j incurs
no penalty if it is processed entirely in the target interval [start time;, due datej]. The
author presented a polynomial time algorithm with O(n®) order for solving this
problem, where n is the number of jobs in the problem instance. Later,
Lakshminarayan et al. (1978) developed a polynomial time algorithm with O(nlogn)

order for solving this same problem.

The following variations of JIT machine scheduling problems were studied for a

single machine with a common due date with some differences:

e Large common due date (d) - the problem is called unrestricted because the
scheduling decision will not be affected by the value of the due date. Bagchi et al.

(1986) showed that this problem can be solved in polynomial time

» Not large common due date (d) - Hall et al. (1991) showed that this problem is
NP-complete in the ordinary sense, even for not weighted unit earliness and
tardiness penalties of jobs (a = 3 = 1). In the same work, the authors showed that
if unit earliness and tardiness penalties are job-dependent (a;, [3;), the problem is

NP-hard, even for a large common due date (d)

Liaw (1999) proposed a branch and bound algorithm with dominance rules to
minimize the sum of weighted earliness (a) and weighted tardiness (3) for a single

machine scheduling problem where no machine idle time is allowed.

An excellent survey of JIT scheduling for single machine can be found in Baker and

Scudder (1990). They start the review with a basic model that contains symmetric

penalties and a common due date, and then they add some features to this basic

model to form a framework for models classification with the following characteristics:
e Linear and quadratic objective functions

e Symmetric unit earliness and tardiness penalties (a = (3), different unit earliness
and tardiness penalties (a # 3), and job-dependent unit earliness and tardiness

penalties (q;, 3)
» Common due date (d) and job-dependent due dates (d))

Job-dependent due dates (d;) complicate the problem because most of the properties
of optimal schedules do not hold any longer. Garey et al. (1988) showed that the
problem of finding minimal cost schedules with job-dependent due dates (d)) is NP-

complete.

In many studies, release times are not considered by researchers because jobs are
assumed to be ready at time 0. Mazzini and Armentano (2001) developed a
constructive heuristic and an adjacent pairwise interchange heuristic to solve the

problem where each job has its own release time (r;) and its own due date (d)).

There is little research on JIT scheduling for parallel machines and most research
done on this problem deals with a common due date (d). Few authors study this
problem with job-dependent due dates (d;). Laguna and Gonzalez-Velarde (1991)
proposed a search heuristic for the uncommon weighted earliness penalty (o))
problem with job-dependent deadlines (mandatory d)) in parallel identical machines.
Sivrikaya-Serifoglu and Ulusoy (1999) employed two genetic algorithm approaches to
heuristically solve a parallel machine scheduling problem with common and unequal
weighted earliness and tardiness penalties (a, 3) where the due dates of the jobs are
distinct (d;) and each job has its own arrival time (r;). Heady and Zhu (1998) provided
a heuristic algorithm for the uncommon weighted (q;, 3;) JIT scheduling problem with
job-dependent due dates (d;) in a multi-machine system where processing times
depend on the job-machine combination. Radhakrishnan and Ventura (2000)

provided local search heuristics in the framework of the Simulated Annealing

technique for the parallel machine earliness-tardiness uncommon due date (d))

sequence-dependent set-up time scheduling problem.

No previous research has been done on the JIT machine scheduling characterization
of the crossdocking problem, except for the one discussed in Li et al. (2004). They
proposed two algorithms to solve this problem: SWOGA and LPGA. The first one
uses Squeaky Wheel Optimization embedded in a Genetic Algorithm and the second
one uses Linear Programming within a Genetic Algorithm. However, the work
presented in this thesis considers a different metaheuristic approach applied to this

problem. Besides, the source codes of our work are available for the reader.

The crossdocking - JIT scheduling problem is NP-hard because if the due dates of
the outgoing jobs are very large, the two phases of the problem could be processed
independently (the second phase of the problem would not depend on the results of
the first phase), and each phase could be reduced to the JIT scheduling problem for
parallel machine with job-dependent due dates which it is known to be NP-hard,

since the case for single machine is already NP-hard [Garey et al. (1988)].

Rosas (1991), Rivera (1996), and Li et al. (2004) contain a section in their works that

include an excellent literature review related to JIT scheduling.

On the other hand, some works related to JIT scheduling but now considering a
variable number of teams of workers are referred below. This bigger problem

includes the workforce allocation task whose study is varied.

Abernathy et al. (1973) presented a hierarchical scheme of three phases: planning,
scheduling, and allocation, to solve a nurse-staffing problem in a hospital. They
formulated the planning and scheduling stages as a stochastic programming model,
suggested an iterative solution procedure using random loss functions, and
developed a non iterative solution procedure for a chance-constrained formulation
that considers alternative operating procedures and service criteria. They made the
assignment of tasks to multi-functional workers during the allocation phase. Siferd

and Benton (1992) extended this hospital nurse staffing and scheduling study.

10

Baker (1976) studied the basic mathematical models for workforce scheduling with

cyclic demand for staff.

Lewis et al. (1998) studied how the tasks in a fixed size office should be organized to
maximize throughput when short-term reassignment of workers is difficult, costly, or
restricted. Heymann et al. (2000) studied how many workers should be allocated for
executing a distributed application and how to assign tasks to workers in order to
maximize resource efficiency and minimize application execution time. They
proposed an effective scheduling strategy that dynamically measures the execution
times of tasks and uses this information to dynamically adjust the number of workers
to achieve a desirable efficiency, minimizing the impact of loss of speedup. Brennan
and Orwig (2000) examined conflicting approaches to work allocation in an
engineering consulting firm. They proposed an analytical framework to determine
whether a leveraged approach is superior to a cascaded bin packing approach for

the organization’s performance.

lima and Sannomiya (2001) proposed a module type genetic algorithm to solve a
modified job-shop scheduling problem with a workers allocation constraint. Campbell
and Diaby (2002) used mathematical programming to model a multi-department and
labor-intensive service environment problem. They proposed a heuristic based on a
linear assignment approximation for allocating cross-trained workers to multiple
departments at the beginning of a shift. They considered the re-assignment of tasks
to workers within the shifts. Gomar et al. (2002) developed a linear programming
model to help optimize the multi-skilled workforce assignment and allocation process

in a construction project.

Tharmmaphornphilas and Norman (2004) proposed a quantitative method based on
mathematical programming to obtain a proper job rotation interval length in a work
setting in order to reduce worker fatigue and injuries and improve the quality of the
job. Corominas et al. (2004) solved a problem of allocating types of tasks to the multi-
functional workers of a service center over a time horizon assuming equal efficiency

for all of the members of the staff.

11

No previous research has been done on the machine characterization of the optimal

workers allocation for the crossdocking - JIT scheduling problem.

It was previously shown that the purely crossdocking - JIT scheduling problem is NP-
hard. Therefore, the optimal workers allocation for the crossdocking - JIT scheduling

problem is NP-hard as well.

2.2 Relationship of the Problem with Machine Scheduling.

The crossdocking - JIT scheduling problem described before can be modeled
naturally as a machine scheduling problem as follows: each incoming container can
be thought of as a job which has a release time after which it can be processed, a
due date, and a processing time. Each outgoing container can be thought of as a job
which has a number of source containers or predecessors which feed it, a due date,
and a processing time. These incoming/outgoing jobs are processed by teams of
workers which can be thought of as machines. These machines handling
incoming/outgoing cargo are parallel because they are able to operate

simultaneously.

The parameters used in this model are:

ri - release time after which incoming container i can be broken down
d; - due date for incoming container i

pi - processing time required to break down incoming container i

Sj - the ith source of outgoing container j. Outgoing container j is built from K;

different incoming containers
D; - due date of outgoing container j
P; - processing time required to build up outgoing container j

n - number of incoming containers

12

m - number of breakdown teams
N - number of outgoing containers
M - number of buildup teams

o - penalty for unit time earliness
[- penalty for unit time tardiness

For the purposes of this project, it is assumed that n > m, and N > M (only for the
purely crossdocking - JIT scheduling problem where m and M are given parameters).
The number of jobs n and N do not have to be equal, and the number of teams m and
M do not have to be equal either. Another note related to the problem is the
representation of the S; matrix given by the n incoming containers and the N
outgoing containers. The cargo of one incoming container might be loaded in zero or
more outgoing containers, and the cargo built up in one outgoing container might
come for one or more incoming containers. If the cargo of one incoming container is
loaded in zero outgoing containers it means that the cargo is directly shipped away

after breakdown.

Other assumptions to be considered for this project are:

» Teams are identical

 Teams are available at time O

e Teams are 100% reliable (machines do not get out of order)
e A team can not process more than one job at the same time

e There are no preemptions in the scheduling, this is, once a team starts to process

a job, this job has to be finished before the team can start processing another job

= Containers and teams have infinite capacity (the number of handled items can be

any number)

= All the cargo arriving to the crossdock leaves the crossdock

13

e Distribution times for the jobs inside the crossdock are already included in their

corresponding processing times
e The horizon of the process is one working day

In the problem context, suppliers do not want to expend too much time in the
crossdock because it is very likely that they have to deliver more cargo to some other
customers and they do not want to be late. On the other hand, suppliers should not
be early because the crossdock authorities do not want to have their cargo too much
time inside the crossdock to avoid inventory and it is very likely that they need that

space for some other suppliers. This agrees with the JIT scheduling philosophy.

Incoming jobs are described by J; = {J)1, Jiz, ..., Jin} and outgoing jobs are described
by Jo = {Jo1, Jo2, ..., Jon}. Breakdown teams are described by M, = {M;;, Mz, ..., Mi}
and buildup teams are described by Mo = {Mos, Moz, ..., Moum}. JObs in J; are
processed only by teams in M,, and jobs in Jo are processed only by teams in Mo. A
job J; J;is described by {r, p;, di}, where r, p;, d; denote its release time, processing
time, and due date, respectively. A job Jo; Jo is described by {pred;, P,, D}, where P;
and D; denote its processing time and due date, respectively, and pred; describes its
predecessors, all belonging to J,. Actually, pred; represents a column of the S; matrix.
A representation of the sources or predecessors of outgoing containers and the S;

matrix is shown in Figure 2.2.

a)

(first predecessor of b) outgoing container j
outgoing container j
outgoing - 1 2
second predecessor of container a;, 1 0
outgoing container j ©
K; sources or utgoing Iner \/\ £ 2 1 0
predecessors of o _ 8
outgoing container j \ / Sij - 3 1 1
o €
. g4 [1 0
last predecessor of K1 = 3 K2 = 2

\ outgoing container j

Figure 2.2 a) A representation of the sources or predecessors of an outgoing container j; b) An example of an S

matrix with 4 incoming containers and 2 outgoing containers

Earliness and tardiness penalties of a job J; are defined by e; = max{0, d;- ¢} and t; =
max{0, ¢; - d}, respectively, where c; represents the incoming job’s finish time.
Earliness and tardiness penalties of a job Jo; are defined by E; = max{0, D;- C} and T;
= max{0, C; - D}, respectively, where C; represents the outgoing job’s finish time. The
objective of the problem is to find a schedule that minimizes the total penalty. Figure
2.3 shows a more detailed view of Figure 2.1 and it represents a summary of the

whole situation.

J,=incoming M, = machines for incoming jobs M, = machines for outgoing jobs J, = outgoing

jobs (breakdown teams) (buildup teams) jobs
{ri s, di} Jiy () Jor {pred,, P;, D3}
O My, Moy O
/)
{ra b2 di} Jpp O M, Mo, O Joo {pred,, P, Dy}
)) _/
(] (]
(] (]
(] (]
(] (]
> O M Mo O /.\
{ro Pny di} Jig Jon {predy, Py, Dy}
N

Figure 2.3 A more detailed flow for the crossdocking - JIT scheduling problem

In Figure 2.3, each incoming job represents a container coming from a company like
Pepsico, the Coca-Cola Company, Bimbo, Cuauhtémoc-Moctezuma Beer Company,
Kraft, Kimberly-Clark, among many others. Each one of these companies’ trucks
contains several products that are going to be spread out through several locations
like, i.e. in the Monterrey city area, Wal-Mart Las Torres, Wal-Mart Valle Oriente,
Wal-Mart Lincoln, etc. The Wal-Mart example is used because crossdocking has
received much attention as a result of the commercial success of large
transshipments in this company [Gue (2001)]. In the same Figure 2.3, pred; means

that job Jo; contains cargo from K; different incoming containers or jobs.

As mentioned before, cargo is processed in two phases: breakdown and buildup.
Precedence relationships exist between these phases in the following sense: each

incoming container i must be broken down before an outgoing container j can

15

commence to be built up if cargo items in container j come from container i. In other
words, a container can start buildup only if all its source containers have been
broken down in order to have all its items correctly loaded. Buildup should not start
before complete breakdown because it could be possible to have the heaviest items
loaded in the top of the container. This situation is part of another problem known as
the Bin Packing Problem [Coffman (1976), Baase (1991), Hochbaum (1997),
Horowitz et al. (1998), Cormen et al. (2001)] whose study is beyond the scope of this

work.

It is known that there are no release times for buildup. It is also known that buildup
can not commence in outgoing container j until all its cargo predecessors have been
broken down. So, it is possible to define the state variable R; as follows: the
completion time of last incoming container i broken down which contains cargo for
outgoing container j, or R; = max{ci}, i = first predecessor of outgoing container j, ...,
last predecessor of outgoing container j. R; can be seen as the release time of the

outgoing container j, however, its value depends on the current schedule.

In summary, the crossdocking - JIT scheduling problem can be viewed as a two-
phase parallel machine scheduling problem. Also, each phase of the problem can be
seen as an assignment - scheduling problem (the sequencing activity is implicitly

included in the scheduling activity), according to Figure 2.4.

16

containers teams of workers
(jobs) (machines)

O
O
O C

W

Scheduling

Figure 2.4 Inbound or outbound area of the crossdocking - JIT scheduling problem seen as an assignment -

scheduling problem

The sequencing part of the problem shown in Figure 2.4 can also be seen as a
Traveling Salesman Problem (TSP) [Lawler et al. (1985)]. So, the whole picture of
the Figure 2.4 can be viewed as a Vehicle Routing Problem (VRP) [Crainic and
Laporte (1998)].

The optimal workers allocation for the crossdocking - JIT scheduling problem can be
modeled as a machine scheduling problem just exactly in the same way as it is done
for the purely crossdocking - JIT scheduling problem. However, in this bigger
problem the incoming and outgoing jobs (n and N, respectively) are processed by an
unknown number of teams of workers (m and M) which can also be thought of as
machines. The assumptions to be considered and most of the parameters used for
the model for this bigger problem are the same mentioned for its sub-problem, but

the number of breakdown teams (m) and the number of buildup teams (M) are not

17

considered parameters any more, and the cost of a team hired (h) is a new

parameter that has to be considered.

As mentioned before, the number of teams hired to do the breakdown (m) and the
buildup (M) is unknown. Obviously, in both cases the minimum number of teams
hired is 1 and the maximum number of teams hired for the breakdown is the total
number of incoming jobs (n) and for the buildup is the total number of outgoing jobs
(N). As said earlier, the number of jobs n and N do not have to be equal, and the

number of teams m and M do not have to be equal either.

2.3 Model for the Problem.

Crossdocking - JIT scheduling problem

As the crossdocking - JIT scheduling problem described above can be seen as a
machine scheduling problem, it is possible to formulate it with the following integer

programming model taken from Li et al. (2004):

Decision variables

yik = 1 if incoming container i is processed by breakdown team k and 0 otherwise, for i

=1,..., n,k=1,....m

Yy = 1 if outgoing container j is processed by buildup team k and 0 otherwise, for j =
1, ..., Nk=1,... M

lix = 1 if incoming containers /i and j are both processed by breakdown team k and i
precedes (not necessarily immediately) j, and O otherwise, for i, j=1, ..., n, i #j, k=

1,m

Jix = 1 if outgoing containers i and j are both processed by buildup team k and i/
precedes (not necessarily immediately) j, and O otherwise, fori,j=1, ..., N, i#j, k=
1, ... M

18

ci - completion time of incoming container i, i=1, ..., n
C; - completion time of outgoing containerj,j=1, ..., N

Variables yi and Yj represent assignment variables, [and Jjx represent sequencing
variables, and c; and C; represent scheduling variables. The values assigned to the
assignment variables and to the scheduling variables represent a specific solution for

the problem.

State variables: their values depend on the current built schedule

e; - earliness of incoming container i, i=1, ..., n
E; - earliness of outgoing containerj, j=1, ..., N
ti - tardiness of incoming container i, i=1, ..., n

T; - tardiness of outgoing containerj, j=1, ..., N

Objective function

n N

Minimize Z (ae, + pt;)+ Z (an + ,BTj)

1=1]1=1

Constraints

For job to team uniqueness - each job must be processed by exactly one team:

(1) Zyik =1,i=1, ..., n (breakdown area)

M
(2) Zij =1,j=1, ..., N (buildup area)

For job precedence relationships:

(3) yi+ Y- (i +) < 1 (breakdown area)

19

(4) 2(lj + lix) - Yix - Yk < 0 (breakdown area)
Lhj=1,..,ni<j, k=1, ...,m

These two previous groups of constraints come from a transformation of the following

relationships:
Yk + Y =2 € Iy + lix = 1 (jobs i and j are processed by the same team)
yik + Y <1 € I+ ljx = 0 (jobs i and j are not processed by the same team)
Lj=1,..,ni<jk=1..m
A similar reasoning is used for the outgoing containers, obtaining:
(5) Yi+ Yi- (Ji+ Jix) <1 (buildup area)
(6) 2(Jj * Jjx) - Yic - Y < 0 (buildup area)
hj=1,..,N,i<j,k=1,... M

For sufficient time between jobs on the same team - if job i precedes job j, there must

be enough time between them for job j to be completed:
(7) cis(c-p)+ G(1-1lw),i,j=1,....n,i#j, k=1, ..., m(breakdown area)
8) Cis(C-P)+G(1-Jp), i, j=1,....,N,i#j, k=1, ..., M (buildup area)

where G is a nonzero real number such that G 2 max{f(x) | x D}and f: D A R for

some D, d {0, 1}. Then,foreachd {0, 1}and x D, the following are equivalent:
e 0=0Af(x)<0

 fix)-Gd<0

This binary variables reduction lemma is better explained in Sierksma (2001).

Since it is not easy to know the exact value that satisfies the conditions mentioned
above, Li et al. (2004) recommend, for practical purposes, to use a big value for G.
They used G = 10,000 for their runs.

The rest of the groups of constraints that complete the model are:

(9) ci-rizp,i=1, ..., n(breakdown area)

20

(10) GCj-cizP,j=1, ..., N, i=first predecessor of outgoing container j, ..., last

predecessor of outgoing container j (buildup area)
(11) ci-di=t-e,i=1,..., n(breakdown area)
(12) Ci-D;=T;-E,j=1, ..., N (buildup area)
viek {0,1},i=1,..,nk=1,...m
Y {0,1},j=1,..,N, k=1,... M
lix {0,1}, 0, j=1,..,ni#zj, k=1, ..., m
Jix {0,1}, i,j=1,. . N i#£j, k=1, ..M
c, e, Z (nonnegative integer numbers), i=1, ..., n

C, E, T, Z (nonnegative integer numbers), j=1, ..., N

The group of constraints (9) enforces release times in the breakdown area. The

group of constraints (10) specifies that an outgoing container can start buildup only if

all its source containers have been broken down. The groups of constraints (11) and

(12) specify each job’s earliness and tardiness in the breakdown area and the

buildup area, respectively.

This model contains:

A total of variables (including state variables) equal to n>m+ N*M +3(n+ N), from

which:

o n’m+N?M are binary variables and 3(n+ N) are integer variables

o n’m+N?M +n+N are decision variables and 2(n+ N) are state variables

N
» A total of constraints equal to 3n+2N +2(n* -n)m+2(N° - N)M + Z K, , where
J:

N
N<?) K. <nN

J
]=

21

= A total of non-empty cells in the technological coefficients matrix (see Appendix 1)

N
equal to 4n+3N +nm+NM +7(n* —n)m+7(N* - N)M +ZZKj
J:

The technological coefficients matrix is sparse because the total of non-empty cells is
too small with respect to the total of cells in that matrix. This total of cells is computed
multiplying the total of variables times the total of constraints. This situation can be
noticed in Table 2.1

Total of Total of Total of Total of Percentage of

n m N variables constraints non-empty cells cells occupation
Min case Max case Min case Max case Min case Max case Mincase Max case

4 1 2] 3] 2 71 93 102 297 315 6603 7242 4.5% 4.3%
5134713 150 219 235 739 771 32850 35250 2.2% 2.2%
0] 2113 626 1083 1182 3718 3916 677958 | 739932 0.5% 0.5%
151 3 114 2 1154 2075 2271 7161 7553 | 2394550 | 2620734 | 0.3% 0.3%
20| 8]18] 7 5582 10478 10820 | 36730 | 37414 | 58488196 | 60397240 | 0.1% 0.1%
24 | 11125] 12| 13983 | 26691 27266 | 93689 | 94839 |373220253|381260478| 0.0% 0.0%

Table 2.1 Percentage of occupation of the technological coefficients matrix for different crossdocking - JIT

scheduling problem instances

It can be seen in Table 2.1 that the percentage of occupation of the technological

coefficients matrix tends to zero as the problem instance grows.

Optimal Workers Allocation for the crossdocking - JIT scheduling problem

The integer programming model for the optimal workers allocation for the
crossdocking - JIT scheduling problem presented below is very similar to the one
shown for its sub-problem, the purely crossdocking - JIT scheduling problem. It is

possible to formulate it using the machine scheduling notation as follows:

Decision variables

yik = 1 if incoming container i is processed by breakdown team k and O otherwise, for i

=1,..., nk=1,...,n

22

Yy = 1 if outgoing container j is processed by buildup team k and 0 otherwise, for j =
1, ..., Nk=1,...,N

lix = 1 if incoming containers /i and j are both processed by breakdown team k and i
precedes (not necessarily immediately) j, and O otherwise, for i, j=1, ..., n, i #j, k=

1,n

Jix = 1 if outgoing containers i and j are both processed by buildup team k and i/

precedes (not necessarily immediately) j, and O otherwise, fori,j=1, ..., N, i#j, k=
1, ..., N

ci - completion time of incoming container i, i=1, ..., n

C; - completion time of outgoing containerj,j=1, ..., N

my = 1 if breakdown team k is hired and 0 otherwise, fork=1, ..., n

My =1 if buildup team k is hired and 0 otherwise, fork=1, ..., N

Variables yi and Yj represent assignment variables, [and Jjx represent sequencing
variables, c¢; and C; represent scheduling variables, and m, and M, represent
machines variables. The values assigned to the assignment variables, scheduling

variables and machines variables represent a specific solution for the problem.

State variables: their values depend on the current built schedule

e; - earliness of incoming container i, i=1, ..., n
E; - earliness of outgoing containerj, j=1, ..., N
ti - tardiness of incoming container i, i=1, ..., n

T; - tardiness of outgoing containerj, j=1, ..., N

Objective function

23

n

Minimize Z (ae, + pt,)+

N n N
) (an+,8Tj)+h;mk+h;Mk

J

Constraints

(1) Zyik =1,i=1, ..., n (breakdown area)

N
(2) ZYik =1,j=1, ..., N (buildup area)

(3) ¥+ Y- (lix + lix) <1 (breakdown area)
(4) 2(lj + lix) - Yix - Yk < 0 (breakdown area)
ij=1,...,ni<jk=1,..n
(5) Yi+ Yi- (Ji+ Jix) <1 (buildup area)
(6) 2(Jjk * Ji) - Yi - Yk < 0 (buildup area)
ij=1,..,Ni<jk=1,..,N
(7) cis(c-p)+G(1-1lw), i,j=1,...,n,i%j, k=1, ..., n(breakdown area)
(8) Ci<(Ci-P)+G(1-Jdy)i,j=1,..,N, i#j, k=1, .., N (buildup area)
(9) ci-rizpi,i=1, ..., n(breakdown area)

(10) GCj-cizP,j=1, ..., N, i=first predecessor of outgoing container j, ..., last

predecessor of outgoing container j (buildup area)
(11) ci-di=ti-e,i=1,...,n(breakdown area)
(12) Ci-D;=T;-E,j=1, ..., N (buildup area)
(13) my-yx=20,i=1,...,n, k=1, ..., n(breakdown area)
(14) My-Yyx=20,j=1,...,N, k=1, ..., N (buildup area)

yi {0,1%,i=1,...nk=1,...,n

24

Yi {0,1},j=1,...,N,k=1,...,N
lix {0,1}, 0, j=1,..,nizj,k=1,..,n
Jix 0,1}, i,j=1,.. N i#£j,k=1,..,N
me {0,1}, k=1,...,n
Mc {0,1}, k=1,...,N
c, e, Z (nonnegative integer numbers), i=1, ..., n
C, E, T, Z (nonnegative integer numbers), j=1, ..., N

All groups of constraints were previously explained, except for the new groups of
constraints (13) and (14) which specify that a job can only be assigned to a team of
workers that has been hired. Again, for the group of constraints (7) and (8), it is
recommended, for practical purposes, to use a big value for G since it is not easy to
know the exact value for G that satisfies them. We used G = 100,000 for the
experiments. This value for G is bigger than the one mentioned for the previous
model because the model of this bigger problem considers the costs due to the
number of teams of workers hired in each side of the crossdock. For the cost of a

team hired we used a value of h = 1,000.
This model contains:

» A total of variables (including state variables) equal to n®+ N®+4(n+ N), from

which:

o n®*+N?®+n+N are binary variables and 3(n+ N) are integer variables

o n*+N2%®+2(n+N) are decision variables and 2(n+ N) are state variables

N
- A total of constraints equal to 3n+2N—(n2+N2)+2(n3+N3)+ZKj, where
J:

N
N<?) K. <nN

J
]=

25

« A total of non-empty cells in the technological coefficients matrix equal to

N
2 2 3 3
Aan+3N-4(n*+N?)+7(n*+N)+ZZKj
=

26

Chapter 3

Heuristics and Metaheuristics

One of the goals of this project is to create an algorithm able to solve the optimal
workers allocation for the crossdocking - JIT scheduling problem described in
Chapter 2. As mentioned before, this problem is NP-hard, therefore, the use of
heuristics and metaheuristics to obtain a good feasible solution for big instances is

an important option to consider.

3.1 Heuristics.

Given the difficulty to obtain an optimal solution by an exact method, i.e. using the
simplex method [Murty (1983), Bazaraa et al. (1990), Dantzig and Thapa (2003)] or a
branch and bound algorithm [Horowitz et al. (1998), Neapolitan and Naimipour
(1998)], for a group of important combinatorial optimization problems when dealing
with big instances, some series of algorithms that provided near optimal feasible
solutions in a reasonable processing time started to appear in the last decades.
These kinds of algorithms were denominated heuristics. In this context, “near optimal”

and “reasonable” can be considered as subjective terms.

The word "heuristic" derives from the Greek "heuriskein," which means "to discover”,
however, this meaning might be changed for the meaning “to search” because that is

what heuristics actually do in practice.

Polya (1957) was one of the first authors in mentioning the word heuristic. He
claimed: “heuristics are methods of solution that aims at generality, at the study of

procedures which are independent of the subject-matter and apply to all sorts of

26

problems”. Zanakis and Evans (1981) defined the heuristics as “simple procedures,
often guided by common sense, that are meant to provide good but not necessarily
optimal solutions to difficult problems, easily and quickly”. Another definition of
heuristic is given by Adam and Ebert (1991) as a “set of methods and principles
whose result is a satisfactory solution of the problem obtained by using simple criteria
that allow correctly identifying good decisions”. Their lack of mathematical rigor and
the easiness of their designs have made the heuristics gain acceptance by many
practitioners who are interested in a useful tool to obtain a quick solution for complex
problems in a way that they can understand. On the other hand, one of the major
disadvantages of heuristics is that, generally, the quality of their solutions can not be
known. Even though there are many advantages when using a heuristic, if an optimal
algorithm can be used effectively to solve a problem, this last action must be done.
Zanakis and Evans (1981) explained why and when the use of heuristics is desirable

and advantageous.

3.2 Metaheuristics.

In their original definition, “metaheuristics are solution methods that orchestrate an
interaction between local improvement procedures and higher level strategies to
create a process capable of escaping from local optima and performing a robust
search of a solution space”. Over time, these methods have also included any
procedures that employ strategies for overcoming the trap of local optimality in
complex solution spaces, specially those procedures that use one or more
neighborhood structures as a mean of defining admissible moves to transition from
one solution to another, or to build or destroy solutions in constructive and
destructive processes [Glover and Kochenberger (2003)]. Gendreau (2002) defined a
metaheuristic as a “general strategy for guiding and controlling inner heuristics”.
Metaheuristics provide general frames that allow the creation of new hybrids by

combining different concepts derived from classic heuristics, artificial intelligence,

27

biological evolution, neural systems, and statistical mechanics, among others.

A number of tools and mechanisms that have emerged from the creation of
metaheuristic methods have proved to be so effective that metaheuristics have lately
become the preferred method used for solving many types of complex problems,

especially combinatorial problems [Glover and Kochenberger (2003)].

Metaheuristics can be classified according to their use of memory: metaheuristics
with memory and metaheuristics without memory. Unlike the metaheuristics without
memory, the metaheuristics with memory contain structures that retain information
about decisions previously taken, allowing that way a kind of learning. Commonly,
Tabu Search and Scatter Search are classified as metaheuristics with memory while
Simulated Annealing and GRASP are considered metaheuristics without memory [De
Alba (2004)]. Of course, some metaheuristics that usually do not make use of

memory to solve problems can be adapted to make use of it for a specific purpose.

Heuristics and metaheuristics are important approaches used in the operations
research field and, in particular, in the combinatorial optimization field, which
includes most of the interesting scheduling problems. Over the last years, these
approaches have been used to solve complex problems in several applications,

including NP-hard scheduling applications [Crainic and Laporte (1998)].

Very general methods having a wide range of applicability are typically weak with
respect to their performance. Genetic Algorithms and Neural Networks tend to belong
to this category. Problem specific methods achieve a highly efficient performance but
with little use in other problem domains. Tabu Search and Simulated Annealing can
be counted as examples of this category. Regardless of the category, heuristics and
metaheuristics can be viewed as tools for searching a space of feasible alternatives
in order to find a good solution within reasonable time limitations, but without any

guarantee of optimality [Blazewicz et al. (2001)].

An excellent description and classification of heuristics and metaheuristics are given
in Diaz et al. (1996). Glover and Kochenberger (2003) present research done by

several renowned authors in the field of the metaheuristics.

28

To solve the problem described in Chapter 2 an approach based on a combination of
two metaheuristics, GRASP and Tabu Search, is proposed. Each one of these

metaheuristics is explained next.

3.2.1 GRASP.

Greedy Randomized Adaptive Search Procedure (GRASP) was developed by Feo
and Resende (1989) to study a complex set covering problem. In its basic version,
GRASP is a multi-start or iterative method that consists of two phases at each
iteration: a constructive phase whose result is a feasible and good but not
necessarily optimal solution, and a local search procedure, during which,
neighborhoods of the solution are examined until a local optimum is attained. The
construction phase is based on the idea that a variety of good solutions can be
generated by an “intelligent randomization” of the selection step of a greedy
heuristic. These solutions are then passed to an exchange procedure that searches
for local improvements. The iterations proceed, keeping the best solution found, until
a stopping criterion is reached [Laguna and Gonzalez-Velarde (1991)]. Then,
GRASP has two main parameters: one related to the stopping criterion and another
related to the amount of “randomization” allowed in the selection step of a greedy
heuristic. This last parameter is often called a. The case a = 0 corresponds to a pure

greedy algorithm while a = 1 is equivalent to a completely random algorithm.

Figure 3.1 shows a basic GRASP pseudo-code taken from Resende and Ribeiro
(2001). For this particular case, the stopping criterion of the procedure is the

maximum number of iterations while the parameter a is not mentioned.

procedure GRASP(Max_lterations)
Best_solution & o or -c0; // minimization or maximization problem
fori =1, ..., Max_lterations do
Solution & Greedy Randomized_Construction();
Solution & Local_Search(Solution);
Update_Solution(Solution, Best_Solution);
end for;
return Best_solution;
end GRASP.

29

Figure 3.1 Pseudo-code for a basic GRASP procedure

Other pseudo-codes for a basic GRASP are shown in Diaz et al. (1996) and in
Resende and Gonzalez-Velarde (2003).

Unlike the rest of the metaheuristics, which operate over previously obtained
solutions, GRASP is a constructive method that focus on building high-quality
solutions for further processing in order to get better results. At each step of the
construction phase, a substructure is added to a partial solution, initially empty, until

a complete solution is found.

Each one of the words that form the acronym GRASP characterizes one of the
components of this metaheuristic. At each iteration of the construction phase,
GRASP maintains a set of candidate elements that can be feasibly incorporated to
the partial solution under construction. All candidate elements are evaluated
according to a greedy function in order to select the next element to be added to the
construction. This greedy function usually represents the marginal increase in the
cost function from adding the element to the partial solution. The evaluation of the
elements is used to create a restricted candidate list (RCL) which consists of the best
elements, i.e. those whose incorporation to the current partial solution results in the
smallest incremental costs (for a minimization problem) -this is the greedy aspect of
the method-. The element to be added into the partial solution is randomly selected
from those in the RCL -this is the random aspect of the metaheuristic-. Once the
selected element is added to the partial solution, the RCL is updated and the
incremental costs are recalculated -this is the adaptive aspect of the metaheuristic-.
The previous high-level description of the components of the GRASP technique was
taken from Resende and Ribeiro (2001) and from Laguna and Marti (2003).

The immediate GRASP strategy predecessor is the semi-greedy heuristic proposed
by Hart and Shogan (1987), which is also a multi-start approach based on greedy
randomized constructions, but without local search. An older background of the
GRASP technique can be found in Lin and Kernighan (1973).

30

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usually
improves the constructed solution. A local search algorithm works in an iterative
fashion by successively replacing the current solution by a better solution found in
the neighborhood of the current solution. This procedure can be done during the
construction phase or at the end of it. Local search is very important for the GRASP
technique because it is useful when searching locally optimal solutions in promising

regions of the solutions space.

GRASP is based on the premise that good and diverse initial solutions play an
important role in the success of local search methods. The effectiveness of a local
search procedure depends on several aspects, such as the neighborhood structure,
the neighborhood search techniques, the speed of evaluation of the objective
function of neighbor solutions, and the initial solution. The construction phase plays a
critical role with respect to providing high-quality starting solutions for the local
search. Simple neighborhoods structures are usually used. The neighborhood search
may be implemented using either a best-improving or a first-improving strategy. In
the case of the best-improving strategy, all neighbors are examined and the current
solution is replaced by the best neighbor. In the case of the first-improving strategy,
the current solution moves to the first neighbor whose cost function value is strictly

less than that of the current solution (for a minimization problem).

The first phase (construction) of the GRASP metaheuristic constitutes the core of this
technique. The way in which the second phase (local search) of this procedure is
done varies from methods that explore simple neighborhoods through more
sophisticated procedures. Very often, a local search ends in a locally optimal
solution. To escape from these local optima, several strategies have been
suggested, i.e. the use of other metaheuristics as an improvement procedure.
Actually, GRASP hybridizations with other metaheuristics that use GRASP results as
initial solutions are common. Actually, for the local improvement phase of the work
under study in this thesis, the Tabu Search algorithm with the best-improving strategy

is used.

31

3.2.2 Tabu Search.

According to Glover and Laguna (1997), “Tabu Search (TS) is a metaheuristic
procedure that guides a local heuristic search algorithm to explore the solution space
beyond local optimality”. The local procedure is a search that uses an operation

called “move” to define the neighborhood of any given solution.

TS is based on the premise that problem solving, in order to qualify as intelligent,
must incorporate “adaptive memory” and “responsive exploration”. The adaptive
memory feature of TS allows the implementation of procedures that are capable of
searching the solution space economically and effectively. Since local choices are
guided by information collected during the search, TS contrasts with memory-less
designs that heavily rely on random processes that implement a form of sampling, i.e.
GRASP. Memory-based strategies are then the hallmark of TS approaches. Actually,
TS is perhaps the metaheuristic procedure that employs memory in the most

strategic and direct way.

On the other hand, the emphasis on responsive exploration in TS derives from the
supposition that a bad strategic choice can yield more information than a good
random choice. In a system that uses memory, a bad choice based on strategy can

provide useful clues about how the strategy may be profitably changed.

TS is concerned with finding new and more effective ways of taking advantages of
the mechanisms associated with both elements: adaptive memory and responsive
exploration. These two elements of the TS procedure have several important
characteristics which are summarized in Table 4.2 of Diaz et al. (1996). This
previous high-level description of TS was taken from Glover and Laguna (1997) and
from Laguna and Marti (2003).

TS was formally proposed by Glover (1986), but its basic form is founded on some

previous ideas proposed by himself [Glover (1977)], including elements like short

32

term memory to prevent the reversal of recent moves, and longer term frequency
memory to reinforce attractive components. The basic principle of TS is to pursue
local search whenever it encounters a local optimum by allowing non-improving
moves. Cycling back to previously visited solutions is prevented by the use of

‘memories”, called “tabu lists”, which record the recent history of the search.

Gendreau (2002) considered TS as an extension of classical local search
procedures. In fact, he mentioned that TS can be seen as simply the combination of
local search with short-term memories. According to him, the two first basic elements
of any TS heuristic are the definition of its “search space” and its “neighborhood
structure”. The search space of a TS heuristic is simply the space of all possible
solutions that can be considered (visited) during the search. The neighborhood of the
current solution S, denoted by N(S), is a subset of the search space defined by the
solutions obtained by applying a single local transformation to S. In general, for any
specific problem, there are many more possible (an even attractive) neighborhood
structures than search space definitions. This follows from the fact that there may be
several feasible neighborhood structures for a given definition of the search space.
Choosing a search space and a neighborhood structure is by far the most critical

step in the design of any TS heuristic.

Figure 3.2 shows basic TS pseudo-code taken from Pinedo (2002). In this particular
case, the pseudo-code is applied to a scheduling problem and the stopping criterion

of the procedure is the maximum number of iterations allowed.

33

procedure Tabu-Search(S, Max_lterations)
Step 1:
Setk =1
Set S, =Sy
Step 2:
Select a candidate schedule S, from the neighborhood of S
If the move S, A S, is prohibited by a mutation on the tabu-list then
Set Sy+1 = S«
Go to Step 3
If the move S, A S is not prohibited by any mutation on the tabu-list then
Set S, =S,
Enter reverse mutation at the top of the tabu-list
Push all other entries in the tabu-list one position down
Delete the entry at the bottom of the tabu-list
If Value(S.) < Value(S,) then
Set S, =S,
Step 3:
Increment k by 1
If kK = Max_lterations then
Stop
Otherwise
Go to Step 2

Figure 3.2 Pseudo-code for a basic Tabu Search procedure

It is interesting to note that in the same year that TS appeared, a similar approach
named steepest ascent / mildest descent was proposed by Hansen (1986). However,
in the traditional steepest ascent / mildest descent optimization method, the search
stops when the value of the objective function evaluated in a solution S is not better
that the obtained value in the previous iteration, this is, when a local optimum has

been found. To avoid this, TS keeps exploring solutions, even non-improving ones.

GRASP and TS metaheuristics are also mentioned in the next chapters, which

explain the approach used to solve the problem under study.

34

Chapter 4

Solution Approach for the Crossdocking - Just in

Time Scheduling Problem

This chapter deals with the solution approach for the problem described in Chapter 2
when the number of teams of workers in each side of the crossdock is fixed and
known (m and M). This is called the crossdocking - JIT scheduling problem and it
represents a sub-problem (or a particular case) of the problem under study in this

thesis work. This sub-problem is, as mentioned before, NP-hard.

4.1 Solution Form.

To solve this problem it is necessary, for the inbound area, to have each one of the n
incoming jobs assigned in a position in one of the m breakdown machines and a

completion time. Two notes can be cited with regard to this statement:

» The use of a machine has no fixed cost; then, the model will make use of all of the
available machines because that way it is easier to accommodate the jobs in

order to obtain better results. It is convenient to remember that n > mand N> M

 Once the completion time for a job is obtained, its earliness and tardiness

penalties are directly obtained

Using a notation similar to the one used in Laguna and Gonzalez-Velarde (1991), the

incoming schedule, S;, has the form:
S ={m, ¢}

where:

35

e T ={y, Mp, ..., Tum} IS the assignment of the n incoming jobs to the m breakdown

machines
* ¢ is the set of completion times for the n incoming jobs

where 1y represents the sequence in which the n, incoming jobs assigned to

machine k will be processed. This 1, sequence has the following form:

Tk = {Ttk(1), TU(2), ..., TU(Nk)}
where T1(i) is the index of the incoming job in position / on machine k.

A similar reasoning and representation is used for the outbound area and its

outgoing schedule, So.

As mentioned in Chapter 1, the development of a computer program that solves the
integer programming model developed by Li et al. (2004) and the development of a
metaheuristic algorithm to find good solutions for different problem instances are two
important tasks to consider in the project. These tasks are mentioned in the following

two sections of this chapter.

4.2 Exact Method of Solution.

Our solution of the integer programming model for the crossdocking - JIT scheduling
problem developed by Li et al. (2004) is obtained through a computer program that
makes use of the ILOG CPLEX 9.1 library. The results obtained by this program are
compared to the results obtained by their program (which also uses the ILOG CPLEX
library) for the 16 problem instances presented in their work. Obviously, the objective
values shown by both versions must be the same when both algorithms reach the
optimal value. The code of the computer program is easily done once the integer
model is obtained. It is necessary just to follow the coding conventions mentioned in
the ILOG CPLEX 9.1 User’s Manual.

ILOG CPLEX search for solutions in nodes trees created according to the model

36

defined. So, different orders in the definitions of variables and/or constraints might
create different search trees (and very likely different solutions if the computer runs

out of memory before reaching the optimal solution).

Figure 4.1 shows the output given by the exact method algorithm for the following
small problem instance. This problem instance creates an MIP with 71 variables and

99 constraints which can be seen in Appendix 2.

n = 4 r p d P D S 1 2 3
m = 2 1 5 6 14 1 2 22 1 0 1 1
N = 3 2 6 12 19 2 5 28 2 1 1 1
M = 2 3 8 6 16 3 19 39 3 1 0 1
a= 1 4 7 1 11 4 1 1 0
B= 100 K, =3 K;,=3 K;=3
G = 10000

Table 4.1 Input data for a crossdocking - JIT scheduling problem instance with 4 incoming jobs and 2

breakdown machines, and 3 outgoing jobs and 2 buildup machines

) Assignment

Crossdock

37

b)

Scheduling

e=3 e~=0 E=0
’” =0 £=1 M 7=0
o Job, g Jjob, D,
| |
7. iy g2 iy _ 39
1 1| [22] |1 []
7 | 8 8 20 2;:)' 5| 3|9
| |
starting p, € starting P, C;
time, time,
s 1 14 8_3 16 1 » 2 28
2@ | s [s] 12 m [2] [s]
5 11 11 17 20 22 23 28
e=3 e=0 £,=0 £~0
£=0 t=1 7,=0 7=0
Crossdock Z = 206

Figure 4.1: Solution for a crossdocking - JIT scheduling problem instance: a) Assignment; b) Scheduling

For the particular crossdocking - JIT scheduling problem instance shown in Table
4.1, Figure 4.1 presents an optimal solution with an objective value of 206 (f, = 1, es
= 3, €4 = 3)

The computer program that solves the crossdocking - JIT scheduling problem using
the exact model is shown in Appendix 3 (only in electronic format in the software and
data CD).

4.3 Alternative Method of Solution.

The problem under study is NP-hard. The experiments show that the integer
programming solver of ILOG CPLEX 9.1 takes a long time to reach an optimal
solution (when possible) for large problem instances using the formulation of Chapter
2. To obtain high quality faster solutions for the problem an approach based on a
combination of two metaheuristics: Reactive GRASP (RG), and Tabu Search (TS), is
proposed. The whole algorithm is abbreviated as RGTS. The RG procedure is used
to construct initial feasible solutions which, in turn, are used by the TS procedure in
order to try to improve those solutions. RG algorithm is embedded in RGTS, so

RGTS will offer equal or better objective values than just RG.

This combination of procedures: GRASP and Tabu Search, was used to solve a

38

similar problem in Laguna and Gonzalez-Velarde (1991) with good results and is

referred by the authors as GTS.
4.3.1 Solutions Construction.

As mentioned before, a Reactive GRASP (RG) metaheuristic algorithm is used to
construct initial feasible solutions for the crossdocking - JIT scheduling problem. The

following figure describes this RG algorithm:

1 for each RG iteration

2 for each section of the crossdock

3 while there are jobs to be scheduled in the section

4 select the greedy function to be used

5 adapt the restricted candidate list (RCL) of admissible jobs according to the selected greedy function
6 select job to be scheduled

7 adapt the RCL of machines according to the time horizon

8 select machine to host the selected job

9 insert the selected job in the selected machine
10 update the schedule
11 mark the job as scheduled
12 if the schedule is good enough and different enough
13 include the schedule in the list of good schedules

Figure 4.2: Pseudo-code for the RG algorithm

For the RG algorithm shown above, there are several notes to comment:
For line 1, we defined 3000 iterations.

For line 4, we defined 4 greedy functions (gf) that can be used:

gf1(j) = ideal starting time; + potential slack time; = (due date; - processing time;) +

(due date; - processing time)) - release time;
= gfij) = ideal starting time; = due date; - processing time;
» gfi(j) = release time;
* gf4j) = due date;

These greedy functions are used in both sides of the crossdock and as each job j can

39

only start after its release time, the release time for outgoing containers is defined by

their source containers as described in Chapter 2.

The values for the selected greedy function at any given iteration are obtained for
each non scheduled job j at that iteration. To select the greedy function, a Reactive
strategy is used. In GRASP context, using a Reactive strategy means that a
parameter value is not fixed, but instead is chosen by the algorithm from a discrete
set of possible values. The selection of this parameter value is guided by self-
constructed probabilities obtained along previous iterations of the algorithm. This
Reactive strategy of GRASP changes the probabilities for the parameter values of
being selected in order to favor those values that historically have produced good
solutions. In our RG algorithm, for the first 100 iterations, we simply use a uniform
distribution to choose the greedy function. In other words, the 4 different greedy
functions mentioned above are equally likely to be chosen for the first 100 iterations.
For the rest of the iterations, we use the Reactive strategy previously mentioned. The
Reactive strategy in the context of GRASP was proposed by Prais and Ribeiro
(2000).

The Reactive strategy has been widely used to obtain the value of the usually single
parameter a of GRASP but it had not been used to select the greedy function to be
applied in an iteration of the algorithm. Usually, a single greedy function is used for
all of the iterations of the GRASP algorithm. However, the experiments showed that
when we used a single greedy function in our algorithm, a particular greedy function
showed better results than the others for some problem instances (see Table 4.6).
On the other hand, the Reactive strategy that we applied showed good results for all
of the problem instances. So, we decided to apply that strategy in our algorithm to
the different greedy functions mentioned above in order to obtain more robustness. In
other words, using the Reactive strategy of GRASP, the algorithm is not restricted to
one problem instance. This is an important contribution of this work to the GRASP
methodology and it has a relationship with the hyper-heuristics field where the
algorithms choose a heuristic among a set of different heuristics, depending on the

properties of the problem, in order to solve an optimization problem. Most of the time,

40

each heuristic is selected according to its performance which can be increased or
decreased depending on a learning mechanism. This places hyper-heuristics in a
higher level of abstraction than most heuristics and allows the user to operate
efficiently and effectively within a more general framework [Burke et al. (2003)]. In
our case, instead of selecting a heuristic to solve the problem, we select a greedy
function per iteration of the GRASP algorithm to do it. By doing this, we avoid the
time consuming fine-tuning task, which usually performs well just for some problem

instances.
For line 5, we defined that a job j belongs to the RCL of jobs if:
gfu(j) £ minValued + a0 * (MaxValued - minValued), for each non scheduled job j

where minValueJ and maxValueJ are the minimum and maximum values of all of the
gfu(j) values that correspond to non scheduled jobs, respectively, and Qjops (0 < Qjops <
1) is a parameter that controls the amount of randomization allowed for jobs
selection. The parameter value for o, is selected using the Reactive strategy from
the following discrete set of 7 possible values: 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

For line 6, the job is simply randomly selected from the RCL of jobs.
For line 7, we defined that a machine k belongs to the RCL of machines if:

machine horizon, < minValueM + Omachines * (maxValueM - minValueM), for each

machine k

where minValueM and maxValueM are the minimum and maximum values of all of
the machine horizon, values, respectively, and Opmachines (0 < Omachines < 1) IS a
parameter that controls the amount of randomization allowed for machines selection.
The machine horizon, value is defined as the completion time of the job assigned in
the last position of machine k. If machine k has no jobs assigned to it then the
machine horizon, value is equal to 0. Again, the parameter value for Omachines IS
selected using the Reactive strategy from the following discrete set of 7 possible
values: 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

For line 8, the machine is simply randomly selected from the RCL of machines.

41

For line 9, the algorithm applies insertion of jobs in a way similar to the one done in
Mazzini and Armentano (2001), but adapting that procedure to the parallel machines
problem’s structure of this work because they just consider single machine
scheduling. When a job j is going to be inserted in a machine schedule, the
procedure tries to put the job in a place where the cost is minimal. If there is no
overlapping between the job j and any other already scheduled job in the machine,
the procedure starts the insertion of another job. Otherwise, it is necessary to
eliminate the overlapping between jobs in such a way the cost increase be minimal.
The algorithm considers four possible moves in order to eliminate the overlapping
between the inserted job and the already scheduled jobs. These moves are deeply

explained in Mazzini and Armentano (2001).

For line 10, the algorithm updates the idle times over a partial feasible schedule in
order to decrease its cost. This update procedure consists of two phases: in the first,
the jobs are shifted to the left, and in the second, the jobs are shifted to the right.
These phases are also deeply explained in Mazzini and Armentano (2001). Again,
we adapted their procedure to our parallel machines problem’s structure. An
important characteristic of this update procedure is that idle times are inserted during
the construction stage. This allows offering a better performance than most of the
approaches found in the literature which insert the idle times over complete

schedules.

In the same line 10, our implementation includes an ejection chain process in the
schedule (after the insertion of idle times) if it is convenient and possible, i.e., a
movement to the left of the joby in a machine (job in position j of the machine) might
move to the left the job.4; in the same machine and this last movement might cause
the jobj to be moved to the left in the same machine, and so on. Sometimes, a job
might be moved during the process to some other machine (when working with more
than one machine in the section of the crossdock that corresponds to that job) if
necessary. This ejection chain process is considered only when working with the
right section of the crossdock due to the flexibility in the outgoing releases times

(Rfs) and it is triggered when in any iteration of the algorithm the insertion of a job

42

causes that same job or another job to be tardy. This process might affect just the
right section of the crossdock, or both (when the movement to the left of a job in the
right section of the crossdock affects its predecessors or source containers). An

example of the chain ejection process can be seen in Figure 4.3.

a) b)
Horizon 1 2 3 45 6 7 8 9 1011 12 13 Horizon 1 2 3 45 6 7 8 9 101112
R; R;
pred 4 pred 4
Machine 1 | 2 | | 3 Machine 1 | 2 \| 3
ra rg <4—— ra rs
Machine 2 ‘ joby Machine 2 | 1 | \| 4 \| joby; |
ry T ry rq
pred, | pred ;
Machine 3 a1 5] Machine 3 [
ry rs 4—— rs
pred 3 pred 3
Machine 4 ‘@ Machine 4 6
r's re

Figure 4.3: An example of the ejection chain process: a) Before the movement of the joby; b) After the

movement of the joby;

It can be seen in Figure 4.3a that the movement to the left of the joby; in the outbound
area affects its predecessors 1 and 2 (job; and jobgs), respectively) because their
completion times are equal to R;, but it does not affect its predecessor 3 (job))
because its completion time is lower than R;. It can be seen in Figure 4.3b that, in the
inbound area, the movement to the left of the joby's predecessor 1 does not affect
the job at its left (joby), but the movement to the left of the joby;'s predecessor 2 does
affect the job at its left (joby;) which is moved to another machine. The R; decreases

by one unit.

In the context of the problem, convenient means to have a schedule with a lower
cost. We decided to apply this ejection chain process due to the Proximate Optimality
Principle (POP) which stipulates that “good solutions at one level are likely to be
found close to good solutions at an adjacent level” [Glover and Laguna (1997),

Fleurent and Glover (1999)]. In our case, level refers to a stage of the construction

43

phase, and we have defined mechanisms for moving across these levels so that the

principle applies.

For lines 12 and 13, we decided to keep a set with the 5 best diverse schedules
called elite solutions or set S. The set S is used to guide the procedure as follows:
when a schedule s with cost(s) < cost(worst(S)) is generated, it is a candidate to be
added to S replacing worst(S) if s is different enough from all of the schedules in S.
In our case, worst(S) is the schedule in the fifth position in the ordered by objective
value set S. To measure how different is s from a schedules s S, we count the
number of identical positions of the jobs in the machines for both schedules s and s".
If the number of identical positions is greater than 50% of the number of jobs in the
complete schedule, the solution s is discarded unless an aspiration criteria is
satisfied, i.e. cost(s) < cost(best(S)). A deeper explanation about the Diversification
strategy can be found in Fleurent and Glover (1999). Appendix 4 shows the set S,
output of the RG algorithm for a crossdocking - JIT scheduling problem instance with
20 incoming jobs and 3 breakdown machines, and 21 outgoing jobs and 3 buildup
machines. The input data for this problem instance is also shown in Appendix 4. It
can be seen in the same appendix that the elite solutions in the set S are shown in
ascending order by objective value. Sometimes, some different solutions have the

same objective value.

Figure 4.4 shows a graphical sequence of the output given by an iteration of the RG

algorithm just for the left section of the crossdock for the following problem instance:

1
100

ri
21
14

d;
24
16
13
6
16
3
34
16
10
4

Iswe
wonono

N
N o

O©COoONOOUPAWN-=~

w|wlo|o|nv|a|d|av

N
Ofr|O|xp|—|R|w|o

-
o

Table 4.2 Input parameters {r;, p;, di} for a crossdocking - JIT scheduling problem instance with 10 incoming jobs

and 2 breakdown machines

44

It can be seen in Figure 4.4 that at each step of an iteration of the RG algorithm a job
is inserted into the schedule (GRASP is a constructive method). All schedules (partial
or complete) are feasible. After that insertion, the already mentioned update

procedure is done.

45

Step 1
Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1

Machine 2

Step 2
Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1

Machine 2 ‘

Step 3
Horizon
Machine 1
Machine 2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Step 4
Horizon
Machine 1
Machine 2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Step 5
Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1
Machine 2

Step 6
Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1 '
Machine 2

Step 7
Horizon 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1
Machine 2

Step 8
Horizon
Machine 1
Machine 2

Step 9
Horizon
Machine 1
Machine 2

Step 10
Horizon

Machine 1

Machine 2

JIT

Earliness

Figure 4.4: Graphical sequence of the output of an iteration of the RG algorithm for the inbound area of the

crossdock

46

4.3.2 Solutions Improvement.

The solutions generated by the RG algorithm and kept in the set S previously
discussed are used as starting points for the TS algorithm. In our implementation, we
make use of a traditional “fixed” size short-term memory in the following context: the
memory size is related to the size of the problem instance and it is calculated as the
number of jobs divided by the number of machines in each section of the crossdock.

So, we have one memory size per section: memorysize n/m and

inbound

memory size N/M . Once the memory size per section is computed it remains

outbound

the same for all of the 100 iterations that we decided for the TS algorithm.

Given an initial solution, TS tries to improve it by making a succession of moves. A
move can improve, deteriorate or leave the solution with the same objective value. Of
course, even if the solution remains with the same objective value, the schedule
changes from iteration to iteration. Regardless of the move applied, the solution

remains feasible.
The moves considered in our algorithm are:

e InsertLeftSameMachine(t(i)) which consists of transferring the job currently in
position i of machine k one position immediately before it in the same machine.
Just after the move is made, the completion time of job i (c;;) in machine k is equal
to the starting time of job i-1 (sj.1;) in the same machine k. This move might cause
infeasibility due to two reasons: the release time constraint of job i (r;) is broken,
or there is overlapping between jobs / and i-2. In any case, the infeasibility is
eliminated by shifting to the right the necessary jobs in machine k as many unit

times as needed

» InsertRightSameMachine(t(i)) which consists of transferring the job currently in
position / of machine k one position immediately after it in the same machine. Just
after the move is made, the starting time of job /i (s;) in machine k is equal to the

completion time of job i+1 (cj.;) in the same machine k. This move might cause

47

infeasibility due to overlapping between jobs i and i+2. This infeasibility is
eliminated by shifting to the right the necessary jobs in machine k as many unit

times as needed

InsertDifferentMachine(tu(i), T4) which consists of transferring the job currently in
position /i of machine k into machine q. This move implies removing job i from
machine k and putting it into machine g according to the insertion procedure

mentioned in line 9 of Figure 4.2. This move does not cause infeasibility

ExchangeSameMachine(ti.(i)) which consists of allowing jobs in positions i and /-1
of machine k to exchange positions (also known as Adjacent Pair-wise
Interchange or API). Just after the move is made, the starting time of job i (sj) is
equal to the starting time of job /-1 (sj.1;) and the completion time of job i-1 (cj.q)) is
equal to the completion time of job i (c;;). This move causes infeasibility if the
release time constraint of job i (r;;) is broken. This infeasibility is eliminated by
shifting to the right the necessary jobs in machine k as many unit times as
needed. We do not consider an exchange between jobs in positions i and i+1 in
the same machine because the exchange of these two jobs is analyzed when i is

increased to j+1

ExchangeDifferentMachine(ti.(i), T4(j)) which consists of allowing jobs in position i
and j of machines k and q, respectively, to exchange machines assignments. This
move implies removing job i from machine k and putting it into machine g and
removing job j from machine g and putting it into machine k simultaneously
according to the insertion procedure mentioned in line 9 of Figure 4.2. This move
does not cause infeasibility. A threshold value for each section of the crossdock
called maxDistancej,poung @and maxDistancequmwouns are used for this movement to
detect and eliminate from consideration unreasonable moves. These threshold
values are calculated as the 25% of the difference between the maximum
completion time and the minimum completion time of all of the jobs in the

corresponding section of the crossdock. If the absolute value of the completion

48

time of 1.(/) minus the completion time of 1y(j) is greater than the corresponding

threshold value, the move is not considered

Figure 4.5 shows the 5 movements considered.

a) i-1 i b) i i+1
Machine, jobyq | | Joby Machine, jobyy | 1901
T Sii1 i1 Sy Cii Sii1 | Cri-115q C[:]T
C) i
Machine, joby,
S C
R -
Machine, joby; 4, joby,
Sjar - g Sm Cu
e) i
d) -1 i Machine, joby;
Machine, joby joby; S i
Sii11 CiaiSta | C
[-1] (-1 [. :
Machine, joby;
S j Cin

Figure 4.5: Movements of the algorithm: a) InsertLeftSameMachine(Ti(i)); b) InsertRightSameMachine(ix(/)); c)

InsertDifferentMachine(ti(i), Tiq); d) ExchangeSameMachine(mi(i)); e) ExchangeDifferentMachine(Ti(i), T4(j))

All moves make use of the update procedure mentioned in line 10 of Figure 4.2 after

the move is made to try to improve the solution. If the move involves two machines,

the update procedure is applied over both mach

ines.

The moves are applied over all jobs in each section of the crossdock when possible,

i.e. the move InsertLeftSameMachine(ti.(i)) cannot be applied to the first job in a

machine and the move InsertRightSameMachine(t.(i)) cannot be applied to the last

49

job in a machine. This creates a neighborhood for each one of the two sections of the
crossdock. A list of moves and their associated move values is made at every step of
the procedure for these neighborhoods. We simply select the move with the best
objective value of both neighborhoods to be applied to the current schedule. In case
of ties, we select the move randomly. Obviously, the selected move is admissible

according to the tabu restrictions being imposed.
The following figure describes the TS algorithm we use to solve the problem:

1 for each RG solution s

2 bestSolution=s =5,

3 bestValue = F(s) = F(sy)

4 for each TS iteration

5 for each section of the crossdock
6 for each job in the section
7
8

for each neighbor of the job
save the move and its objective value

9 select the best move that is not tabu
10 apply the move to s
11 update the schedule s
12 update the corresponding tabu structure of the selected move
13 if F(s) <F(sy)
14 bestSolution = s
15 bestValue = F(s)

Figure 4.6: Pseudo-code for the TS algorithm

Appendix 5 shows the set S, output of the RGTS algorithm for the same problem
instance shown in Appendix 4. It can be seen in Appendix 5 that sometimes the best
RGTS solution (Solution 2 in Appendix 5) does not come from the best RG solution

(Solution 1 in Appendix 4).

Figure 4.7 shows the output given by the RGTS algorithm for the following problem

instance:

50

a= 1 i r; pPi d; j preds; R; P; D;
L= 100 1 21 2 24 1 6,7 34 2 58
n= 10 2 14 2 16 2 1,6,9 24 3 54
m= 2 3 6 5 13 3 3,6,9 11 3 26
N= 11 4 3 2 6 4 3,7 34 2 46
M= 3 5 8 5 16 5 3 11 1 15
6 1 2 3 6 3,6,7,8 34 4 68

7 28 6 34 7 5,6,8 16 3 29

8 9 6 16 8 [1,5,6,7,10| 34 5 77

9 4 3 10 9 3,9 11 2 32

10 0 3 4 10 [1,5,7,8,10] 34 5 68

11 1,8 24 2 27

Table 4.3 Input data for a crossdocking - JIT scheduling problem instance with 10 incoming jobs and 2

breakdown machines, and 11 outgoing jobs and 3 buildup machines

a)
i s, ¢, e, t Assigr_1ed j s, c, E, T, Assigt_red
machine machine
1 22 24 0 0 2 1 56 58 0 0 2
2 15 17 0 1 1 2 51 54 0 0 1
3 6 11 2 0 2 3 23 26 0 0 1
4 4 6 0 0 1 4 44 46 0 0 3
5 11 16 0 0 2 5 14 15 0 0 3
6 1 3 0 0 1 6 64 68 0 0 1
7 28 34 0 0 1 7 26 29 0 0 2
8 9 15 1 0 1 8 72 77 0 0 2
9 6 9 1 0 1 9 30 32 0 0 1
10 1 4 0 0 2 10 63 68 0 0 3
11 25 27 0 0 3
b)
Inbound area
i (s cpet)
Machine 1: 6(1,3,0,0)4 (4, 6,0,0)9(6, 9,1,0)8(9,15,1,0)2(15,17,0,1) 7 (28, 34, 0, 0)
Machine 2: 10 (1,4, 0,0) 3 (6, 11,2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)
Outbound area
j (S G Ep T)
Machine 1: 3 (23, 26, 0, 0) 9 (30, 32, 0,0) 2 (51, 54, 0, 0) 6 (64, 68, 0, 0)
Machine 2: 7 (26, 29, 0, 0) 1 (56, 58, 0,0) 8 (72, 77, 0, 0)
Machine 3: 5 (14, 15, 0, 0) 11 (25, 27, 0, 0) 4 (44, 46, 0, 0) 10 (63, 68, 0, 0)
c)
Inbound area
Horizon 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1 6 4 9 | 8 ‘| 7
Machine 2 10 3 | 5 ‘

51

Figure 4.7: RGTS solution: a) Tabular form; b) Machine-Job form; c) Graphical form (only inbound area)

The outputs s; and S; in Figure 4.7 are not variables of the model described in
Chapter 2; however, they are very useful when coding the RGTS algorithm and they

represent the starting times for incoming jobs and outgoing jobs, respectively.

For the particular crossdocking - JIT scheduling problem instance shown in Table
4.3, Figure 4.7 presents an optimal solution with an objective value of 104 (f, = 1, es
= 2, eg = 1, eg = 1). However, as mentioned in Chapter 3, heuristics and

metaheuristics can not guarantee optimality.

The computer program that solves the crossdocking - JIT scheduling problem using
the RGTS algorithm is shown in Appendix 6 (only in electronic format in the software
and data CD).

4.4 Computational Experiments.

The test data that we used for the experiments for the problem are the same 16
problem instances shown in Li et al. (2004). They provided us with this data. All data
are integer values. The way this data was generated is specified in their work.
Although we used these 16 crossdocking - JIT scheduling problem instances to make
valid and real comparisons between the behavior of our RGTS metaheuristic and
their metaheuristic with best results which they called LPGA, a computer program
was coded in C language which can create new problem instances (for possible
future research) under the conditions mentioned in their work. This computer
program is shown in Appendix 7 (only in electronic format in the software and data

CD) and it uses the following parameters:
e ri~round(UNIF(0, 10))

e pi~ceil(EXP(5)) (pi = 0 does not make any sense)

52

e d ~round(UNIF(0,5))+r+p;

» K;~discrete UNIF(0, n)

* preds;or column j of S; matrix ~ random sample without replacement

e Pi~ceil(EXP(5)) (P; = 0 does not make any sense)

e D;~round(UNIF(0, 5)) + max{dj} that belongs to preds; + P;
i=1,.,nj=1,.,N

where n is the number of incoming jobs and N is the number of outgoing jobs.

All parameters are integer values and, obviously, these values can be easily
changed in the computer program. All these parameters were mentioned in Chapter 2
and their values are independent of the number of breakdown machines (m) and the

number of buildup machines (M).

This problem instance generator program creates as output a text file which is used
as input for the exact model algorithm shown in Appendix 3 and for the RGTS
algorithm shown in Appendix 6 (both appendixes are only shown in electronic format

in the software and data CD). This text file structure is the following:

1row {nm N M timeHorizon
nrows {r;p;d.

Nrows {S;

Nrows {P;D,

Figure 4.8: Input file structure for the exact model algorithm and for the RGTS algorithm

The crossdocking - JIT scheduling problem instances provided by Li et al. (2004) are
shown in Appendix 8 (only in electronic format in the software and data CD) and their

structure is the same shown in Figure 4.8.

The penalty for one job to be early one unit time (a) is 1 and the penalty for one job
to be tardy one unit time (5) is 100 just as in Li et al. (2004).

A personal compatible computer with a processor Pentium IV with a speed of 3 GHz

53

and a RAM of 1 GB was used to run all of our experiments. The source codes of all
of the programs mentioned in this thesis were written in the C programming language
[Gottfried (1997)]. For the algorithm that solves the crossdocking - JIT scheduling
problem using the integer programming model described in Chapter 2, the ILOG
CPLEX 9.1 library was used.

4.4.1 Testing and Comparison of Results.

We show in Table 4.4 the results found from our exact model algorithm and from the
RG and the TS algorithms described before. The column data set specifies the
following parameters: number of incoming containers (n), number of machines in the
import area (m), number of outgoing containers (N), number of machines in the
export area (M), time horizon (th). The parameter time horizon is used to create the

release times of each incoming container and it represents a time window for their

arrivals.

Data set Time CPLEX Time RG Time TS Time RGTS

ID (n-m-N-M-th) CPLEX (seconds) RG (seconds) RGTS (seconds) (seconds)
1 10-2-11-3-30 104 ~0 104 ~0 104 1 1
2 15-3-14-2-35 8 41 8 ~0 8 1 1
3 20-3-21-3-40 615 8221 744 1 616 4 5
4 32-3-34-4-50 926 12684 724 1 423 14 15
5 30-4-29-5-46 211 12845 211 1 211 13 14
6 32-4-33-5-50 5 67704 5 1 5 14 15
7 30-5-30-5-90 1 2 1 1 1 12 13
8 40-5-38-5-60 9 21503 9 2 9 27 29
9 42-5-43-5-55 112 21000 114 2 111 30 32
10 32-5-35-6-54 3 12 3 1 3 19 20
11 40-5-43-6-56 4 21356 10 2 4 32 34
12 56-5-57-6-62 21281 20733 1671 3 858 20 93
13 34-6-32-6-60 7 45003 7 1 7 21 22
14 50-7-60-8-70 10 34934 10 3 10 88 91
15 90-8-89-9-70 2351 48065 14 5 13 450 455
16 93-9-94-9-75 4526 36067 48 7 33 480 487

Table 4.4: Experimental results of our solution approach for the crossdocking - JIT scheduling problem

Italicized results from column CPLEX in Table 4.4 indicate that it cannot be

guaranteed that an optimal solution has been reached because the memory limits

54

were exceeded. In those cases, the best known integer value is reported (instances
3, 4,5, 6,8, 9, 11, 12, 13, 14, 15, and 16). Bold results from the same column
CPLEX show the instances in which the optimal solutions were found (instances 1, 2,
7, and 10).

As it can be seen in Table 4.4, the RG algorithm is effective and fast. However, it can

be improved in many cases by the TS algorithm which is much slower.

The results of the RG and RGTS algorithms for the 16 crossdocking - JIT scheduling

problem instances already mentioned are shown in Appendix 9.

Table 4.5 shows a comparison between Li et al. (2004) results and our results. For
the column CPLEX of this table we used a merge of our results and their results
when using the ILOG CPLEX library. The value shown in the column CPLEX is the
best objective value of both results. In case of tie in the objective value of both
results, we report for the column Time CPLEX the result of the algorithm that took the
lowest time to solve the problem. The differences in the objective values from column
CPLEX of both works are not due to the memory limits because both groups of
authors used a computer with 1 MB of RAM. It is very likely that the differences are
due to the way the variables and/or constraints were defined in the computer
programs or the parameters used to run the ILOG CPLEX library. We used the
default parameters in our experiments when using the ILOG CPLEX library 9.1. The
order in which the variables and constraints were defined in our computer program is
the same order in which the integer programming model was written in Chapter 2.
We do not know the way their computer program was coded and we do not know how
they set the ILOG CPLEX parameters either. Besides, they do not specify the ILOG

CPLEX version used in their work.

55

Data set CPLEX Time CPLEX SWOGA LPGA Time LPGA RG Time RG RGTS Time RGTS

S

(n-m-N-M-th) (seconds) (seconds) (seconds) (seconds)

1 10-2-11-3-30 104 ~0 104 104 2 104 ~0 104 1
2 15-3-14-2-35 8 32 8 8 2 8 ~0 8 1
3 20-3-21-3-40 615 8221 1305 715 15 744 1 616 5
4 32-3-34-4-50 926 12684 924 530 34 724 1 423 15
5 30-4-29-5-46 211 12845 409 312 42 211 1 211 14
6 32-4-33-5-50 5 51362 5 4 44 5 1 5 15
7 30-5-30-5-90 1 2 1 1 43 1 1 1 13
8 40-5-38-5-60 9 21503 107 27 40 9 2 9 29
9 42-5-43-5-55 112 21000 210 111 45 114 2 111 32
10 32-5-35-6-54 3 12 3 3 25 3 1 3 20
11 40-5-43-6-56 4 45230 200 4 35 10 2 4 34
12 56-5-57-6-62 6569 23374 2463 1384 123 1671 3 858 93
13 34-6-32-6-60 7 45003 7 6 38 7 1 7 22
14 50-7-60-8-70 10 34934 110 12 46 10 3 10 91
15 90-8-89-9-70 1147 41514 113 15 57 14 5 13 455
16 93-9-94-9-75 3500 38193 458 149 131 48 7 33 487

Table 4.5: Comparison of results of our solution approach with other authors’ solution approach for the

crossdocking - JIT scheduling problem

As it can be seen in Table 4.5, RG objective values are always better or equal than
SWOGA (one of their two metaheuristics) objective values. Besides RG is always
faster than SWOGA, therefore, we could say that RG algorithm outperforms SWOGA

algorithm in terms of both, objective value and time.

On the other hand, RG objective values are better than LPGA (their metaheuristic
with best results) objective values for instances 5, 8, 14, 15 and 16 (most cases are
large problem instances, where RG has a very good behavior in terms of objective
value and time). Both algorithms found the same objective value for instances 1, 2, 7,
and 10. For the other 7 instances (3, 4, 6, 9, 11, 12, and 13) LPGA obtained better

objective values than RG. In all cases, RG is faster than LPGA.

According to Li et al. (2004), LPGA offers better objective values than SWOGA. On
the other hand, it is known than RG algorithm is embedded in RGTS, so it is
expected that RGTS offers equal or better results than just RG. Then, LPGA and
RGTS are compared. Both algorithms found the optimal value for the 5 out of the 16
cases when the exact model algorithm also found the optimal value (instances 1, 2,
7, 10, and 11). For the other 11 problem instances, RGTS found better results than
LPGA in 8 occasions (instances 3, 4, 5, 8, 12, 14, 15, and 16), LPGA found better

results than RGTS in 2 occasions (instances 6 and 13), and they found the same

56

objective value in 1 occasion (instance 9). For most cases, RGTS takes less

computational effort than LPGA except for very large problem instances. This is due

to the TS part of RGTS.

As mentioned before, four greedy functions were used in the Reactive strategy of the

GRASP algorithm. It was also mentioned that a particular greedy function showed

better results than the others for some problem instances, but another greedy

function showed better results than the others for some other different problem

instances as it can be seen in Table 4.6. Results from each column gf represent the

average objective value of 5 runs per instance just for the RG algorithm.

ID (n -m-Ila-aI:/la-f:; gf4 gf, gfs gf4
1 10-2-11-3-30 104.0 104.0 104.0 104.0
2 15-3-14-2-35 9.2 10.0 112.0 211.8
3 20-3-21-3-40 837.2 657.4 674.6 701.0
4 32-3-34-4-50 972.8 683.4 1172.2 1189.6
5 30-4-29-5-46 221.6 211.0 398.8 218.2
6 32-4-33-5-50 9.0 5.0 30.8 6.0
7 30-5-30-5-90 1.0 1.0 1.4 1.0
8 40-5-38-5-60 78.6 9.0 36.6 12.0
9 42-5-43-5-55 409.4 113.8 307.0 217.8

10 32-5-35-6-54 7.2 3.0 9.2 3.6

1 40-5-43-6-56 112.6 8.2 153.8 106.2

12 56-5-57-6-62 2916.2 1834.0 3121.2 2135.4

13 34-6-32-6-60 14.2 7.2 13.8 8.0

14 50-7-60-8-70 31.0 10.0 79.4 12.2

15 90-8-89-9-70 254.2 14.0 1509.2 20.8

16 93-9-94-9-75 310.6 44.4 434.4 252.2

Table 4.6: Average objective values for the RG algorithm when using the 4 different greedy functions separately

57

Chapter 5

Solution Approach for the Optimal Workers
Allocation for the Crossdocking - Just in Time

Scheduling Problem

This chapter deals with the problem described in Chapter 2 when the number of
teams of workers in each side of the crossdock is not a given parameter but an
unknown variable which has to be determined. This problem is bigger than the one
studied in Chapter 4 (actually, it is a super problem of it) and it is known as the
optimal workers allocation for the crossdocking - JIT scheduling problem which is,
obviously, NP-hard. The representation of the solution of this problem is the same

used for the sub-problem shown in Section 4.1.

5.1 Exact Method of Solution.

Our solution of the optimal workers allocation for the crossdocking - JIT scheduling
problem is obtained through a computer program that makes use of the ILOG CPLEX
9.1 library. The code that solves this problem using the integer programing model
described in Chapter 2 is shown in Appendix 10 (only in electronic format in the
software and data CD). The order in which the variables and constraints were
defined in our computer program is the same order in which the integer programming

model was written.

Unfortunately, our computer resources are limited in speed and memory and the

integer programming model contains too many variables and constraints. So, the

56

results obtained by the exact method when using the ILOG CPLEX 9.1 library (with
default parameters) are very poor in terms of objective value and time as it can be
seen in Table 5.1 compared to the results obtained by the alternative approach

shown in Table 5.2.

Data set Number of Numb_er of Machines Schedule Total Time

ID (n-N-th) breakdown buildup cost cost cost CPLEX
machines (m) machines (M) (seconds)

1 10-11-30 2 1 3000 111 3111 2842
2 15-14-35 3 1 4000 144 4144 9469
3 20-21-40 4 2 6000 237 6237 19926
4 32-34-50 5 4 9000 7 9007 29500
5 30-29-46 5 4 9000 326 9326 36602
6 32-33-50 5 4 9000 14 9014 28687
7 30-30-90 3 3 6000 107 6107 38101
8 40-38-60 6 4 10000 921 10921 55770
9 42-43-55 7 6 13000 2 13002 44632
10 32-35-54 5 4 9000 23 9023 39935
11 40-43-56 6 4 10000 10 10010 40176
12 56-57-62 10 9 19000 1 19001 62781
13 34-32-60 6 3 9000 128 9128 46381
14 50-60-70 7 10 17000 9 17009 68780

Table 5.1: Experimental results for the complete version of the optimal workers allocation for the crossdocking -

JIT scheduling problem when using the integer programming solver ILOG CPLEX 9.1 with default parameters

Italicized results from column Total Cost in Table 5.1 indicate that it can not be
guaranteed that an optimal solution has been reached because the memory limits
were exceeded. In those cases, the best known integer value is reported. Bold
results from the same column Total Cost show the instances in which the optimal
solutions were found. It can be seen in Table 5.1 that only for the instance 1 an

optimal solution was found.

The 14 optimal workers allocation for the crossdocking - JIT scheduling problem
instances mentioned in Table 5.1 are the same first 14 out of the 16 problem
instances provided by Li et al. (2004) which are shown in Appendix 8 (only in
electronic format in the software and data CD). The structure of this 14 problem
instances is the same shown in Figure 4.8, but without using the values of m and M
because the number of breakdown machines and the number of buildup machines

are not parameters any more. The last 2 problem instances provided by Li et al.

57

(2004) are not used in this problem because they are too big for our computer

resources.

5.2 Alternative Method of Solution.

To obtain high quality faster solutions for the optimal workers allocation for the
crossdocking - JIT scheduling problem, a very similar approach to the one described
in Chapter 4 is proposed: a combination of the metaheuristics Reactive GRASP but
now embedded in a Local Search algorithm (RGLS), and Tabu Search (TS). The
whole algorithm is abbreviated as RGLSTS. The RGLS procedure is used to find the
number of teams of workers hired in each side of the crossdock and to construct
initial schedule solutions which, in turn, are used by the TS procedure in order to try
to improve those schedule solutions. TS procedure does not change the number of
teams of workers obtained by the RGLS procedure. RGLS algorithm is part of the
RGLSTS, so RGLSTS will offer equal or better objective values than just RGLS.

Figure 5.1 describes the RGLS algorithm we used to solve the problem. As
mentioned before, the Reactive GRASP (RG) is embedded in a Local Search (LS)
algorithm. The RG algorithm is used to construct initial schedule solutions depending
on the current number of teams of workers hired in each side of the crossdock (m
and M). The LS algorithm is used to select the number of teams of workers to be
hired.

1 assign an initial value for the number of machines to be rented in each side of the crossdock

2 while the best value has not been found

3 make a search in the neighborhood

4 for each RG iteration

5 for each section of the crossdock

6 while there are jobs to be scheduled in the section

7 select the greedy function to be used

8 adapt the restricted candidate list (RCL) of admissible jobs according to the selected greedy function

9 select job to be scheduled
10 adapt the RCL of machines according to the time horizon
11 select machine to host the selected job
12 insert the selected job in the selected machine
13 update the schedule
14 mark the job as scheduled
15 if the schedule is good enough and different enough
16 include the schedule in the list of good schedules
17 update the value for the number of machines to be rented in each side of the crossdock

58

Figure 5.1: Pseudo-code for the RGLS algorithm

For the RGLS algorithm shown above, there are some notes to comment:

For line 1, we defined the initial number of machines in each side of the crossdock as
the center point of the n x N dimension mesh given by the number of incoming and
outgoing jobs, respectively, as it can be seen in Figure 5.2. In other words, the initial

number of machines for the inbound and outbound areas is n/2 and N/2,

respectively.

M= N/2

1 m= n/2 n

Figure 5.2: Assignment of the initial values for the number of breakdown and buildup machines for the RGLS

algorithm

Lines 2, 3 and 17 represent the Local Search (LS) algorithm that embeds the
Reactive GRASP (RG) metaheuristic used to construct initial schedule solutions. The
LS algorithm creates the path along the point representing the current number of
machines (m, M) moves to reach the best overall value. At each iteration of the LS
algorithm, a neighborhood of points around the point that represents the current
number of machines (m, M) is explored as shown in Figure 5.3. The iterations
proceed, keeping the best solutions found, until no one of the points around the point
(m, M) shows better results than this point. It can be mention that, during iterations, if
the cost of a neighbor point due to the number of machines rented is greater than the
best solution found so far, that neighbor point is not explored. This is done to make

the LS algorithm faster.

59

(m-1,M+1) (m, M+ 1) (m+1,M+1)

(m-1,M) (m+1, M)
(m, M)

(m-1,M=1) (m, M—1) (m+1,M=1)

Figure 5.3: Neighborhood of the point (m, M). This point represents the current number of machines rented in

the inbound and outbound areas of the crossdock, respectively

The path from the initial values to the final values for the number of breakdown and
buildup machines (m and M) for the RGLS algorithm for the 14 problem instances
already mentioned are included in the results of the RGLSTS algorithm shown in

Appendix 11.
Lines 4 - 16 of Figure 5.1 are exactly the same whole lines shown in Figure 4.2.

The TS part of the RGLSTS algorithm is exactly the same TS part of the RGTS

algorithm shown in Figure 4.6.

The results obtained by the RGLSTS algorithm are summarized in Table 5.2.

Data set Number of Number of RGLS RGLS Time RGLSTS Time RGLSTS Time

ID (n-N-th) breakdown buildup Machines Schedule RGLS Schedule TS Total RGLSTS
machines (m) machines (M) cost cost (seconds) cost (seconds) cost (seconds)

1 10-11-30 2 1 3000 111 5 111 ~0 3111 5
2 15-14-35 2 1 3000 1936 8 1148 1 4148 9
3 20-21-40 3 2 5000 922 22 629 5 5629 27
4 32-34-50 3 3 6000 958 63 434 24 6434 87
5 30-29-46 4 3 7000 438 42 338 19 7338 61
6 32-33-50 3 3 6000 256 58 238 21 6238 79
7 30-30-90 2 2 4000 535 43 529 12 4529 55
8 40-38-60 4 3 7000 272 94 63 50 7063 144
9 42-43-55 4 3 7000 1482 145 656 64 7656 209
10 32-35-54 4 3 7000 931 70 51 29 7051 99
11 40-43-56 4 3 7000 540 142 231 53 7231 195
12 56-57-62 6 5 11000 2409 336 298 251 11298 587
13 34-32-60 4 2 6000 1290 59 580 25 6580 84
14 50-60-70 5 4 9000 1359 299 268 83 9268 382

Table 5.2: Experimental results of the optimal workers allocation for the crossdocking - JIT scheduling problem

60

when using the RGLSTS algorithm

It can be seen in Table 5.2 that for the instance 1 an optimal solution was found,
according to Table 5.1. However, as mentioned in Chapter 3, heuristics and

metaheuristics can not guarantee optimality.

As mentioned before, RGLSTS algorithm shows a better behavior in terms of
objective value and time than the exact method when using the ILOG CPLEX 9.1

library (with default parameters).

The computer program that solves the optimal workers allocation for the
crossdocking - JIT scheduling problem using the RGLSTS algorithm is shown in

Appendix 12 (only in electronic format in the software and data CD).

5.3 Model for the Problem (reduced version).

As the results obtained by the exact method and shown in Section 5.1 for the optimal
workers allocation for the crossdocking - JIT scheduling problem when using the
ILOG CPLEX 9.1 library (with default parameters) for the model described in Chapter
2 are poor in terms of objective value and time compared to the results obtained by
the alternative approach named RGLSTS, it has been decided to reuse the model of

that chapter with the following changes:

» We used the sum of the teams of workers obtained by the RGLSTS algorithm
(that we called m’ + M’) as an upper bound for the total number of teams of

workers that can be hired. This implied the following:

o0 We could reduce the number of variables and constraints in the new
version of the exact model depending on the values of m’ and M’ compared
to the values of n and N, respectively (m’ < n, and M’ < N). This can be
seen in the indexes used in most of the decision variables, in the objective

function and in most of the groups of constraints of the new model

o0 We created the single constraint (15) which can be seen at the end of the

61

new model

We used the solutions obtained by the RGLSTS algorithm as initial solutions in
the program in C language that solves the optimal workers allocation for the
crossdocking - JIT scheduling problem using the ILOG CPLEX 9.1 library. It was

important to consider the following at this point:

o To set the parameter CPX_PARAM_MIPSTART on (by default this

parameter is off) in order to accept initial solutions

The structures of both types of solutions are different. So, it was necessary
to transform the solutions obtained by the RGLSTS algorithm into solutions
that could be read by the program that solves the optimal workers
allocation for the crossdocking - JIT scheduling problem using the new
exact model. The computer program used to do that is shown in Appendix

13 (only in electronic format in the software and data CD)

To avoid exceeding memory limits, we decided to use the ILOG CPLEX node files

storage feature. This required to set the following ILOG CPLEX parameters:

0 CPX _PARAM_WORKMEM. We used the default value for this parameter

which is 128 MB. This parameter means that once the tree (ILOG CPLEX
keeps the information of the problem solution in a tree) storage size
exceeds this limit, what happens next is defined by the parameter
CPX_PARAM_NODEFILEIND. ILOG CPLEX uses node file storage most
effectively when the amount of working memory is reasonably large so that
it does not have to create node files too frequently. A reasonable amount is
to use approximately half the RAM of the computer used to run the

problem, but no more than 128 MB

CPX_PARAM_NODEFILEIND. It indicates the type of storage for the node
files. We used the value of 3 for this parameter which means that we
wanted to write the node files to disk in a compressed way (by default the

value of this parameter is 1 which means that the node files are not written

62

to disk but they are compressed in RAM)

0 CPX_PARAM_TRELIM. This parameter is used to limit the size of the tree
kept in the node files so that it does not exceed the amount of disk space
chosen. We used a value of 1 x 10* MB (10 GB) for this parameter (the

default value of this parameter is 1 x 10’ MB)

0 CPX _PARAM_WORKDIR. We used the default value for this parameter

which is and it means that we wanted to save the node files in the

current working directory

e We set the value of the parameter CPX_PARAM_TILIM in 90000 seconds which

specifies that the limit runtime for a problem instance is 25 hours

» We decided to use the ILOG CPLEX strong branching feature by setting the value
of CPX_VARSEL_STRONG for the parameter CPX_PARAM_VARSEL. With this
feature, the program invests considerable effort in analyzing potential branches in
the hope of drastically reducing the number of nodes that will be explored in the
tree. This is recommended when working with very big problems like the one

presented in this chapter

It can be mentioned that, for the new model, the parameters m and M (these are
parameters again in the new model) are equal to (m’ + M’) - 1, where (m’ + M’) is the
sum of the teams of workers hired obtained by the RGLSTS algorithm. This value of
(m" + M’) is used as the maximum number of teams of workers that can be hired in
total for both sides of the crossdock. We used the equality m =M =(m’ + M’) - 1
because we need at least one team of workers hired in each side of the crossdock.
This modification with respect to the model described in Chapter 2 allowed us to
drastically reduce the number of variables and constraints in the new model. Even

though, the problem is still big.

The formulation of the optimal workers allocation for the crossdocking - JIT
scheduling problem (reduced version) using the machine scheduling notation is the

following:

63

Decision variables

yik = 1 if incoming container i is processed on breakdown machine k and 0 otherwise,

fori=1,..., n,k=1,...,m

Yj« = 1 if outgoing container j is processed on buildup machine k and 0 otherwise, for
i=1,... Nk=1,..,M

lik = 1 if incoming containers i and j are both processed by breakdown machine k and
i precedes (not necessarily immediately) j, and O otherwise, fori, j=1, ...,n, i £, k=

1, ..., m

Jik = 1 if outgoing containers i and j are both processed by buildup machine k and i

precedes (not necessarily immediately) j, and O otherwise, fori,j=1, ..., N, i#], k=
1, ..., M

Ci - completion time of incoming containeri,i=1, ..., n

C; - completion time of outgoing containerj, j=1, ..., N

my = 1 if breakdown machine k is used and O otherwise, fork =1, ..., m

My = 1 if buildup machine k is used and O otherwise, fork =1, ..., M

Variables yi and Yj represent assignment variables, lj and Jij represent sequencing
variables, c¢; and C; represent scheduling variables, and my and My represent
machines variables. The values assigned to the assignment variables, scheduling

variables and machines variables represent a specific solution for the problem.

State variables: their values depend on the current built schedule

ei - earliness of incoming containeri,i=1, ..., n
E; - earliness of outgoing containerj,j=1, ..., N
ti - tardiness of incoming containeri,i=1, ..., n
T; - tardiness of outgoing container j,j=1, ..., N

64

Objective function

n

Minimize Z ae, + pt;) +i(an +ﬂTj)+ hi m, +h§ M,
=1 =1

1=1 =1

Constraints

Z Yy« =1,i=1, ..., n (breakdown area)

M
(2) Zij =1,j=1, ..., N (buildup area)

(3) Vik * Vi - (lik * ljix) <1 (breakdown area)
(4) 2(lik + ljik) - Yik - Yik < 0 (breakdown area)
Lj=1,..,ni<j,k=1,...,m
(5) Y+ Y- (Jik + Jjix) < 1 (buildup area)
(6) 2(Ji * Jji) - Yik - Yjk < 0 (buildup area)
bj=1,..,Ni<jk=1,..,M
(7) ci<s(c-p)+G(1-1lw),i,j=1,....,n, i), k=1, ..., m(breakdown area)
8) Ci<(C-P)+G(1-J),i,j=1,....,N,i#j, k=1, ..., M (buildup area)
(9) c-r=2p,i=1, ..., n(breakdown area)

(10) Cij-ci2P,j=1,...,N,i=first predecessor of outgoing container j, ..., last

predecessor of outgoing container j (buildup area)
(11) c-di=ti-e,i=1,..., n(breakdown area)
(12) C;-Dj=T;-E;,j=1, ..., N (buildup area)

(13) mg-yx=20,i=1,...,n, k=1, ..., m(breakdown area)

65

(14) Mc-Yi=0,j=1,...,N, k=1, ..., M (buildup area)
m M
(15) ; m, + ; M, < (m'+M") (both areas)

yk {0,1}i=1,..,n k=1,...,m
Yi {0,1},j=1,....,Nk=1,..., M
ik 0,1}, 0,j=1,...,n,i£j,k=1,...,m
Jix {0,1}, i,j=1,..,N,/izj,k=1,.., M
me {0,1}, k=1,...,m
M {0,1}, k=1,..., M
c, e, t Z (nonnegative integer numbers),i=1, ..., n
C, E, T; Z' (nonnegative integer numbers),j=1, ...,N

This model is very similar to the one shown in Chapter 2, but with the changes
previously mentioned in this section. Again, we used G = 100,000 and h = 1,000 for

the experiments. The new single constraint (15) is used to reduce the solution search
space.

This model contains:

e A total of variables (including state variables) equal to
(n2 +1)m+(N2 +1)M +3(n+N), from which:

o (n2 +1)m+ (N2 +1)M are binary variables and 3(n+ N) are integer variables

o (n2 +1)m+(N2 +1)M +n+N are decision variables and 2(n+ N) are state

variables
N
« A total of constraints equal to 3n+2N +2(n* -n)m+2(N? - N)M +nm+ NM + Z K,
J:

N
where N SZKj <nN
J:

66

« A total of non-empty cells in the technological coefficients matrix equal to

N
4n+3N +3nm+3NM +7(n* -n)m+7(N? = N)M +ZZKj
J:

The computer program that solves the optimal workers allocation for the
crossdocking - JIT scheduling problem using the previous exact model (reduced
version) is shown in Appendix 14 (only in electronic format in the software and data
CD).

The results obtained by the reduced version of the problem are shown in Table 5.3. It
can be seen that few problem instances (the smallest ones) improved their objective
values compared to the solutions provided by the RGLSTS algorithm as initial
solutions for the exact method when using the ILOG CPLEX 9.1 library with the
specific parameters mentioned above. However, the optimal value can not be
guaranteed for most of the problems instances when running the reduced version of
the optimal workers allocation for the crossdocking - JIT scheduling problem for up to

25 hours (an arbitray but reasonable timeout).

Data set Number of Numper of Machines Schedule Total Time

ID (n-m-N-M-th) breakdown buildup cost cost cost CPLEX
machines (m) machines (M) (seconds)

1 10-2-11-2-30 2 1 3000 111 3111 3
2 15-2-14-2-35 2 1 3000 651 3651 1129
3 20-4-21-4-40 3 2 5000 566 5566 90000
4 32-5-34-5-50 3 3 6000 434 6434 90000
5 30-6-29-6-46 4 3 7000 338 7338 90000
6 32-5-33-5-50 3 3 6000 238 6238 90000
7 30-3-30-3-90 2 2 4000 529 4529 90000
8 40-6-38-6-60 4 3 7000 63 7063 90000
9 42-6-43-6-55 4 3 7000 656 7656 90000
10 32-6-35-6-54 4 3 7000 51 7051 90000
11 40-6-43-6-56 4 3 7000 231 7231 90000
12 56-10-57-10-62 6 5 11000 298 11298 90000
13 34-5-32-5-60 4 2 6000 580 6580 90000
14 50-8-60-8-70 5 4 9000 268 9268 90000

Table 5.3: Experimental results for the reduced version of the optimal workers allocation for the crossdocking -

JIT scheduling problem when using the integer programming solver ILOG CPLEX 9.1 with specific parameters

Italicized results from column Total Cost in Table 5.3 indicate that it can not be

guaranteed that an optimal solution has been found because the time limit was

67

reached. In those cases, the best known integer value is reported. Bold results from
the same column Total Cost show the instances in which the optimal solutions were
found. It can be seen in Table 5.3 that only for the instances 1 and 2 an optimal
solution was found and it was improved the objective value for instance 3 with

respect to its initial solution provided by the RGLSTS algorithm.

The 14 optimal workers allocation for the crossdocking - JIT scheduling problem
instances mentioned in Table 5.3 refer to the first 14 out of the 16 problem instances
provided by Li et al. (2004) which are shown in Appendix 8 (only in electronic format
in the software and data CD). However, now each problem instance requires two
input files: one contains the data provided by Li et al. (2004) -slightly modified- and
the other contains the initial solution obtained from the RGLSTS algorithm. The
structure of the input files related to the data for these 14 problem instances is the
same shown in Figure 4.8, but adding the value of m" + M’ at the end of the first line.
The 28 input files corresponding to these 14 problem instances are shown in

Appendix 15 (only in electronic format in the software and data CD).

68

Chapter 6

Conclusions

The crossdocking - JIT scheduling problem is a sub-problem of the optimal workers
allocation for the crossdocking - JIT scheduling problem. The number of teams of
workers in each side of the crossdock is a fixed and known parameter in the sub-

problem.

The crossdocking - JIT scheduling problem is a relevant NP-hard problem that has
not received much attention by researchers. The work presented in this thesis has an
important academic contribution because it involves the development of a

metaheuristic algorithm not previously applied to that problem.

To obtain optimal or near optimal solutions for the crossdocking - JIT scheduling
problem represents an improvement in the movement or distribution of the products,

reducing in this way, transportation costs and inventory costs.

Our solution approach to solve the NP-hard crossdocking - JIT scheduling problem is
based on a combination of two metaheuristics, Reactive GRASP (RG) and Tabu
Search (TS), abbreviated as RGTS. It is efficient and it offers good results with
modest computational effort. It represents an excellent alternative to the approach
studied in Li et al. (2004) for the same problem. The combination of these two
metaheuristics, GRASP and Tabu Search, has been applied to other problems with

also good results.

Experiments showed that RG offers good solutions in very short times, but it can be

improved in many cases by TS which is slower.

On the other hand, the optimal workers allocation for a crossdocking - JIT scheduling

problem is, obviously, harder to solve than its sub-problem, but it is more realistic

69

and interesting, as well. As this bigger problem is more complex than its sub-
problem, two versions of it were analyzed: a complete version and a reduced version.
The reduced version obtains better results faster than the complete version;
however, it is necessary to know the results from the alternative algorithm first in

order to be able to use it.

The alternative algorithm used to solve the optimal workers allocation for a
crossdocking - JIT scheduling problem is very similar to the approach used for its
sub-problem: a combination of the metaheuristics Reactive GRASP but now
embedded in a Local Search algorithm (RGLS), and Tabu Search (TS). The whole
algorithm is abbreviated as RGLSTS.

Again, experiments showed that RGLS offers good solutions which can be improved
in many cases by TS. These solutions are obtained with modest computational effort

compared to the exact model.

6.1 Future Work.

Due to time limitations, only one fixed cost for teams of workers was used to make
tests for the optimal workers allocation for the crossdocking - JIT scheduling problem
(the cost per working day of each team of workers was the same for both sides of the
crossdock). Some other tests might be done using different fixed costs for these
teams in order to make an analysis of the impact of the workforce costs in the

schedule of the jobs.

Some other extensions that can be applied in the context of the present work are the

following:
e To have teams with different speeds

e To have stochastic sick days for some members of the teams (equivalent to have

stochastic failures for the machines)

70

e To have workers with different salaries (equivalent to have machines with

different costs)
e To have stochastic arrival times and/or processing times for the jobs
e To have job-dependent early and tardy costs

This research work can also be extended to some other relevant problems related to

the transportation industry that make use of crossdocking.

On the other hand, the codes of the algorithms developed in this project can be used
for further researches that keep a relation with GRASP and Tabu Search methods

due to their clarity in the writing, detailed design, and scalability.

71

Appendix 1

Linear and Integer Programming

The Optimization area is part of the Mathematical Programming that deals with the
designed methods to obtain the best result (maximum or minimum) of an objective
function through the appropriate selection of the decision variables, in a limited

acting environment, and subject to operational and/or design constraints.
A common formulation for an optimization problem can be seen as follows:
min/max z = f(x)
subject to:
hi(x)<b,i=1,...,m
hi(x) =2 b;, i=my+1, ..., m;+m;
hi(x) = b, 1= mg+my+1, ..., my+my+mg
<x;<u;,j=1,...,n
In this formulation:
» z=1(x) is the objective function

“_"

* hi(x) ~ b, i=1, ..., m=mp+my+m;s are the functional constraints (the sign “~” can

be “<”, "2” or “=”)

* [<x<u;,j=1, ..., nare the state constraints
e by, i=1,..., m=my+tmy+m; are known parameters
* X,]=1, ..., nare the unknown decision variables, so x is a vector of size n

e | and u; are the known lower and upper bounds of the decision variable |,

respectively

72

If the objective function and the functional constraints are linear equations, then the

problem is a Linear Programming (LP) problem.

If all of the decision variables are non-negative and there are no inequality
constraints in an LP problem it is said that the problem is in its standard form. In

other words, the problem is a standard LP problem.

It is possible to represent a standard LP problem using a matrix formulation as

follows:
min/max z = ¢'x
subjectto Ax =b
where:

e A is an m x n given matrix known as the technological coefficients matrix (m is the

total number of constraints and n is the total number of variables)

e b is a given vector of size m known as the capacities vector (some authors call it

the right hand side vector or simply the rhs vector)
e C is a given vector of size n known as the costs vector

- X is the vector to find of size n known as the solution vector, x ~ R* (nonnegative

real numbers)

It is always possible to represent any non-standard LP problem in its standard form

by adding slack variables to it and using some other transformations.
A deeper explanation about Linear Programming can be found in Murty (1983).

In the same context of optimization problems, there exists an interesting group of
them called combinatorial optimization problems. In this kind of problems, some or all
of the decision variables are integers and, generally, the solutions space is formed
by subsets of integer numbers [Diaz et al. (1996)]. In other words, integer and
combinatorial optimization deals with problems of maximizing or minimizing a
function of many variables subject to integrality restrictions on some or all of the

decision variables [Nemhauser & Wolsey (1999)]. If some decision variables of the

73

problem are continuous and some of them are integer then it is said that the problem
is a Mixed-Integer Problem (MIP). A special case of the MIP is the Pure Integer

Problem (PIP), where there are no continuous decision variables.

A representation of an MIP problem using a matrix formulation would be as follows:
min/max z =c'x + h'y
subjectto Ax + Gy =b

where:

A is an m x n given matrix

G is an m x p given matrix

e b is a given vector of size m
e C is agiven vector of size n
e his a given vector of size p

- X is avector to find of size n, x Z* (nonnegative integer numbers)

y is a vector to find of size p,y R" (nonnegative real numbers)

A representation of a PIP problem using a matrix formulation would be as follows:
min/max z = ¢'x

subjectto Ax =D

where:

A is an m x n given matrix

b is a given vector of size m

c is a given vector of size n

X is a vector to find of size n, x ~ Z* (nonnegative integer numbers)

Sometimes, the integer variables are used to represent logical or belonging

relationships and therefore are constrained equal to 0 or 1. In that case, the 0-1 MIP

74

(or 0-1 PIP) is obtained and x ~ Z" is replaced by x B (binary numbers).

Most of the combinatorial optimization problems are NP-complete, which means that
their complexity grows exponentially according to the problem instance. Then, it is
possible to say that there is not an exact algorithm that solves them in a “reasonable”

amount of time if the problem instance is “big”.

There are many important real applications that can be stated as combinatorial
optimization problems. Some of the most famous problems of this kind in the
literature are: the Traveling Salesman Problem or TSP [Lawler et al. (1985)], the
Knapsack Problem and the Bin Packing Problem [Coffman (1976), Baase (1991),
Hochbaum (1997), Horowitz et al. (1998), Cormen et al. (2001)], among others.

75

Appendix 2

Integer Programming Model for the Crossdocking -
JIT Scheduling Problem Instance shown in Table 4.1

+ el +e2 +e3 +e4 + akEl + aE2 + aE3 + 100 t1 + 100 t2 + 100 €3 + 100 t4 + 100 aTl + 100 aT2 +
100 aT3

Subject to

+ yll + y12 = 1

+ y21 + y22 = 1

+ y31l + y32 = 1

+ y4l + y42 = 1

+ aYll + avY12 = 1

+ a¥Y2l + a¥22 =1

+ a¥Y3l + a¥y32 =1

+ yll + y21 - 1121 - 1211 <=1

+ yl2 + y22 - 1122 - 1212 <=1

+ yll + y31 - 1131 - 1311 <=1

+ yl2 + y32 - 1132 - 1312 <=1

+ yll + y41 - 1141 - 1411 <= 1

+ yl2 + y42 - 1142 - 1412 <=1

+ y21 + y31 - 1231 - 1321 <=1

+ y22 + y32 - 1232 - 1322 <=1

+ y21 + y41 1241 - 1421 <=1

+ y22 + y42 - 1242 - 1422 <=1

+ y31 + y41 - 1341 - 1431 <=1

+ y32 + y42 - 1342 - 1432 <=1

- yll - y21 + 2 1121 + 2 1211 <= O

- yl2 - y22 + 2 1122 + 2 1212 <= 0

- yll - y31 + 2 1131 + 2 1311 <= 0

- yl2 - y32 + 2 1132 + 2 1312 <= 0

- yll - y41 + 2 1141 + 2 1411 <= 0

- yl2 - y42 + 2 1142 + 2 1412 <= 0

- y21 - y31 + 2 1231 + 2 1321 <= 0

- y22 - y32 + 2 1232 + 2 1322 <= 0
y21 - y41 + 2 1241 + 2 1421 <= O

- y22 - y42 + 2 1242 + 2 1422 <= 0

- y31l - y41 + 2 1341 + 2 1431 <= 0

- y32 - y42 + 2 1342 + 2 1432 <= 0

+ aY1ll + a¥Y21 - J121 - J211 <=1

+ aY1l2 + aY22 - J122 - J212 <=1

+ aY1ll + a¥31 - J131 - J311 <=1

+ a¥Y1l2 + a¥32 - J132 - J312 <=1

+ a¥21l + a¥31 - J231 - J321 <=1

+ a¥22 + a¥32 - J232 - J322 <=1

- ayll - ay2l + 2 J121 + 2 J211 <= O

- ayl2 - ay22 + 2 J122 + 2 J212 <= O

- ayll - ay31l + 2 J131 + 2 J311 <= O

- avyl2 - ay32 + 2 J132 + 2 J312 <= 0O

- ay2l - ay3l + 2 J231 + 2 J321 <= 0O

- aYy22 - ay32 + 2 J232 + 2 J322 <= 0

+ 10000 1121 + cl1 - c2 <= 9988

+ 10000 1122 + cl1 - c2 <= 9988

+ 10000 1131 + c1 - c3 <= 9994

+ 10000 1132 + c1 - c3 <= 9994

+ 10000 1141 + cl1 - c4 <= 9999

+ 10000 1142 + cl1 - c4 <= 9999

+ 10000 1211 - cl1 + c2 <= 9994

+ 10000 1212 - cl1 + c2 <= 9994

76

| I R N |
0O000
NEFE W

|
0O
=

1
0
N
+

Il ++++++++++++++++ o+
N
o
o
o
o

+ aCl
aCl
aCl
aC2
aC2
aC2
aC3
aC3
acC3

>=
>=
>=
>=
>=
>=
>=
>=
>=

L+ o+ o+ o+

o+

I+ + 1

el - t1
e2 - t2
e3 - t3
e4d - t4

PRRPRPOIOOONNN

i i oo

aCl + aEl - aTl
aC2 + aE2 - aT2
aC3 + aE3 - aT3

+
0
N

14
19
16
11

I+ + 1

+ o+ + 4+

22

39

77

This MIP uses the letter “a” as a differentiator between variables related to the
inbound area (lower-case letters) and variables related to the outbound area (upper-
case letters), except for the sequencing variables for the inbound and outbound area,

lik and Ji, respectively, which remained without changes.

78

Appendix 4

Output of the RG Algorithm for the following

Crossdocking - JIT Scheduling Problem Instance

n = 20 r p d P D
m = 3 1 13 5 19 1 5 50
N = 21 2 16 2 21 2 2 53
M = 3 3 23 2 26 3 2 47
a= 1 4 11 4 15 4 2 50
B = 100 5 27 2 29 5 4 28
G = 10000 6 10 4 17 6 3 21
7 36 3 41 7 5 78

8 32 2 37 8 5 65

9 10 2 12 9 3 24

10 37 3 43 10 4 53

11 7 4 13 11 5 45

12 10 3 15 12 2 58

13 30 4 35 13 4 58

14 30 6 36 14 5 60

15 15 2 19 15 3 52

16 17 4 24 16 4 56

17 9 2 12 17 4 68

18 31 6 40 18 4 72

19 12 6 20 19 4 71

20 15 4 21 20 1 36

21 1 16

79

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
2 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0
6 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0
7 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
8 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
13 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0
14 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
16 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
17 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
19 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
20 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
K15 K,=2 K3=2 K,4=2 K5=4 Kg=3 K;=5 Kg=5 K¢=3 K1,=4 K11=5K =2 K13=4 K 14,=5 K15=3 K 16=4 K 17=4 K 13=4 K 19=4 K 30=1 K ;=1
Solution 1

Inbound area

i (Si, Ci, €ij, ti)
Machine 1: 11 (7, 11, 2, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1,
0) 13 (30, 34, 1, 0) 18 (34, 40, 0, 0)
Machine 2: 17 (9, 11, 1, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 5 (27, 29, O,
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 19 (16, 22, 0, 2) 3 (24, 26, 0, 0) 14 (30, 36, O,
0) 7 (38, 41, 0, 0)

Outbound area

J (i, Ci, Ej, Ty
Machine 1: 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 4 (48, 50, 0, 0) 2 (51, 53, 0, 0) 12 (56, 58, O,
0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)
Machine 2: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 15 (49, 52, 0, 0) 13 (54, 58, 0, 0) 17 (64, 68,
0, 0) 7 (73, 78, 0, 0)
Machine 3: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 3 (40, 42, 5, 0) 1 (42, 47, 3, 0) 10 (47, 51, 2,
0) 16 (51, 55, 1, 0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)

Total penalty for crossdock: 725

Solution 2
Inbound area

Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 3 (24, 26, O,
0) 13 (31, 35, 0, 0) 7 (38, 41, 0, 0)

Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, O,
0) 10 (37, 40, 3, 0)

Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 5 (27, 29, O,
0) 8 (32, 34, 3, 0) 18 (34, 40, 0, 0)

Outbound area

Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 5 (25, 29, 0, 1) 1 (41, 46, 4, 0) 10 (46, 50, 3,
0) 2 (60, 52, 1, 0) 16 (52, 56, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)

Machine 2: 20 (35, 36, 0, 0) 11 (40, 45, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)

Machine 3: 21 (15, 16, 0, 0) 3 (42, 44, 3, 0) 4 (44, 46, 4, 0) 15 (46, 49, 3, 0) 13 (49, 53, 5,
0) 12 (53, 55, 3, 0) 14 (55, 60, 0, 0) 18 (68, 72, 0, 0)

Total penalty for crossdock: 744

80

Solution 3
Inbound area

Machine 1: 9 (10, 12, 0, 0) 6 (12,

16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 20 (20, 24, O,

3) 5 (27, 29, 0, 0) 18 (34, 40, 0, O

Machine 2: 11 (7, 11, 2, 0) 12 (i1,
0) 7 (38, 41, 0, 0)
Machine 3: 17 (9, 11, 1, 0) 4 (11,

14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 14 (30, 36, O,

15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, O,

0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0O

Outbound area

Machine 1: 9 (23, 26, 0, 2) 11 (40,
0) 18 (68, 72, 0, 0)
Machine 2: 6 (20, 23, 0, 2) 20 (35,

45, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 0) 8 (60, 65, O,

36, 0, 0) 1 (43, 48, 2, 0) 4 (48, 50, 0, 0) 2 (51, 53, O,

0) 14 (55, 60, 0, 0) 19 (67, 71, 0, O

Machine 3: 21 (15, 16, 0, 0) 5 (24,
0) 12 (56, 58, 0, 0) 17 (64, 68, O,

Total penalty for crossdock: 813

Solution 4
Inbound area

Machine 1: 11 (7, 11, 2, 0) 12 (i1,
0) 7 (38, 41, 0, 0)

Machine 2: 17 (9, 11, 1, 0) 4 (11,
0) 8 (35, 37, 0, 0) 10 (37, 40, 3,
Machine 3: 9 (10, 12, 0, 0) 6 (12,
3) 5 (27, 29, 0, 0) 18 (34, 40, O,

Outbound area

Machine 1: 21 (15, 16, 0, 0) 5 (24,
0) 12 (56, 58, 0, 0) 8 (60, 65, O,
Machine 2: 6 (20, 23, 0, 2) 20 (35,
0) 17 (64, 68, 0, 0) 7 (73, 78, O,
Machine 3: 9 (23, 26, 0, 2) 11 (40,
0) 19 (67, 71, 0, 0)

Total penalty for crossdock: 814

Solution 5
Inbound area

Machine 1: 17 (9, 11, 1, 0) 4 (11,
0) 18 (34, 40, 0, 0)
Machine 2: 11 (7, 11, 2, 0) 6 (11,
0) 13 (31, 35, 0, 0) 8 (35, 37, O,
Machine 3: 9 (10, 12, 0, 0) 12 (12,
0) 7 (38, 41, 0, 0)

Outbound area

Machine 1: 6 (19, 22, 0, 1) 20 (35,

0) 8 (60, 65, 0, 0) 18 (68, 72, O,

Machine 2: 21 (15, 16, 0, 0) 9 (23,
0) 14 (55, 60, 0, 0) 19 (67, 71, O,

Machine 3: 5 (24, 28, 0, 0) 3 (45,
0) 17 (64, 68, 0, 0) 7 (73, 78, O,

Total penalty for crossdock: 815

28, 0, 0) 3 (45, 47, 0, 0) 15 (49, 52, 0, 0) 16 (52, 56, O,
0) 7 (73, 78, 0, 0)

14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 14 (30, 36, O,

15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, O,
0)
16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 20 (20, 24, O,
0)

28, 0, 0) 1 (43, 48, 2, 0) 4 (48, 50, 0, 0) 16 (52, 56, O,
0) 18 (68, 72, 0, 0)

36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0,
0)

45, 0, 0) 15 (48, 51, 1, 0) 2 (51, 53, 0, 0) 14 (55, 60, O,

15, 0, 0) 1 (15, 20, 0, 1) 20 (20, 24, 0, 3) 5 (27, 29, O,

15, 2, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1,
0) 10 (37, 40, 3, 0)
15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 14 (30, 36, O,

36, 0, 0) 1 (45, 50, 0, 0) 16 (52, 56, 0, 0) 12 (56, 58, O,
0)

26, 0, 2) 11 (40, 45, 0, 0) 15 (48, 51, 1, 0) 2 (51, 53, O,

0)
47, 0, 0) 4 (47, 49, 1, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0,
0)

81

82

Appendix 5

Output of the RGTS Algorithm for the Crossdocking -
JIT Scheduling Problem Instance shown in Appendix
4

Solution 1
Inbound area

i (Si, Ci, €ij, ti)
Machine 1: 11 (7, 11, 2, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1,
0) 13 (30, 34, 1, 0) 18 (34, 40, 0, 0)
Machine 2: 17 (9, 11, 1, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 5 (27, 29, O,
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 19 (16, 22, 0, 2) 3 (24, 26, 0, 0) 14 (30, 36, O,
0) 7 (38, 41, 0, 0)

Outbound area

J (i, Ci, Ej, Tj)
Machine 1: 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, O,
0) 12 (56, 58, 0, 0) 18 (68, 72, 0, O
Machine 2: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 13 (54, 58, O,
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)
Machine 3: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 3 (45, 47, 0, 0) 10 (49, 53, 0, 0) 14 (55, 60, O,
0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)

Total penalty for crossdock: 715

Solution 2
Inbound area

Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 13 (31, 35, O,
0) 8 (35, 37, 0, 0) 7 (38, 41, 0, 0)

Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, O,
0) 10 (37, 40, 3, 0)

Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 3 (24, 26, O,
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)

Outbound area

Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, O,
0) 13 (54, 58, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)

Machine 2: 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 14 (55, 60, 0, 0) 7 (73, 78, O,
0)

Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, O,
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0)

Total penalty for crossdock: 616

82

Solution 3
Inbound area

Machine 1: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 16 (20, 24, O,
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)

Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 14 (30, 36, O,
0) 7 (38, 41, 0, 0)

Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, O,
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)

Outbound area

Machine 1: 9 (24, 27, 0, 3) 11 (40, 45, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 0) 8 (60, 65, O,
0) 18 (68, 72, 0, 0)

Machine 2: 6 (20, 23, 0, 2) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 4 (48, 50, 0, 0) 2 (51, 53, O,
0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)

Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 1 (44, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, O,
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)

Total penalty for crossdock: 811

Solution 4
Inbound area

Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 14 (30, 36, O,
0) 7 (38, 41, 0, 0)

Machine 2: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, O,

0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)

Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 16 (20, 24, O,

0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)

Outbound area

Machine 1: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, O,
0) 12 (56, 58, 0, 0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)

Machine 2: 6 (20, 23, 0, 2) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0,
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)

Machine 3: 9 (24, 27, 0, 3) 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 14 (55, 60, O,
0) 19 (67, 71, 0, 0)

Total penalty for crossdock: 811

Solution 5
Inbound area

Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 1 (15, 20, 0, 1) 20 (20, 24, 0, 3) 5 (27, 29, O,
0) 18 (34, 40, 0, 0)

Machine 2: 11 (7, 11, 2, 0) 6 (11, 15, 2, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1,
0) 13 (31, 35, 0, 0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)

Machine 3: 9 (10, 12, 0, 0) 12 (12, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 14 (30, 36, O,
0) 7 (38, 41, 0, 0)

Outbound area

Machine 1: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 0) 12 (56, 58,
0, 0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)

Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, O,
0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)

Machine 3: 5 (24, 28, 0, 0) 3 (45, 47, 0, 0) 4 (47, 49, 1, 0) 10 (49, 53, 0, 0) 13 (54, 58, O,
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)

Total penalty for crossdock: 814

83

84

Appendix 9

Results of the RG and RGTS Algorithms for the 16
Crossdocking - JIT Scheduling Problem Instances

shown in Appendix 8

The RG algorithm solution shown corresponds to its best RGTS algorithm solution for

each problem instance.

Instance 1

RG algorithm
Inbound area
i (si.Ci,ei,ti)
Machine 1: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28,
ﬁi&h?an%: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)

Outbound area

J (i, Ci, Ej, Tj)
Machine 1: 3 (23, 26, 0, 0) 9 (30, 32, 0, 0) 2 (51, 54, 0, 0) 6 (64, 68, 0, 0)
Machine 2: 7 (26, 29, 0, 0) 1 (56, 58, 0, 0) 8 (72, 77. 0, 0)
Machine 3: 5 (14, 15, 0, 0) 11 (25, 27, 0, 0) 4 (44, 46, 0, 0) 10 (63, 68, 0, 0)

Total penalty for crossdock: 104

RGTS algorithm

Inbound area

Machine 1: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28,
34, 0, 0)

Machine 2: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)

Outbound area

Machine 1: 3 (23, 26, 0, 0) 9 (30, 32, 0, 0) 2 (51, 54, 0, 0) 6 (64, 68, 0, 0)

Machine 2: 7 (26, 29, 0, 0) 1 (56, 58, 0, 0) 8 (72, 77, 0, 0)

Machine 3: 5 (14, 15, 0, 0) 11 (25, 27, 0, 0) 4 (44, 46, 0, 0) 10 (63, 68, 0, 0)

Total penalty for crossdock: 104

84

Instance 2:

RG algorithm
Inbound area

Machine 1: 2 (2, 6, 0, 0) 3 (16, 19, 0, 0) 10 (19, 25, 0, 0) 9 (28, 33, 0, 0) 11 (33, 39, 0, 0)
Machine 2: 7 (5, 11, 0, 0) 5 (16, 22, 0, 0) 4 (24, 29, 0, 0) 6 (33, 35, 0, 0) 12 (36, 38, 0, 0)
Machine 3: 1 (16, 18, 1, 0) 8 (18, 24, 0, 0) 15 (24, 26, 0, 0) 13 (26, 28, 0, 0) 14 (33, 39, O,
0)

Outbound area

Machine 1: 4 (36, 39, 1, 0) 6 (39, 40, 0, 0) 5 (40, 42, 2, 0) 2 (42, 44, 0, 0) 12 (53, 54, O,
0) 9 (57, 58, 0, 0) 7 (60, 65, 0, 0) 8 (65, 69, 0, 0) 14 (76, 81, 0, 0)

Machine 2: 10 (38, 43, 0, 0) 11 (50, 55, 0, 0) 3 (65, 69, 0, 0) 1 (73, 76, 4, 0) 13 (76, 81, O,
0)

Total penalty for crossdock: 8

RGTS algorithm
Inbound area

Machine 1: 2 (2, 6, 0, 0) 3 (16, 19, 0, 0) 10 (19, 25, 0, 0) 9 (28, 33, 0, 0) 11 (33, 39, 0, 0)
Machine 2: 7 (5, 11, 0, 0) 5 (16, 22, 0, 0) 4 (24, 29, 0, 0) 6 (33, 35, 0, 0) 12 (36, 38, 0, 0)
Machine 3: 1 (16, 18, 1, 0) 8 (18, 24, 0, 0) 15 (24, 26, 0, 0) 13 (26, 28, 0, 0) 14 (33, 39, O,
0)

Outbound area

Machine 1: 4 (36, 39, 1, 0) 6 (39, 40, 0, 0) 5 (40, 42, 2, 0) 2 (42, 44, 0, 0) 12 (53, 54, O,
0) 9 (57, 58, 0, 0) 7 (60, 65, 0, 0) 8 (65, 69, 0, 0) 14 (76, 81, 0, 0)

Machine 2: 10 (38, 43, 0, 0) 11 (50, 55, 0, 0) 3 (65, 69, 0, 0) 1 (73, 76, 4, 0) 13 (76, 81, O,
0)

Total penalty for crossdock: 8

85

Instance 3:

RG algorithm
Inbound area

Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 3 (24, 26, O,
0) 13 (31, 35, 0, 0) 7 (38, 41, 0, 0)
Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, O,
0) 10 (37, 40, 3,
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 5 (27, 29, O,
0) 8 (32, 34, 3, 0) 18 (34, 40, 0, 0)

o
o/

Outbound area

Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 5 (25, 29, 0, 1) 1 (41, 46, 4, 0) 10 (46, 50, 3,
0) 2 (50, 52, 1, 0) 16 (52, 56, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)

Machine 2: 20 (35, 36, 0, 0) 11 (40, 45, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)

Machine 3: 21 (15, 16, 0, 0) 3 (42, 44, 3, 0) 4 (44, 46, 4, 0) 15 (46, 49, 3, 0) 13 (49, 53, 5,
0) 12 (53, 55, 3, 0) 14 (55, 60, 0, 0) 18 (68, 72, 0, 0)

Total penalty for crossdock: 744

RGTS algorithm
Inbound area

Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 13 (31, 35, O,
0) 8 (35, 37, 0, 0) 7 (38, 41, 0, 0)

Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, O,
0) 10 (37, 40, 3, 0)

Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 3 (24, 26, O,
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)

Outbound area

Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, O,
0) 13 (54, 58, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)

Machine 2: 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 14 (55, 60, 0, 0) 7 (73, 78, O,
0)

Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, O,
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0)

Total penalty for crossdock: 616

86

Instance 4:

RG algorithm
Inbound area

Machine 1: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 24 (7, 12, 0, 0) 27 (12, 14, 1, 0) 22 (14, 19, 0, 0)
12 (19, 25, 0, 0) 20 (26, 32, 4, 0) 32 (32, 34, 4, 0) 30 (34, 37, 2, 0) 21 (37, 40, 0, 1) 4
(40, 45, 0, 2) 16 (46, 52, 0, 0)

Machine 2: 23 (1, 6, 3, 0) 1 (6, 11, 0, 0) 26 (11, 15, 0, 0) 3 (15, 17, 0, 0) 11 (20, 22, 0, 0)
9 (24, 29, 0, 0) 14 (32, 36, 0, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 53, 0, 1)

Machine 3: 25 (0, 3, 2, 0) 5 (3, 8, 0, 0) 17 (8, 14, 0, 1) 7 (14, 17, 0, 0) 19 (17, 20, 2, 0)
28 (20, 25, 0, 0) 6 (31, 36, 0, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 (49, 51, 0, 0)

Outbound area

Machine 1: 27 (37, 38, 0, 0) 24 (49, 52, 0, 0) 20 (53, 54, 0, 0) 13 (56, 61, 0, 0) 22 (61, 66,
0, 0) 30 (67, 72, 0, 0) 9 (74, 78, 0, 0)

Machine 2: 11 (22, 24, 0, 0) 32 (43, 47, 0, 0) 17 (51, 56, 3, 0) 34 (56, 58, 0, 0) 18 (58, 59,
1, 0) 29 (59, 61, 0, 0) 15 (64, 65, 0, 0) 3 (66, 68, 0, 0) 6 (68, 70, 0, 0) 28 (71, 73, 0, 0) 2
(78, 82, 0, 0)

Machine 3: 25 (26, 29, 0, 0) 4 (42, 43, 0, 0) 21 (50, 51, 0, 0) 12 (53, 57, 1, 0) 23 (57, 62,
0, 1) 10 (66, 71, 0, 0) 33 (72, 76, 0, 0) 5 (81, 84, 0, 0)

Machine 4: 16 (41, 43, 0, 0) 7 (51, 53, 0, 0) 19 (56, 58, 0, 0) 31 (60, 61, 0, 0) 8 (62, 64, O,
0) 14 (66, 68, 0, 0) 26 (69, 72, 0, 0) 1 (76, 81, 0, 0)

Total penalty for crossdock: 724

RGTS algorithm
Inbound area

Machine 1: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 24 (7, 12, 0, 0) 27 (12, 14, 1, 0) 22 (14, 19, 0, 0)
12 (19, 25, 0, 0) 20 (27, 33, 3, 0) 30 (33, 36, 3, 0) 21 (36, 39, 0, 0) 4 (39, 44, 0, 1) 16
(46, 52, 0, 0)

Machine 2: 23 (1, 6, 3, 0) 1 (6, 11, 0, 0) 26 (11, 15, 0, 0) 3 (15, 17, 0, 0) 11 (20, 22, 0, 0)
9 (24, 29, 0, 0) 14 (30, 34, 2, 0) 32 (34, 36, 2, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49,
53, 0, 1)

Machine 3: 25 (0, 3, 2, 0) 5 (3, 8, 0, 0) 17 (8, 14, 0, 1) 7 (14, 17, 0, 0) 19 (17, 20, 2, 0)
28 (20, 25, 0, 0) 6 (31, 36, 0, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 (49, 51, 0, 0)

Outbound area

Machine 1: 27 (37, 38, 0, 0) 20 (53, 54, 0, 0) 34 (54, 56, 2, 0) 13 (56, 61, 0, 0) 22 (61, 66,
0, 0) 30 (67, 72, 0, 0) 9 (74, 78, 0, 0)

Machine 2: 11 (22, 24, 0, 0) 32 (43, 47, 0, 0) 24 (49, 52, 0, 0) 17 (54, 59, 0, 0) 29 (59, 61,
0, 0) 15 (64, 65, 0, 0) 3 (66, 68, 0, 0) 6 (68, 70, 0, 0) 28 (71, 73, 0, 0) 2 (78, 82, 0, 0)
Machine 3: 25 (26, 29, 0, 0) 4 (42, 43, 0, 0) 21 (50, 51, 0, 0) 12 (54, 58, 0, 0) 18 (59, 60,
0, 0) 31 (60, 61, 0, 0) 10 (66, 71, 0, 0) 33 (72, 76, 0, 0) 5 (81, 84, 0, 0)

Machine 4: 16 (41, 43, 0, 0) 7 (51, 53, 0, 0) 19 (54, 56, 2, 0) 23 (56, 61, 0, 0) 8 (62, 64, 0,
0) 14 (66, 68, 0, 0) 26 (69, 72, 0, 0) 1 (76, 81, 0, 0)

Total penalty for crossdock: 423

87

Instance 5:

RG algorithm
Inbound area

Machine 1: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32,
0, 0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 14 (45, 51, 3, 0)

Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 5 (20, 22, 0, 0) 19 (23, 27, O,
0) 23 (29, 33, 0, 0) 30 (34, 39, 0, 0) 4 (39, 45, 2, 0) 3 (45, 48, 3, 0)

Machine 3: 18 (10, 16, 0, 0) 6 (18, 20, 0, 0) 22 (23, 25, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37,
0, 0) 26 (40, 46, 0, 0)

Machine 4: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 17 (19, 24, 0, 0) 7 (27, 33, 0, 0) 11 (33, 36, O,
0) 2 (37, 41, 0, 0) 25 (42, 47, 0, 0)

Outbound area

Machine 1: 14 (25, 26, 0, 0) 8 (51, 54, 0, 0) 13 (55, 58, 0, 0) 4 (61, 62, 0, 0) 25 (63, 67, O,
0) 5 (74, 79, 0, 0)

Machine 2: 1 (38, 40, 0, 0) 22 (51, 56, 0, 0) 11 (58, 61, 0, 0) 17 (62, 67, 0, 0) 12 (72, 75,
0, 0) 18 (89, 94, 0, 0)

Machine 3: 7 (32, 33, 0, 0) 29 (51, 55, 0, 0) 3 (56, 61, 0, 0) 27 (62, 65, 0, 0) 24 (66, 71, O,
0) 6 (79, 82, 0, 0)

Machine 4: 28 (39, 43, 0, 0) 16 (52, 57, 0, 0) 20 (61, 66, 0, 0) 23 (69, 70, 0, 0) 2 (75, 80,
0, 0)

Machine 5: 21 (48, 52, 0, 0) 15 (54, 59, 0, 0) 19 (60, 63, 2, 0) 10 (63, 67, 0, 0) 26 (69, 72,
0, 0) 9 (80, 85, 0, 0)

Total penalty for crossdock: 211

RGTS algorithm
Inbound area

Machine 1: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32,
0, 0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 14 (45, 51, 3, 0)

Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 5 (20, 22, 0, 0) 19 (23, 27, O,
0) 23 (29, 33, 0, 0) 30 (34, 39, 0, 0) 4 (39, 45, 2, 0) 3 (45, 48, 3, 0)

Machine 3: 18 (10, 16, 0, 0) 6 (18, 20, 0, 0) 22 (23, 25, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37,
0, 0) 26 (40, 46, 0, 0)

Machine 4: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 17 (19, 24, 0, 0) 7 (27, 33, 0, 0) 11 (33, 36, O,
0) 2 (37, 41, 0, 0) 25 (42, 47, 0, 0)

Outbound area

Machine 1: 14 (25, 26, 0, 0) 8 (51, 54, 0, 0) 13 (55, 58, 0, 0) 4 (61, 62, 0, 0) 25 (63, 67, O,
0) 5 (74, 79, 0, 0)

Machine 2: 1 (38, 40, 0, 0) 22 (51, 56, 0, 0) 11 (58, 61, 0, 0) 17 (62, 67, 0, 0) 12 (72, 75,
0, 0) 18 (89, 94, 0, 0)

Machine 3: 7 (32, 33, 0, 0) 29 (51, 55, 0, 0) 3 (56, 61, 0, 0) 27 (62, 65, 0, 0) 24 (66, 71, O,
0) 6 (79, 82, 0, 0)

Machine 4: 28 (39, 43, 0, 0) 16 (52, 57, 0, 0) 20 (61, 66, 0, 0) 23 (69, 70, 0, 0) 2 (75, 80,
0, 0)

Machine 5: 21 (48, 52, 0, 0) 15 (54, 59, 0, 0) 19 (60, 63, 2, 0) 10 (63, 67, 0, 0) 26 (69, 72,
0, 0) 9 (80, 85, 0, 0)

Total penalty for crossdock: 211

88

Instance 6:

RG algorithm
Inbound area

Machine 1: 14 (3, 7, 0, 0) 5 (11, 13, 0, 0) 13 (16, 20, 0, 0) 26 (22, 24, 0, 0) 16 (27, 32, O,
0) 15 (39, 43, 0, 0) 18 (47, 50, 1, 0) 7 (50, 54, 0, 0)

Machine 2: 24 (7, 11, 0, 0) 10 (15, 18, 0, 0) 22 (18, 23, 0, 0) 20 (26, 29, 0, 0) 2 (35, 39, O,
0) 25 (40, 42, 0, 0) 31 (43, 49, 2, 0) 27 (49, 54, 0, 0)

Machine 3: 28 (4, 7, 0, 0) 8 (12, 18, 0, 0) 32 (18, 22, 0, 0) 30 (23, 28, 0, 0) 3 (33, 39, O,
0) 11 (42, 48, 0, 0) 19 (49, 55, 0, 0)

Machine 4: 12 (7, 9, 0, 0) 21 (12, 15, 0, 0) 9 (18, 22, 0, 0) 4 (23, 26, 0, 0) 23 (29, 31, O,
0) 29 (36, 38, 0, 0) 17 (40, 46, 0, 0) 6 (47, 51, 1, 0) 1 (52, 56, 0, 0)

Outbound area

Machine 1: 27 (25, 26, 0, 0) 23 (39, 42, 0, 0) 22 (47, 50, 0, 0) 30 (63, 68, 0, 0) 13 (69, 73,
0, 0) 25 (73, 75, 0, 0) 3 (81, 85, 0, 0)

Machine 2: 18 (22, 23, 0, 0) 9 (36, 38, 0, 0) 29 (46, 48, 0, 0) 11 (54, 55, 0, 0) 15 (63, 65,
0, 0) 20 (66, 71, 1, 0) 24 (71, 74, 0, 0) 16 (75, 79, 0, 0)

Machine 3: 17 (25, 27, 0, 0) 21 (44, 47, 0, 0) 33 (51, 56, 0, 0) 1 (65, 70, 0, 0) 26 (71, 74,
0, 0) 2 (75, 80, 0, 0)

Machine 4: 28 (27, 28, 0, 0) 12 (45, 48, 0, 0) 6 (54, 58, 0, 0) 14 (66, 70, 0, 0) 8 (71, 75, O,
0) 19 (81, 86, 0, 0)

Machine 5: 10 (27, 29, 0, 0) 31 (46, 49, 0, 0) 32 (58, 60, 0, 0) 4 (66, 71, 0, 0) 5 (71, 76, O,
0) 7 (88, 91, 0, 0)

Total penalty for crossdock: 5

RGTS algorithm
Inbound area

Machine 1: 14 (3, 7, 0, 0) 5 (11, 13, 0, 0) 13 (16, 20, 0, 0) 26 (22, 24, 0, 0) 16 (27, 32, O,
0) 15 (39, 43, 0, 0) 18 (47, 50, 1, 0) 7 (50, 54, 0, 0)

Machine 2: 24 (7, 11, 0, 0) 10 (15, 18, 0, 0) 22 (18, 23, 0, 0) 20 (26, 29, 0, 0) 2 (35, 39, O,
0) 25 (40, 42, 0, 0) 31 (43, 49, 2, 0) 27 (49, 54, 0, 0)

Machine 3: 28 (4, 7, 0, 0) 8 (12, 18, 0, 0) 32 (18, 22, 0, 0) 30 (23, 28, 0, 0) 3 (33, 39, O,
0) 11 (42, 48, 0, 0) 19 (49, 55, 0, 0)

Machine 4: 12 (7, 9, 0, 0) 21 (12, 15, 0, 0) 9 (18, 22, 0, 0) 4 (23, 26, 0, 0) 23 (29, 31, O,
0) 29 (36, 38, 0, 0) 17 (40, 46, 0, 0) 6 (47, 51, 1, 0) 1 (52, 56, 0, 0)

Outbound area

Machine 1: 27 (25, 26, 0, 0) 23 (39, 42, 0, 0) 22 (47, 50, 0, 0) 30 (63, 68, 0, 0) 13 (69, 73,
0, 0) 25 (73, 75, 0, 0) 3 (81, 85, 0, 0)

Machine 2: 18 (22, 23, 0, 0) 9 (36, 38, 0, 0) 29 (46, 48, 0, 0) 11 (54, 55, 0, 0) 15 (63, 65,
0, 0) 20 (66, 71, 1, 0) 24 (71, 74, 0, 0) 16 (75, 79, 0, 0)

Machine 3: 17 (25, 27, 0, 0) 21 (44, 47, 0, 0) 33 (51, 56, 0, 0) 1 (65, 70, 0, 0) 26 (71, 74,
0, 0) 2 (75, 80, 0, 0)

Machine 4: 28 (27, 28, 0, 0) 12 (45, 48, 0, 0) 6 (54, 58, 0, 0) 14 (66, 70, 0, 0) 8 (71, 75, O,
0) 19 (81, 86, 0, 0)

Machine 5: 10 (27, 29, 0, 0) 31 (46, 49, 0, 0) 32 (58, 60, 0, 0) 4 (66, 71, 0, 0) 5 (71, 76, O,
0) 7 (88, 91, 0, 0)

Total penalty for crossdock: 5

89

Instance 7:

RG algorithm

Inbound

Machine

area

1: 25 (9, 12, 0, 0) 17 (38, 41, 0, 0) 15 (49, 54, 0, 0) 28 (64, 66, 0, 0) 7 (76, 80, O,

0) 26 (87, 92, 0, 0)

Machine

2: 6 (13, 19, 0, 0) 18 (49, 51, 0, 0) 1 (59, 62, 0, 0) 30 (71, 73, 0, 0) 5 (81, 86, O,

0) 24 (88, 92, 0, 0)

Machine
0, 0) 3
Machine
0, 0) 2
Machine

3: 21 (31, 36, 0, 0) 11 (49, 52, 0, 0) 9 (62, 64, 0, 0) 23 (69, 74, 0, 0) 12 (84, 88,
(91, 95, 0, 0)

4: 29 (8, 10, 0, 0) 13 (32, 35, 1, 0) 27 (50, 52, 0, 0) 19 (63, 65, 0, 0) 16 (75, 78,
(87, 90, 0, 0)

5: 20 (17, 19, 0, 0) 14 (41, 43, 0, 0) 8 (57, 61, 0, 0) 4 (65, 71, 0, 0) 10 (81, 83, O,

0) 22 (90, 92, 0, 0)

Outbound area

Machine
119, O,
Machine
0, 0) 7
Machine
123, 0,
Machine
117, O,
Machine
120, O,

1: 6 (46, 47, 0, 0) 28 (73, 76, 0, 0) 19 (93, 98, 0, 0) 25 (106, 111, 0, 0) 20 (116,

0) 24 (124, 126, 0, 0)

2: 27 (58, 59, 0, 0) 1 (85, 86, 0, 0) 8 (97, 99, 0, 0) 17 (111, 112, 0, 0) 3 (117, 120,
(125, 130, 0, 0)

3: 4 (66, 69, 0, 0) 21 (89, 94, 0, 0) 16 (102, 107, 0, 0) 5 (114, 118, 0, 0) 30 (120,
0)

4z 12 (35, 37, 0, 0) 18 (71, 73, 0, 0) 13 (90, 94, 0, 0) 2 (102, 105, 0, 0) 26 (112,

0) 9 (118, 122, 0, 0) 10 (128, 131, 0, 0)

5: 14 (59, 62, 0, 0) 22 (92, 93, 0, 0) 29 (97, 101, 0, 0) 15 (113, 116, 0, 0) 23 (117,
0) 11 (124, 127, 0, 0)

Total penalty for crossdock: 1

RGTS algorithm

Inbound

Machine

area

1: 25 (9, 12, 0, 0) 17 (38, 41, 0, 0) 15 (49, 54, 0, 0) 28 (64, 66, 0, 0) 7 (76, 80, O,

0) 26 (87, 92, 0, 0)

Machine

2: 6 (13, 19, 0, 0) 18 (49, 51, 0, 0) 1 (59, 62, 0, 0) 30 (71, 73, 0, 0) 5 (81, 86, O,

0) 24 (88, 92, 0, 0)

Machine
0, 0) 3
Machine
0, 0) 2
Machine

3: 21 (31, 36, 0, 0) 11 (49, 52, 0, 0) 9 (62, 64, 0, 0) 23 (69, 74, 0, 0) 12 (84, 88,
(91, 95, 0, 0)

4: 29 (8, 10, 0, 0) 13 (32, 35, 1, 0) 27 (50, 52, 0, 0) 19 (63, 65, 0, 0) 16 (75, 78,
(87, 90, 0, 0)

5: 20 (17, 19, 0, 0) 14 (41, 43, 0, 0) 8 (57, 61, 0, 0) 4 (65, 71, 0, 0) 10 (81, 83, O,

0) 22 (90, 92, 0, 0)

Outbound area

Machine
119, O,
Machine
0, 0) 7
Machine
123, O,
Machine
117, O,
Machine
120, O,

1: 6 (46, 47, 0, 0) 28 (73, 76, 0, 0) 19 (93, 98, 0, 0) 25 (106, 111, 0, 0) 20 (116,

0) 24 (124, 126, 0, 0)

2: 27 (58, 59, 0, 0) 1 (85, 86, 0, 0) 8 (97, 99, 0, 0) 17 (111, 112, 0, 0) 3 (117, 120,
(125, 130, 0, 0)

3: 4 (66, 69, 0, 0) 21 (89, 94, 0, 0) 16 (102, 107, 0, 0) 5 (114, 118, 0, 0) 30 (120,
0)

4z 12 (35, 37, 0, 0) 18 (71, 73, 0, 0) 13 (90, 94, 0, 0) 2 (102, 105, 0, 0) 26 (112,

0) 9 (118, 122, 0, 0) 10 (128, 131, 0, 0)

5: 14 (59, 62, 0, 0) 22 (92, 93, 0, 0) 29 (97, 101, 0, 0) 15 (113, 116, 0, 0) 23 (117,
0) 11 (124, 127, 0, 0)

Total penalty for crossdock: 1

90

Instance 8:

RG algorithm
Inbound area

Machine 1: 6 (10, 16, 0, 0) 26 (24, 28, 0, 0) 17 (33, 38, 0, 0) 22 (38, 43, 0, 0) 38 (44, 46,
3, 0) 34 (56, 62, 0, 0)

Machine 2: 1 (6, 12, 0, 0) 15 (18, 24, 0, 0) 37 (26, 28, 0, 0) 31 (31, 37, 0, 0) 5 (37, 39, O,
0) 10 (41, 47, 0, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)

Machine 3: 35 (5, 7, 0, 0) 28 (13, 15, 0, 0) 7 (21, 26, 0, 0) 9 (28, 33, 1, 0) 30 (33, 36, O,
0) 16 (37, 39, 0, 0) 39 (39, 41, 0, 0) 8 (42, 46, 0, 0) 14 (48, 51, 0, 0) 23 (57, 62, 0, 0)
Machine 4: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 20 (33, 37, O,
0) 13 (37, 39, 0, 0) 18 (41, 45, 0, 0) 11 (47, 52, 0, 0)

Machine 5: 24 (10, 14, 0, 0) 29 (24, 30, 0, 0) 12 (32, 35, 0, 0) 4 (36, 38, 0, 0) 3 (38, 42, 1,
0) 25 (42, 46, 2, 0) 27 (52, 55, 0, 0) 33 (59, 65, 0, 0)

Outbound area

Machine 1: 15 (42, 43, 0, 0) 21 (53, 56, 0, 0) 19 (63, 67, 1, 0) 28 (67, 72, 0, 0) 7 (75, 77,
0, 0) 25 (79, 84, 0, 0) 20 (100, 105, O, 0)

Machine 2: 24 (44, 45, 0, 0) 18 (55, 58, 0, 0) 14 (64, 65, 0, 0) 34 (66, 70, 0, 0) 26 (72, 75,
0, 0) 36 (78, 80, 0, 0) 30 (80, 85, 0, 0) 1 (90, 95, 0, 0)

Machine 3: 27 (36, 37, 0, 0) 12 (46, 49, 0, 0) 4 (61, 65, 0, 0) 17 (67, 72, 0, 0) 8 (75, 79, O,
0) 11 (79, 81, 0, 0) 37 (84, 89, 0, 0)

Machine 4: 10 (33, 34, 0, 0) 6 (45, 49, 0, 0) 2 (56, 61, 0, 0) 16 (64, 69, 0, 0) 33 (71, 76, O,
0) 5 (77, 81, 0, 0) 29 (81, 82, 0, 0) 9 (83, 85, 0, 0) 32 (86, 91, 0, 0)

Machine 5: 3 (43, 44, 0, 0) 31 (53, 56, 0, 0) 35 (62, 64, 1, 0) 13 (64, 69, 0, 0) 22 (71, 76,
0, 0) 38 (79, 84, 0, 0) 23 (86, 89, 0, 0)

Total penalty for crossdock: 9

RGTS algorithm
Inbound area

Machine 1: 6 (10, 16, 0, 0) 26 (24, 28, 0, 0) 17 (33, 38, 0, 0) 22 (38, 43, 0, 0) 38 (44, 46,
3, 0) 34 (56, 62, 0, 0)

Machine 2: 1 (6, 12, 0, 0) 15 (18, 24, 0, 0) 37 (26, 28, 0, 0) 31 (31, 37, 0, 0) 5 (37, 39, O,
0) 10 (41, 47, 0, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)

Machine 3: 35 (5, 7, 0, 0) 28 (13, 15, 0, 0) 7 (21, 26, 0, 0) 9 (28, 33, 1, 0) 30 (33, 36, O,
0) 16 (37, 39, 0, 0) 39 (39, 41, 0, 0) 8 (42, 46, 0, 0) 14 (48, 51, 0, 0) 23 (57, 62, 0, 0)
Machine 4: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 20 (33, 37, O,
0) 13 (37, 39, 0, 0) 18 (41, 45, 0, 0) 11 (47, 52, 0, 0)

Machine 5: 24 (10, 14, 0, 0) 29 (24, 30, 0, 0) 12 (32, 35, 0, 0) 4 (36, 38, 0, 0) 3 (38, 42, 1,
0) 25 (42, 46, 2, 0) 27 (52, 55, 0, 0) 33 (59, 65, 0, 0)

Outbound area

Machine 1: 15 (42, 43, 0, 0) 21 (53, 56, 0, 0) 19 (63, 67, 1, 0) 28 (67, 72, 0, 0) 7 (75, 77,
0, 0) 25 (79, 84, 0, 0) 20 (100, 105, O, 0)

Machine 2: 24 (44, 45, 0, 0) 18 (55, 58, 0, 0) 14 (64, 65, 0, 0) 34 (66, 70, 0, 0) 26 (72, 75,
0, 0) 36 (78, 80, 0, 0) 30 (80, 85, 0, 0) 1 (90, 95, 0, 0)

Machine 3: 27 (36, 37, 0, 0) 12 (46, 49, 0, 0) 4 (61, 65, 0, 0) 17 (67, 72, 0, 0) 8 (75, 79, O,
0) 11 (79, 81, 0, 0) 37 (84, 89, 0, 0)

Machine 4: 10 (33, 34, 0, 0) 6 (45, 49, 0, 0) 2 (56, 61, 0, 0) 16 (64, 69, 0, 0) 33 (71, 76, O,
0) 5 (77, 81, 0, 0) 29 (81, 82, 0, 0) 9 (83, 85, 0, 0) 32 (86, 91, 0, 0)

Machine 5: 3 (43, 44, 0, 0) 31 (53, 56, 0, 0) 35 (62, 64, 1, 0) 13 (64, 69, 0, 0) 22 (71, 76,
0, 0) 38 (79, 84, 0, 0) 23 (86, 89, 0, 0)

Total penalty for crossdock: 9

91

Instance 9:

RG algorithm
Inbound area

Machine 1: 21 (4, 9, 1, 0) 15 (9, 15, 0, 0) 28 (18, 24, 0, 0) 9 (27, 30, 0, 0) 7 (31, 36, 1, 0)
2 (36, 42, 0, 0) 14 (44, 47, 0, 0) 41 (52, 56, 0, 0)

Machine 2: 20 (6, 12, 0, 0) 42 (15, 18, 0, 0) 19 (18, 22, 0, 0) 39 (22, 25, 0, 0) 10 (28, 33,
0, 0) 23 (33, 38, 3, 0) 24 (38, 41, 0, 0) 11 (45, 51, 0, 0)

Machine 3: 30 (6, 9, 2, 0) 1 (9, 12, 0, 0) 13 (12, 17, 0, 0) 4 (18, 24, 0, 0) 8 (26, 31, 0, 0)
16 (35, 40, 0, 0) 6 (43, 45, 0, 0) 5 (45, 51, 0, 0) 26 (55, 57, 0, 0)

Machine 4: 31 (5, 10, 1, 0) 18 (10, 13, 0, 0) 27 (14, 16, 0, 0) 33 (19, 22, 0, 0) 36 (25, 29,
0, 0) 35 (30, 34, 0, 0) 25 (35, 39, 1, 0) 40 (39, 44, 0, 1) 12 (45, 51, 0, 0) 29 (56, 59, 0, 0)
Machine 5: 34 (7, 10, 0, 0) 38 (10, 13, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, 0, 0) 17 (32, 36,
0, 0) 22 (37, 43, 0, 0) 3 (50, 55, 0, 0)

Outbound area

Machine 1: 20 (30, 31, 0, 0) 18 (39, 40, 0, 0) 43 (48, 49, 0, 0) 2 (55, 59, 0, 0) 24 (59, 61,
1, 0) 41 (61, 66, 0, 0) 4 (70, 72, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0)

Machine 2: 9 (36, 38, 0, 0) 31 (44, 46, 0, 0) 7 (53, 55, 0, 0) 32 (55, 59, 0, 0) 34 (59, 60, 2,
0) 21 (60, 63, 0, 0) 19 (66, 67, 0, 0) 12 (70, 73, 0, 0) 33 (83, 86, 0, 0)

Machine 3: 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 37 (46, 49, 0, 0) 10 (53, 55, 0, 0) 22 (55, 58,
0, 0) 23 (60, 64, 0, 0) 6 (64, 69, 0, 0) 3 (72, 74, 0, 0) 13 (81, 83, 0, 0)

Machine 4: 39 (35, 36, 0, 0) 14 (42, 45, 0, 0) 29 (48, 49, 0, 0) 17 (53, 58, 1, 0) 30 (58, 62,
1, 0) 11 (62, 63, 0, 0) 16 (64, 69, 0, 0) 5 (73, 75, 0, 0) 8 (87, 92, 0, 0)

Machine 5: 35 (31, 32, 0, 0) 25 (39, 44, 0, 0) 1 (52, 55, 0, 0) 40 (58, 63, 0, 0) 27 (63, 66,
0, 0) 38 (72, 75, 0, 0) 42 (89, 93, 0, 0)

Total penalty for crossdock: 114

RGTS algorithm
Inbound area

Machine 1: 21 (4, 9, 1, 0) 15 (9, 15, 0, 0) 28 (18, 24, 0, 0) 9 (27, 30, 0, 0) 17 (32, 36, O,
0) 2 (36, 42, 0, 0) 14 (44, 47, 0, 0) 41 (52, 56, 0, 0)

Machine 2: 20 (6, 12, 0, 0) 42 (15, 18, 0, 0) 19 (18, 22, 0, 0) 39 (22, 25, 0, 0) 10 (28, 33,
0, 0) 23 (33, 38, 3, 0) 24 (38, 41, 0, 0) 11 (45, 51, 0, 0)

Machine 3: 30 (6, 9, 2, 0) 1 (9, 12, 0, 0) 13 (12, 17, 0, 0) 4 (18, 24, 0, 0) 8 (26, 31, 0, 0)
16 (35, 40, 0, 0) 6 (43, 45, 0, 0) 5 (45, 51, 0, 0) 26 (55, 57, 0, 0)

Machine 4: 31 (5, 10, 1, 0) 18 (10, 13, 0, 0) 27 (14, 16, 0, 0) 33 (19, 22, 0, 0) 36 (25, 29,
0, 0) 35 (30, 34, 0, 0) 25 (35, 39, 1, 0) 40 (39, 44, 0, 1) 12 (45, 51, 0, 0) 29 (56, 59, 0, 0)
Machine 5: 34 (7, 10, 0, 0) 38 (10, 13, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, 0, 0) 7 (32, 37, O,
0) 22 (37, 43, 0, 0) 3 (50, 55, 0, 0)

Outbound area

Machine 1: 20 (30, 31, 0, 0) 18 (39, 40, 0, 0) 43 (48, 49, 0, 0) 2 (55, 59, 0, 0) 24 (59, 61,
1, 0) 41 (61, 66, 0, 0) 4 (70, 72, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0)

Machine 2: 9 (36, 38, 0, 0) 31 (44, 46, 0, 0) 7 (53, 55, 0, 0) 32 (55, 59, 0, 0) 21 (60, 63, O,
0) 19 (66, 67, 0, 0) 12 (70, 73, 0, 0) 33 (83, 86, 0, 0)

Machine 3: 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 37 (46, 49, 0, 0) 10 (53, 55, 0, 0) 22 (55, 58,
0, 0) 23 (60, 64, 0, 0) 6 (64, 69, 0, 0) 3 (72, 74, 0, 0) 13 (81, 83, 0, 0)

Machine 4: 39 (35, 36, 0, 0) 14 (42, 45, 0, 0) 29 (48, 49, 0, 0) 17 (54, 59, 0, 0) 30 (59, 63,
0, 0) 16 (64, 69, 0, 0) 5 (73, 75, 0, 0) 8 (87, 92, 0, 0)

Machine 5: 35 (31, 32, 0, 0) 25 (39, 44, 0, 0) 1 (52, 55, 0, 0) 40 (56, 61, 2, 0) 34 (61, 62,
0, 0) 11 (62, 63, 0, 0) 27 (63, 66, 0, 0) 38 (72, 75, 0, 0) 42 (89, 93, 0, 0)

Total penalty for crossdock: 111

92

Instance 10:

RG algorithm
Inbound area

Machine 1: 27 (1, 3, 0, 0) 29 (10, 13, 0, 0) 1 (23, 27, 0, 0) 23 (28, 33, 0, 0) 12 (44, 49, O,
0) 18 (52, 55, 0, 0)

Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (20, 25, 0, 0) 10 (25, 31, 0, 0) 22 (32, 37, 0, 0)
16 (46, 50, 0, 0)

Machine 3: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 32 (21, 27, 0, 0) 28 (27, 33, 0, 0) 24 (41, 47, 1, 0)
13 (51, 57, 0, 0)

Machine 4: 17 (8, 13, 0, 0) 8 (19, 25, 0, 0) 20 (27, 33, 0, 0) 25 (41, 47, 0, 0) 26 (49, 51, 0,
0)

Machine 5: 15 (6, 10, 0, 0) 30 (13, 18, 2, 0) 7 (23, 26, 0, 0) 31 (27, 29, 0, 0) 19 (29, 31, O,
0) 4 (31, 36, 0, 0) 2 (44, 46, 0, 0) 21 (48, 51, 0, 0) 11 (52, 57, 0, 0)

Outbound area

Machine 1: 24 (25, 26, 0, 0) 17 (46, 48, 0, 0) 27 (55, 56, 0, 0) 33 (57, 59, 0, 0) 12 (59, 61,
0, 0) 23 (63, 66, 0, 0) 19 (67, 70, 0, 0) 32 (96, 100, O, 0)

Machine 2: 1 (47, 52, 0, 0) 9 (57, 62, 0, 0) 35 (65, 69, 0, 0) 8 (82, 84, 0, 0)

Machine 3: 28 (38, 41, 0, 0) 31 (51, 55, 0, 0) 7 (59, 61, 0, 0) 16 (63, 67, 0, 0) 3 (70, 75, O,
0) 29 (94, 98, 0, 0)

Machine 4: 21 (39, 40, 0, 0) 22 (53, 57, 0, 0) 20 (59, 64, 0, 0) 4 (65, 70, 0, 0) 30 (87, 91,
0, 0)

Machine 5: 34 (18, 19, 0, 0) 5 (45, 47, 0, 0) 26 (54, 56, 0, 0) 13 (60, 61, 0, 0) 2 (66, 69, O,
0) 10 (92, 97, 0, 0)

Machine 6: 14 (35, 37, 0, 0) 11 (53, 54, 0, 0) 25 (58, 60, 0, 0) 6 (61, 66, 0, 0) 15 (68, 73,
0, 0) 18 (89, 90, 0, 0)

Total penalty for crossdock: 3

RGTS algorithm
Inbound area

Machine 1: 27 (1, 3, 0, 0) 29 (10, 13, 0, 0) 1 (23, 27, 0, 0) 23 (28, 33, 0, 0) 12 (44, 49, O,
0) 18 (52, 55, 0, 0)

Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (20, 25, 0, 0) 10 (25, 31, 0, 0) 22 (32, 37, 0, 0)
16 (46, 50, 0, 0)

Machine 3: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 32 (21, 27, 0, 0) 28 (27, 33, 0, 0) 24 (41, 47, 1, 0)
13 (51, 57, 0, 0)

Machine 4: 17 (8, 13, 0, 0) 8 (19, 25, 0, 0) 20 (27, 33, 0, 0) 25 (41, 47, 0, 0) 26 (49, 51, 0,
0)

Machine 5: 15 (6, 10, 0, 0) 30 (13, 18, 2, 0) 7 (23, 26, 0, 0) 31 (27, 29, 0, 0) 19 (29, 31, O,
0) 4 (31, 36, 0, 0) 2 (44, 46, 0, 0) 21 (48, 51, 0, 0) 11 (52, 57, 0, 0)

Outbound area

Machine 1: 24 (25, 26, 0, 0) 17 (46, 48, 0, 0) 27 (55, 56, 0, 0) 33 (57, 59, 0, 0) 12 (59, 61,
0, 0) 23 (63, 66, 0, 0) 19 (67, 70, 0, 0) 32 (96, 100, O, 0)

Machine 2: 1 (47, 52, 0, 0) 9 (57, 62, 0, 0) 35 (65, 69, 0, 0) 8 (82, 84, 0, 0)

Machine 3: 28 (38, 41, 0, 0) 31 (51, 55, 0, 0) 7 (59, 61, 0, 0) 16 (63, 67, 0, 0) 3 (70, 75, O,
0) 29 (94, 98, 0, 0)

Machine 4: 21 (39, 40, 0, 0) 22 (53, 57, 0, 0) 20 (59, 64, 0, 0) 4 (65, 70, 0, 0) 30 (87, 91,
0, 0)

Machine 5: 34 (18, 19, 0, 0) 5 (45, 47, 0, 0) 26 (54, 56, 0, 0) 13 (60, 61, 0, 0) 2 (66, 69, O,
0) 10 (92, 97, 0, 0)

Machine 6: 14 (35, 37, 0, 0) 11 (53, 54, 0, 0) 25 (58, 60, 0, 0) 6 (61, 66, 0, 0) 15 (68, 73,
0, 0) 18 (89, 90, 0, 0)

Total penalty for crossdock: 3

93

Instance 11:

RG algorithm
Inbound area

Machine 1: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 40 (20, 23, 0, 0) 13 (26, 31, 0, 0) 12 (38, 41, 0,
0) 9 (44, 49, 0, 0) 10 (54, 59, 0, 0)

Machine 2: 26 (6, 8, 0, 0) 18 (9, 14, 0, 0) 35 (14, 20, 0, 0) 4 (23, 29, 0, 0) 36 (31, 36, O,
0) 33 (39, 45, 0, 0) 29 (45, 48, 0, 0) 21 (49, 52, 0, 0) 31 (58, 61, 0, 0)

Machine 3: 25 (6, 8, 1, 0) 5 (10, 12, 2, 0) 28 (14, 20, 0, 0) 39 (23, 28, 0, 0) 15 (28, 31, O,
0) 14 (36, 42, 0, 0) 1 (44, 48, 0, 0) 6 (52, 54, 0, 0)

Machine 4: 16 (5, 11, 4, 0) 24 (11, 14, 0, 0) 7 (20, 22, 0, 0) 20 (27, 31, 0, 0) 38 (38, 42, 0,
0) 11 (43, 46, 0, 0) 22 (48, 52, 0, 0) 17 (55, 58, 0, 0)

Machine 5: 23 (5, 7, 0, 0) 3 (8, 12, 0, 0) 32 (14, 18, 0, 0) 2 (23, 29, 0, 0) 27 (33, 38, 0, 0)
19 (43, 49, 0, 0) 30 (52, 55, 0, 0) 34 (58, 61, 0, 0)

Outbound area

Machine 1: 33 (12, 13, 0, 0) 14 (41, 42, 0, 0) 1 (49, 50, 0, 0) 7 (50, 54, 0, 0) 15 (61, 66, O,
0) 35 (68, 73, 0, 0) 10 (79, 82, 0, 0)

Machine 2: 41 (34, 35, 0, 0) 2 (46, 49, 0, 0) 28 (52, 55, 0, 0) 40 (62, 66, 0, 0) 31 (69, 71,
0, 0) 22 (77, 81, 0, 0) 37 (95, 100, 0, 0)

Machine 3: 8 (38, 40, 0, 0) 18 (47, 50, 2, 0) 4 (50, 51, 0, 0) 13 (53, 56, 0, 0) 34 (63, 66, O,
0) 5 (67, 69, 0, 0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 43 (82, 86, 0, 0)

Machine 4: 42 (27, 29, 0, 0) 32 (45, 46, 0, 0) 19 (51, 56, 0, 0) 36 (65, 68, 0, 0) 21 (69, 71,
0, 0) 27 (73, 75, 0, 0) 38 (92, 97, 0, 0)

Machine 5: 3 (28, 30, 0, 0) 25 (43, 46, 0, 0) 11 (47, 52, 0, 0) 6 (56, 59, 0, 0) 26 (66, 71, O,
0) 17 (77, 78, 0, 0)

Machine 6: 23 (35, 36, 0, 0) 20 (48, 50, 0, 0) 29 (52, 54, 0, 0) 16 (60, 62, 0, 0) 24 (66, 68,
0, 0) 39 (71, 72, 0, 0) 9 (87, 90, 0, 0)

Total penalty for crossdock: 10

RGTS algorithm
Inbound area

Machine 1: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 40 (20, 23, 0, 0) 13 (26, 31, 0, 0) 12 (38, 41, 0,
0) 9 (44, 49, 0, 0) 10 (54, 59, 0, 0)

Machine 2: 26 (6, 8, 0, 0) 18 (9, 14, 0, 0) 35 (14, 20, 0, 0) 4 (23, 29, 0, 0) 36 (31, 36, O,
0) 33 (39, 45, 0, 0) 29 (45, 48, 0, 0) 21 (49, 52, 0, 0) 31 (58, 61, 0, 0)

Machine 3: 25 (7, 9, 0, 0) 5 (9, 11, 3, 0) 24 (11, 14, 0, 0) 28 (14, 20, 0, 0) 39 (23, 28, O,
0) 15 (28, 31, 0, 0) 14 (36, 42, 0, 0) 1 (44, 48, 0, 0) 6 (52, 54, 0, 0)

Machine 4: 16 (9, 15, 0, 0) 7 (20, 22, 0, 0) 20 (27, 31, 0, 0) 38 (38, 42, 0, 0) 11 (43, 46, O,
0) 22 (48, 52, 0, 0) 17 (55, 58, 0, 0)

Machine 5: 23 (5, 7, 0, 0) 3 (8, 12, 0, 0) 32 (14, 18, 0, 0) 2 (23, 29, 0, 0) 27 (33, 38, 0, 0)
19 (43, 49, 0, 0) 30 (52, 55, 0, 0) 34 (58, 61, 0, 0)

Outbound area

Machine 1: 33 (12, 13, 0, 0) 14 (41, 42, 0, 0) 1 (49, 50, 0, 0) 7 (50, 54, 0, 0) 15 (61, 66, O,
0) 35 (68, 73, 0, 0) 10 (79, 82, 0, 0)

Machine 2: 41 (34, 35, 0, 0) 2 (46, 49, 0, 0) 18 (49, 52, 0, 0) 28 (52, 55, 0, 0) 40 (62, 66,
0, 0) 31 (69, 71, 0, 0) 22 (77, 81, 0, 0) 37 (95, 100, O, 0)

Machine 3: 8 (38, 40, 0, 0) 4 (50, 51, 0, 0) 13 (53, 56, 0, 0) 34 (63, 66, 0, 0) 5 (67, 69, O,
0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 43 (82, 86, 0, 0)

Machine 4: 42 (27, 29, 0, 0) 32 (45, 46, 0, 0) 19 (51, 56, 0, 0) 36 (65, 68, 0, 0) 21 (69, 71,
0, 0) 27 (73, 75, 0, 0) 38 (92, 97, 0, 0)

Machine 5: 3 (28, 30, 0, 0) 25 (43, 46, 0, 0) 11 (47, 52, 0, 0) 6 (56, 59, 0, 0) 26 (66, 71, O,
0) 17 (77, 78, 0, 0)

Machine 6: 23 (35, 36, 0, 0) 20 (48, 50, 0, 0) 29 (52, 54, 0, 0) 16 (60, 62, 0, 0) 24 (66, 68,
0, 0) 39 (71, 72, 0, 0) 9 (87, 90, 0, 0)

Total penalty for crossdock: 4

94

Instance 12:

RG algorithm
Inbound area

Machine 1: 39 (6, 9, 0, 0) 33 (11, 16, 0, 0) 29 (19, 23, 0, 0) 45 (23, 29, 0, 0) 41 (32, 35, O,
0) 32 (38, 44, 0, 0) 9 (48, 51, 0, 0) 7 (51, 54, 0, 0) 26 (54, 58, 1, 0) 25 (58, 63, 0, 0) 54
(64, 68, 0, 0)

Machine 2: 6 (6, 11, 0, 0) 44 (12, 17, 0, 0) 43 (18, 24, 0, 0) 49 (25, 27, 0, 0) 48 (31, 35, O,
0) 8 (35, 40, 0, 0) 2 (46, 51, 2, 0) 3 (51, 57, 2, 0) 35 (57, 62, 1, 0) 52 (62, 67, 0, 0)
Machine 3: 11 (2, 8, 0, 0) 42 (11, 15, 0, 0) 56 (15, 20, 1, 0) 22 (20, 23, 0, 1) 14 (23, 29, O,
3) 20 (33, 37, 0, 0) 36 (46, 49, 0, 0) 37 (49, 55, 0, 0) 15 (56, 61, 1, 0) 19 (61, 64, 0, 2)
Machine 4: 17 (4, 6, 0, 0) 55 (8, 12, 0, 0) 10 (13, 15, 0, 0) 31 (15, 20, 2, 0) 13 (20, 24, O,
0) 23 (25, 30, 0, 0) 30 (33, 38, 0, 0) 46 (42, 48, 0, 0) 4 (50, 55, 0, 0) 51 (55, 61, 1, 0) 1
(61, 63, 0, 2) 38 (63, 66, 0, 3)

Machine 5: 53 (3, 8, 0, 0) 21 (9, 13, 0, 0) 34 (13, 15, 1, 0) 16 (15, 21, 3, 0) 50 (21, 27, O,
1) 28 (31, 35, 0, 0) 24 (38, 43, 0, 0) 47 (46, 50, 2, 0) 27 (50, 52, 2, 0) 12 (52, 54, 2, 0) 40
(54, 59, 3, 0) 18 (59, 61, 0, 0) 5 (61, 67, 0, 1)

Outbound area

Machine 1: 43 (30, 31, 0, 0) 54 (59, 62, 1, 0) 24 (62, 67, 3, 0) 23 (67, 69, 2, 0) 20 (69, 73,
1, 0) 46 (73, 77, 0, 0) 47 (78, 83, 0, 0) 1 (90, 92, 0, 0) 34 (96, 98, 0, 0)

Machine 2: 9 (37, 40, 0, 0) 12 (61, 62, 0, 0) 26 (65, 66, 0, 0) 5 (67, 72, 0, 1) 35 (73, 78, O,
0) 16 (79, 84, 0, 0) 40 (86, 88, 0, 0) 44 (93, 96, 0, 0)

Machine 3: 14 (13, 14, 0, 0) 21 (54, 55, 0, 0) 27 (61, 65, 1, 0) 49 (65, 67, 4, 0) 25 (67, 70,
2, 0) 36 (70, 74, 2, 0) 22 (74, 78, 0, 0) 37 (78, 82, 0, 0) 53 (85, 90, 0, 0) 17 (95, 100, O,
0)

Machine 4: 10 (16, 17, 0, 0) 56 (54, 58, 0, 0) 6 (62, 67, 9, 0) 30 (67, 72, 0, 2) 39 (72, 77,
0, 0) 52 (78, 80, 0, 0) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 48 (91, 94, 0, 0)

Machine 5: 11 (32, 33, 0, 0) 45 (58, 59, 0, 0) 4 (63, 64, 0, 0) 51 (65, 66, 0, 0) 15 (66, 70,
2, 0) 55 (70, 71, 2, 0) 3 (71, 76, 1, 0) 19 (76, 78, 1, 0) 28 (78, 83, 0, 0) 42 (89, 94, 0, 0)
41 (102, 103, 0, 0)

Machine 6: 32 (47, 48, 0, 0) 57 (58, 62, 3, 0) 18 (62, 67, 5, 0) 38 (67, 70, 4, 0) 13 (70, 74,
3, 0) 2 (74, 76, 1, 0) 31 (76, 80, 0O, 0) 8 (80, 84, 0, 0) 50 (85, 90, 0, 0) 7 (98, 103, 0, 0)

Total penalty for crossdock: 1671

RGTS algorithm
Inbound area

Machine 1: 11 (2, 8, 0, 0) 55 (8, 12, 0, 0) 44 (12, 17, 0, 0) 29 (19, 23, 0, 0) 45 (23, 29, O,
0) 41 (32, 35, 0, 0) 24 (38, 43, 0, 0) 9 (47, 50, 1, 0) 7 (50, 53, 1, 0) 51 (53, 59, 3, 0) 25
(59, 64, 0, 1) 54 (64, 68, 0, 0)

Machine 2: 17 (4, 6, 0, 0) 6 (6, 11, 0, 0) 33 (11, 16, 0, 0) 43 (18, 24, 0, 0) 49 (25, 27, O,
0) 48 (31, 35, 0, 0) 8 (35, 40, 0, 0) 47 (47, 51, 1, 0) 3 (51, 57, 2, 0) 15 (57, 62, 0, 0) 52
(62, 67, 0, 0)

Machine 3: 42 (10, 14, 1, 0) 31 (14, 19, 3, 0) 22 (19, 22, 0, 0) 50 (22, 28, 0, 2) 20 (33, 37,
0, 0) 46 (42, 48, 0, 0) 37 (49, 55, 0, 0) 35 (55, 60, 3, 0) 5 (60, 66, 0, 0)

Machine 4: 39 (6, 9, 0, 0) 10 (13, 15, 0, 0) 16 (15, 21, 3, 0) 13 (21, 25, 0, 1) 23 (25, 30, O,
0) 30 (33, 38, 0, 0) 36 (46, 49, 0, 0) 4 (50, 55, 0, 0) 26 (55, 59, 0, 0) 1 (59, 61, 0, 0) 38
(61, 64, 0, 1)

Machine 5: 53 (3, 8, 0, 0) 21 (9, 13, 0, 0) 34 (13, 15, 1, 0) 56 (15, 20, 1, 0) 14 (20, 26, O,
0) 28 (31, 35, 0, 0) 32 (38, 44, 0, 0) 2 (45, 50, 3, 0) 27 (50, 52, 2, 0) 12 (52, 54, 2, 0) 40
(54, 59, 3, 0) 18 (59, 61, 0, 0) 19 (61, 64, 0, 2)

Outbound area

Machine 1: 12 (61, 62, 0, 0) 24 (64, 69, 1, 0) 20 (69, 73, 1, 0) 46 (73, 77, 0, 0) 47 (78, 83,
0, 0) 40 (86, 88, 0, 0) 42 (89, 94, 0, 0) 7 (98, 103, 0, 0)

Machine 2: 21 (54, 55, 0, 0) 57 (61, 65, 0, 0) 26 (65, 66, 0, 0) 49 (66, 68, 3, 0) 15 (68, 72,
0, 0) 55 (72, 73, 0, 0) 35 (73, 78, 0, 0) 28 (78, 83, 0, 0) 53 (85, 90, 0, 0) 1 (90, 92, 0, 0)
Machine 3: 45 (58, 59, 0, 0) 27 (62, 66, 0, 0) 25 (66, 69, 3, 0) 23 (69, 71, 0, 0) 38 (71, 74,
0, 0) 22 (74, 78, 0, 0) 37 (78, 82, 0, 0) 50 (85, 90, 0, 0) 17 (95, 100, 0, 0)

Machine 4: 9 (37, 40, 0, 0) 6 (61, 66, 10, 0) 30 (66, 71, 0, 1) 39 (71, 76, 1, 0) 31 (76, 80,
0, 0) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 48 (91, 94, 0, 0) 34 (96, 98, 0, O

Machine 5: 56 (54, 58, 0, 0) 54 (60, 63, 0, 0) 4 (63, 64, 0, 0) 51 (65, 66, 0, 0) 5 (66, 71, O,
0) 36 (71, 75, 1, 0) 2 (75, 77, 0, 0) 19 (77, 79, 0, 0) 16 (79, 84, 0, 0)

Machine 6: 14 (13, 14, 0, 0) 10 (16, 17, 0, 0) 43 (30, 31, 0, 0) 11 (32, 33, 0, 0) 32 (47, 48,
0, 0) 18 (63, 68, 4, 0) 3 (68, 73, 4, 0) 13 (73, 77, 0, 0) 52 (78, 80, 0, 0) 8 (80, 84, 0, 0)
44 (93, 96, 0, 0) 41 (102, 103, 0, 0)

95

Total penalty for crossdock: 858
Instance 13:

RG algorithm
Inbound area

Machine 1: 22 (12, 15, 0, 0) 4 (19, 21, 0, 0) 28 (21, 23, 1, 0) 16 (23, 26, 0, 0) 32 (34, 39,
0, 0) 8 (53, 59, 0, 0)

Machine 2: 9 (2, 4, 0, 0) 21 (15, 18, 0, 0) 3 (18, 22, 4, 0) 24 (22, 24, 0, 0) 26 (24, 27, O,
0) 12 (32, 38, 0, 0) 6 (47, 50, 0, 0)

Machine 3: 1 (13, 16, 0, 0) 29 (20, 26, 0, 0) 5 (31, 33, 0, 0) 7 (42, 47, 0, 0) 27 (57, 60, O,
0)

Machine 4: 25 (10, 13, 0, 0) 11 (20, 26, 0, 0) 34 (27, 29, 0, 0) 23 (35, 39, 0, 0) 15 (47, 52,
0, 0)

Machine 5: 20 (6, 10, 0, 0) 2 (17, 22, 2, 0) 18 (22, 28, 0, 0) 10 (33, 37, 0, 0) 14 (47, 51, 0,
0) 19 (58, 60, 0, O

Machine 6: 33 (13, 19, 0, 0) 30 (20, 26, 0, 0) 17 (27, 29, 0, 0) 13 (36, 42, 0, 0) 31 (55, 57,
0, 0)

Outbound area

Machine 1: 9 (32, 33, 0, 0) 8 (61, 63, 0, 0) 25 (68, 70, 0, 0) 12 (71, 75, 0, 0) 10 (89, 93, O,
0)

Machine 2: 28 (23, 24, 0, 0) 30 (46, 49, 0, 0) 31 (68, 70, 0, 0) 15 (70, 75, 0, 0) 2 (83, 88,
0, 0) 11 (98, 103, 0, 0)

Machine 3: 19 (39, 40, 0, 0) 23 (61, 66, 0, 0) 4 (70, 72, 0, 0) 14 (78, 83, 0, 0) 20 (90, 95,
0, 0)

Machine 4: 1 (38, 42, 0, 0) 13 (62, 67, 0, 0) 16 (70, 74, 0, 0) 24 (80, 85, 0, 0) 29 (92, 97,
0, 0)

Machine 5: 7 (41, 44, 0, 0) 22 (64, 65, 0, 0) 27 (69, 73, 0, 0) 32 (84, 86, 0, 0)

Machine 6: 17 (9, 10, 0, 0) 3 (42, 43, 0, 0) 26 (62, 67, 0, 0) 5 (70, 71, 0, 0) 18 (74, 75, O,
0) 21 (79, 83, 0, 0) 6 (94, 95, 0, 0)

Total penalty for crossdock: 7

RGTS algorithm
Inbound area

Machine 1: 22 (12, 15, 0, 0) 4 (19, 21, 0, 0) 28 (21, 23, 1, 0) 16 (23, 26, 0, 0) 32 (34, 39,
0, 0) 8 (53, 59, 0, 0)

Machine 2: 9 (2, 4, 0, 0) 21 (15, 18, 0, 0) 3 (18, 22, 4, 0) 24 (22, 24, 0, 0) 26 (24, 27, O,
0) 12 (32, 38, 0, 0) 6 (47, 50, 0, 0)

Machine 3: 1 (13, 16, 0, 0) 29 (20, 26, 0, 0) 5 (31, 33, 0, 0) 7 (42, 47, 0, 0) 27 (57, 60, O,
0)

Machine 4: 25 (10, 13, 0, 0) 11 (20, 26, 0, 0) 34 (27, 29, 0, 0) 23 (35, 39, 0, 0) 15 (47, 52,
0, 0)

Machine 5: 20 (6, 10, 0, 0) 2 (17, 22, 2, 0) 18 (22, 28, 0, 0) 10 (33, 37, 0, 0) 14 (47, 51, 0,
0) 19 (58, 60, 0, 0)

Machine 6: 33 (13, 19, 0, 0) 30 (20, 26, 0, 0) 17 (27, 29, 0, 0) 13 (36, 42, 0, 0) 31 (55, 57,
0, 0)

Outbound area

Machine 1: 9 (32, 33, 0, 0) 8 (61, 63, 0, 0) 25 (68, 70, 0, 0) 12 (71, 75, 0, 0) 10 (89, 93, O,
0)

Machine 2: 28 (23, 24, 0, 0) 30 (46, 49, 0, 0) 31 (68, 70, 0, 0) 15 (70, 75, 0, 0) 2 (83, 88,
0, 0) 11 (98, 103, 0, 0)

Machine 3: 19 (39, 40, 0, 0) 23 (61, 66, 0, 0) 4 (70, 72, 0, 0) 14 (78, 83, 0, 0) 20 (90, 95,
0, 0)

Machine 4: 1 (38, 42, 0, 0) 13 (62, 67, 0, 0) 16 (70, 74, 0, 0) 24 (80, 85, 0, 0) 29 (92, 97,
0, 0)

Machine 5: 7 (41, 44, 0, 0) 22 (64, 65, 0, 0) 27 (69, 73, 0, 0) 32 (84, 86, 0, 0)

Machine 6: 17 (9, 10, 0, 0) 3 (42, 43, 0, 0) 26 (62, 67, 0, 0) 5 (70, 71, 0, 0) 18 (74, 75, O,
0) 21 (79, 83, 0, 0) 6 (94, 95, 0, 0)

Total penalty for crossdock: 7

96

Instance 14:

RG algorithm
Inbound area

Machine 1: 12 (14, 16, 0, 0) 23 (18, 21, 0, 0) 22 (21, 23, 3, 0) 30 (30, 36, 0, 0) 39 (41, 45,
0, 0) 44 (52, 56, 0, 0) 25 (62, 64, 0, 0)

Machine 2: 15 (16, 19, 0, 0) 1 (21, 27, 0, 0) 40 (30, 36, 0, 0) 18 (39, 45, 0, 0) 37 (52, 54,
0, 0) 19 (59, 64, 0, 0) 4 (67, 71, 0, 0)

Machine 3: 6 (9, 15, 0, 0) 14 (18, 23, 0, 0) 2 (25, 29, 0, 0) 26 (31, 33, 0, 0) 34 (35, 38, O,
0) 41 (45, 49, 0, 0) 42 (52, 55, 3, 0) 45 (63, 69, 0, 0)

Machine 4: 49 (10, 14, 0, 0) 8 (18, 23, 0, 0) 29 (26, 32, 0, 0) 21 (34, 39, 0, 0) 24 (45, 49,
0, 0) 31 (58, 60, 0, 0) 7 (65, 70, 0, 0)

Machine 5: 28 (6, 8, 0, 0) 33 (16, 19, 0, 0) 5 (23, 29, 0, 0) 13 (31, 37, 0, 0) 47 (43, 47, O,
0) 20 (54, 59, 0, 0) 9 (64, 69, 0, 0)

Machine 6: 11 (13, 17, 0, 0) 43 (17, 22, 2, 0) 16 (29, 34, 0, 0) 35 (37, 39, 0, 0) 46 (50, 53,
0, 0) 32 (58, 64, 0, 0) 17 (69, 75, 0, 0)

Machine 7: 50 (15, 21, 0, 0) 48 (23, 25, 0, 0) 3 (30, 32, 0, 0) 10 (32, 36, 0, 0) 36 (43, 47,
0, 0) 27 (55, 59, 0, 0) 38 (63, 68, 1, 0)

Outbound area

Machine 1: 35 (28, 29, 0, 0) 8 (47, 50, 0, 0) 6 (55, 60, 0, 0) 60 (69, 72, 0, 0) 38 (76, 81, O,
0) 40 (84, 86, 0, 0) 39 (94, 99, 0, O

Machine 2: 55 (34, 37, 0, 0) 45 (51, 52, 0, 0) 18 (57, 59, 0, 0) 31 (68, 73, 0, 0) 52 (75, 78,

1, 0) 27 (78, 79, 0, 0) 15 (79, 84, 0, 0) 56 (88, 90, 0, 0) 14 (97, 101, 0, 0)

Machine 3: 28 (29, 30, 0, 0) 51 (49, 51, 0, 0) 1 (55, 56, 0, 0) 3 (65, 69, 0, 0) 9 (75, 80, O,

0) 57 (81, 84, 0, 0) 24 (88, 93, 0, 0)

Machine 4: 46 (23, 24, 0, 0) 22 (46, 48, 0, 0) 19 (54, 56, 0, 0) 41 (61, 66, 0, 0) 29 (72, 77,

0, 0) 36 (77, 78, 0, 0) 59 (78, 82, 0, 0) 33 (88, 90, 0, 0) 49 (97, 101, 0, 0)

Machine 5: 48 (35, 37, 0, 0) 54 (50, 53, 0, 0) 30 (61, 66, 0, 0) 20 (75, 79, 0, 0) 26 (80, 82,

0, 0) 4 (85, 87, 0, 0) 2 (94, 98, 0, 0)

Machine 6: 34 (41, 42, 0, 0) 43 (53, 55, 0, 0) 11 (61, 63, 0, 0) 13 (69, 73, 0, 0) 17 (77, 80,

0, 0) 47 (80, 85, 0, 0) 16 (89, 94, 0, 0)

Machine 7: 5 (16, 17, 0, 0) 37 (45, 46, 0, 0) 53 (54, 58, 0, 0) 7 (65, 66, 0, 0) 42 (74, 78, O,
0) 25 (78, 83, 0, 0) 21 (88, 91, 0, 0)

Machine 8: 50 (22, 23, 0, 0) 32 (47, 49, 0, 0) 44 (54, 58, 0, 0) 58 (68, 71, 0, 0) 10 (76, 80,

0, 0) 23 (81, 85, 0, 0) 12 (90, 92, 0, 0)

Total penalty for crossdock: 10

RGTS algorithm
Inbound area

Machine 1: 12 (14, 16, 0, 0) 23 (18, 21, 0, 0) 22 (21, 23, 3, 0) 30 (30, 36, 0, 0) 39 (41, 45,
0, 0) 44 (52, 56, 0, 0) 25 (62, 64, 0, 0)

Machine 2: 15 (16, 19, 0, 0) 1 (21, 27, 0, 0) 40 (30, 36, 0, 0) 18 (39, 45, 0, 0) 37 (52, 54,
0, 0) 19 (59, 64, 0, 0) 4 (67, 71, 0, 0)

Machine 3: 6 (9, 15, 0, 0) 14 (18, 23, 0, 0) 2 (25, 29, 0, 0) 26 (31, 33, 0, 0) 34 (35, 38, O,
0) 41 (45, 49, 0, 0) 42 (52, 55, 3, 0) 45 (63, 69, 0, 0)

Machine 4: 49 (10, 14, 0, 0) 8 (18, 23, 0, 0) 29 (26, 32, 0, 0) 21 (34, 39, 0, 0) 24 (45, 49,
0, 0) 31 (58, 60, 0, 0) 7 (65, 70, 0, 0)

Machine 5: 28 (6, 8, 0, 0) 33 (16, 19, 0, 0) 5 (23, 29, 0, 0) 13 (31, 37, 0, 0) 47 (43, 47, O,
0) 20 (54, 59, 0, 0) 9 (64, 69, 0, 0)

Machine 6: 11 (13, 17, 0, 0) 43 (17, 22, 2, 0) 16 (29, 34, 0, 0) 35 (37, 39, 0, 0) 46 (50, 53,
0, 0) 32 (58, 64, 0, 0) 17 (69, 75, 0, 0)

Machine 7: 50 (15, 21, 0, 0) 48 (23, 25, 0, 0) 3 (30, 32, 0, 0) 10 (32, 36, 0, 0) 36 (43, 47,
0, 0) 27 (55, 59, 0, 0) 38 (63, 68, 1, 0)

Outbound area

Machine 1: 35 (28, 29, 0, 0) 8 (47, 50, 0, 0) 6 (55, 60, 0, 0) 60 (69, 72, 0, 0) 38 (76, 81, O,
0) 40 (84, 86, 0, 0) 39 (94, 99, 0, O

Machine 2: 55 (34, 37, 0, 0) 45 (51, 52, 0, 0) 18 (57, 59, 0, 0) 31 (68, 73, 0, 0) 52 (75, 78,
1, 0) 27 (78, 79, 0, 0) 15 (79, 84, 0, 0) 56 (88, 90, 0, 0) 14 (97, 101, 0, 0)

Machine 3: 28 (29, 30, 0, 0) 51 (49, 51, 0, 0) 1 (55, 56, 0, 0) 3 (65, 69, 0, 0) 9 (75, 80, O,
0) 57 (81, 84, 0, 0) 24 (88, 93, 0, 0)

Machine 4: 46 (23, 24, 0, 0) 22 (46, 48, 0, 0) 19 (54, 56, 0, 0) 41 (61, 66, 0, 0) 29 (72, 77,
0, 0) 36 (77, 78, 0, 0) 59 (78, 82, 0, 0) 33 (88, 90, 0, 0) 49 (97, 101, 0, 0)

Machine 5: 48 (35, 37, 0, 0) 54 (50, 53, 0, 0) 30 (61, 66, 0, 0) 20 (75, 79, 0, 0) 26 (80, 82,
0, 0) 4 (85, 87, 0, 0) 2 (94, 98, 0, 0)

97

Machine 6: 34 (41, 42, 0, 0) 43 (53, 55, 0, 0) 11 (61, 63, 0, 0) 13 (69, 73, 0, 0) 17 (77, 80,
0, 0) 47 (80, 85, 0, 0) 16 (89, 94, 0, 0)

Machine 7: 5 (16, 17, 0, 0) 37 (45, 46, 0, 0) 53 (54, 58, 0, 0) 7 (65, 66, 0, 0) 42 (74, 78, O,
0) 25 (78, 83, 0, 0) 21 (88, 91, 0, 0)

Machine 8: 50 (22, 23, 0, 0) 32 (47, 49, 0, 0) 44 (54, 58, 0, 0) 58 (68, 71, 0, 0) 10 (76, 80,
0, 0) 23 (81, 85, 0, 0) 12 (90, 92, 0, 0)

Total penalty for crossdock: 10

98

Instance 15:

RG algorithm
Inbound area

Machine 1: 37 (0, 6, 0, 0) 77 (9, 11, 0, 0) 90 (12, 15, 0, 0) 26 (16, 20, 2, 0) 16 (20, 26, O,
0) 32 (30, 36, 0, 0) 19 (38, 40, 0, 0) 87 (42, 47, 1, 0) 74 (47, 49, 1, 0) 51 (49, 54, 0, 0) 82
(59, 62, 0, 0) 89 (65, 70, 1, 0)

Machine 2: 56 (5, 7, 0, 0) 69 (10, 13, 0, 0) 43 (16, 18, 0, 0) 6 (20, 26, 0, 0) 71 (30, 33, 1,
0) 45 (33, 38, 0, 0) 62 (40, 43, 0, 0) 78 (45, 48, 0, 0) 53 (48, 52, 0, 0) 83 (54, 59, 0, 0) 47
(64, 68, 0, 0)

Machine 3: 13 (8, 12, 0, 0) 4 (12, 14, 0, 0) 44 (17, 22, 0, 0) 18 (23, 27, 0, 0) 25 (31, 34, 1,
0) 81 (34, 40, 0, 0) 84 (43, 49, 0, 0) 22 (49, 53, 0, 0) 65 (58, 64, 0, 0) 63 (70, 73, 0, 0)
Machine 4: 34 (2, 4, 0, 0) 24 (8, 12, 0, 0) 14 (12, 17, 0, 0) 58 (20, 22, 0, 0) 11 (23, 25, O,
0) 17 (27, 29, 0, 0) 60 (33, 35, 0, 0) 35 (35, 38, 0, 0) 9 (41, 47, 0, 0) 20 (47, 53, 0, 0) 46
(56, 59, 0, 0) 54 (63, 66, 0, 0)

Machine 5: 8 (5, 8, 0, 0) 29 (10, 13, 0, 0) 88 (16, 22, 0, 0) 5 (22, 24, 0, 0) 76 (26, 28, O,
0) 31 (33, 36, 0, 0) 52 (37, 43, 0, 0) 72 (46, 48, 0, 0) 73 (48, 52, 0, 0) 68 (55, 60, 0, 0) 50
(64, 67, 0, 0)

Machine 6: 70 (4, 6, 0, 0) 28 (9, 13, 0, 0) 55 (14, 19, 0, 0) 57 (20, 22, 0, 0) 41 (23, 26, O,
0) 33 (32, 35, 0, 0) 61 (35, 41, 0, 0) 15 (44, 46, 0, 0) 2 (47, 51, 0, 0) 12 (51, 57, 0, 0) 75
(61, 66, 0, 0)

Machine 7: 86 (5, 8, 0, 0) 67 (11, 15, 0, 0) 64 (18, 22, 0, 0) 49 (22, 24, 0, 0) 79 (27, 32, O,
0) 7 (33, 35, 0, 0) 38 (36, 42, 0, 0) 85 (45, 50, 0, 0) 59 (51, 53, 0, 0) 66 (59, 61, 0, 0) 1
(65, 68, 0, 0)

Machine 8: 36 (6, 12, 0, 0) 30 (12, 15, 0, 0) 3 (17, 21, 1, 0) 23 (21, 23, 0, 0) 39 (24, 26, O,
0) 27 (29, 35, 0, 0) 80 (36, 39, O, 0) 48 (42, 45, 1, 0) 10 (45, 47, 2, 0) 42 (47, 51, 2, 0) 21
(56, 58, 0, 0) 40 (62, 66, 0, 0)

Outbound area

Machine 1: 31 (37, 38, 0, 0) 37 (50, 52, 0, 0) 53 (55, 57, 0, 0) 43 (59, 64, 0, 0) 14 (65, 69,
0, 0) 57 (70, 75, 0, 0) 81 (78, 80, 0, 0) 55 (81, 83, 0, 0) 56 (85, 89, 0, 0) 78 (90, 94, 0, 0)
35 (96, 100, 0, 0)

Machine 2: 33 (39, 42, 0, 0) 64 (51, 55, 0, 0) 32 (59, 62, 0, 0) 36 (64, 67, 0, 0) 13 (69, 74,
0, 0) 34 (78, 81, 0, 0) 17 (84, 87, 0, 0) 21 (89, 93, 0, 0) 11 (96, 100, 0, 0)

Machine 3: 71 (43, 47, 0, 0) 59 (51, 53, 0, 0) 4 (58, 61, 0, 0) 10 (64, 66, 0, 0) 79 (66, 70,
0, 0) 12 (71, 76, 0, 0) 69 (78, 80, O, 0) 45 (80, 85, 0, 0) 48 (87, 92, 0, 0) 42 (93, 95, 0, 0)
9 (101, 104, 0, 0)

Machine 4: 76 (47, 51, 0, 0) 7 (54, 57, 0, 0) 28 (61, 66, 0, 0) 16 (68, 72, 0, 0) 61 (76, 80,
0, 0) 39 (80, 84, 0, 0) 24 (86, 90, 0, 0) 23 (91, 96, 0, 0) 75 (105, 110, O, 0)

Machine 5: 88 (47, 49, 0, 0) 6 (54, 58, 0, 0) 1 (62, 63, 0, 0) 8 (65, 70, 0, 0) 41 (73, 77, O,
0) 47 (78, 83, 0, 0) 65 (85, 89, 0, 0) 40 (91, 96, 0, 0) 70 (108, 110, O, 0)

Machine 6: 26 (29, 32, 0, 0) 74 (48, 52, 0, 0) 29 (55, 57, 0, 0) 51 (61, 66, 0, 0) 54 (68, 70,
0, 0) 18 (73, 78, 1, 0) 62 (78, 80, 0, 0) 67 (81, 85, 0, 0) 25 (88, 92, 0, 0) 3 (92, 94, 0, 0)
84 (98, 102, 0, 0)

Machine 7: 22 (46, 48, 0, 0) 2 (54, 59, 0, 0) 73 (63, 66, 0, 0) 60 (67, 72, 0, 0) 72 (76, 80,
0, 0) 85 (82, 85, 0, 0) 80 (88, 93, 0, 0) 82 (96, 98, 0, 0)

Machine 8: 68 (43, 45, 0, 0) 83 (51, 54, 0, 0) 19 (58, 59, 0, 0) 77 (63, 67, 0, 0) 52 (69, 74,
0, 0) 66 (76, 80, 0, 0) 87 (80, 81, O, 0) 46 (84, 88, 0, 0) 89 (89, 91, 0, 0) 63 (92, 96, 0, 0)
Machine 9: 27 (17, 18, 0, 0) 86 (47, 52, 0, 0) 30 (56, 59, 0, 0) 5 (63, 64, 0, 0) 50 (65, 68,
0, 0) 15 (69, 73, 0, 0) 58 (76, 80, O, 0) 44 (80, 82, 0, 0) 38 (84, 88, 0, 0) 20 (89, 91, 0, 0)
49 (91, 96, 0, 0)

Total penalty for crossdock: 14

RGTS algorithm
Inbound area

Machine 1: 37 (0, 6, 0, 0) 77 (9, 11, 0, 0) 90 (12, 15, 0, 0) 26 (16, 20, 2, 0) 16 (20, 26, O,
0) 32 (30, 36, 0, 0) 19 (38, 40, 0, 0) 87 (42, 47, 1, 0) 74 (47, 49, 1, 0) 51 (49, 54, 0, 0) 82
(59, 62, 0, 0) 89 (65, 70, 1, 0)

Machine 2: 56 (5, 7, 0, 0) 69 (10, 13, 0, 0) 43 (16, 18, 0, 0) 6 (20, 26, 0, 0) 71 (30, 33, 1,
0) 45 (33, 38, 0, 0) 62 (40, 43, 0, 0) 78 (45, 48, 0, 0) 53 (48, 52, 0, 0) 83 (54, 59, 0, 0) 47
(64, 68, 0, 0)

Machine 3: 13 (8, 12, 0, 0) 4 (12, 14, 0, 0) 44 (17, 22, 0, 0) 18 (23, 27, 0, 0) 25 (31, 34, 1,
0) 81 (34, 40, 0, 0) 84 (43, 49, 0, 0) 22 (49, 53, 0, 0) 65 (58, 64, 0, 0) 1 (65, 68, 0, 0)
Machine 4: 34 (2, 4, 0, 0) 24 (8, 12, 0, 0) 14 (12, 17, 0, 0) 58 (20, 22, 0, 0) 11 (23, 25, O,
0) 17 (27, 29, 0, 0) 60 (33, 35, 0, 0) 35 (35, 38, 0, 0) 9 (41, 47, 0, 0) 20 (47, 53, 0, 0) 46
(56, 59, 0, 0) 54 (63, 66, 0, 0)

Machine 5: 70 (4, 6, 0, 0) 29 (10, 13, 0, 0) 88 (16, 22, 0, 0) 5 (22, 24, 0, 0) 76 (26, 28, O,

99

0) 31 (33, 36, 0, 0) 52 (37, 43, 0, 0) 48 (43, 46, 0, 0) 72 (46, 48, 0, 0) 73 (48, 52, 0, 0) 50
(64, 67, 0, 0)

Machine 6: 8 (5, 8, 0, 0) 28 (9, 13, 0, 0) 55 (14, 19, 0, 0) 57 (20, 22, 0, 0) 41 (23, 26, O,
0) 33 (32, 35, 0, 0) 38 (36, 42, 0, 0) 15 (44, 46, 0, 0) 2 (47, 51, 0, 0) 12 (51, 57, 0, 0) 75
(61, 66, 0, 0)

Machine 7: 86 (5, 8, 0, 0) 67 (11, 15, 0, 0) 64 (18, 22, 0, 0) 49 (22, 24, 0, 0) 79 (27, 32, O,
0) 7 (33, 35, 0, 0) 61 (35, 41, 0, 0) 85 (45, 50, 0, 0) 21 (56, 58, 0, 0) 66 (59, 61, 0, 0) 63
(70, 73, 0, 0)

Machine 8: 36 (6, 12, 0, 0) 30 (12, 15, 0, 0) 3 (17, 21, 1, 0) 23 (21, 23, 0, 0) 39 (24, 26, O,
0) 27 (29, 35, 0, 0) 80 (36, 39, 0, 0) 10 (45, 47, 2, 0) 42 (47, 51, 2, 0) 59 (51, 53, 0, 0) 68
(55, 60, 0, 0) 40 (62, 66, 0, 0)

Outbound area

Machine 1: 31 (37, 38, 0, 0) 37 (50, 52, 0, 0) 53 (55, 57, 0, 0) 43 (59, 64, 0, 0) 14 (65, 69,
0, 0) 57 (70, 75, 0, 0) 81 (78, 80, 0, 0) 55 (81, 83, 0, 0) 56 (85, 89, 0, 0) 78 (90, 94, 0, 0)
84 (98, 102, 0, 0)

Machine 2: 64 (51, 55, 0, 0) 32 (59, 62, 0, 0) 36 (64, 67, 0, 0) 60 (67, 72, 0, 0) 34 (78, 81,
0, 0) 17 (84, 87, 0, 0) 21 (89, 93, 0, 0) 11 (96, 100, O, 0)

Machine 3: 71 (43, 47, 0, 0) 88 (47, 49, 0, 0) 4 (58, 61, 0, 0) 10 (64, 66, 0, 0) 79 (66, 70,
0, 0) 12 (71, 76, 0, 0) 69 (78, 80, 0, 0) 45 (80, 85, 0, 0) 48 (87, 92, 0, 0) 42 (93, 95, 0, 0)
9 (101, 104, 0, 0)

Machine 4: 27 (17, 18, 0, 0) 76 (47, 51, 0, 0) 7 (54, 57, 0, 0) 77 (63, 67, 0, 0) 16 (68, 72,
0, 0) 61 (76, 80, 0, 0) 39 (80, 84, 0, 0) 65 (85, 89, 0, 0) 23 (91, 96, 0, 0) 75 (105, 110, O,
0)

Machine 5: 33 (39, 42, 0, 0) 74 (48, 52, 0, 0) 6 (54, 58, 0, 0) 1 (62, 63, 0, 0) 8 (65, 70, O,
0) 41 (73, 77, 0, 0) 47 (78, 83, 0, 0) 24 (86, 90, O, 0) 40 (91, 96, 0, 0) 82 (96, 98, 0, 0)
Machine 6: 26 (29, 32, 0, 0) 59 (51, 53, 0, 0) 29 (55, 57, 0, 0) 51 (61, 66, 0, 0) 54 (68, 70,
0, 0) 18 (73, 78, 1, 0) 62 (78, 80, 0, 0) 67 (81, 85, 0, 0) 25 (88, 92, 0, 0) 3 (92, 94, 0, 0)
35 (96, 100, 0, 0)

Machine 7: 22 (46, 48, 0, 0) 2 (54, 59, 0, 0) 73 (63, 66, 0, 0) 13 (69, 74, 0, 0) 72 (76, 80,
0, 0) 85 (82, 85, 0, 0) 80 (88, 93, 0, 0) 70 (108, 110, 0, 0)

Machine 8: 68 (43, 45, 0, 0) 83 (51, 54, 0, 0) 19 (58, 59, 0, 0) 28 (61, 66, 0, 0) 52 (69, 74,
0, 0) 66 (76, 80, 0, 0) 87 (80, 81, O, 0) 46 (84, 88, 0, 0) 89 (89, 91, 0, 0) 63 (92, 96, 0, 0)
Machine 9: 86 (47, 52, 0, 0) 30 (56, 59, 0, 0) 5 (63, 64, 0, 0) 50 (65, 68, 0, 0) 15 (69, 73,
0, 0) 58 (76, 80, 0, 0) 44 (80, 82, 0, 0) 38 (84, 88, 0, 0) 20 (89, 91, 0O, 0) 49 (91, 96, 0, 0)

Total penalty for crossdock: 13

100

Instance 16:

RG algorithm
Inbound area

Machine 1: 71 (2, 5, 0, 0) 56 (7, 10, 0, 0) 64 (13, 19, 0, 0) 86 (19, 24, 0, 0) 2 (36, 41, O,
0) 35 (44, 50, 0, 0) 3 (51, 56, 0, 0) 48 (64, 70, 0, 0) 81 (73, 76, 0, 0)

Machine 2: 53 (3, 5, 0, 0) 77 (6, 8, 0, 0) 33 (13, 16, 0, 0) 10 (17, 20, 0, 0) 72 (24, 28, O,
0) 32 (37, 42, 0, 0) 28 (45, 49, 1, 0) 16 (49, 55, 0, 0) 62 (57, 61, 0, 0) 73 (65, 67, 0, 0) 61
(67, 69, 3, 0)

Machine 3: 26 (5, 11, 0, 0) 47 (15, 20, 0, 0) 25 (21, 26, 0, 0) 6 (31, 34, 0, 0) 24 (39, 42, O,
0) 39 (46, 52, 0, 0) 66 (52, 57, 0, 0) 60 (63, 67, 0, 0) 69 (69, 73, 0, 0)

Machine 4: 37 (5, 10, 0, 0) 54 (13, 19, 1, 0) 7 (19, 21, 0, 0) 89 (24, 29, 0, 0) 27 (38, 44, 0,
0) 18 (46, 52, 0, 0) 20 (53, 56, 0, 0) 70 (56, 62, 0, 0) 45 (67, 71, 0, 0) 9 (75, 80, 0, 0)
Machine 5: 83 (5, 8, 0, 0) 63 (9, 15, 0, 0) 38 (17, 23, 0, 0) 22 (34, 37, 0, 0) 42 (42, 44, 0,
0) 91 (46, 52, 0, 0) 51 (52, 58, 0, 0) 8 (64, 66, 0, 0) 57 (69, 71, 0, 0) 13 (75, 81, 0, 0)
Machine 6: 14 (3, 8, 0, 0) 23 (11, 13, 0, 0) 76 (15, 21, 0, 0) 41 (30, 36, 0, 0) 68 (40, 45, 3,
0) 36 (45, 51, 2, 0) 50 (51, 53, 0, 0) 84 (56, 62, 0, 0) 88 (65, 68, 0, 0) 30 (71, 73, 0, 0)
Machine 7: 52 (2, 7, 0, 0) 67 (12, 14, 0, 0) 31 (15, 18, 0, 0) 1 (18, 21, 0, 0) 15 (21, 25, O,
0) 19 (31, 33, 0, 0) 85 (38, 44, 4, 0) 29 (44, 49, 3, 0) 17 (49, 53, 3, 0) 43 (56, 58, 0, 0) 82
(61, 63, 0, 0) 34 (67, 70, 0, 0) 44 (77, 81, 0, 0)

Machine 8: 79 (5, 7, 0, 0) 65 (8, 11, 0, 0) 75 (15, 17, 0, 0) 58 (17, 21, 2, 0) 87 (30, 33, O,
0) 55 (42, 44, 0, 0) 74 (45, 47, 0, 0) 46 (48, 50, 0, 0) 11 (50, 54, 0, 0) 80 (56, 59, 1, 0) 5
(67, 70, 0, 0) 90 (72, 74, 0, 0)

Machine 9: 59 (5, 8, 0, 0) 49 (14, 20, 0, 0) 21 (30, 32, 0, 0) 40 (41, 43, 0, 0) 92 (46, 48, 0,
0) 78 (48, 53, 0, 0) 93 (54, 57, 0, 0) 12 (60, 66, 0, 0) 4 (69, 72, 0, 0)

Outbound area

Machine 1: 81 (27, 28, 0, 0) 27 (48, 49, 0, 0) 90 (58, 60, 0, 0) 21 (67, 69, 0, 0) 51 (71, 73,
0, 0) 71 (76, 78, 0, 0) 23 (83, 84, 0, 0) 12 (85, 89, 0, 0) 60 (89, 94, 2, 0) 78 (94, 96, 0, 0)
72 (96, 100, 0, 0) 73 (107, 109, O, 0)

Machine 2: 25 (45, 46, 0, 0) 43 (58, 62, 0, 0) 28 (69, 74, 0, 0) 30 (77, 78, 0, 0) 44 (80, 85,
0, 0) 40 (88, 91, 0, 0) 85 (92, 97, 0, 0) 20 (108, 111, 0, 0)

Machine 3: 65 (41, 43, 0, 0) 39 (57, 61, 0, 0) 86 (66, 70, 0, 0) 1 (76, 79, 0, 0) 67 (83, 86,
0, 0) 70 (88, 90, 0, 0) 14 (91, 95, 1, 0) 35 (95, 98, 0, 0) 48 (101, 106, O, 0)

Machine 4: 33 (36, 37, 0, 0) 52 (54, 58, 0, 0) 2 (67, 68, 0, 0) 94 (71, 72, 0, 0) 66 (75, 77,
0, 0) 57 (78, 81, 0, 0) 87 (84, 85, 0, 0) 59 (88, 90, 3, 0) 13 (90, 92, 2, 0) 22 (92, 97, 0, 0)
80 (98, 102, 0, 0) 29 (113, 117, 0, 0)

Machine 5: 6 (37, 39, 0, 0) 18 (53, 54, 0, 0) 76 (66, 70, 0, 0) 56 (72, 77, 0, 0) 91 (78, 82,
0, 0) 8 (85, 90, 0, 0) 3 (90, 95, 1, 0) 47 (95, 98, 0, 0) 55 (98, 99, 0, 0) 64 (103, 108, 0, 0)
19 (114, 117, 0, 0)

Machine 6: 89 (23, 24, 0, 0) 24 (50, 52, 0, 0) 7 (60, 62, 0, 0) 58 (71, 73, 0, 0) 11 (78, 80,
0, 0) 88 (83, 85, 0, 0) 15 (88, 90, 0, 0) 92 (92, 96, 0, 0) 34 (96, 99, 0, 0) 31 (104, 109, O,
0)

Machine 7: 9 (28, 29, 0, 0) 32 (52, 54, 0, 0) 46 (60, 62, 0, 0) 37 (69, 71, 0, 0) 54 (74, 78,
0, 0) 75 (82, 87, 0, 0) 42 (88, 92, 3, 0) 16 (92, 96, 1, 0) 10 (96, 99, 0, 0) 62 (104, 107, O,
0)

Machine 8: 77 (30, 31, 0, 0) 41 (50, 51, 0, 0) 50 (59, 62, 0, 0) 69 (69, 71, 0, 0) 68 (73, 76,
0, 0) 4 (78, 83, 0, 0) 84 (86, 90, 0, 0) 63 (90, 95, 1, 0) 79 (95, 98, 0, 0) 36 (100, 104, O,
0) 82 (108, 111, 0, 0)

Machine 9: 74 (21, 23, 0, 0) 45 (45, 48, 0, 0) 61 (59, 64, 0, 0) 17 (71, 73, 0, 0) 49 (77, 79,
0, 0) 5 (82, 87, 1, 0) 26 (87, 89, 5, 0) 93 (89, 91, 3, 0) 83 (91, 93, 2, 0) 38 (93, 98, 0, 0)
53 (103, 106, 0, 0)

Total penalty for crossdock: 48

RGTS algorithm
Inbound area

Machine 1: 71 (2, 5, 0, 0) 56 (7, 10, 0, 0) 23 (11, 13, 0, 0) 64 (13, 19, 0, 0) 86 (19, 24, O,
0) 2 (36, 41, 0, 0) 40 (41, 43, 0, 0) 92 (45, 47, 1, 0) 29 (47, 52, 0, 0) 51 (52, 58, 0, 0) 81
(73, 76, 0, 0)

Machine 2: 53 (3, 5, 0, 0) 77 (6, 8, 0, 0) 33 (13, 16, 0, 0) 10 (17, 20, 0, 0) 72 (24, 28, O,
0) 32 (37, 42, 0, 0) 28 (45, 49, 1, 0) 16 (49, 55, 0, 0) 62 (57, 61, 0, 0) 60 (63, 67, 0, 0)
Machine 3: 26 (5, 11, 0, 0) 47 (15, 20, 0, 0) 89 (24, 29, 0, 0) 6 (31, 34, 0, 0) 22 (34, 37, O,
0) 27 (38, 44, 0, 0) 39 (46, 52, 0, 0) 66 (52, 57, 0, 0) 73 (65, 67, 0, 0) 61 (67, 69, 3, 0) 69
(69, 73, 0, 0)

Machine 4: 37 (5, 10, 0, 0) 54 (13, 19, 1, 0) 7 (19, 21, 0, 0) 21 (30, 32, 0, 0) 24 (39, 42, O,
0) 18 (45, 51, 1, 0) 3 (51, 56, 0, 0) 70 (56, 62, 0, 0) 88 (65, 68, 0, 0) 57 (69, 71, 0, 0) 13
(75, 81, 0, 0)

101

Machine 5: 83 (5, 8, 0, 0) 38 (17, 23, 0, 0) 42 (42, 44, 0, 0) 91 (45, 51, 1, 0) 50 (51, 53, O,
0) 8 (64, 66, 0, 0) 45 (67, 71, 0, 0) 9 (75, 80, 0, 0)

Machine 6: 52 (2, 7, 0, 0) 63 (9, 15, 0, 0) 76 (15, 21, 0, 0) 41 (30, 36, 0, 0) 68 (42, 47, 1,
0) 36 (47, 53, 0, 0) 20 (53, 56, 0, 0) 84 (56, 62, 0, 0) 48 (64, 70, 0, 0) 30 (71, 73, 0, 0)
Machine 7: 14 (3, 8, 0, 0) 67 (12, 14, 0, 0) 31 (15, 18, 0, 0) 1 (18, 21, 0, 0) 15 (21, 25, O,
0) 19 (31, 33, 0, 0) 35 (43, 49, 1, 0) 17 (49, 53, 3, 0) 93 (53, 56, 1, 0) 43 (56, 58, 0, 0) 82
(61, 63, 0, 0) 34 (67, 70, 0, 0) 44 (77, 81, 0, 0)

Machine 8: 79 (5, 7, 0, 0) 65 (8, 11, 0, 0) 75 (15, 17, 0, 0) 58 (17, 21, 2, 0) 87 (30, 33, O,
0) 55 (42, 44, 0, 0) 74 (45, 47, 0, 0) 46 (48, 50, 0, 0) 11 (50, 54, 0, 0) 80 (56, 59, 1, 0) 5
(67, 70, 0, 0) 90 (72, 74, 0, 0)

Machine 9: 59 (5, 8, 0, 0) 49 (14, 20, 0, 0) 25 (21, 26, 0, 0) 85 (42, 48, 0, 0) 78 (48, 53, 0,
0) 12 (60, 66, 0, 0) 4 (69, 72, 0, 0)

Outbound area

Machine 1: 90 (58, 60, 0, 0) 21 (67, 69, 0, 0) 94 (71, 72, 0, 0) 71 (76, 78, 0, 0) 4 (78, 83,
0, 0) 23 (83, 84, 0, 0) 42 (88, 92, 3, 0) 13 (92, 94, 0, 0) 78 (94, 96, 0, 0) 72 (96, 100, O,
0) 53 (103, 106, 0, 0)

Machine 2: 89 (23, 24, 0, 0) 25 (45, 46, 0, 0) 41 (50, 51, 0, 0) 28 (69, 74, 0, 0) 66 (75, 77,
0, 0) 30 (77, 78, 0, 0) 44 (80, 85, 0, 0) 40 (88, 91, 0, 0) 85 (91, 96, 1, 0) 10 (96, 99, 0, 0)
Machine 3: 39 (57, 61, 0, 0) 1 (76, 79, 0, 0) 67 (83, 86, 0, 0) 84 (86, 90, 0, 0) 14 (91, 95,
1, 0) 35 (95, 98, 0, 0) 48 (101, 106, 0, 0)

Machine 4: 52 (54, 58, 0, 0) 43 (58, 62, 0, 0) 2 (67, 68, 0, 0) 51 (71, 73, 0, 0) 57 (78, 81,
0, 0) 15 (88, 90, 0, 0) 59 (90, 92, 1, 0) 22 (92, 97, 0, 0) 80 (98, 102, 0, 0) 73 (107, 109, O,
0) 29 (113, 117, 0, 0)

Machine 5: 74 (21, 23, 0, 0) 45 (45, 48, 0, 0) 24 (50, 52, 0, 0) 18 (53, 54, 0, 0) 86 (66, 70,
0, 0) 56 (72, 77, 0, 0) 91 (78, 82, 0, 0) 12 (85, 89, 0, 0) 3 (90, 95, 1, 0) 47 (95, 98, 0, 0)
55 (98, 99, 0, 0) 64 (103, 108, 0, 0) 82 (108, 111, 0, 0) 19 (114, 117, 0, 0)

Machine 6: 81 (27, 28, 0, 0) 9 (28, 29, 0, 0) 7 (60, 62, 0, 0) 68 (73, 76, 0, 0) 88 (83, 85, O,
0) 8 (85, 90, 0, 0) 93 (90, 92, 2, 0) 92 (92, 96, 0, 0) 34 (96, 99, 0, 0) 62 (104, 107, 0, 0)
Machine 7: 33 (36, 37, 0, 0) 6 (37, 39, 0, 0) 32 (52, 54, 0, 0) 61 (59, 64, 0, 0) 37 (69, 71,
0, 0) 17 (71, 73, 0, 0) 54 (74, 78, 0, 0) 11 (78, 80, 0, 0) 87 (84, 85, 0, 0) 60 (88, 93, 3, 0)
16 (93, 97, 0, 0) 31 (104, 109, 0, 0)

Machine 8: 77 (30, 31, 0, 0) 50 (59, 62, 0, 0) 69 (69, 71, 0, 0) 75 (82, 87, 0, 0) 63 (88, 93,
3, 0) 83 (93, 95, 0, 0) 79 (95, 98, 0, 0)

Machine 9: 65 (41, 43, 0, 0) 27 (48, 49, 0, 0) 46 (60, 62, 0, 0) 76 (66, 70, 0, 0) 58 (71, 73,
0, 0) 49 (77, 79, 0, 0) 5 (83, 88, 0, 0) 70 (88, 90, O, 0) 26 (91, 93, 1, 0) 38 (93, 98, 0, 0)
36 (100, 104, 0, 0) 20 (108, 111, 0, 0)

Total penalty for crossdock: 33

102

Appendix 11

Results of the RGLS and RGLSTS Algorithms for the
first 14 Optimal Workers Allocation for the
Crossdocking - JIT Scheduling Problem Instances

shown in Appendix 8

The RGLS algorithm solution shown corresponds to its best RGLSTS algorithm

solution for each problem instance.

Instance 1

RGLS algorithm

Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:

AAAAAA
NN WA O
PNWAOO
AN

Inbound area
i (si.Ci,ei,t;)

Machine 1: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28,
34, 0, 0)
Machine 2: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)
Outbound area

i J Gj. G, Ej, TP
Machine 1: 5 (14, 15, 0, 0) 3 (21, 24, 2, 0) 11 (24, 26, 1, 0) 7 (26, 29, 0, 0) 9 (30, 32, O,
0) 4 (44, 46, 0, 0) 2 (b1, 54, 0, 0) 1 (56, 58, 0, 0) 10 (59, 64, 4, 0) 6 (64, 68, 0, 0) 8 (72,
77, 0, 0)
Total penalty for scheduling: 111
RGLSTS algorithm
Inbound area

Machine 1: 10 (1, 4, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28, 34, 0, 0)
Machine 2: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)

Outbound area

Machine 1: 5 (14, 15, 0, 0) 3 (21, 24, 2, 0) 11 (24, 26, 1, 0) 7 (26, 29, 0, 0) 9 (30, 32, O,
0) 4 (44, 46, 0, 0) 2 (b1, 54, 0, 0) 1 (56, 58, 0, 0) 10 (59, 64, 4, 0) 6 (64, 68, 0, 0) 8 (72,
77, 0, 0)

Total penalty for scheduling: 111

103

Machines cost: $3000, Scheduling cost: $111, Total cost: $3111

104

Instance 2:

RGLS algorithm

Current
Current
Current
Current
Current
Current
Current

Inbound

Machine
13 (27,
Machine
14 (35,

center point: (8, 7))
center point: (7, 6)
center point: (6, 5)
center point: (5, 4)
center point: (4, 3)
center point: (3, 2)
center point: (2, 1)

area

1: 2 (2, 6, 0, 0) 1 (14, 16, 3, 0) 3 (16, 19, 0, 0) 8 (19, 25, 0, 1) 15 (25, 27, 0, 1)
29, 0, 1) 9 (29, 34, 0, 1) 12 (34, 36, 2, 0) 11 (36, 42, 0, 3)

2: 7 (5, 11, 0, 0) 5 (14, 20, 2, 0) 10 (20, 26, 0, 1) 4 (26, 31, 0, 2) 6 (33, 35, 0, 0)
41, 0, 2)

Outbound area

Machine

1: 6 (36, 37, 3, 0) 4 (37, 40, 0, 0) 5 (40, 42, 2, 0) 2 (42, 44, 0, 0) 10 (44, 49, 0,

6) 12 (49, 50, 4, 0) 11 (50, 55, 0, 0) 9 (55, 56, 2, 0) 7 (56, 61, 4, 0) 3 (61, 65, 4, 0) 8

(65, 69,

0, 0) 14 (69, 74, 7, 0) 1 (74, 77, 3, 0) 13 (77, 82, 0, 1)

Total penalty for scheduling: 1936

RGLSTS algorithm

Inbound

Machine

area

1: 2 (2, 6, 0, 0) 1 (14, 16, 3, 0) 3 (16, 19, 0, 0) 8 (19, 25, 0, 1) 15 (25, 27, 0, 1)

4 (27, 32, 0, 3) 6 (33, 35, 0, 0) 12 (35, 37, 1, 0) 11 (37, 43, 0, 4)

Machine

2: 7 (5, 11, 0, 0) 5 (14, 20, 2, 0) 10 (20, 26, 0, 1) 13 (26, 28, 0, 0) 9 (28, 33, O,

0) 14 (33, 39, 0, 0)

Outbound area

Machine

1: 4 (32, 35, 5, 0) 5 (35, 37, 7, 0) 6 (37, 38, 2, 0) 10 (38, 43, 0, 0) 2 (43, 45, 0,

1) 11 (48, 53, 2, 0) 12 (53, 54, 0, 0) 9 (54, 55, 3, 0) 7 (55, 60, 5, 0) 3 (60, 64, 5, 0) 8

(64, 68,

1, 0) 14 (68, 73, 8, 0) 1 (73, 76, 4, 0) 13 (76, 81, 0, 0)

Total penalty for scheduling: 1148

Machines cost: $3000, Scheduling cost: $1148, Total cost: $4148

105

Instance 3:

RGLS algorithm

Current center point: (10, 11)
Current center point: (9, 10)
Current center point: (8, 9)
Current center point: (7, 8)
Current center point: (6, 7)
Current center point: (5, 6)
Current center point: (4, 5)
Current center point: (3, 4)
Current center point: (3, 3)
Current center point: (3, 2)

Inbound area

Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 14 (30, 36, O,
0) 7 (38, 41, 0, 0)

Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 13 (31, 35, O,
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)

Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 20 (20, 24, O,
3) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)

Outbound area

Machine 1: 6 (20, 23, 0, 2) 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 3 (45, 47, 0, 0) 10 (47, 51, 2,
0) 2 (51, 53, 0, 0) 13 (53, 57, 1, 0) 12 (57, 59, 0, 1) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0) 7
(73, 78, 0, 0)

Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 20 (35, 36, 0, 0) 1 (41, 46, 4, 0) 4 (46, 48, 2,
0) 15 (48, 51, 1, 0) 16 (51, 55, 1, 0) 14 (55, 60, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0)

Total penalty for scheduling: 922

RGLSTS algorithm
Inbound area

Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 3 (24, 26, O,
0) 14 (30, 36, 0, 0) 7 (38, 41, 0, 0)

Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 13 (31, 35, O,
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)

Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 20 (18, 22, 0, 1) 5 (27, 29, O,
0) 18 (34, 40, 0, 0)

Outbound area

Machine 1: 6 (18, 21, 0, 0) 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 15 (45, 48, 4, 0) 4 (48, 50, O,
0) 2 (50, 52, 1, 0) 13 (52, 56, 2, 0) 12 (56, 58, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0) 7
(73, 78, 0, 0)

Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 20 (35, 36, 0, 0) 1 (40, 45, 5, 0) 3 (45, 47, 0,
0) 10 (47, 51, 2, 0) 16 (51, 55, 1, 0) 14 (55, 60, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0)
Total penalty for scheduling: 629

Machines cost: $5000, Scheduling cost: $629, Total cost: $5629

106

Instance 4:

RGLS algorithm

Current center point: (16, 17)
Current center point: (15, 16)
Current center point: (14, 15)
Current center point: (13, 14)
Current center point: (12, 13)
Current center point: (11, 12)
Current center point: (10, 11)
Current center point: (9, 10)
Current center point: (8, 9)
Current center point: (7, 8)
Current center point: (6, 7)
Current center point: (5, 6)
Current center point: (4, 5)
Current center point: (3, 4)
Current center point: (3, 3)

Inbound area

Machine 1: 25 (0, 3, 2, 0) 23 (3, 8, 1, 0) 1 (8, 13, 0, 2) 22 (13, 18, 1, 0) 19 (18, 21, 1, 0)
28 (21, 26, 0, 1) 20 (27, 33, 3, 0) 30 (33, 36, 3, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29
(49, 51, 0, 0)

Machine 2: 5 (2, 7, 1, 0) 24 (7, 12, 0, 0) 26 (12, 16, 0, 1) 3 (16, 18, 0, 1) 11 (20, 22, 0, 0)
9 (24, 29, 0, 0) 14 (30, 34, 2, 0) 32 (34, 36, 2, 0) 21 (36, 39, 0, 0) 4 (39, 44, 0, 1) 16 (46,
52, 0, 0)

Machine 3: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 17 (7, 13, 0, 0) 27 (13, 15, 0, 0) 7 (15, 18, 0, 1)
12 (19, 25, 0, 0) 6 (31, 36, 0, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 53, 0, 1

Outbound area

Machine 1: 27 (37, 38, 0, 0) 4 (42, 43, 0, 0) 17 (49, 54, 5, 0) 13 (54, 59, 2, 0) 29 (59, 61,
0, 0) 30 (65, 70, 2, 0) 33 (70, 74, 2, 0) 9 (74, 78, 0, 0) 5 (81, 84, 0, 0)

Machine 2: 11 (22, 24, 0, 0) 16 (40, 42, 1, 0) 32 (42, 46, 1, 0) 24 (46, 49, 3, 0) 7 (49, 51,
2, 0) 20 (51, 52, 2, 0) 19 (52, 54, 4, 0) 23 (54, 59, 2, 0) 22 (59, 64, 2, 0) 14 (64, 66, 2, 0)
10 (66, 71, 0, 0) 1 (76, 81, 0, 0)

Machine 3: 25 (26, 29, 0, 0) 21 (50, 51, 0, 0) 34 (52, 54, 4, 0) 12 (54, 58, 0, 0) 18 (59, 60,
0, 0) 31 (60, 61, 0, 0) 8 (61, 63, 1, 0) 15 (63, 64, 1, 0) 3 (64, 66, 2, 0) 6 (66, 68, 2, 0) 26
(68, 71, 1, 0) 28 (71, 73, 0, 0) 2 (78, 82, 0, 0)

Total penalty for scheduling: 958

RGLSTS algorithm
Inbound area

Machine 1: 25 (0, 3, 2, 0) 5 (3, 8, 0, 0) 17 (8, 14, 0, 1) 22 (14, 19, 0, 0) 28 (20, 25, 0, 0)
20 (27, 33, 3, 0) 30 (33, 36, 3, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 (49, 51, 0, 0)
Machine 2: 23 (1, 6, 3, 0) 1 (6, 11, 0, 0) 26 (11, 15, 0, 0) 3 (15, 17, 0, 0) 19 (17, 20, 2, 0)
11 (20, 22, 0, 0) 9 (24, 29, 0, 0) 14 (30, 34, 2, 0) 32 (34, 36, 2, 0) 21 (36, 39, 0, 0) 4 (39,
44, 0, 1) 16 (46, 52, 0, 0)

Machine 3: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 24 (7, 12, 0, 0) 27 (12, 14, 1, 0) 7 (14, 17, 0, 0)
12 (19, 25, 0, 0) 6 (31, 36, 0, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 53, 0, 1)

Outbound area

Machine 1: 27 (37, 38, 0, 0) 4 (42, 43, 0, 0) 17 (50, 55, 4, 0) 13 (55, 60, 1, 0) 31 (60, 61,
0, 0) 14 (65, 67, 1, 0) 30 (67, 72, 0, 0) 9 (74, 78, 0, 0) 5 (81, 84, 0, 0)

Machine 2: 11 (22, 24, 0, 0) 16 (41, 43, 0, 0) 32 (43, 47, 0, 0) 21 (50, 51, 0, 0) 7 (51, 53,
0, 0) 20 (53, 54, 0, 0) 19 (54, 56, 2, 0) 23 (56, 61, 0, 0) 22 (61, 66, 0, 0) 10 (66, 71, 0, 0)
28 (71, 73, 0, 0) 1 (76, 81, 0, 0)

Machine 3: 25 (26, 29, 0, 0) 24 (49, 52, 0, 0) 34 (52, 54, 4, 0) 12 (54, 58, 0, 0) 18 (58, 59,
1, 0) 29 (59, 61, 0, 0) 8 (62, 64, 0, 0) 15 (64, 65, 0, 0) 3 (65, 67, 1, 0) 6 (67, 69, 1, 0) 26
(69, 72, 0, 0) 33 (72, 76, 0, 0) 2 (78, 82, 0, 0)

Total penalty for scheduling: 434

Machines cost: $6000, Scheduling cost: $434, Total cost: $6434

107

Instance 5:

RGLS algorithm

Current center point: (15, 15)
Current center point: (14, 14)
Current center point: (13, 13)
Current center point: (12, 12)
Current center point: (11, 11)
Current center point: (10, 10)
Current center point: (9, 9)
Current center point: (8, 8)
Current center point: (7, 7))
Current center point: (6, 6)
Current center point: (5, 5)
Current center point: (4, 4)
Current center point: (4, 3)

Inbound area

Machine 1: 18 (10, 16, 0, 0) 17 (19, 24, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37, 0, 0) 26 (40, 46,
0, 0) 14 (46, 52, 2, 0)

Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 19 (23, 27, 0, 0) 23 (29, 33,
0, 0) 11 (33, 36, 0, 0) 2 (37, 41, 0, 0) 25 (42, 47, 0, 0)

Machine 3: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32, O,
0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 3 (45, 48, 3, 0)

Machine 4: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 6 (18, 20, 0, 0) 5 (20, 22, 0, 0) 22 (23, 25, O,
0) 7 (27, 33, 0, 0) 30 (34, 39, 0, 0) 4 (41, 47, 0, 0)

Outbound area

Machine 1: 14 (25, 26, 0, 0) 1 (38, 40, 0, 0) 16 (49, 54, 3, 0) 3 (54, 59, 2, 0) 27 (59, 62, 3,
0) 25 (62, 66, 1, 0) 24 (66, 71, 0, 0) 5 (74, 79, 0, 0) 9 (80, 85, 0, 0)

Machine 2: 7 (32, 33, 0, 0) 29 (44, 48, 7, 0) 21 (48, 52, 0, 0) 8 (52, 55, 0, 1) 13 (55, 58, O,
0) 11 (58, 61, 0, 0) 4 (61, 62, 0, 0) 17 (62, 67, 0, 0) 26 (69, 72, 0, 0) 2 (75, 80, 0, 0) 18
(89, 94, 0, 0)

Machine 3: 28 (39, 43, 0, 0) 22 (46, 51, 5, 0) 15 (51, 56, 3, 0) 19 (56, 59, 6, 0) 20 (59, 64,
2, 0) 10 (64, 68, 0, 1) 23 (69, 70, 0, 0) 12 (72, 75, 0, 0) 6 (79, 82, 0, 0)

Total penalty for scheduling: 438

RGLSTS algorithm
Inbound area

Machine 1: 18 (10, 16, 0, 0) 17 (19, 24, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37, 0, 0) 26 (40, 46,
0, 0) 14 (46, 52, 2, 0)

Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 19 (23, 27, 0, 0) 23 (29, 33,
0, 0) 11 (33, 36, 0, 0) 2 (37, 41, 0, 0) 4 (41, 47, 0, 0)

Machine 3: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32, O,
0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 3 (45, 48, 3, 0)

Machine 4: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 6 (18, 20, 0, 0) 5 (20, 22, 0, 0) 22 (23, 25, O,
0) 7 (27, 33, 0, 0) 30 (34, 39, 0, 0) 25 (42, 47, 0, O

Outbound area

Machine 1: 16 (44, 49, 8, 0) 15 (49, 54, 5, 0) 20 (54, 59, 7, 0) 27 (59, 62, 3, 0) 25 (62, 66,
1, 0) 24 (66, 71, 0, 0) 6 (79, 82, 0, 0)

Machine 2: 14 (25, 26, 0, 0) 1 (38, 40, 0, 0) 21 (48, 52, 0, 0) 8 (52, 55, 0, 1) 13 (55, 58, O,
0) 11 (58, 61, 0, 0) 4 (61, 62, 0, 0) 17 (62, 67, 0, 0) 23 (69, 70, 0, 0) 12 (72, 75, 0, 0) 2
(75, 80, 0, 0) 9 (80, 85, 0, 0) 18 (89, 94, 0, 0)

Machine 3: 7 (32, 33, 0, 0) 28 (39, 43, 0, 0) 22 (46, 51, 5, 0) 29 (51, 55, 0, 0) 3 (55, 60, 1,
0) 19 (60, 63, 2, 0) 10 (63, 67, 0, 0) 26 (69, 72, 0, 0) 5 (74, 79, 0, 0)

Total penalty for scheduling: 338

Machines cost: $7000, Scheduling cost: $338, Total cost: $7338

108

Instance 6:

RGLS algorithm

Current center point: (16, 17)
Current center point: (15, 16)
Current center point: (14, 15)
Current center point: (13, 14)
Current center point: (12, 13)
Current center point: (11, 12)
Current center point: (10, 11)
Current center point: (9, 10)
Current center point: (8, 9)
Current center point: (7, 8)
Current center point: (6, 7)
Current center point: (5, 6)
Current center point: (4, 5)
Current center point: (3, 4)
Current center point: (3, 3)

Inbound area

Machine 1: 12 (7, 9, 0, 0) 8 (11, 17, 1, 0) 32 (17, 21, 1, 0) 26 (21, 23, 1, 0) 4 (23, 26, O,
0) 20 (26, 29, 0, 0) 3 (32, 38, 1, 0) 17 (38, 44, 2, 0) 6 (44, 48, 4, 0) 27 (48, 53, 1, 0) 1
(53, 57, 0, 1)

Machine 2: 24 (7, 11, 0, 0) 5 (11, 13, 0, 0) 13 (14, 18, 2, 0) 9 (18, 22, 0, 0) 30 (23, 28, O,
0) 23 (29, 31, 0, 0) 29 (36, 38, 0, 0) 25 (40, 42, 0, 0) 11 (42, 48, 0, 0) 18 (48, 51, 0, 0) 7
(51, 55, 0, 1)

Machine 3: 14 (0, 4, 3, 0) 28 (4, 7, 0, 0) 21 (12, 15, 0, 0) 10 (15, 18, 0, 0) 22 (18, 23, O,
0) 16 (27, 32, 0, 0) 2 (35, 39, 0, 0) 15 (39, 43, 0, 0) 31 (43, 49, 2, 0) 19 (49, 55, 0, 0)

Outbound area

Machine 1: 27 (25, 26, 0, 0) 10 (27, 29, 0, 0) 29 (46, 48, 0, 0) 33 (49, 54, 2, 0) 6 (54, 58,
0, 0) 4 (60, 65, 6, 0) 13 (65, 69, 4, 0) 25 (69, 71, 4, 0) 5 (71, 76, 0, 0) 19 (81, 86, 0, 0)
Machine 2: 28 (27, 28, 0, 0) 9 (36, 38, 0, 0) 12 (44, 47, 1, 0) 22 (47, 50, 0, 0) 11 (54, 55,
0, 0) 15 (60, 62, 3, 0) 14 (62, 66, 4, 0) 20 (66, 71, 1, 0) 8 (71, 75, 0, 0) 16 (75, 79, 0, 0)
3 (81, 85, 0, 0)

Machine 3: 18 (22, 23, 0, 0) 17 (25, 27, 0, 0) 23 (39, 42, 0, 0) 21 (43, 46, 1, 0) 31 (46, 49,
0, 0) 32 (56, 58, 2, 0) 30 (58, 63, 5, 0) 1 (63, 68, 2, 0) 26 (68, 71, 3, 0) 24 (71, 74, 0, 0)
2 (75, 80, 0, 0) 7 (88, 91, 0, 0)

Total penalty for scheduling: 256

RGLSTS algorithm
Inbound area

Machine 1: 28 (4, 7, 0, 0) 24 (7, 11, 0, 0) 8 (12, 18, 0, 0) 32 (18, 22, 0, 0) 26 (22, 24, O,
0) 20 (26, 29, 0, 0) 29 (36, 38, 0, 0) 17 (38, 44, 2, 0) 6 (44, 48, 4, 0) 27 (48, 53, 1, 0) 1
(53, 57, 0, 1)

Machine 2: 5 (11, 13, 0, 0) 13 (14, 18, 2, 0) 22 (18, 23, 0, 0) 30 (23, 28, 0, 0) 23 (29, 31,
0, 0) 2 (35, 39, 0, 0) 25 (40, 42, 0, 0) 11 (42, 48, 0, 0) 18 (48, 51, 0, 0) 7 (51, 55, 0, 1)
Machine 3: 14 (3, 7, 0, 0) 12 (7, 9, 0, 0) 21 (12, 15, 0, 0) 10 (15, 18, 0, 0) 9 (18, 22, 0, 0)
4 (23, 26, 0, 0) 16 (27, 32, 0, 0) 3 (33, 39, 0, 0) 15 (39, 43, 0, 0) 31 (43, 49, 2, 0) 19 (49,
55, 0, 0)

Outbound area

Machine 1: 17 (25, 27, 0, 0) 23 (39, 42, 0, 0) 21 (43, 46, 1, 0) 29 (46, 48, 0, 0) 33 (51, 56,
0, 0) 1 (59, 64, 6, 0) 14 (64, 68, 2, 0) 26 (68, 71, 3, 0) 5 (71, 76, 0, 0) 7 (88, 91, 0, 0)
Machine 2: 18 (22, 23, 0, 0) 10 (27, 29, 0, 0) 9 (36, 38, 0, 0) 12 (44, 47, 1, 0) 22 (47, 50,
0, 0) 11 (54, 55, 0, 0) 32 (58, 60, 0, 0) 20 (62, 67, 5, 0) 13 (67, 71, 2, 0) 8 (71, 75, 0, 0)
16 (75, 79, 0, 0) 3 (81, 85, 0, 0)

Machine 3: 27 (25, 26, 0, 0) 28 (27, 28, 0, 0) 31 (46, 49, 0, 0) 6 (54, 58, 0, 0) 30 (58, 63,
5, 0) 15 (63, 65, 0, 0) 4 (65, 70, 1, 0) 24 (70, 73, 1, 0) 25 (73, 75, 0, 0) 2 (75, 80, 0, 0)
19 (81, 86, 0, 0)

Total penalty for scheduling: 238

Machines cost: $6000, Scheduling cost: $238, Total cost: $6238

109

Instance 7:

RGLS algorithm

Current center point: (15, 15)
Current center point: (14, 14)
Current center point: (13, 13)
Current center point: (12, 12)
Current center point: (11, 11)
Current center point: (10, 10)
Current center point: (9, 9)
Current center point: (8, 8)
Current center point: (7, 7))
Current center point: (6, 6)
Current center point: (5, 5)
Current center point: (4, 4)
Current center point: (3, 3)
Current center point: (2, 2)

Inbound area

Machine 1: 25 (9, 12, 0, 0) 6 (13, 19, 0, 0) 21 (31, 36, 0, 0) 14 (41, 43, 0, 0) 18 (47, 49, 2,
0) 15 (49, 54, 0, 0) 8 (57, 61, 0, 0) 9 (62, 64, 0, 0) 28 (64, 66, 0, 0) 23 (69, 74, 0, 0) 7
(76, 80, 0, 0) 5 (81, 86, 0, 0) 2 (86, 89, 1, 0) 22 (89, 91, 1, 0) 26 (91, 96, 0, 4)

Machine 2: 29 (8, 10, 0, 0) 20 (17, 19, 0, 0) 13 (32, 35, 1, 0) 17 (38, 41, 0, 0) 11 (47, 50,
2, 0) 27 (50, 52, 0, 0) 1 (59, 62, 0, 0) 19 (63, 65, 0, 0) 4 (65, 71, 0, 0) 30 (71, 73, 0, 0)
16 (75, 78, 0, 0) 10 (81, 83, 0, 0) 12 (84, 88, 0, 0) 24 (88, 92, 0, 0) 3 (92, 96, 0, 1)

Outbound area

Machine 1: 12 (35, 37, 0, 0) 27 (58, 59, 0, 0) 4 (66, 69, 0, 0) 28 (73, 76, 0, 0) 21 (89, 94,
0, 0) 8 (97, 99, 0, 0) 2 (102, 105, 0, 0) 25 (105, 110, 1, 0) 15 (110, 113, 3, 0) 5 (113, 117,
1, 0) 3 (117, 120, 0, 0) 30 (120, 123, 0, 0) 11 (124, 127, 0, 0) 10 (128, 131, 0, 0)

Machine 2: 6 (46, 47, 0, 0) 14 (59, 62, 0, 0) 18 (71, 73, 0, 0) 1 (85, 86, 0, 0) 13 (87, 91, 3,
0) 22 (91, 92, 1, 0) 19 (92, 97, 1, 0) 29 (97, 101, 0, 0) 16 (101, 106, 1, 0) 17 (106, 107, 5,
0) 26 (107, 112, 5, 0) 20 (112, 115, 4, 0) 23 (115, 118, 2, 0) 9 (118, 122, 0, 0) 24 (123, 125,
1, 0) 7 (125, 130, 0, 0)

Total penalty for scheduling: 535

RGLSTS algorithm
Inbound area

Machine 1: 25 (9, 12, 0, 0) 6 (13, 19, 0, 0) 21 (31, 36, 0, 0) 14 (41, 43, 0, 0) 18 (47, 49, 2,
0) 15 (49, 54, 0, 0) 8 (57, 61, 0, 0) 9 (62, 64, 0, 0) 28 (64, 66, 0, 0) 23 (69, 74, 0, 0) 7
(76, 80, 0, 0) 5 (81, 86, 0, 0) 2 (86, 89, 1, 0) 22 (89, 91, 1, 0) 26 (91, 96, 0, 4)

Machine 2: 29 (8, 10, 0, 0) 20 (17, 19, 0, 0) 13 (32, 35, 1, 0) 17 (38, 41, 0, 0) 11 (47, 50,
2, 0) 27 (50, 52, 0, 0) 1 (59, 62, 0, 0) 19 (63, 65, 0, 0) 4 (65, 71, 0, 0) 30 (71, 73, 0, 0)
16 (75, 78, 0, 0) 10 (81, 83, 0, 0) 12 (84, 88, 0, 0) 24 (88, 92, 0, 0) 3 (92, 96, 0, 1)

Outbound area

Machine 1: 12 (35, 37, 0, 0) 27 (58, 59, 0, 0) 4 (66, 69, 0, 0) 28 (73, 76, 0, 0) 21 (89, 94,
0, 0) 8 (95, 97, 2, 0) 29 (97, 101, 0, 0) 2 (102, 105, 0, 0) 25 (105, 110, 1, 0) 5 (110, 114,
4, 0) 20 (114, 117, 2, 0) 3 (117, 120, 0, 0) 30 (120, 123, 0, 0) 11 (124, 127, 0, 0) 10 (128,
131, 0, 0)

Machine 2: 6 (46, 47, 0, 0) 14 (59, 62, 0, 0) 18 (71, 73, 0, 0) 1 (85, 86, 0, 0) 13 (88, 92, 2,
0) 22 (92, 93, 0, 0) 19 (93, 98, 0, 0) 16 (101, 106, 1, 0) 26 (106, 111, 6, 0) 17 (111, 112, O,
0) 15 (112, 115, 1, 0) 23 (115, 118, 2, 0) 9 (118, 122, 0, 0) 24 (123, 125, 1, 0) 7 (125, 130,
0, 0)

Total penalty for scheduling: 529

Machines cost: $4000, Scheduling cost: $529, Total cost: $4529

110

Instance 8:

RGLS algorithm

Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:

=
a
B
IS
NN

AAAAAAAAAAAAAAAAA
P
N
P
[

WhooON®
o/

Inbound area

Machine 1: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 7 (21, 26, 0, 0) 37 (26, 28, 0, 0) 9 (28, 33, 1, 0)
20 (33, 37, 0, 0) 16 (37, 39, 0, 0) 18 (40, 44, 1, 0) 38 (44, 46, 3, 0) 27 (52, 55, 0, 0) 33
(59, 65, 0, 0)

Machine 2: 1 (6, 12, 0, 0) 28 (13, 15, 0, 0) 29 (24, 30, 0, 0) 12 (31, 34, 1, 0) 30 (34, 37, O,
1) 13 (37, 39, 0, 0) 39 (39, 41, 0, 0) 10 (41, 47, 0, 0) 14 (48, 51, 0, 0) 34 (56, 62, 0, 0)
Machine 3: 35 (5, 7, 0, 0) 6 (10, 16, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 17 (31, 36, 2,
0) 5 (36, 38, 1, 0) 3 (38, 42, 1, 0) 25 (42, 46, 2, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)
Machine 4: 24 (10, 14, 0, 0) 15 (18, 24, 0, 0) 26 (24, 28, 0, 0) 31 (29, 35, 2, 0) 4 (35, 37,
1, 0) 22 (37, 42, 1, 0) 8 (42, 46, 0, 0) 11 (47, 52, 0, 0) 23 (57, 62, 0, 0)

Outbound area

Machine 1: 27 (36, 37, 0, 0) 24 (44, 45, 0, 0) 21 (52, 55, 1, 0) 4 (55, 59, 6, 0) 14 (59, 60,
5, 0) 19 (60, 64, 4, 0) 34 (64, 68, 2, 0) 33 (68, 73, 3, 0) 8 (73, 77, 2, 0) 29 (77, 78, 4, 0)
25 (78, 83, 1, 0) 9 (83, 85, 0, 0) 23 (86, 89, 0, 0) 1 (90, 95, 0, 0)

Machine 2: 10 (33, 34, 0, 0) 3 (43, 44, 0, 0) 12 (46, 49, 0, 0) 18 (55, 58, 0, 0) 35 (60, 62,
3, 0) 13 (62, 67, 2, 0) 28 (67, 72, 0, 0) 22 (72, 77, 0, 1) 36 (77, 79, 1, 0) 38 (79, 84, 0, 0)
37 (84, 89, 0, 0) 20 (100, 105, 0, 0)

Machine 3: 15 (42, 43, 0, 0) 6 (45, 49, 0, 0) 31 (51, 54, 2, 0) 2 (54, 59, 2, 0) 16 (59, 64, 5,
0) 17 (64, 69, 3, 0) 26 (69, 72, 3, 0) 7 (72, 74, 3, 0) 5 (74, 78, 3, 0) 11 (78, 80, 1, 0) 30
(80, 85, 0, 0) 32 (86, 91, 0, 0)

Total penalty for scheduling: 272

RGLSTS algorithm
Inbound area

Machine 1: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 7 (21, 26, 0, 0) 37 (26, 28, 0, 0) 9 (28, 33, 1, 0)
20 (33, 37, 0, 0) 16 (37, 39, 0, 0) 18 (40, 44, 1, 0) 38 (44, 46, 3, 0) 27 (52, 55, 0, 0) 33
(59, 65, 0, 0)

Machine 2: 1 (6, 12, 0, 0) 28 (13, 15, 0, 0) 15 (18, 24, 0, 0) 29 (24, 30, 0, 0) 12 (32, 35, O,
0) 4 (35, 37, 1, 0) 13 (37, 39, 0, 0) 39 (39, 41, 0, 0) 10 (41, 47, 0, 0) 14 (48, 51, 0, 0) 34
(56, 62, 0, 0)

Machine 3: 35 (5, 7, 0, 0) 6 (10, 16, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 17 (31, 36, 2,
0) 5 (36, 38, 1, 0) 3 (38, 42, 1, 0) 25 (42, 46, 2, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)
Machine 4: 24 (10, 14, 0, 0) 26 (23, 27, 1, 0) 31 (27, 33, 4, 0) 30 (33, 36, 0, 0) 22 (37, 42,
1, 0) 8 (42, 46, 0, 0) 11 (47, 52, 0, 0) 23 (57, 62, 0, 0)

Outbound area

Machine 1: 27 (36, 37, 0, 0) 24 (44, 45, 0, 0) 21 (52, 55, 1, 0) 2 (55, 60, 1, 0) 4 (60, 64, 1,
0) 14 (64, 65, 0, 0) 34 (65, 69, 1, 0) 33 (69, 74, 2, 0) 8 (74, 78, 1, 0) 25 (78, 83, 1, 0) 9
(83, 85, 0, 0) 23 (86, 89, 0, 0) 1 (90, 95, 0, 0)

Machine 2: 10 (33, 34, 0, 0) 3 (43, 44, 0, 0) 12 (46, 49, 0, 0) 18 (54, 57, 1, 0) 28 (57, 62,
10, 0) 19 (62, 66, 2, 0) 17 (66, 71, 1, 0) 22 (71, 76, 0, 0) 36 (76, 78, 2, 0) 29 (78, 79, 3,
0) 38 (79, 84, 0, 0) 37 (84, 89, 0, 0) 20 (100, 105, 0, 0)

Machine 3: 15 (42, 43, 0, 0) 6 (45, 49, 0, 0) 31 (53, 56, 0, 0) 16 (57, 62, 7, 0) 35 (62, 64,
1, 0) 13 (64, 69, 0, 0) 26 (69, 72, 3, 0) 7 (72, 74, 3, 0) 5 (74, 78, 3, 0) 11 (78, 80, 1, 0)

111

30 (80, 85, 0, 0) 32 (86, 91, 0, 0)
Total penalty for scheduling: 63

Machines cost: $7000, Scheduling cost: $63, Total cost: $7063

112

Instance 9:

RGLS algorithm

Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:

=
a
I
)
NN

AAAAAAAAAAAAAAAAAAAA
P
[
B
orpk
N
“

WhHhUION®O
o/ o\ N

Inbound area

Machine 1: 20 (2, 8, 4, 0) 34 (8, 11, 0, 1) 38 (11, 14, 0, 1) 42 (15, 18, 0, 0) 4 (18, 24, O,
0) 36 (25, 29, 0, 0) 35 (30, 34, 0, 0) 16 (35, 40, 0, 0) 40 (40, 45, 0, 2) 12 (45, 51, 0, 0) 26
(55, 57, 0, 0)

Machine 2: 21 (4, 9, 1, 0) 1 (9, 12, 0, 0) 27 (13, 15, 1, 0) 19 (15, 19, 3, 0) 28 (19, 25, O,
1) 8 (26, 31, 0, 0) 7 (31, 36, 1, 0) 23 (36, 41, 0, 0) 6 (43, 45, 0, 0) 5 (45, 51, 0, 0) 29
(56, 59, 0, 0)

Machine 3: 31 (4, 9, 2, 0) 18 (9, 12, 1, 0) 13 (12, 17, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, O,
0) 10 (28, 33, 0, 0) 25 (35, 39, 1, 0) 2 (39, 45, 0, 3) 14 (45, 48, 0, 1) 3 (50, 55, 0, 0)
Machine 4: 30 (6, 9, 2, 0) 15 (9, 15, 0, 0) 33 (19, 22, 0, 0) 39 (22, 25, 0, 0) 9 (27, 30, O,
0) 17 (32, 36, 0, 0) 24 (36, 39, 2, 0) 22 (39, 45, 0, 2) 11 (45, 51, 0, 0) 41 (52, 56, 0, 0)

Outbound area

Machine 1: 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 25 (39, 44, 0, 0) 37 (45, 48, 1, 0) 10 (48, 50,
5, 0) 22 (50, 53, 5, 0) 32 (53, 57, 2, 0) 24 (57, 59, 3, 0) 11 (59, 60, 3, 0) 27 (60, 63, 3, 0)
19 (63, 64, 3, 0) 6 (64, 69, 0, 0) 3 (72, 74, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0) 42 (89,
93, 0, 0)

Machine 2: 35 (31, 32, 0, 0) 9 (36, 38, 0, 0) 14 (42, 45, 0, 0) 43 (46, 47, 2, 0) 7 (47, 49, 6,
0) 17 (49, 54, 5, 0) 21 (54, 57, 6, 0) 23 (57, 61, 3, 0) 41 (61, 66, 0, 0) 4 (70, 72, 0, 0) 38
(72, 75, 0, 0) 13 (81, 83, 0, 0) 8 (87, 92, 0, 0)

Machine 3: 20 (30, 31, 0, 0) 39 (35, 36, 0, 0) 18 (39, 40, 0, 0) 31 (44, 46, 0, 0) 29 (47, 48,
1, 0) 1 (48, 51, 4, 0) 2 (51, 55, 4, 0) 34 (55, 56, 6, 0) 40 (56, 61, 2, 0) 30 (61, 65, 0, 2)
16 (65, 70, 0, 1) 12 (70, 73, 0, 0) 5 (73, 75, 0, 0) 33 (83, 86, 0, 0)

Total penalty for scheduling: 1482

RGLSTS algorithm
Inbound area

Machine 1: 31 (3, 8, 3, 0) 30 (8, 11, 0, 0) 38 (11, 14, 0, 1) 42 (15, 18, 0, 0) 28 (18, 24, O,
0) 36 (25, 29, 0, 0) 35 (30, 34, 0, 0) 16 (35, 40, 0, 0) 40 (40, 45, 0, 2) 12 (45, 51, 0, 0) 26
(55, 57, 0, 0)

Machine 2: 21 (4, 9, 1, 0) 1 (9, 12, 0, 0) 13 (12, 17, 0, 0) 4 (18, 24, 0, 0) 9 (27, 30, 0, 0)
17 (32, 36, 0, 0) 2 (36, 42, 0, 0) 6 (43, 45, 0, 0) 11 (45, 51, 0, 0)

Machine 3: 34 (7, 10, 0, 0) 18 (10, 13, 0, 0) 27 (14, 16, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28,
0, 0) 10 (28, 33, 0, 0) 23 (33, 38, 3, 0) 24 (38, 41, 0, 0) 14 (42, 45, 2, 0) 5 (45, 51, 0, 0)
41 (52, 56, 0, 0)

Machine 4: 20 (3, 9, 3, 0) 15 (9, 15, 0, 0) 19 (15, 19, 3, 0) 33 (19, 22, 0, 0) 39 (22, 25, O,
0) 8 (26, 31, 0, 0) 7 (31, 36, 1, 0) 25 (36, 40, 0, 0) 22 (40, 46, 0, 3) 3 (50, 55, 0, 0) 29
(56, 59, 0, 0)

Outbound area

Machine 1: 37 (45, 48, 1, 0) 43 (48, 49, 0, 0) 22 (50, 53, 5, 0) 10 (53, 55, 0, 0) 32 (55, 59,
0, 0) 24 (59, 61, 1, 0) 34 (61, 62, 0, 0) 11 (62, 63, 0, 0) 27 (63, 66, 0, 0) 19 (66, 67, 0, 0)

113

4 (70, 72, 0, 0) 3 (72, 74, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0) 8 (87, 92, 0, 0)
Machine 2: 35 (31, 32, 0, 0) 39 (35, 36, 0, 0) 9 (36, 38, 0, 0) 18 (39, 40, 0, 0) 14 (42, 45,
0, 0) 17 (45, 50, 9, 0) 1 (50, 53, 2, 0) 7 (53, 55, 0, 0) 2 (55, 59, 0, 0) 41 (59, 64, 2, 0) 16
(64, 69, 0, 0) 38 (72, 75, 0, 0) 13 (81, 83, 0, 0)

Machine 3: 20 (30, 31, 0, 0) 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 25 (39, 44, 0, 0) 31 (44, 46,
0, 0) 29 (47, 48, 1, 0) 40 (48, 53, 10, 0) 30 (53, 57, 6, 0) 21 (57, 60, 3, 0) 23 (60, 64, O,
0) 6 (64, 69, 0, 0) 12 (70, 73, 0, 0) 5 (73, 75, 0, 0) 33 (83, 86, 0, 0) 42 (89, 93, 0, 0)

Total penalty for scheduling: 656

Machines cost: $7000, Scheduling cost: $656, Total cost: $7656

114

Instance 10:

RGLS algorithm

Current center point: (16, 18)
Current center point: (15, 17)
Current center point: (14, 16)
Current center point: (13, 15)
Current center point: (12, 14)
Current center point: (11, 13)
Current center point: (10, 12)
Current center point: (9, 11)
Current center point: (8, 10)
Current center point: (7, 9)
Current center point: (6, 8)
Current center point: (5, 7))
Current center point: (4, 6)
Current center point: (4, 5)
Current center point: (4, 4)
Current center point: (4, 3)

Inbound area

Machine 1: 15 (6, 10, 0, 0) 29 (10, 13, 0, 0) 8 (18, 24, 1, 0) 10 (24, 30, 1, 0) 19 (30, 32, O,
1) 4 (32, 37, 0, 1) 2 (44, 46, 0, 0) 16 (46, 50, 0, 0) 18 (52, 55, 0, 0)

Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (17, 22, 3, 0) 7 (22, 25, 1, 0) 31 (25, 27, 2, 0)
20 (27, 33, 0, 0) 24 (41, 47, 1, 0) 26 (49, 51, 0, 0) 11 (52, 57, 0, 0)

Machine 3: 27 (1, 3, 0, 0) 17 (8, 13, 0, 0) 30 (13, 18, 2, 0) 1 (23, 27, 0, 0) 28 (27, 33, O,
0) 25 (41, 47, 0, 0) 21 (48, 51, 0, 0)

Machine 4: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 32 (21, 27, 0, 0) 23 (27, 32, 1, 0) 22 (32, 37, 0, 0)
12 (44, 49, 0, 0) 13 (51, 57, 0, 0)

Outbound area

Machine 1: 34 (18, 19, 0, 0) 14 (35, 37, 0, 0) 17 (46, 48, 0, 0) 31 (51, 55, 0, 0) 27 (55, 56,
0, 0) 33 (57, 59, 0, 0) 20 (59, 64, 0, 0) 23 (64, 67, 0, 1) 4 (67, 72, 0, 2) 8 (82, 84, 0, 0)
10 (92, 97, 0, 0)

Machine 2: 28 (38, 41, 0, 0) 5 (45, 47, 0, 0) 22 (50, 54, 3, 0) 9 (54, 59, 3, 0) 6 (59, 64, 2,
0) 2 (64, 67, 2, 0) 19 (67, 70, 0, 0) 3 (70, 75, 0, 0) 18 (89, 90, 0, 0) 29 (94, 98, 0, 0)
Machine 3: 24 (25, 26, 0, 0) 21 (39, 40, 0, 0) 1 (47, 52, 0, 0) 11 (52, 53, 1, 0) 26 (53, 55,
1, 0) 25 (55, 57, 3, 0) 7 (57, 59, 2, 0) 13 (59, 60, 1, 0) 12 (60, 62, 0, 1) 16 (62, 66, 1, 0)
35 (66, 70, 0, 1) 15 (70, 75, 0, 2) 30 (87, 91, 0, 0) 32 (96, 100, 0, 0)

Total penalty for scheduling: 931

RGLSTS algorithm
Inbound area

Machine 1: 15 (6, 10, 0, 0) 29 (10, 13, 0, 0) 30 (13, 18, 2, 0) 8 (18, 24, 1, 0) 23 (24, 29, 4,
0) 19 (29, 31, 0, 0) 22 (32, 37, 0, 0) 2 (44, 46, 0, 0) 16 (46, 50, 0, 0) 13 (51, 57, 0, 0)
Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (17, 22, 3, 0) 7 (22, 25, 1, 0) 31 (25, 27, 2, 0)
20 (27, 33, 0, 0) 24 (41, 47, 1, 0) 26 (49, 51, 0, 0) 11 (52, 57, 0, 0)

Machine 3: 27 (1, 3, 0, 0) 17 (8, 13, 0, 0) 32 (21, 27, 0, 0) 28 (27, 33, 0, 0) 25 (41, 47, O,
0) 21 (48, 51, 0, 0)

Machine 4: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 1 (21, 25, 2, 0) 10 (25, 31, 0, 0) 4 (31, 36, 0, 0)
12 (44, 49, 0, 0) 18 (52, 55, 0, 0)

Outbound area

Machine 1: 34 (18, 19, 0, 0) 24 (25, 26, 0, 0) 28 (38, 41, 0, 0) 17 (46, 48, 0, 0) 31 (51, 55,
0, 0) 7 (55, 57, 4, 0) 20 (57, 62, 2, 0) 23 (62, 65, 1, 0) 4 (65, 70, 0, 0) 29 (94, 98, 0, 0)
Machine 2: 14 (35, 37, 0, 0) 21 (39, 40, 0, 0) 5 (45, 47, 0, 0) 9 (47, 52, 10, 0) 11 (52, 53,
1, 0) 22 (53, 57, 0, 0) 12 (57, 59, 2, 0) 6 (59, 64, 2, 0) 2 (64, 67, 2, 0) 19 (67, 70, 0, 0) 3
(70,75, 0, 0) 18 (89, 90, 0, 0) 10 (92, 97, 0, 0)

Machine 3: 1 (47, 52, 0, 0) 26 (52, 54, 2, 0) 27 (54, 55, 1, 0) 25 (55, 57, 3, 0) 33 (57, 59,
0, 0) 13 (59, 60, 1, 0) 16 (60, 64, 3, 0) 35 (64, 68, 1, 0) 15 (68, 73, 0, 0) 8 (82, 84, 0, 0)
30 (87, 91, 0, 0) 32 (96, 100, 0, 0)

Total penalty for scheduling: 51

Machines cost: $7000, Scheduling cost: $51, Total cost: $7051

115

Instance 11:

RGLS algorithm

Current center point: (20, 22)
Current center point: (19, 21)
Current center point: (18, 20)
Current center point: (17, 19)
Current center point: (16, 18)
Current center point: (15, 17)
Current center point: (14, 16)
Current center point: (13, 15)
Current center point: (12, 14)
Current center point: (11, 13)
Current center point: (10, 12)
Current center point: (9, 11)
Current center point: (8, 10)
Current center point: (7, 9)
Current center point: (6, 8)
Current center point: (5, 7))
Current center point: (4, 6)
Current center point: (4, 5)
Current center point: (4, 4)
Current center point: (4, 3)

Inbound area

Machine 1: 26 (6, 8, 0, 0) 3 (8, 12, 0, 0) 5 (12, 14, 0, 0) 35 (14, 20, 0, 0) 2 (22, 28, 1, 0)
15 (28, 31, 0, 0) 27 (33, 38, 0, 0) 38 (38, 42, 0, 0) 19 (43, 49, 0, 0) 30 (52, 55, 0, 0) 31
(58, 61, 0, 0)

Machine 2: 23 (5, 7, 0, 0) 18 (9, 14, 0, 0) 28 (14, 20, 0, 0) 39 (22, 27, 1, 0) 20 (27, 31, O,
0) 33 (38, 44, 1, 0) 9 (44, 49, 0, 0) 6 (52, 54, 0, 0) 34 (58, 61, 0, 0)

Machine 3: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 24 (13, 16, 0, 2) 40 (20, 23, 0, 0) 13 (26, 31, O,
0) 14 (36, 42, 0, 0) 1 (44, 48, 0, 0) 21 (49, 52, 0, 0) 17 (55, 58, 0, 0)

Machine 4: 25 (6, 8, 1, 0) 16 (8, 14, 1, 0) 32 (14, 18, 0, 0) 7 (20, 22, 0, 0) 4 (23, 29, 0, 0)
36 (31, 36, 0, 0) 12 (38, 41, 0, 0) 11 (42, 45, 1, 0) 29 (45, 48, 0, 0) 22 (48, 52, 0, 0) 10
(54, 59, 0, 0)

Outbound area

Machine 1: 42 (27, 29, 0, 0) 8 (38, 40, 0, 0) 25 (43, 46, 0, 0) 4 (46, 47, 4, 0) 11 (47, 52, O,
0) 29 (52, 54, 0, 0) 13 (54, 57, 0, 1) 36 (58, 61, 7, 0) 15 (61, 66, 0, 0) 35 (68, 73, 0, 0) 17
(77, 78, 0, 0) 43 (82, 86, 0, 0) 37 (95, 100, O, 0)

Machine 2: 33 (14, 15, 0, 2) 41 (34, 35, 0, 0) 14 (41, 42, 0, 0) 2 (42, 45, 4, 0) 18 (45, 48,
4, 0) 7 (48, 52, 2, 0) 28 (52, 55, 0, 0) 6 (56, 59, 0, 0) 40 (60, 64, 2, 0) 26 (64, 69, 2, 0)
31 (69, 71, 0, 0) 39 (71, 72, 0, 0) 27 (73, 75, 0, 0) 10 (79, 82, 0, 0) 38 (92, 97, 0, 0)
Machine 3: 3 (28, 30, 0, 0) 23 (35, 36, 0, 0) 32 (45, 46, 0, 0) 20 (47, 49, 1, 0) 1 (49, 50, O,
0) 19 (51, 56, 0, 0) 16 (59, 61, 1, 0) 34 (61, 64, 2, 0) 24 (64, 66, 2, 0) 5 (66, 68, 1, 0) 21
(68, 70, 1, 0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 22 (77, 81, 0, 0) 9 (87, 90, 0, 0)

Total penalty for scheduling: 540

RGLSTS algorithm
Inbound area

Machine 1: 26 (6, 8, 0, 0) 3 (8, 12, 0, 0) 5 (12, 14, 0, 0) 32 (14, 18, 0, 0) 7 (20, 22, 0, 0)
2 (22, 28, 1, 0) 15 (28, 31, 0, 0) 14 (36, 42, 0, 0) 19 (43, 49, 0, 0) 6 (52, 54, 0, 0) 17 (55,
58, 0, 0) 31 (58, 61, 0, 0)

Machine 2: 23 (5, 7, 0, 0) 25 (7, 9, 0, 0) 18 (9, 14, 0, 0) 39 (22, 27, 1, 0) 20 (27, 31, 0, 0)
27 (33, 38, 0, 0) 33 (38, 44, 1, 0) 9 (44, 49, 0, 0) 21 (49, 52, 0, 0) 34 (58, 61, 0, 0)
Machine 3: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 28 (14, 20, 0, 0) 40 (20, 23, 0, 0) 13 (26, 31, O,
0) 12 (38, 41, 0, 0) 1 (44, 48, 0, 0) 30 (52, 55, 0, 0)

Machine 4: 16 (5, 11, 4, 0) 24 (11, 14, 0, 0) 35 (14, 20, 0, 0) 4 (23, 29, 0, 0) 36 (31, 36, O,
0) 38 (38, 42, 0, 0) 11 (42, 45, 1, 0) 29 (45, 48, 0, 0) 22 (48, 52, 0, 0) 10 (54, 59, 0, 0)

Outbound area

Machine 1: 3 (28, 30, 0, 0) 23 (35, 36, 0, 0) 11 (44, 49, 3, 0) 18 (49, 52, 0, 0) 29 (52, 54,
0, 0) 40 (58, 62, 4, 0) 34 (62, 65, 1, 0) 36 (65, 68, 0, 0) 35 (68, 73, 0, 0) 27 (73, 75, 0, 0)
22 (77, 81, 0, 0) 43 (82, 86, 0, 0)

Machine 2: 41 (34, 35, 0, 0) 14 (41, 42, 0, 0) 7 (44, 48, 6, 0) 20 (48, 50, 0, 0) 28 (50, 53,
2, 0) 13 (53, 56, 0, 0) 16 (60, 62, 0, 0) 26 (62, 67, 4, 0) 5 (67, 69, 0, 0) 31 (69, 71, 0, 0)

116

39 (71, 72, 0, 0) 9 (87, 90, 0, 0) 37 (95, 100, O, 0)

Machine 3: 33 (14, 15, 0, 2) 42 (27, 29, 0, 0) 8 (38, 40, 0, 0) 25 (42, 45, 1, 0) 32 (45, 46,
0, 0) 2 (46, 49, 0, 0) 1 (49, 50, 0, 0) 4 (50, 51, 0, 0) 19 (51, 56, 0, 0) 6 (56, 59, 0, 0) 15
(61, 66, 0, 0) 24 (66, 68, 0, 0) 21 (68, 70, 1, 0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 17 (77,
78, 0, 0) 10 (79, 82, 0, 0) 38 (92, 97, 0, 0)

Total penalty for scheduling: 231

Machines cost: $7000, Scheduling cost: $231, Total cost: $7231

117

Instance 12:

RGLS algorithm

Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:

=
(o]
N
o

R A S e

AAAAAAAAAAAAAAAAAAAAAAAAA
I
)
=
o I
3
v

g o~
o/ o/

Inbound area

Machine 1: 11 (2, 8, 0, 0) 10 (13, 15, 0, 0) 31 (15, 20, 2, 0) 14 (20, 26, 0, 0) 28 (31, 35, O,
0) 46 (42, 48, 0, 0) 27 (52, 54, 0, 0) 1 (57, 59, 2, 0) 25 (59, 64, 0, 1)

Machine 2: 53 (3, 8, 0, 0) 42 (11, 15, 0, 0) 22 (19, 22, 0, 0) 50 (22, 28, 0, 2) 20 (33, 37, O,
0) 9 (46, 49, 2, 0) 37 (49, 55, 0, 0) 35 (55, 60, 3, 0) 5 (60, 66, 0, 0)

Machine 3: 17 (4, 6, 0, 0) 21 (9, 13, 0, 0) 56 (15, 20, 1, 0) 13 (20, 24, 0, 0) 23 (25, 30, O,
0) 8 (35, 40, 0, 0) 47 (48, 52, 0, 0) 12 (54, 56, 0, 0) 51 (56, 62, 0, 0) 52 (62, 67, 0, 0)
Machine 4: 6 (6, 11, 0, 0) 33 (11, 16, 0, 0) 29 (19, 23, 0, 0) 49 (25, 27, 0, 0) 48 (31, 35, O,
0) 32 (38, 44, 0, 0) 7 (51, 54, 0, 0) 26 (54, 58, 1, 0) 19 (58, 61, 1, 0) 38 (61, 64, 0, 1)
Machine 5: 39 (6, 9, 0, 0) 34 (14, 16, 0, 0) 43 (18, 24, 0, 0) 41 (32, 35, 0, 0) 24 (38, 43, 0,
0) 2 (46, 51, 2, 0) 3 (51, 57, 2, 0) 15 (57, 62, 0, 0) 18 (62, 64, 0, 3)

Machine 6: 55 (8, 12, 0, 0) 44 (12, 17, 0, 0) 16 (17, 23, 1, 0) 45 (23, 29, 0, 0) 30 (33, 38,
0, 0) 36 (46, 49, 0, 0) 4 (50, 55, 0, 0) 40 (57, 62, 0, 0) 54 (64, 68, 0, 0)

Outbound area

Machine 1: 9 (37, 40, 0, 0) 12 (61, 62, 0, 0) 27 (62, 66, 0, 0) 5 (66, 71, 0, 0) 55 (71, 72, 1,
0) 13 (72, 76, 1, 0) 22 (76, 80, 0, 2) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 50 (85, 90, 0, 0) 44
(93, 96, 0, 0)

Machine 2: 43 (30, 31, 0, 0) 56 (52, 56, 2, 0) 57 (56, 60, 5, 0) 24 (60, 65, 5, 0) 18 (65, 70,
2, 0) 6 (70, 75, 1, 0) 2 (75, 77, 0, 0) 19 (77, 79, 0, 0) 31 (79, 83, 0, 3) 40 (86, 88, 0, 0)
42 (89, 94, 0, 0) 41 (102, 103, 0, 0)

Machine 3: 14 (13, 14, 0, 0) 32 (47, 48, 0, 0) 54 (58, 61, 2, 0) 26 (61, 62, 4, 0) 49 (62, 64,
7, 0) 15 (64, 68, 4, 0) 38 (68, 71, 3, 0) 39 (71, 76, 1, 0) 52 (76, 78, 2, 0) 28 (78, 83, 0, 0)
8 (83, 87, 0, 3) 48 (91, 94, 0, 0) 7 (98, 103, 0, 0)

Machine 4: 10 (16, 17, 0, 0) 21 (54, 55, 0, 0) 4 (63, 64, 0, 0) 30 (67, 72, 0, 2) 36 (72, 76,
0, 0) 46 (76, 80, 0, 3) 47 (80, 85, 0, 2) 1 (90, 92, 0, 0) 17 (95, 100, O, 0)

Machine 5: 11 (32, 33, 0, 0) 45 (55, 56, 3, 0) 51 (56, 57, 9, 0) 23 (57, 59, 12, 0) 25 (59, 62,
10, 0) 20 (62, 66, 8, 0) 3 (66, 71, 6, 0) 35 (71, 76, 2, 0) 37 (76, 80, 2, 0) 16 (80, 85, 0, 1)
53 (85, 90, 0, 0) 34 (96, 98, 0, 0)

Total penalty for scheduling: 2409

RGLSTS algorithm
Inbound area

Machine 1: 11 (2, 8, 0, 0) 10 (13, 15, 0, 0) 31 (15, 20, 2, 0) 14 (20, 26, 0, 0) 28 (31, 35, O,
0) 46 (42, 48, 0, 0) 47 (48, 52, 0, 0) 27 (52, 54, 0, 0) 26 (54, 58, 1, 0) 25 (58, 63, 0, 0)
Machine 2: 53 (3, 8, 0, 0) 42 (11, 15, 0, 0) 16 (15, 21, 3, 0) 50 (21, 27, 0, 1) 20 (33, 37, O,
0) 32 (38, 44, 0, 0) 37 (49, 55, 0, 0) 35 (55, 60, 3, 0) 5 (60, 66, 0, 0)

Machine 3: 17 (4, 6, 0, 0) 21 (9, 13, 0, 0) 56 (15, 20, 1, 0) 13 (20, 24, 0, 0) 23 (25, 30, O,

118

0) 8 (35, 40, 0, 0) 2 (48, 53, 0, 0) 51 (53, 59, 3, 0) 19 (59, 62, 0, 0) 52 (62, 67, 0, 0)
Machine 4: 6 (6, 11, 0, 0) 33 (11, 16, 0, 0) 29 (19, 23, 0, 0) 49 (25, 27, 0, 0) 48 (31, 35, O,
0) 9 (48, 51, 0, 0) 7 (51, 54, 0, 0) 12 (54, 56, 0, 0) 1 (57, 59, 2, 0) 18 (59, 61, 0, 0)
Machine 5: 39 (6, 9, 0, 0) 34 (14, 16, 0, 0) 43 (18, 24, 0, 0) 41 (32, 35, 0, 0) 24 (38, 43, 0,
0) 3 (51, 57, 2, 0) 15 (57, 62, 0, 0) 54 (64, 68, 0, 0)

Machine 6: 55 (8, 12, 0, 0) 44 (12, 17, 0, 0) 22 (19, 22, 0, 0) 45 (23, 29, 0, 0) 30 (33, 38,
0, 0) 36 (46, 49, 0, 0) 4 (50, 55, 0, 0) 40 (55, 60, 2, 0) 38 (60, 63, 0, 0)

Outbound area

Machine 1: 9 (37, 40, 0, 0) 27 (60, 64, 2, 0) 26 (64, 65, 1, 0) 51 (65, 66, 0, 0) 5 (66, 71, O,
0) 55 (71, 72, 1, 0) 13 (72, 76, 1, 0) 31 (76, 80, 0, 0) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 50
(85, 90, 0, 0) 44 (93, 96, 0, 0)

Machine 2: 43 (30, 31, 0, 0) 57 (58, 62, 3, 0) 4 (62, 63, 1, 0) 6 (63, 68, 8, 0) 23 (68, 70, 1,
0) 46 (70, 74, 3, 0) 22 (74, 78, 0, 0) 28 (78, 83, 0, 0) 40 (86, 88, 0, 0) 42 (89, 94, 0, 0) 41
(102, 103, 0, 0)

Machine 3: 14 (13, 14, 0, 0) 32 (47, 48, 0, 0) 54 (58, 61, 2, 0) 12 (61, 62, 0, 0) 15 (62, 66,
6, 0) 38 (66, 69, 5, 0) 49 (69, 71, 0, 0) 39 (71, 76, 1, 0) 19 (76, 78, 1, 0) 52 (78, 80, 0, 0)
8 (80, 84, 0, 0) 48 (91, 94, 0, 0) 7 (98, 103, 0, 0)

Machine 4: 10 (16, 17, 0, 0) 21 (54, 55, 0, 0) 18 (56, 61, 11, 0) 24 (61, 66, 4, 0) 30 (66, 71,
0, 1) 2 (71, 73, 4, 0) 35 (73, 78, 0, 0) 47 (78, 83, 0, 0) 1 (90, 92, 0, 0) 17 (95, 100, O, 0)
Machine 5: 11 (32, 33, 0, 0) 56 (54, 58, 0, 0) 45 (58, 59, 0, 0) 3 (59, 64, 13, 0) 20 (64, 68,
6, 0) 25 (68, 71, 1, 0) 36 (71, 75, 1, 0) 37 (75, 79, 3, 0) 16 (79, 84, 0, 0) 53 (85, 90, 0, 0)
34 (96, 98, 0, 0)

Total penalty for scheduling: 298

Machines cost: $11000, Scheduling cost: $298, Total cost: $11298

119

Instance 13:

RGLS algorithm

Current center point: (17, 16)
Current center point: (16, 15)
Current center point: (15, 14)
Current center point: (14, 13)
Current center point: (13, 12)
Current center point: (12, 11)
Current center point: (11, 10)
Current center point: (10, 9)
Current center point: (9, 8)
Current center point: (8, 7)
Current center point: (7, 6)
Current center point: (6, 5)
Current center point: (5, 4)
Current center point: (4, 3)
Current center point: (4, 2)

Inbound area

Machine 1: 9 (2, 4, 0, 0) 1 (12, 15, 1, 0) 4 (15, 17, 4, 0) 2 (17, 22, 2, 0) 28 (22, 24, 0, 0)
18 (24, 30, 0, 2) 10 (32, 36, 1, 0) 13 (36, 42, 0, 0) 14 (47, 51, 0, 0) 31 (55, 57, 0, 0)
Machine 2: 22 (12, 15, 0, 0) 3 (18, 22, 4, 0) 11 (22, 28, 0, 2) 5 (31, 33, 0, 0) 23 (35, 39, O,
0) 6 (47, 50, 0, 0) 19 (58, 60, 0, 0)

Machine 3: 25 (10, 13, 0, 0) 21 (15, 18, 0, 0) 29 (18, 24, 2, 0) 26 (24, 27, 0, 0) 34 (27, 29,
0, 0) 32 (34, 39, 0, 0) 15 (47, 52, 0, 0) 27 (57, 60, 0, 0)

Machine 4: 20 (6, 10, 0, 0) 33 (11, 17, 2, 0) 30 (17, 23, 3, 0) 24 (23, 25, 0, 1) 16 (25, 28,
0, 2) 17 (28, 30, 0, 1) 12 (32, 38, 0, 0) 7 (42, 47, 0, 0) 8 (53, 59, 0, 0)

Outbound area

Machine 1: 28 (23, 24, 0, 0) 9 (32, 33, 0, 0) 19 (37, 38, 2, 0) 1 (38, 42, 0, 0) 3 (42, 43, O,
0) 30 (46, 49, 0, 0) 22 (50, 51, 14, 0) 26 (51, 56, 11, 0) 25 (56, 58, 12, 0) 27 (58, 62, 11,

0) 13 (62, 67, 0, 0) 4 (67, 69, 3, 0) 5 (69, 70, 1, 0) 15 (70, 75, O, 0) 14 (78, 83, 0, 0) 32

(84, 86, 0, 0) 10 (88, 92, 1, 0) 29 (92, 97, 0, 0)

Machine 2: 17 (9, 10, 0, 0) 7 (41, 44, 0, 0) 8 (58, 60, 3, 0) 23 (60, 65, 1, 0) 31 (65, 67, 3,
0) 16 (67, 71, 3, 0) 18 (71, 72, 3, 0) 12 (72, 76, 0, 1) 21 (76, 80, 3, 0) 24 (80, 85, 0, 0) 2
(85, 90, 0, 2) 20 (90, 95, 0, 0) 6 (95, 96, 0, 1) 11 (98, 103, 0, 0)

Total penalty for scheduling: 1290

RGLSTS algorithm
Inbound area

Machine 1: 9 (2, 4, 0, 0) 1 (13, 16, 0, 0) 2 (16, 21, 3, 0) 28 (21, 23, 1, 0) 18 (23, 29, 0, 1)
10 (32, 36, 1, 0) 13 (36, 42, 0, 0) 14 (47, 51, 0, 0) 31 (65, 57, 0, 0)

Machine 2: 22 (12, 15, 0, 0) 4 (15, 17, 4, 0) 30 (17, 23, 3, 0) 11 (23, 29, 0, 3) 5 (31, 33, O,
0) 23 (35, 39, 0, 0) 6 (47, 50, 0, 0)

Machine 3: 25 (10, 13, 0, 0) 21 (15, 18, 0, 0) 29 (18, 24, 2, 0) 26 (24, 27, 0, 0) 34 (27, 29,
0, 0) 32 (34, 39, 0, 0) 15 (47, 52, 0, 0) 27 (55, 58, 2, 0) 19 (58, 60, 0, 0)

Machine 4: 20 (6, 10, 0, 0) 33 (12, 18, 1, 0) 3 (18, 22, 4, 0) 24 (22, 24, 0, 0) 16 (24, 27, O,
1) 17 (27, 29, 0, 0) 12 (32, 38, 0, 0) 7 (42, 47, 0, 0) 8 (53, 59, 0, 0)

Outbound area

Machine 1: 28 (23, 24, 0, 0) 9 (32, 33, 0, 0) 1 (38, 42, 0, 0) 3 (42, 43, 0, 0) 30 (46, 49, O,

0) 26 (51, 56, 11, 0) 25 (56, 58, 12, 0) 27 (58, 62, 11, 0) 13 (62, 67, 0, 0) 31 (67, 69, 1, 0)
5 (69, 70, 1, 0) 16 (70, 74, 0, 0) 18 (74, 75, 0, 0) 14 (78, 83, 0, 0) 2 (83, 88, 0, 0) 10 (88,
92, 1, 0) 29 (92, 97, 0, 0)

Machine 2: 17 (9, 10, 0, 0) 19 (39, 40, 0, 0) 7 (41, 44, 0, 0) 8 (56, 58, 5, 0) 23 (58, 63, 3,

0) 22 (63, 64, 1, 0) 15 (64, 69, 6, 0) 4 (69, 71, 1, 0) 12 (71, 75, 0, 0) 21 (75, 79, 4, 0) 24

(79, 84, 1, 0) 32 (84, 86, 0, 0) 20 (89, 94, 1, 0) 6 (94, 95, 0, 0) 11 (98, 103, 0, 0)

Total penalty for scheduling: 580

Machines cost: $6000, Scheduling cost: $580, Total cost: $6580

120

Instance 14:

RGLS algorithm

Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:
Current center point:

=
~
N
N

LA A A A A A A A T e S A A T e

10, 15

AAAAAAAAAAAAAAAAAAAAAAAAAAA
P
)
=
) I
3
SN

oo aoio o

Inbound area

Machine 1: 28 (6, 8, 0, 0) 50 (15, 21, 0, 0) 1 (21, 27, 0, 0) 40 (29, 35, 1, 0) 34 (35, 38, O,
0) 39 (41, 45, 0, 0) 46 (50, 53, 0, 0) 42 (53, 56, 2, 0) 19 (59, 64, 0, 0) 7 (65, 70, 0, 0)
Machine 2: 11 (12, 16, 1, 0) 8 (16, 21, 2, 0) 22 (21, 23, 3, 0) 16 (29, 34, 0, 0) 21 (34, 39,
0, 0) 24 (45, 49, 0, 0) 20 (54, 59, 0, 0) 25 (62, 64, 0, 0) 9 (64, 69, 0, 0) 17 (69, 75, 0, 0)
Machine 3: 49 (10, 14, 0, 0) 33 (14, 17, 2, 0) 43 (17, 22, 2, 0) 2 (25, 29, 0, 0) 3 (30, 32, O,
0) 13 (32, 38, 0, 1) 47 (43, 47, 0, 0) 37 (52, 54, 0, 0) 31 (58, 60, 0, 0) 38 (63, 68, 1, 0)
Machine 4: 12 (14, 16, 0, 0) 14 (18, 23, 0, 0) 5 (23, 29, 0, 0) 30 (30, 36, 0, 0) 35 (37, 39,
0, 0) 36 (43, 47, 0, 0) 44 (52, 56, 0, 0) 32 (58, 64, 0, 0) 4 (67, 71, 0, 0)

Machine 5: 6 (9, 15, 0, 0) 15 (15, 18, 1, 0) 23 (18, 21, 0, 0) 48 (23, 25, 0, 0) 29 (25, 31, 1,
0) 26 (31, 33, 0, 0) 10 (33, 37, 0, 1) 18 (39, 45, 0, 0) 41 (45, 49, 0, 0) 27 (55, 59, 0, 0) 45
(63, 69, 0, 0)

Outbound area

Machine 1: 35 (28, 29, 0, 0) 34 (41, 42, 0, 0) 8 (47, 50, 0, 0) 43 (53, 55, 0, 0) 6 (55, 60, O,
0) 7 (63, 64, 2, 0) 58 (64, 67, 4, 0) 29 (67, 72, 5, 0) 27 (72, 73, 6, 0) 38 (73, 78, 3, 0) 15
(78, 83, 1, 0) 40 (83, 85, 1, 0) 4 (85, 87, 0, 0) 24 (88, 93, 0, 0) 49 (97, 101, 0, 0)

Machine 2: 46 (23, 24, 0, 0) 48 (35, 37, 0, 0) 32 (47, 49, 0, 0) 45 (51, 52, 0, 0) 19 (54, 56,
0, 0) 1 (56, 57, 0, 1) 18 (57, 59, 0, 0) 30 (61, 66, 0, 0) 31 (68, 73, 0, 0) 9 (73, 78, 2, 0)
59 (78, 82, 0, 0) 47 (82, 87, 0, 2) 56 (88, 90, 0, 0) 12 (90, 92, 0, 0) 39 (94, 99, 0, 0)
Machine 3: 5 (16, 17, 0, 0) 28 (29, 30, 0, 0) 37 (45, 46, 0, 0) 51 (49, 51, 0, 0) 53 (54, 58,
0, 0) 11 (61, 63, 0, 0) 3 (64, 68, 1, 0) 60 (68, 71, 1, 0) 42 (71, 75, 3, 0) 10 (75, 79, 1, 0)
25 (79, 84, 0, 1) 57 (84, 87, 0, 3) 33 (87, 89, 1, 0) 16 (89, 94, 0, 0) 14 (97, 101, 0, 0)
Machine 4: 50 (22, 23, 0, 0) 55 (34, 37, 0, 0) 22 (46, 48, 0, 0) 54 (50, 53, 0, 0) 44 (54, 58,
0, 0) 41 (61, 66, 0, 0) 13 (66, 70, 3, 0) 20 (70, 74, 5, 0) 36 (74, 75, 3, 0) 52 (75, 78, 1, 0)
17 (78, 81, 0, 1) 26 (81, 83, 0, 1) 23 (83, 87, 0, 2) 21 (88, 91, 0, 0) 2 (94, 98, 0, 0)

Total penalty for scheduling: 1359

RGLSTS algorithm
Inbound area

Machine 1: 28 (6, 8, 0, 0) 50 (15, 21, 0, 0) 1 (21, 27, 0, 0) 30 (29, 35, 1, 0) 34 (35, 38, O,
0) 36 (43, 47, 0, 0) 42 (52, 55, 3, 0) 27 (55, 59, 0, 0) 19 (59, 64, 0, 0) 7 (65, 70, 0, 0)
Machine 2: 11 (13, 17, 0, 0) 8 (18, 23, 0, 0) 16 (29, 34, 0, 0) 21 (34, 39, 0, 0) 24 (45, 49,
0, 0) 20 (54, 59, 0, 0) 25 (62, 64, 0, 0) 9 (64, 69, 0, 0) 17 (69, 75, 0, 0)

Machine 3: 49 (10, 14, 0, 0) 33 (14, 17, 2, 0) 43 (17, 22, 2, 0) 2 (25, 29, 0, 0) 3 (30, 32, O,
0) 13 (32, 38, 0, 1) 47 (43, 47, 0, 0) 37 (52, 54, 0, 0) 31 (58, 60, 0, 0) 38 (63, 68, 1, 0)

121

Machine 4: 12 (14, 16, 0, 0) 23 (18, 21, 0, 0) 22 (21, 23, 3, 0) 5 (23, 29, 0, 0) 40 (30, 36,
0, 0) 35 (37, 39, 0, 0) 39 (41, 45, 0, 0) 41 (45, 49, 0, 0) 46 (50, 53, 0, 0) 32 (58, 64, 0, 0)
4 (67, 71, 0, 0)

Machine 5: 6 (9, 15, 0, 0) 15 (15, 18, 1, 0) 14 (18, 23, 0, 0) 48 (23, 25, 0, 0) 29 (25, 31, 1,
0) 26 (31, 33, 0, 0) 10 (33, 37, 0, 1) 18 (39, 45, 0, 0) 44 (52, 56, 0, 0) 45 (63, 69, 0, 0)

Outbound area

Machine 1: 5 (16, 17, 0, 0) 35 (28, 29, 0, 0) 34 (41, 42, 0, 0) 32 (47, 49, 0, 0) 54 (50, 53,
0, 0) 19 (53, 55, 1, 0) 6 (55, 60, 0, 0) 29 (61, 66, 11, 0) 58 (66, 69, 2, 0) 60 (69, 72, 0, 0)
42 (72, 76, 2, 0) 52 (76, 79, 0, 0) 15 (79, 84, 0, 0) 40 (84, 86, 0, 0) 21 (88, 91, 0, 0) 39
(94, 99, 0, 0)

Machine 2: 46 (23, 24, 0, 0) 28 (29, 30, 0, 0) 48 (35, 37, 0, 0) 8 (47, 50, 0, 0) 45 (51, 52,
0, 0) 43 (53, 55, 0, 0) 1 (55, 56, 0, 0) 18 (57, 59, 0, 0) 41 (60, 65, 1, 0) 7 (65, 66, 0, 0) 9
(66, 71, 9, 0) 38 (71, 76, 5, 0) 10 (76, 80, 0, 0) 47 (80, 85, 0, 0) 4 (85, 87, 0, 0) 33 (87,
89, 1, 0) 16 (89, 94, 0, 0) 14 (97, 101, 0, 0)

Machine 3: 55 (34, 37, 0, 0) 53 (54, 58, 0, 0) 30 (60, 65, 1, 0) 3 (65, 69, 0, 0) 25 (69, 74,
9, 0) 17 (74, 77, 3, 0) 59 (77, 81, 1, 0) 57 (81, 84, 0, 0) 56 (88, 90, 0, 0) 12 (90, 92, 0, 0)
49 (97, 101, 0, 0)

Machine 4: 50 (22, 23, 0, 0) 37 (45, 46, 0, 0) 22 (46, 48, 0, 0) 51 (49, 51, 0, 0) 44 (54, 58,
0, 0) 11 (61, 63, 0, 0) 13 (64, 68, 5, 0) 31 (68, 73, 0, 0) 20 (73, 77, 2, 0) 36 (77, 78, 0, 0)
27 (78, 79, 0, 0) 26 (79, 81, 1, 0) 23 (81, 85, 0, 0) 24 (88, 93, 0, 0) 2 (94, 98, 0, 0)

Total penalty for scheduling: 268

Machines cost: $9000, Scheduling cost: $268, Total cost: $9268

122

References

ABERNATHY, William J.; BALOFF, Nicholas; HERSHEY, John C. and WANDEL,
Sten (1973). A Three-Stage Manpower Planning and Scheduling Model: A Service-
Sector Example. Operations Research, Vol. 21, No. 3, pp. 693-711.

ADAM, Everett E. and EBERT, Ronald, J. (1991). Production and Operations
Management. 4" ed., Prentice-Hall, USA.

BAASE, Sara (1991). Computer Algorithms: Introduction to Design and Analysis. 2"
ed., Addison-Wesley Publishing Company, USA.

BAGCHI, Uttarayan; SULLIVAN, Robert S. and CHANG, Yih-Long (1986). Minimizing
Mean Absolute Deviations of Completion Times about a Common Due Date. Naval
Research Logistics Quarterly, Vol. 33, pp. 227-240.

BAKER, Kenneth R. (1976). Workforce Allocation in Cyclical Scheduling Problems: A
Survey. Operational Research Quarterly, Vol. 27, No. 1, pp 155-167.

BAKER, Kenneth R. and SCUDDER, Gary D. (1990). Sequencing with Earliness and
Tardiness Penalties: a Review. Operations Research, Vol. 38, No. 1, pp 22-36.

BAZARAA, Mokhtar S.; JARVIS, John J. and SHERALI, Hanif D. (1990). Linear
Programming and Network Flows. 2" ed., Wiley, Singapore.

BLAZEWICZ, Jacek; ECKER, Klaus H.; PESCH, Erwin; SCHMIDT, Gunter and
WEGLARZ, Jan (2001). Scheduling Computer and Manufacturing Processes. 2" ed.,
Springer, Germany.

BRENNAN, Linda L. and ORWIG, Robert A. (2000). A Tale of Two Heuristics:
Conflicting Work Allocation Approaches in Engineering Consulting. Engineering
Management Journal, Vol. 12, No. 3, pp 18-25.

BURKE, Edmund K.; KENDALL, Graham and SOUBEIGA, Eric (2003). A Tabu
Search Hyper-heuristic for Timetabling and Rostering. Journal of Heuristics, Vol 9,
No. 6, pp 451-470.

CAMPBELL, Gerard M. and DIABY, Moustapha (2002). Development and
Evaluation of an Assignment Heuristic for Allocating Cross-trained Workers.
European Journal of Operational Research, Vol. 138, pp 9-20.

COFFMAN, Edward G. (1976). Computer and Job-Shop Scheduling Theory. Wiley-
Interscience, USA.

122

CORMEN, Thomas H.; LEISERSON, Charles E. and RIVEST, Ronald L. (2001).
Introduction to Algorithms. 2" ed., MIT Press, USA.

COROMINAS, Albert; PASTOR, Rafael and RODRIGUEZ, Ericka (2004). Rotational
Allocation of Tasks to Multi-functional Workers in a Service Industry. Technical
Report IOC-DT-P-2004-09. Universitat Polytecnica de Catalunya, Barcelona, Spain.

CRAINIC, Teodor G. and LAPORTE, Gilbert (1998). Fleet Management and
Logistics. Kluwer Academic Publishers, USA.

DANTZIG, George B. and THAPA, Mukund N. (2003). Linear Programming, Vol 2:
Theory and Extensions. Springer, USA.

DE ALBA, Karim (2004). Un Procedimiento Heuristico para un Problema de Disefio
de Redes Multiproducto con Capacidad Finita y Cargos Fijos. Thesis. UANL, Mexico.
(in Spanish)

DiIAZ, Adenso; GLOVER, Fred; GHAZIRI, Hassan M.; GONZALEZ-VELARDE, José
L.; LAGUNA, Manuel; MOSCATO, Pablo and TSENG, Fan T. (1996). Optimizacion
Heuristica y Redes Neuronales. Ed. Paraninfo, Spain. (in Spanish)

FEO, Thomas A. and RESENDE, Mauricio G. (1989). A probabilistic heuristic for a
computationally difficult set covering problem. Operations Research Letters, Vol. 8,
pp 67-71.

FLEURENT, Charles and GLOVER, Fred (1999). Improved Constructive Multistart
Strategies for the Quadratic Assignment Problem Using Adaptive Memory. INFORMS
Journal on Computing, Vol. 11, No. 2, pp 198-204.

GAREY, Michael R.; TARJAN, Robert E. and WILFONG, Gordon T. (1988). One-
Processor Scheduling with Symmetric Earliness and Tardiness Penalties.
Mathematics of Operations Research, Vol. 13, No. 2, pp 330-348.

GENDREAU, Michel (2002). An Introduction to Tabu Search, in Handbook of
Metaheuristics. GLOVER, Fred and KOCHENBERGER, Gary A. (Eds.). Kluwer
Academic Publishers, USA.

GLOVER, Fred (1977). Heuristics for Integer Programming Using Surrogate
Constraints. Decision Sciences, Vol. 8, pp 156-166.

GLOVER, Fred (1986). Future Paths to Integer Programming and Links to Artificial
Intelligence. Computers & Operations Research, Vol. 5, No. 13, pp 533-549.

123

GLOVER, Fred and KOCHENBERGER, Gary A. (2003). Handbook of Metaheuristics.
Kluwer Academic Publishers, USA.

GLOVER, Fred and LAGUNA, Manuel (1997). Tabu Search. Kluwer Academic
Publishers, USA.

GOMAR, Jorge E.; HAAS, Carl T. and MORTON, David P. (2002). Assignment and
Allocation Optimization of a Partially Multiskilled Workforce. ASCE Journal of
Construction Engineering and Management, Vol. 128, No. 2, pp. 103-109.

GOTTFRIED, Byron S. (1997). Programacion en C. 2" ed., McGraw-
Hill/Interamericana de Espafia, Spain. (in Spanish)

GUE, Kevin R. (2001). Crossdocking: Just-In-Time for Distribution. Technical Report.
Graduate School of Business and Public Policy Naval Postgraduate School,
Monterey, CA, USA.

HALL, Nicholas G.; KUBIAK, Wieslaw and SETHI, Suresh P. (1991). Earliness-
Tardiness Scheduling Problems, Vol II: Deviation of Completion Times about a
Restrictive Common Due Date. Operations Research, Vol. 39, No. 5, pp 847-856.

HANSEN, Pierre (1986). The Steepest Ascent Mildest Descent Heuristic for
Combinatorial Programming. Congress on Numerical Methods in Combinatorial
Optimization, Italy.

HART, Pirie and SHOGAN, Andrew W. (1987). Semi-greedy Heuristics: An Empirical
Study. Operations Research Letters, Vol. 6, pp 107-114.

HEADY, Ronald B. and ZHU, Zhiwei (1998). Minimizing the Sum of Job Earliness
and Tardiness in a Multi-machine System. International Journal of Production
Research, Vol. 36, No. 6, pp 1619-1632.

HEYMANN, Elisa; SENAR, Miguel A.; LUQUE, Emilio and LIVNY, Miron (2000).
Adaptive Scheduling for Master-Worker Applications on the Computational Grid.
Proceedings of the First IEEE/ACM International Workshop on Grid Computing, pp
214-227.

HOCHBAUM, Dorit S. (1997). Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, USA.

HOROWITZ, Ellis; SAHNI, Sartaj and RAJASEKARAN, Sanguthevar (1998).
Computer Algorithms. Computer Science Press, USA.

124

[IMA, Hitoshi and SANNOMIYA, Nobuo (2001). Module Type Genetic Algorithm for
Modified Scheduling Problems with Worker Allocation. Proceedings of the American
Control Conference, pp 856-861.

LAGUNA, Manuel and GONZALEZ-VELARDE, José L. (1991). A Search Heuristic for
Just-in-Time Scheduling in Parallel Machines. Journal of Intelligent Manufacturing,
Vol. 2, pp 253-260.

LAGUNA, Manuel and MARTI, Rafael (2003). Scatter Search: Methodology and
Implementations in C. Kluwer Academic Publishers, USA.

LAKSHMINARAYAN, Sankaran; LAKSHMANAN, Ram; PAPINEAU, Robert L. and
ROCHETTE, Rene (1978). Optimal Single-Machine Scheduling with Earliness and
Tardiness Penalties. Operations Research, Vol. 26, No. 6, pp 1079-1082.

LAWLER, Eugene L.; LENSTRA, Jan K.; RINNOOY-KAN, Alexander H. and
SHMOYS, David B. (1985). The Traveling Salesman Problem. Wiley-Interscience,
Great Britain.

LEUNG, Joseph Y-T. (2004). Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Chapman and Hall/CRC, USA.

LEWIS, Gordon H.; SRINIVASAN, Ashok and SUBRAHMANIAN, Eswaran (1998).
Staffing and Allocation of Workers in an Administrative Office. Management Science,
Vol. 44, No. 4, pp 548-570.

LI, Yanzhi; LIM, Andrew and RODRIGUES, Brian (2004). Crossdocking - JIT
Scheduling with Time Windows. Journal of the Operational Research Society, Vol.
55, No. 12, pp 1342-1351.

LIAW, Ching-Fang (1999). A Branch-and-Bound Algorithm for the Single Machine
Earliness and Tardiness Scheduling Problem. Computers & Operations Research,
Vol. 26, pp 679-693.

LIN, S. and KERNIGHAN, Brian W. (1973). An effective heuristic algorithm for the
Traveling Salesman problem. Operations Research, Vol. 21, No. 2, pp 498-516.

MAZZINI, Renata and ARMENTANO, Vinicius A. (2001). A Heuristic for Single
Machine Scheduling with Early and Tardy Costs. European Journal of Operational
Research, Vol. 128, pp 129-146.

MURTY, Katta G. (1983). Linear Programming. John Wiley & Sons, USA.

NEAPOLITAN, Richard E. and NAIMIPOUR, Kumarss (1998). Foundations of
Algorithms using C++ Pseudocode. 2™ ed., Jones and Bartlett Publishers, USA.

125

NEMHAUSER, George L. and WOLSEY, Laurence A. (1999). Integer and
Combinatorial Optimization. Wiley-Interscience, USA.

PINEDO, Michael (2002). Scheduling: Theory, Algorithms, and Systems. 2" ed.,
Prentice Hall, USA.

POLYA, George (1957). How to Solve it. 2" ed., Princeton University Press, USA.

PRAIS, Marcelo and RIBEIRO, Celso C. (2000). Reactive GRASP: An application to
a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on
Computing, Vol. 12, pp 164-176.

RADHAKRISHNAN, Sanjay and VENTURA, José A. (2000). Simulated Annealing for
Parallel Machine Scheduling with Earliness-Tardiness Penalties and Sequence-
Dependent Set-up Times. International Journal of Production Research, Vol. 38, No.
10, pp 2233-2252.

RESENDE, Mauricio G. and GONZALEZ-VELARDE, José L. (2003). GRASP:
Procedimientos de Busqueda Miopes, Aleatorizados y Adaptativos. Inteligencia
Artificial, No. 19, pp 61-76. (in Spanish)

RESENDE, Mauricio G. and RIBEIRO, Celso C. (2001). Greedy Randomized
Adaptive Search Procedures, in Handbook of Metaheuristics. GLOVER, Fred and
KOCHENBERGER, Gary A. (Eds.). Kluwer Academic Publishers, USA.

RIVERA, José G. (1996). Desarrollo de Métodos Heuristicos para el Problema de
Secuenciacion Justo a Tiempo considerando Tiempos de Preparacién. Thesis.
ITESM, Campus Monterrey, Mexico. (in Spanish)

ROSAS, Rosario (1991). Disefio de un Modelo de Solucion por medio del
Metaheuristico Tabu Search para el Problema de Programacién de Tareas en Dos
Maquinas. Thesis. ITESM, Campus Monterrey, Mexico. (in Spanish)

SIDNEY, Jeffrey B. (1977). Optimal Single-Machine Scheduling with Earliness and
Tardiness Penalties. Operations Research, Vol. 25, No. 1, pp 62-69.

SIERKSMA, Gerard (2001). Linear and Integer Programming: Theory and Practice.
2" ed., Marcel Dekker Inc., USA.

SIFERD, Sue P. and BENTON, W. C. (1992). Workforce Staffing and Scheduling:

Hospital Nursing Specific Models. European Journal of Operational Research, Vol.
60, pp 233-246.

126

SIVRIKAYA-SERIFOGLU, Funda and ULUSQY, Giindiz (1999). Parallel Machine
Scheduling with Earliness and Tardiness Penalties. Computers & Operations
Research, Vol. 26, pp 773-787.

THARMMAPHORNPHILAS, Wipawee and NORMAN, Bryan A. (2004). A
Quantitative Method for Determining Proper Job Rotation Intervals. Annals of
Operations Research, Vol. 128, pp 251-256.

ZANAKIS, Stelios H. and EVANS, James R. (1981). Heuristic “Optimization”: Why,
When, and How to Use It. Interfaces, Vol. 11, No. 5, pp 84-91.

127

