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QFCS: A Fuzzy LCS in Continuous Multi-Step
Environments with Continuous Vector Actions

by
Jose Abdón Ramírez Ruiz

Abstract

This document presents a doctoral dissertation which is a requirement for the Ph.D.
degree in Information Technologies and Communications from Instituto Tecnológico y
de Estudios Superiores de Monterrey (ITESM), Campus Monterrey, major in Intelligent
Systems in the field of Learning Classifier Systems (LCS). The dissertation introduces
a new LCS, called QFCS, that is able to deal with problems defined over continuous
variables. These problems are important because real life is modeled in that way.

LCSs are systems with a set of rules that compete and that can learn from and
adapt to the environment. These properties are very desirable in intelligent systems
because they allow the systems to adjust to subtle details. Traditionally, in Artificial
Intelligence, designers have to pre-adjust the parameters. This made the developer not
to take into account those subtle details and, consequently, deal with them during ex-
perimentation. LCSs make use of reinforcement learning and of evolutionary computing
to deal with the proper adjustment of those subtleties. But, LCSs in their beginnings
have been designed to solve problems that can be defined in a discrete form. Lately,
researchers have tried to extend the approach to deal with problems in the continuum.
This task has shown to be far away of being solved. Thus, there have been many ap-
proaches to adapt these systems to continuous variables. One of them has been the
introduction of Fuzzy Logic to model the continuous environment. In this way, little by
little LCSs have been extended to tackle more problems in the continuum, increasing,
little by little, their related difficulty.

Some of the problems solved with this approaches are the learning of continuous
functions, the frog problem and navigation tasks. Learning of continuous functions is
a problem where some continuous input enters to the system and the corresponding
output is obtained, but the system does not know what this output is, all the system
knows is the amount of reward it receives for each output made. This problem is of
one-step since the system has to place an output once. The frog problem consists of a
frog that lives with a fly in a line. The frog has to jump once and catch the fly. Since
the frog lives in a line, the environment is continuous. The length the frog jumps is also
continuous. This is one-step since the frog jumps once. The frog receives a reward at
each time it jumps even if it does not trap the fly. Navigation tasks are more complex
problems since they are multi-step. This means the system has to act more than one
time to reach the goal. In this case, it moves many times to reach another place. The
environment can be discrete but it is more complex if it is continuous. The actions are
a set of discrete vectors but, in a more complex form, they could be continuous. The
reward is given when the system reaches the goal.
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The complexity for LCSs with the problems described before is given by the set
of continuous actions, because rules of LCSs relate the states of the problem with one
action. Thus, to model continuous outputs would required a set of infinite number of
rules. This is impossible because rules are countable and the continuum is not.

QFCS introduces fuzzy systems in the rules to model relationships of the form:
many states to many actions. This is a novelty in LCSs literature where only single
fuzzy rules have been used. QFCS uses a matrix to learn a prediction of the payoff to
be obtained per each fuzzy system. This is also a novelty because traditional LCSs use
one value to predict the obtained reward. In this way, QFCS was designed following
to different approaches, one that has fixed fuzzy sets and the other with unfixed fuzzy
sets as inputs to the fuzzy systems. The second approach is a generalization and it is
proposed to eliminate the restrictions imposed by the use of fixed fuzzy sets.

This QFCS was tested with the frog problem to compare it with the literature and
with five more different problems that introduced different levels of complexity. Three
of them were about performing navigation tasks in one and two dimension spaces with
obstacles. The last two dealt with an inertial particle. The navigation tasks were in
continuous spaces with a set of continuous vector actions. A reward was given in those
regions the system had to reach. The particle problems were about moving a particle
from one position to another one. These problems were the more complex ones because
of the inertia of the particle.

Results showed that QFCS is capable of solving these kind of continuous problems
and that there is not too much difference in performance between the two approaches
of QFCSs. Liberating the fixed fuzzy sets did not represent an advantage.

X
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Chapter 1

Introduction

Artificial Intelligence (AI) is a huge research area. It deals with the problem of giving
intelligence to machines. This has made researchers propose many different approaches
to tackle many different problems that people can solve. Traditional AI systems were
rigid because they were designed and adjusted a priori by the designer. Then, it was easy
to overlook subtle details that were needed for the optimal performance of the system.
In this way, Machine learning and evolutionary approaches have tried to make systems
more capable of changing in its internal parameters and in its structure to adapt to the
problem.

Evolutionary approaches are techniques that simulate the processes found in the
evolution theory. Meaning that, there is a population called individuals. These individ-
uals form part of some generation. Generations are used to produce new generations
selecting, crossing and mutating the strongest individuals. Evolutionary approaches
have been used mainly for optimization. In the evolutionary approaches each individual
is a possible solution of the problem to solve and when the evolutionary process finishes
the strongest individual is the best solution. Therefore the individual is adapted in its
structure. There are many different evolutionary algorithms but one widely used is the
Genetic Algorithm (GA) introduced by Holland [12, 11, 10].

On the other hand, machine learning allows systems to adapt to changes in the
problem so the system designer does not need to foresee and provide solutions for all
possible situations. There are mainly three branches in machine learning: Supervised,
Unsupervised and Reinforcement Learning (RL) [2, 1, 27]. The last one is a technique
based on punishment and reward, in other words, the way the system learns is similar
to animals being trained, where punishment is represented by pain and reward by in-
stant gratification. Feeling pain makes animals avoid bad behavior, whereas gratification
stimulates them to keep their good behavior. In reinforcement learning, reward can be
a negative or positive number representing pain and pleasure respectively. The system
maintains a set of parameters that contains a prediction of the received accumulative
reward, so the system follows the behavior that predict to obtain the most reward pos-
sible. For reinforcement learning, the problem has to be coded into states with a set of
actions and with a transition function that defines how the problem moves between two
different states due to a particular action. One of the algorithms in reinforcement learn-
ing that has had a lot of success is the Q-learning algorithm [1, 27]. This algorithm does
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2 CHAPTER 1. INTRODUCTION

not need the transition function. Q-learning was designed to solve discrete problems.
That means that the states and the actions of the problem are discrete sets. Therefore,
to solve a navigation problem in a real space, which is continuous and with real actions,
which are also continuous, the space and the actions have to be highly discretized to be
trustworthy. The problem with having a highly discretized world is the need of a lot of
memory to save the parameters causing the algorithm to stop performing well.

Continuous problem have been dominated by control theory. Zadeh in 1965 in-
troduced Fuzzy Logic (FL) [37, 32]. FL demonstrated to be good at solving control
problems with low costs in computer and monetary resources; but that was not all as
FL allowed designers to use rules in common language to model control systems. FL
is a generalization of traditional logic since it uses not only true or false but a continu-
ous degree of being true or false. Thus, FL is used to model concepts into continuous
variables. Therefore, it is possible to translate human rules for solving a problem into
precise controllers that use continuous variables.

Learning Classifier Systems (LCS) [13] are systems that can learn and adapt when
acting. They are compounded by a set of objects called classifiers that can be simply if-
then rules. The LCS decides which rules are good and which ones are not by RL. Rules
are changed using a GA. LCSs are an approach that combines two ideas: learning and
adaptation. Therefore, each classifier represents an association among a set of states of
the problem, one action and a parameter that represents the prediction of the reward
to be obtained. The GA does not act replacing all of the classifiers but just one each
time. Because of RL works in problems that are defined in discrete states with discrete
actions, LCS also works with discrete problems. Many efforts have been done to make
LCS works with continuous problems [34, 15, 36, 28]. One of them is the introduction
of fuzzy logic [31, 20, 4].

1.1 Motivation

In the last years many techniques, like Neural Networks, Reinforcement Learning, Ge-
netic Algorithms and Learning Classifier Systems, have risen in the Machine Learning
field. These techniques learn in many different ways. For instance, they use examples
with supervision or reward, or the minimization or maximization of a fitness function.
But LCSs have called the attention of researchers in the area because they are capable of
learning the structure of a problem without the introduction of a model. This learning
is achieved by the use of classifiers, that are simple condition-action rules that map a
set of states from the problem to one or many possible actions. This means that the
solution of a problem is created by the combination of many rules over the state space
of the problem. Furthermore, they do not cooperate but compete. In this way, there
are many rules that propose a possible action for the observed state. These rules are
modified by a GA which replaces the bad ones by possibly good rules. This GA uses
as fitness function the amount of reward the system has received when acting. Classi-
fiers can learn general rules that involve many states that are classified as similar ones.
Therefore, when it is possible, these general rules decrease the amount of knowledge
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the system needs to act. LCSs are also capable of learning at the same time that they
are exploring. This characteristic is very important because humans learn at the same
time they experience the environment; hence, this property is very desirable in artificial
intelligence systems.

The foundations of LCSs, which were inspired by the ideas of Induction Theory
[14], were presented by Holland [13]. The Induction Theory tries to model how minds
work. It describes that humans learn by generating general rules that cover entities with
similarities. These rules are not always correct so they have to be modified. Nevertheless,
these rules could be sometimes incorrect. Thus, general rules could coexist with some
specific rules to solve the problem and form, in this way, general-exception rules. With
the Holland's LCS, it was possible to model this kind of rules and also other mechanism
where rules could be chained to form plans. However, in spite of Holland's efforts to
achieve general-exception and chained rules with his LCS, he could not achieve the
implementation of these characteristics for all cases. Holland's LCS learned by reward
using a scheme of receiving and paying bids called the Buckade-Brigade algorithm,
received Bids were accumulated forming the strength of the classifier. Classifiers were
evolved based on the strength. This LCS was applied to discrete problems.

One of the most important developments in this field was XCS, an accuracy based
Learning Classifier System by Wilson [33, 9]. He combined the ideas of Q-learning
[24, 27] with Holland's LCS to produce rules that could be the most general ones as
possible. These were called maximal generalizations rules. The main contribution was
the concept of accuracy of rules. This idea measured the convergence of the expected
reward of the rules. Thus, they could evolve to find general rules without any errors.
XCS worked well in simple environments like the n-multiplexer and woods 1. The n-
multiplexer consists of binary strings as states. The string is divided into two subsets
A and B. A combination of Os and Is in subset A represents one binary element of the
subset B. Therefore, the actions of the problem are to place as output the value of the
bit in B that was selected by the set A. For example: in the string 100110, A = 10 and
B = 0110, if combination 01 represents the third bit from left to right of B, then the
output is the action of placing 1. The other problem, woodsl, was a navigation problem
in a periodic two-dimensional grid space of 5 x 5. The system had to reach the goal
that was in the corner of the objects. There was a big obstacle where the system could
not pass. The actions were go up, down, left and right. This problem is shown in Fig.
1.1.a. The obstacles are in dark gray and the goal in gray.

Another achievement came from Stolzmann [25, 7, 16] who included the Anticipa-
tory Behavioral Control Theory to LCSs called Anticipatory Learning Classifier Systems
(ACS). ACS could learn to predict its next state given its next action. Thus, ACS learns
the structure of the environment by anticipations and this characteristic facilitates the
creation of plans before any action in the problem. ACS was applied in simple prob-
lems like the n-multiplexer mentioned before and, on mazeG and wood!4 that are also
navigation tasks on two-dimensional grid spaces and are shown in Fig. 1.1. b and Fig.
l.l.c.

The fact that many real world problems have something to do with continuous vari-
ables instead of discrete ones have encouraged researchers to look for ways to take LCSs
to continuous problems. Thus, XCS was modified to deal with continuous perceptions



CHAPTER 1. INTRODUCTION

b) c)

Figure 1.1: a. Woodsl. b. Maze6. c. Woodsl4
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in [26, 35, 8] to solve the real n-multiplexer but the most important modification came
from Wilson [34] and was called XCSF. The XCSF only learned continuous functions.
Its machinery had a change in the rule representation such that rules were activated
over hyper-rectangular regions of the input space and the values of the expected payoff
were calculated by adjusting a hyper-linear function by a modified delta rule. Then,
the continuous function was obtained from the values learned of the expected payoff.
The XCSF had only one action that was not used to generate the output of the sys-
tem, therefore, it does not make rules compete. Lanzi et al. [15] applied the XCSF to
continuous navigation tasks in one dimension (the continuous linear corridor problem)
and two dimensions (the 2D continuous gridWorld problem). In these learning tasks,
XCSF perceived continuous inputs and chose an action from a set of discrete actions.
In [36] Kovacs et al. proposed three different architectures that used combinations of
two XCSFs to deal with continuous inputs and outputs in a simple problem called the
frog problem, in which the system is reset after each action. After, this problem was also
tackled modifying the XCSF [28] using two GAs, one for evolving actions and the other
for evolving rules. The frog problem consists of a frog placed at random over a line in
the interval [0,1] and of a fly placed on that line at position 1. The frog has to jump
just once to catch the fly. In this problem the actions are continuous in the interval
[0,1].

Some other researchers considered that Fuzzy Logic [32] was a better option to
deal with continuous variables. Therefore, two LCSs [29, 30, 31, 20] that use FL were
introduced to learn functions from rewards. The first one used fix membership functions,
and the second one allowed the membership functions to be changed in their shapes
and positions. These FCSs used cooperation instead of competition among rules to
determine outputs. This was due to FL because in FL rules are combined with others
to produce outputs. Bonarini [3] introduced another framework where competition and
cooperation among rules were used to learn an action function in navigation tasks with
continuous reward. Continuous reward means that the system receives reward every time
at every position. In other words the system is guided all the time. A more complex
problem would be where the system receives reward only in the goal and otherwise
nothing. Bonarini's FCS was applied [4, 18] to a CAT robot to learn how to keep itself
in the center of a corridor while moving with constant speed through the corridor. The
reward was a function of the distance between the robot and the center of the corridor.
This FCS was tested with different learning schemes like the Bucket-Brigade Algorithm,
Temporal Differences and Q-Learning. These systems produced continuous actions from
a continuous perception. The problem is that it has an exponential number of internal
fuzzy states with respect to the number of input variables to represent the perception of
the robot. Thus, it has to form one activation set for each possible internal fuzzy state.

LCSs, in spite of being a good approach for learning due to its characteristics, do
not have tools to deal with continuous problems where a set of actions to accomplish a
task is needed. XCSFs [36, 28] have shown to be good at this problem without using
of fuzzy logic but only in problems where just one action is required. And Bonarini's
FCS [3], that has been used in real robots, has the drawback of an exponentially large
internal set of fuzzy states. This is an important issue because many problems require
many variables. Nevertheless, this approach has combined discrete with continuous
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variables with success. Therefore, finding new mechanisms, that are capable of solving
continuous problems where many actions are needed to complete a task, is still an open
and relevant problem.

1.2 Related Works

The interest is solving the generalized n-Environment Problem. This problem is defined
with a continuous n dimensional input space and with a set of continuous vector actions.
Meaning that, the system has to perceive a continuous vector and select a continuous
vector as action. A solution of the problem is to reach a certain region defined in the
input space and for this the system could make more than one action. These problems
are known as multi-step problems.

Kovacs et al. [36] proposed three architectures that used a group of two XCSFs to
deal with a simple problem called the frog problem. The frog problem is a 1-Environment
Problem with the restriction of making only one action to solve the problem. These kinds
of problems are known as single step problems. The problem has a frog and a fly in
a one-dimensional space in the interval [0,1]. The frog has to jump just once to catch
the fly and the length of that jump is in the interval [0,1]. Thus, the frog defines one
action vector of one dimension. Note that, this problem is one of the simplest with
respect to the instances that the n-Environment covers, that in general are multi-step.
Three proposed architectures were: one was based on interpolation, the second on an
actor-critic paradigm, and the third on treating the action as a continuous variable
homogeneous with the input. The first uses one XCSFj with a discretization of the
actions of the problem and the other XCSF2 is programmed to learn a continuous
function based on the actions taken by the XCSFi. Thus, this system works as an
interpolation algorithm. The second uses a system XCSFa that makes an action based
on a weight vector and the input vector, and an XCSF2 that works as an approximation
function to predict the reward to be obtained. In the third approximation introduced
in the XCSF the input and the output of the problem are changed to be the input of
the system. This system approaches the solution by pieces of continuous curves. QFCS
works better in this problem than the approximations mentioned before; moreover,
QFCS can deal with problems that more complex than the frog problem. A generalized
frog problem could be the same frog in one dimension but with a fly too far to catch in
just one jump. It means that to catch the fly it has to make more than one jump. This
problem could be taken to the frog in two dimensions that is also more complex. QFCS
can deal with these more complex problems of the frog.

Trung et al. [28] also solve this frog problem modifying XCSF by the introduction
of two GAs. First, a change in the representation of classifiers was done. This change
introduces the calculus of an action through a dot product of two vectors: an action
vector and the input vector. This generates lines in the input-output space. The pre-
diction values now were approximated by a plane over the input and output space and
was used to extrapolate the prediction of reward out of the curve that was represented
by the dot product of the action and input vectors. Therefore, one GA evolved the
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action vectors of the classifiers and the other the classifiers. This approach works better
than the ones proposed by Kovacs et al. [36] and it works better than QFCS but this
algorithm was only tested in this simple problem.

Bonarini's approach [4, 18] introduces FL in the LCS. This PCS combines the com-
petition and the cooperation among rules in different stages of the algorithm. When
the input enters to the system, it creates a set of internal fuzzy sets based on all com-
binations of the input fuzzy sets of rules. Therefore, for each possible internal state a
set of activation rules is created. From these activation sets, one rule per set is selected
by competition. These selected rules form a fuzzy system and produce de output. This
FCS was applied to a problem that combines continuous and discrete variables. One
application is in the corridor problem where it is a CAT robot that has to control itself
to be in the center of the corridor. The robot is moving with constant speed through
the corridor. The robot received reward with respect to the distances the robot has to
the center of the corridor. This problem is a navigation task with continuous reward
that guides the robot. The emphasis in the problems QFCS solves is that the system
only receives rewards when reaching the goal and nowhere else. For comparison with
the CAT robot problem, the CAT robot problem has to receive reward only when it is in
the center of the corridor. Given these conditions, it is a task much more difficult. Let
us make an analogy. Imagine there is an airplane that can be anywhere in the world.
Then it is required that the airplane goes to Mexico. The airplane does not know how to
reach Mexico, and it is going to perform many tests to find Mexico but when it reaches
Mexico, the airplane receives a reward; and each time it receives that reward it learns
how to reach Mexico. It is obvious this is very difficult to find even for a person. Giving
reward from every place in the world is equivalent to guide the airplane through Mexico,
so it is easier to find a solution in this way.

1.3 Problem Statement and Context

LCSs can be classified according to the kind of problems they can solve. Such a clas-
sification is shown in Fig. 1.2. As it can be seen, the state space (input variables) of
the problem can be discrete or continuous. Similarly, the action set (output variables)
that defines how the transitions are among states can be discrete or continuous. Fur-
thermore, the problem can also be one-step or multi-step. This means that to reach
points defined by the problem as goals, the execution of one or more than one action is
required, respectively. Thus, the solution of a multi-step problem has to be a sequence
of states and actions as

X0^X^X2^...A^Xn (1.1)

where X0 is the initial state of that sequence with n — l actions and where Xn is a goal
point. This sequence could be not unique. It is obvious that the most complex problem
is continuous in the state space and actions, and is multi-step.

LCSs can also be classified according to the kind of approaches used. Thus, some
LCSs have used FL to deal with continuous inputs while others not. Some others have
introduced modifications of Q-learning as the learning algorithm used instead of the
traditional Bucket-Brigade algorithm. In this way, Table 1.1 shows the classification of
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State Space

One-Step Multi-Step Actions

Discrete

Continuous

Figure 1.2: Type of problem.

the main LCSs. In theory, all of the classifiers were designed to deal with n Inputs and
m Outputs. The Holland's LCS and the XCS were tested with many input and output
binary variables. The XCSF was tested with a maximum of 2 input variables and with
1 discrete output variable. The others are in the table.

The problem is to find a new mechanism for an LCS that introduces Q-learning and
Fuzzy Logic to solve multi-step problems with n continuous inputs and m continuous
outputs. The introduction of Q-learning is because it is wished that the system can learn
by reward in a multistep environment. This reward has to be given to the system only
in those cases where it has acted well. Fuzzy Logic is used because it is considered the
best approach to deal with continuous variables as it has been demonstrated in control
systems.

1.4 Research Questions

The main questions to answer are:

• Is it possible to develop an LCS that uses Fuzzy Logic and Q-learning to solve the
n-Environment Problem?

• Does this LCS have to have fixed linguistic concepts or can they be defined in the
learning process?

• Is this LCS capable at least to solve the Frog Problem defined by Kovacs et al.
[36]?

• Is this LCS capable of solving continuous simple navigation tasks in one and two
dimensions?

• Is this LCS capable of dealing with more realistic problems like the movement of
an inertial particle?
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Type of LCS

Holland's LCS
Wilson's XCS

Wilson's XCSF
Wilson's 2 XCSFs

Trung's XCSF
Valenzuela's FCS

Parodi's FCS
Bonarini's FCS

Ini
Dim.

n
n

n[2]
n[l]
n[l]
n f l ]
n[l]

n

>Ut

Type

D
D
C
C
C
C
C
C

Out
Dim.

m
m

m[l]
m[l]
m[l]
m[l]
m[l]

m

put
Type

D
D
D
C
C
C
C
C

Steps

> 1
> 1
> 1
1
1
1
1

> 1

FL

X

X

X

X

X

/
/
/

QL

X

/
/
/
/
X

X

/

Table 1.1: Classification of the LCSs. D=Discrete, C=Continuous, [ ]=Maximum num-
ber used in experiments.

1.5 Solution Overview

QFCS [21, 22, 23] was designed to solve problems that can be defined in continuous
state spaces with a set of continuous vector actions. The task in these problems has to
be defined by a goal that is a region in the state space and that QFCS has to reach
by means of performing more than one action. The action has the effect to change
the state of the problem. The system has to learn by receiving reward only when it
reaches the goal. In its abstract form, this kind of problem is called the n-Environment
Problem [22]. Thus QFCS uses FL to model the continuous input and output variables
of the problem, and Q-learning to learn by reinforcement. Initially, the input fuzzy sets
were fixed but they introduce restrictions to what QFCS could learn; in spite of those
restrictions the performance of QFCS is good. Thus, allowing modifying the input fuzzy
sets introduces a new level of complexity but the results are the same.

QFCS is divided in components: classifiers, performance component, learning com-
ponent and a discovery component.

• Classifiers are compound by a region in the input state space of the problem,
a hyper-matrix with the same dimension of the input space and a Small Fuzzy
System (SFS) defined over the activation region and that only acts there. These
values of the hyper-matrix are associated with small regions in the activation
region and represent a prediction of reward. These small regions are uniformly
distributed. The SFSs create a continuous vector field that relates the input space
with the output space and this vector field represents the actions the classifier does
from each possible input vector in the activated region. The internal structure of
all SFSs is the same.

• The Performance Component determines how QFCS acts taking into account the
information it has acquired. Thus, when the input vector enters to QFCS, all
classifiers that contain that vector inside of their activation region are activated
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to form a set called [M]. All classifiers in [M] compete to place their vector
action as the output of the system. The system selects the one which has the
highest prediction value associated with the small region which contains the input
vector inside. This means that not all of the elements in the hyper-matrix are
taken into account in this decision but also one element of the hyper-matrix for
each classifier that contains in its associates small region the input vector. This
is in this way because the hyper-matrices are to represent an approximation to
continuous Q-function of Q-learning.

• The Learning Component acts when the system is learning. In this case QFCS
decides which action to select by two mechanisms that are combined with a certain
probability. The first mechanism is exploitation and the selection is similar to the
selection in the performance component. The second mechanism is exploration and
the selection is done taking a classifier at random. The values of the hyper-matrices
in the time before are adjusted according to a similar rule found in Q-learning.

• In the Discovery Component classifiers are evolved by a GA based on the average
of their hyper-matrices. Each time the GA acts only one classifier is replaced.

As it was said QFCS was designed in two different versions: one with fixed fuzzy
sets and the other with unfixed fuzzy sets. The first one has the activation regions
fixed. Thus, the GA does not evolve the activation regions of the classifiers but only
the actions of the fuzzy rules in the SFS. The input fuzzy sets are also fixed. Classifiers
belong to each possible activation region with the same probability so there are about the
same number of classifiers containing the same activation region. This QFCS was tested
with 5 different instances of the n-Environment Problem which have different levels
of difficulty: navigation tasks in one and two dimensions and with an inertia! particle
problems. Navigation task in one dimension is simple but is multi-step in a continuous
space with a continuous range of actions that determines the movements of the system.
A difference with the frog problem is that the navigation task in one dimension has
more possible actions to perform per each position to be capable of reaching the goal
while the frog problem only has one per each position. Imagine the frog is in position
3 and the fly in position 4 the size of the jump is only 2. In the navigation task there
are more possible combinations of giving the jumps to reach the goal. An optimal
solution would be to reach the goal with the less jumps possible. Navigation task in two
dimensions introduces more difficulty due to dimensionality and because of the actions
that now are a vector. This vector is continuous because all directions are possible and
with all magnitude less than a defined parameter. In this way the action of the system
has to be directed to the goal. The system has to learn in which direction to move
and with which magnitude. The inertia! particle problem is more difficult because of
the transition function. This transition function does not allow the system to move in
each possible direction but it has a preference to one particular direction because of the
inertia.

In the second QFCS, the one with the unfixed fuzzy sets, the activation regions
are not fixed anymore. It determines the width and the position of the input fuzzy
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sets because the SFS is denned over the activation region. The GA evolves the acti-
vation regions and the action parts of the fuzzy rules of the SFS. A new hyper-matrix
is introduced that saves the predictions of the reward but in a normalized way. This
normalization is done because now the classifiers have different activation regions. This
makes classifiers evolve to those parts where the Q-function is higher. This does not
happen in QFCS with fixed fuzzy sets because the activation regions cover all the in-
put state space and they do not change. But classifiers move towards the goal if the
activation regions are free. The normalization process is to avoid this and maintain all
classifiers covering all the input state space. Allowing the changing of the activation
region was to overcome the limitations QFCS has due to fixed activation regions.

In this way, the key idea of the solution model called QFCS is to solve the problem
called the n-Environment Problem, which is indeed a continuous state space problem.
Therefore, a solution means to move from one point to those points that are represented
as goal ones. Thus, QFCS has to perform more than one action to reach some goal
point. One important characteristic of this problem is that it is Markovian. Roughly
speaking, it means that in each possible state, there should not be two different correct
actions because this situation could make the system not learn the correct one. In the
n-Environment Problem where the actions correspond to a navigation task, there are
more than one possible optimal actions for each state. Since these many actions for the
same state represent similar displacements, the problem continues to be Markovian.

The way QFCS solves the problem is by having classifiers represent hyper-curves
in the combined state-action space. These hyper-curves are represented by the SFS that
each classifier has. They are SFS because they have only 1n fuzzy rules where n is the
dimension of the state space. Thus, classifiers map a set of continuous states to a set
of continuous actions. These continuous actions are actually vectors. QFCS represents
the Q-function of Q-learning only in the points over these hyper-curves and uses a
modification of Q-learning to learn this Q-function. The Genetic Algorithm evolves
these hyper-curves maximizing the average of their Q-values or their normalizations.

1.6 Main Contributions

The main contributions of this research are:

• The introduction of a new Fuzzy LCS that is able to deal with multi-step contin-
uous problems (The n-Environment Problem) called QFCS.

• QFCS introduces the use of fuzzy systems with a few fuzzy rules as the main
representation of classifiers. Thus, with fuzzy systems as classifiers it is possible
to associate a set of continuous states with a set of continuous vectors. Therefore
each classifier represents a continuous vector field. This property is a novelty to
traditional FCSs from literature where single fuzzy rules are used in each classifier.

• The approach also introduces a modified Q-learning as the main algorithm for
learning. Q-learning makes QFCS solve problems by reinforcement.
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• QFCS uses hyper-matrices to learn an approximation to the real Q-Function.
This property is also a novelty to traditional FCSs from literature where one
value is learned per fuzzy rule. The problem with traditional FCSs is that they
use a single parameter to approximate the Q-function. But fuzzy rules work in
combination with other fuzzy rules that are not always the same ones in their
neighborhoods. So, that value is not representative of the Q-function in those
neighborhoods. Therefore, the introduction of the hyper-matrix in each fuzzy
system is to learn directly the Q-function over the input state space. That is why;
QFCS associates the hyper-matrices to small region in the activation regions of
the classifiers. Therefore, it is very important to remark that QFCS is trying to
learn the Q-function.

• Classifiers in QFCS can compete to be the better ones as in traditional LCSs.
On the other hand, contrary to what is done in XCS and XCSF, QFCS solves
the problem without the accuracy concept. It uses the strength that is taken by
averaging the Q-values in the hyper-matrix or averaging their normalizations.

• QFCS does not find out the mapping (Q-function) on the complete state-action
space but only on those regions where the mapping is important to make decisions.

• QFCS does not care which transition function the n-Environment is using.

1.7 Dissertation Organization

This dissertation is organized in 7 chapters. These chapters describe all of the theories
and concepts needed to develop the solution model proposed with the definition of
the testing problems used and the results obtained. Therefore, chapter 2 contains a
description of Fuzzy Logic (FL). FL is needed because it forms the main representation of
rules since rules contain small fuzzy systems that make the mappings between continuous
inputs and outputs. Chapter 3 has an introduction to Q-learning. Chapter 4 describes
the main Learning Classifier Systems mentioned before. These LCSs are Holland's LCS,
XCS, XCSF, Valenzuela's PCS, Parodi and Bonelli's FCS and Bonarini's PCS. The
review of these LCSs is necessary for a better comprehension of this kind of systems.
Chapter 5 explains the model proposed, called QFCS; a mathematical description of
QFCS with some simple examples accompanied for three dimensional figures to make
better the understanding of the system is presented. Chapter 6 introduces the main
problem for which QFCS was designed, the n-Environment Problem. Five instances of
this problem are described and discussed. World*17, WorldJ0 and Worldf1' are navigation
tasks in one and two dimensional spaces, Particle*0 and Particle1,0 are more realistic
problems related to the movement of an inertial particle. Chapter 7 describes the results
obtained by the experimentation with QFCS over the testing problems mentioned in
chapter 6. Finally, Chapter 8 has the conclusions and future work.



Chapter 2

Fuzzy Logic

Control Theory (CT) [19] has been the other side of Artificial Intelligence (AI), is the one
that tackles problems that involve continuous variables. Typically, the problems to solve
are defined by continuous models based mainly on systems of Differential Equations.
Control systems are very precise but are expensive and complex.

Fuzzy Logic (FL) was introduced by Zadeh [37] in 1965. This theory introduces the
use of linguistic concepts defined over continuous variables. In this way, FL is capable
of reasoning with concepts and of making relations among continuous variables. The
importance of FL in control theory is because FL showed to be suitable to be applied
in control problems. The main reason was that a control problem could be defined
with simple linguistic rules. This makes designers not to deal with complex models that
involve systems of complex Differential Equations Systems and allows them to use the
experience of other people more knowledgeable in control tasks. Another remark is that
a FL controller was cheaper and faster than those from control theory.

Because FL is able to model concepts that have something to do with continuous
variables, like temperature, AI researchers have used it to tackle problems that some-
how are related to this kind of variables. Many problems than humans can solve are
continuous because nature is continuous like a fly flying in the three-dimension space,
a human walking on the street, etc. Moreover, FL is used to reason with ambiguous
concepts. This is something that humans do very well.

Learning Classifier Systems (LCS) Researchers have also used FL to make LCSs
deal with problems where continuous variables are involved. Thus, the LCS proposed in
this dissertation as a solution model uses FL as the main representation of the continuous
variables involved. These fuzzy systems are the core of the classifiers. As fuzzy systems
represent functional relationships among continuous variables, each classifier actually
represents a vector field.

This chapter describes briefly FL theory to form fuzzy systems. This is very im-
portant because the processes showed in this chapter are used to model classifiers in
QFCS.

13
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2.1 Fuzzy Rules
FL [37, 32] is a generalization of Classic Logic that can deal with continuous values of
truth. For example, instead of saying something is true or false, in FL it could be said
something is 70% true and 30% not true. In this way, FL has been used to represent
relationships among continuous variables. These relationships are created by a set of
rules of the type IF-THEN that act over some linguistic variables denned as

#!,...,*„, -A!,..., An- (2'1)

These linguistic variables match with their corresponding continuous variables

xi,...,xn,ai,...,am (2.2)

that are differentiated in two types, x and a. The former are related with the conditional
part of rules and represent inputs and the latter with the consequent part of rules and
represent outputs. Linguistic variables can take a series of linguistic values. These
linguistic values are called fuzzy sets and are defined as

£ ni, n%, . . . , nNn , /2 o^i

e {An,Au,...,A1Ml},

With these assignments and logic operators, it is possible to create rules that involve
linguistic variables as shown in the next examples:

IF[^i = X13] THEN L4g = A&], ,„ ,}
IF [X3 = *34 A X5 = X53] THEN [A2 = A22] .

 { '

Because these rules represent relationships of continuous variables, FL assigns them
continuous functions that indicate their continuous truth values. These functions are
called membership functions. To do this, first it assigns membership functions to lin-
guistic values and then it applies logic operations over those membership functions. To
show how this is done, the membership functions of the linguistic values and fuzzy logic
operations will be analyzed next to the point where the membership function of fuzzy
rules can be defined.

2.2 Membership Functions
Each linguistic value is represented as a membership function fJ.x(x) (or M^(a)) °ver the
corresponding continuous variable range, where X (or ^4) represents the linguistic value
and x (or a) the corresponding continuous variable. Figure 2.1 shows an example of some
possible membership functions of the fuzzy sets of a linguistic variable of definition 2.3.
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Figure 2.1: Membership functions of linguistic values
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Figure 2.2: Cylindrical extensions of and

Each membership function fj,x(x) (or /M.(a)) takes values in the interval [0,1], where
1 defines 100% true and 0 defines 0% true. Before applying a fuzzy logic operation,
the membership functions of the elements that are going to be operated on have to be
defined over the complete space defined for them. It means that, with the expression
(Xi = Xis AND X-z = X-2&) there are 2 membership functions, one /j,Xl3(xi) over the
space Xi and other HXK(XI) over the space x2. Both of them have to be in the same
space xiX2 to get the functions pxi3(xi, £2) and nx25(xii x2). To do this, the cylindrical
extension operation is applied. This simply means to add the variable missing in the
membership functions. This is shown in figure 2.2 where it can be seen how membership
functions expand cylindrically to the dimension missing in order to cover the entire
domain.

2.3 Fuzzy Operations

Traditional fuzzy operations are union, intersection, and complement that can be seen
as an OR, AND and NOT operations, respectively. Union and intersection are also
known as T-norm and S-norm, respectively. There are also implication and inference
operations that are used for defining the relationships of rules and inferring from them.
There are many ways of defining these operations and some of them will be mentioned.
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For union, S-norm or OR (Disjunction) there exist:

Maximum: nxux'(x) = max Ux(z), Vx'(x) I , (2-5)

( Hx(x), i f / iX /(z)=0;
Hx'(x), if (J.x(x) = 0; (2.6)
1, otherwise,

Algebraic Sum: nxux'(x) = P-x(x) + Hx'(x) ~ Hx(x}nx'(x], (2-7)

Dombi: Hxux'(x) = —TTT (2.8)

with A e (0,oo),

Dubois-Prade: Mxux,(x) = W(x) -fa> (2 g)

max 1 - //x(^), 1 - /ix'^)*01

with fxx' = min p,x(x), Hx>(x), 1 - a

and with a € (0, 1),
s l/wi , / z x (x

with w e (0, CXD),

Einstein Sum: ^Xux,(x) = } (2.n)
l + Hx(x)P-x'(x)

For intersection, T-norm or AND (Conjunction) there exist:

Minimun: Hxnx'x = min

Mx (a:), if Hx'(x) = 1;
^x'(x)i if A*x(aj) = 1; (2-13)
0, otherwise,

Einstein Product: //xnx'(^) = - 7 - Px(x)fix>(x) — ^ (2 14)

2 - \iix(x) + Hx>(x] - px(x)px,(x)J

[ / \ 1/10-1i, ((i - nx(x)r + & - nx'Wr) \ (2-15)
with u; € (0, oo),

Dombi: fJ,Xnx>(x) = - - - - - — (2.1

with A € (0, CXD),
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Dubois-Prade:

with cc € (0, 1),

Algebraic Product: /x^nx' 0*0 = Hx (x)p>xr (x) . (2-18)

For complement or NOT (Negation) there exist:

Basic: PX(X) = 1 - fix(x), (2.19)

Sugeno: ^(x) = ~ with A € (~!> °°)> (2-20)

( \ Vw

1 - /ijc(rc)J with w € (0, oo). (2.21)

In the operations of union, intersection, and complement defined above it is supposed
that X and X' are linguistic values of the linguistic variable X that corresponds to
the continuous variable x. It is not necessary to make the cylindrical extensions for
the membership functions involved because they are in the same space, but if these
operations are applied to two fuzzy sets that belong to different variables then the
cylindrical extensions have to be done first, and then the corresponding operation.

For implications there exist:

Dienes-Rescher: fj,X->A(x, a) = max 1 — Hx(x) , HA(O) , (2.22)

Lukasiewicz: HX_>A(X, a) = min 1, 1 — Hx(x) + VA (a) , (2.23)

Zadeh: HX-*A(X, a) = max min(/ijr(:r), fj,A(a)), 1 - Mx(z) , (2-24)

Godel: HX^A(X,O) = { ' , , .rA V / ~ ̂ v" (2.25)I /^(o), otherwise,

Mamdani's Minimun: //jjf_j4(a;,a) = iain\jj,x(x),fJ.A(a}], (2.26)

Mamdani's Product: ftx^A(x,d) = fJ-x(x)nA(a)- (2.27)

Since an implication represents a relationship among the variables involved, it is sup-
posed that there are two continuous variables x and a that are represented by their
corresponding linguistic variables X and A. X and A are fuzzy sets that belong to X
and A, respectively, so the operations represent the membership function P.X->A(X, a)
of the implication IF (X = X) THEN (.4 = A). In order to calculate the membership
function of the implications, the cylindrical extension of the membership function of
each fuzzy set on the space xa has to be done first.

For inference there exist:

Generalized Modus Ponens: nA>(a) = sup T \ f j i X i ( x ) , f j , x ^ A ( x , a) , (2.28)

Generalized Modus Tollens: ^X'(x) = sup T\[j,A>(a),[j,x-+A(x,ci) , (2.29)
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J»Result(«)

Figure 2.3: Projection of /x(x, a) on a.

Generalized Hypothetical

Syllogism: p,X->z'(x, z) = sup (2.30)

where 17 and V represents the domain of discourse of x and a respectively, T represents
the T-norm that is the intersection operation, and X' and A' in the first two inferences
are the fuzzy sets that represent fuzzy facts needed for the inferences. The operation
supxe;7 n(x, a) represents the projection of the membership function /i(x, a) over a ob-
taining a new membership function defined only on space a. This operation is defined
as

MResuit(a) '= sup/z(z,a) = max//(x,a), (2-31)
x€U X(=U

where /^Result(a) is the membership function only defined in the space a. Figure 2.3
shows how this operation works. As it can be seen, the greatest values on x for each a
value is selected.

In FL, rules have to be combined in such a way that they cooperate to infer
something; this is called the inference engine. The type of cooperation is defined by the
way the implications are combined and the way the inference operation is applied. This
can be done either, by combining all membership functions of implication through a
union or intersection operation to obtain only one implication rule that represents all of
them and then with this one apply the inference operation with some fuzzy fact to obtain
the inferred fuzzy set, or by applying the inference operation to each implication with
some fuzzy fact first, and then combining the resulting membership functions through
a union or intersection operation to obtain the inferred fuzzy set. The former is called
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Composition Based Inference with union or intersection combination, and the latter is
called Individual-Rule Based Inference with union or intersection combination. With
this in mind, there are many different inference engines and some of them will be defined.

• Product Inference Engine. It uses individual-rule based inference with union
combination, Mamdani's product implication, algebraic product for all the T-norm
operators and maximum for all the S-norm operators:

N
HA' (a) = max1=1 (

n >

Vx> (x) TT l/ijc! (xi)\HA' (a)
to1 ' J ,

(2.32)

Minimum Inference Engine. It uses individual-rule based inference with union
combination, Mamdani's minimum implication, minimum for all T-norm operators
and maximum for all S-norm operators:

HA- (a) = max sup min \LX> (x) , HX\ (XI),---,HX^ (xn) , MA' («) • (2-33)1=1 ]_x<=u L 1 -U

Lukasiewicz Inference Engine. It uses individual-rule based inference with
intersection combination, Lukasiewicz's implication and minimum for all T-norm
operators:

N r / \i
HA> (a) = min sup min ( nx> (x),l- fA + HA' (a) I , (2.34)1=1 Uet/ V /J

with fA = min |/jxi (ii) ,...,Hx'n (z

• Zadeh Inference Engine. It uses individual-rule based inference with intersec-
tion combination, Zadeh implication and minimum for all T-norm operators:

N I" / r -|\]
HA' (a) = min sup min px1 (x) , max \ f A , 1 - fB I I I , (2.35)1=1 Iseu , \ L J / J

with /A •= min [nxi (n) ,...,Hx'n (xn} , HA' (a)] ,

and with fB = mm

• Dienes-Rescher Inference Engine. It uses individual-rule based inference with
intersection combination, Dienes-Rescher's implication and minimum for all T-
norm operators:

N r / \]
HA> (a) = min sup min I Hx1 (x) , max [1 - fA, HA' (a)] , (2.36)J=1 Uet/ V )\

with fA = min (HX{ (x\) ,...,Hx'n (xn) J •
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In the above definitions, JJLX > (x} is the membership function of a fuzzy fact X' defined
in the input space U = £1 . . . xn where x is a vector in it and p,A' (a) is the membership
function of the fuzzy set A' inferred by the inference engine. I denotes the number of
the rule and there are N of them. Rules used here have the form

IF THEN [A = A1} (2.37)

that can represents different kind of rules, where X[ € {Xu,Xiz, . . . ,-XjjV;} represents
one of the linguistic values of the linguistic variable A7, defined for the l-ih rule. In this
way the membership function of a rule is defined over the space Xi . . . xna.

2.4 Fuzzification and Defuzzification
Now, there is a formalism to reason with the foundations of fuzzy logic, but two more
mechanisms that connect the continuous values with the fuzzy ones are needed. One
is to transform the input vector Xinput defined in the space x\ . . . xn of the variables x^
into a fuzzy fact X', and the other one is to get the continuous value aoutput from the
inferred fuzzy set A' after the inference is done. The first is known as fuzzification and
the second as defuzzification. There are many ways of fuzzification and defuzzification
and some of them will be mentioned.

For fuzzification there exist:

Singleton: (2.38)

with

Gaussian: p,x> (x) = T

For defuzzification there exist:

(
ii~xinPut1 y"1 J (2.40)

Center of Gravity: aOutPut =
I afj,A> (a) da

I \J,A, (a) da
(2-41)

N

Center Average: aOutPut = —^ ,

53 wv

Maximum: otoutPut = SUP PA' (a) >
aev

where a' and wi represent the center and the height of the fuzzy set A'.

(2.42)

(2.43)
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2.5 General Discussion

Each classifier in QFCS has a Small Fuzzy System (SFS). This SFS is defined over the
activation region of the classifier. The SFS defines a relationship between the input and
the output variables. In general, QFCS has n input variables and m output variables, so,
the SFS represents a continuous vector field. The Fuzzy Systems shown in this chapter
make a relationship between many input variables and one output variable representing
a scalar function, not a vector field. Therefore, to obtain a vector field, it is necessary
to joint m equal fuzzy systems one per each output variable differing only in the fuzzy
actions.

The components of the vector field are each one a scalar function over the input
variables. This scalar functions are functions of n variables. Thus, if n > 3, the functions
are known as hyper-functions. This is very important because those hyper-functions
define some points in the joint input-output space that are related by the fuzzy system.
It is over those points where QFCS learns the Q-function through a hyper-matrix in n
dimensions associated to those points defined by the hyper-functions.

Therefore, each classifier produces a vector by its SFS. This SFS has as input only
two fuzzy sets with triangular membership functions and as output singletons that are
going to be defined with precision in Chapter 5.

2.6 Summary

Fuzzy Logic associates linguistic variables to continuous variables. These linguistic vari-
ables have linguistic concepts. The linguistic concepts are associated with membership
functions forming a fuzzy set. Using fuzzy operation is possible to form fuzzy rules that
make relationships among linguistic variables.

The fuzzy operations are: AND, OR, NOT, Implications, Inference and Inference
Machines. These operations take fuzzy values and operate over their membership func-
tions. Implication represents a fuzzy rule. The inference process is carried out combining
an implication and a fuzzy value as input to entail another fuzzy value as output. A set
of fuzzy rules are combined to form a fuzzy system. Inference Machines are an operation
carried out by the fuzzy system that takes a fuzzy value as input and a fuzzy system to
produce a fuzzy value as output. Fuzzification is an operation that creates a fuzzy value
from a real value. Defuzzification is an operation that takes a fuzzy value and creates a
real value.



Chapter 3

Q-Learning

It has been said that AI is reduced to the problem of learning. Everything humans do
has to be learned some time before. People learn by supervision when is guided by an
instructor. They learn without pervision when they discover patterns from the scratch.
But maybe the most attractive way of learning is when humans modify their behavior
because they expect to avoid pain or to get pleasure. This form of learning is also found
in animals. The most common example is that of lab rats, where a rat is in a box with
two buttoms, one for getting food and other for getting a shock. This way of learning
is called Reinforcement Learning. Tasks that can be solved by reinforcement learning
are defined by reaching a goal. Thus, the problem has to have a state space where some
of those states are denned as goals. In this way, it is needed a transition function that
is determined by the task and that says how the state changes in front of an action.
In general, this transition function is stochastic. This transition function is known as a
model of the environment which is characterized by the task. Over each state a value is
defined that gives a prediction of the reward that is going to be obtained. These values
are known as predition values.

There are three elementary solution methods in reinforcement learning: Dynamic
Programming, Monte Carlo Methods and Temporal-Difference Learning. Dynamic Pro-
gramming solves a system of equations called Bellman Equations numerically. These
equations define the prediction values. Monte Carlo Methods solve the problem through
finished experiences in the problem. The system adjusts the prediction values from those
experiences. Finally, in Temporal-Difference Learning, the system learns taking infor-
mation from each transition.

Q-learning belongs to Temporal-Difference Learning. In particular, Q-learning has
the capability of learning the task without using a model of the environment. Instead, it
introduces the use of the states and the actions of the environment without distinction
as the state of the system. QFCS uses Q-learning as the heart of the learning. Thus,
a description of this algorithm is required. Next sections will describe Q-learning with
detail.

23
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Actions
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Figure 3.1: Table that represents the Q-values of Q(x, a).

3.1 The Q-function

Q-learning [24, 27] is a technique that allows learning of a discrete action function
through a reward mechanism. That mechanism determines what an agent has to do at
every time. To do this, it learns a discrete Q-function Q(x, a) over the space xa where

a 6 {«i,Qf2, . . . j
(3.1)

x and a mean all the states of the environment that the agent can perceive, and all
the possible actions that the agent can perform. So this function represents a table of
Q-values as depicted in Fig. 3.1. An agent decides which action to perform using this
table. It takes the action a(x) that has the maximum Q-value in the perceived state x
as

a(x) = argmax [Q(x, «i), . . . , Q(x, am)} . (3.2)

This way of selecting an action is called exploitation because it is using the information
that is in the function Q(x,a).

The environment can be represented from the perspective of the perceived states
and actions of the agent. In this way, the transitions of the perceived environment
are represented by a graph that contains n nodes that match with the perceived states
and ?7i edges that determine the actions that the agent can do, and that connect the
perceived states of the environment as shown in Fig. 3.2. The result of an action can be
stochastic, so any next state could be possible with certain probability. The transition
function T(x, a, x') represents these probabilities where x' e {xi, X2, - • • , Xn}- T(x, a, x')
defines the probability of going to state x' from state x with the action a.

The Q-function defines a new internal space where the states are formed by pairs
of values (x, a). So an agent that uses Q-learning uses an implicit internal graph that
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Figure 3.2: Graph that represents the transition function of the perceived environmnet.
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Figure 3.3: a. Three states (x, a) with their transitions, b. One sequence of actions of
an agent.

defines transitions among these kinds of states as shown in Fig. 3.3a. The edges do not
have labels because edges only define the next possible transition to a new state that
is determined when the agent has taken its next action. A possible sequence of actions
that an agent can make is depicted in Fig. 3.3b.

3.2 Reward Function

When the agent is acting in the environment in each possible perceived state it receives a
reward that guides its learning. This reward is a real function denned over the perceived
states R(x). The goal that the agent has to reach is denned by this reward function. So
the reward function can be thought as something that either rewards the agent when it
has done well or punishes it when it has done badly. In this sense, the positive numbers
can be seen as a reward while negative numbers as a punishment. The larger absolute
number received, the larger either reward or punishment received.
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3.3 Expected Reward

Each tune the agent is trying to reach its goal in the environment is called a trial. A
trial is therefore defined as a sequence of internal states (x, a)

where T^o), z?, c^ with z € {1, 2, . . . , 7^o)} and j <E {1, 2, . . . , N(x,a)} mean the j-th
trial that begins in (x, a), the state x at the i-th internal state of the j'-th trial, and the
action done a at the i-th internal state of the j-ih trial. There are JV(X,0) different trials
that begins hi (x, a) and each one is repeated with probability Pfxa\- lLa\ is defined
as the time value where the agent reach the goal in the j-ih trial that begins in (x, a).
During the trial the agent is given a sequence of rewards

R(x),R(x{)1R(4),...,R(xi),...,R(xj
j ); (3.4)

(*,<>)

that can be combined in a value 5/x GN , as

(x,o)

where 7 € [0, 1] to guarantee the convergence of S3,xay SL, means the summation of
obtained reward during the j'-th trial that begins on state (x, a). Therefore, the expected
reward is defined as the average of S3,x , values over all possible trials begining in state
(x, a) as

Figure 3.3b defines an example of a particular trial of the agent that begins in
finishes in (xn,a5). Let this trial be I for j = 4. The reward, the

agent is given during that trial is

R(x2),R(xi),R(x&),...,R(xn)- (3-7)
Therefore, the value 5? a^ is

5(x2,«3) = R(Xi) + JR(X*) + 72^(X5) + . - . + J^R(Xn). (3.8)

This value Sf a^ is one of the all possible and has a probability P? aay Therefore the

average over all these possible values S3, a^ represent the Q-value of the Q-function

Thus the Q-values represent the expected accumulated reward from the perceived
state when doing the corresponding action. In this manner, it can be seen that the
agent decides how to act to receive the highest expected reward.
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3.4 Learning of the Q- function
To learn the Q-function, the agent has to calculate the expected reward in each state
(a;, a) as in Eq. 3.6. This is a little bit complicated because knowledge of all possible
trials and their probabilities are needed. Furthermore, the trials and the probabilities
change during learning until they converge. Therefore, the idea is to use the relation-
ship between the internal state (x, a) and its neighborhood internal states. Thus, the
expected reward Q(x, a) is the immediate reward for the internal state (x, a) plus the
expected discounted reward of the next internal state, assuming that the agent chooses
its best action by exploitation as in Eq. 3.2. That is

(3.10)

where x' € {xi, X2, • • • > Xn}, o! € {ai, a2, . . . , am} and 7 € (0, 1) is the discount factor.
x', a', R(x) and T(x, a, x') represent the next possible state given the action a, the next
possible action given the state x', the immediate reward for the internal state (x, a)
and the transition function of the environment respectively. Equation 3.10 is known
as the Bellman equation. This equation relates two states in different times. The
equation is compound by the addition of two elements, the reward R(x) in state (x, a)
and another addition that contains all possible future states since all elements of the
transition function that involved x' are used. The discount factor is for convergence.
The maximum operation represents the next possible prediction; since it is required, the
system takes those states with the maximum Q- values. Thus, Eq. 3.10 is true for all
possible internal states (x, a). Therefore, it represents a system of equations

Q (X2, ai) = R (X2) + 7 Y" I T (X2, <*i, x') max ( Q (x', ttl) , . . . , Q (x', am) } } ,
w L a \ J \

n,«i,x')max(Q(x',a1), . . . ,Q(x',Q;
° \

Q (xi, "2) = R (Xi) + 7 5" \T (xi, «2, x') max (Q (x', a i),..., Q (x', am}]] ,
~ L ° \ /J

Q (x2, a2) = fl (x2) + 7
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f
\

7 r(xn> am> x7) max Q (x', ai) , . . . , Q (z', am) ; (3.11)

that has to be solved simultaneously for the Q-values. These equations can be also
solved numerically. This technique is called value iteration and it is done off-line.

There is another approach called Temporal Differences (TD) [24, 27] that can be
used on-line. This approach considers that the agent can use the observed transitions
when acting on the environment to modify the Q-values using the next way of adjusting:

Q(x,d)<-Q(x,a) + P (R(x) + 7max(Q(x> ,ai), . . . ,Q(x',am))) - Q(x,a)
\ a' /

(3-12)

where /3 6 (0,1). As it can be seen, Eq. 3.12 changes the Q-value of the state (x, a) in a
fraction /? of the difference from the new calculated expected reward and the expected
reward on the state (x, a). It is also shown that the transition function of the environ-
ment is not needed anymore because in the limit of a infinity number of trials, the states
are visited with the probability of the transition function. Therefore, the effect is the
same.

3.5 Exploitation and Exploration

When the agent is learning using TD, there are two mechanisms that are used to act.
The first is the one that it was already defined before where the agent selects an action
based on what it has learned using Eq. 3.2, and the second is when the agent selects
an action randomly. These two different mechanisms of selection of actions are called
exploitation and exploration, respectively. These mechanisms are used combined with
probabilities PE (by exploitation) and PR = (I — PE) (by exploration) of taking actions
aE or a,R respectively. This combination is used during learning because some better
transitions can be missed by exploitation alone. These transitions can be only found
with exploration.

Figure 3.4 shows an abstract view of Q-learning when learning in some points over
time. There are two axes, one for the states and the other for actions (it is considered,
that the states and actions are continuous for clarity). Thus, xt is the state where the
system is at time t (the states are in time order for clarity) In that state, the system
selects two actions, one by exploitation asify and the other by exploration a#(£). These
actions in the state Xt are points with coordinates (xt,aE(t)) and (xt,a/j(i)) (these
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Figure 3.4: Updating of Q-values on time.

actions are in time order and separated for clarity, too). The system has to select
one action from those a£;(t) and OR(£) with probabilities PE and PR to act in the
environment. This action is drawn as a point in white color. Arrows show the two
states that are to be modified by Eq. 3.12. This means that the Q-values of the points
obtained by exploitation are the ones used to update the Q-values of the points selected
at time before (the white points).

3.6 General Discussion

QFCS uses Q-learning algorithm for learning. However, Q-learning works in problems
defined as discrete while QFCS works in continuous ones. In QFCS, this problem is
overcome because classifiers combine the fuzzy systems with Q-learning through the
hyper-matrices. Therefore, each classifier represents hyper-functions that defined hyper-
surfaces. The hyper-matrices represent the Q-values over those hyper-surfaces. In this
way, each classifier tries to learn the Q-function over those hyper-surfaces. Those hyper-
surfaces do not represent all of the input-output space but just a small sub-region. Since,
there are many classifiers; it is possible to cover all input-output space. It is important
to note that QFCS evolves classifiers moving the hyper-surfaces to those places where
the Q-function is higher and because of that is that QFCS finishes with a mapping over
the regions in the input-output spaces that are important for making decisions.
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3.7 Summary

Q-learning is an algorithm for learning through reward and without any prior transition
function. It uses a table that represents the Q-function. The Q-function is a function
over states and actions. States and actions are discrete. Q-function represents the
expected reward. The system makes decisions by two schemes, one by exploitation
and the other by exploration. Exploitation is done by taking the action which has the
maximum Q-value while exploration selects an action at random. The learning is done
by a temporal difference algorithm that adjusts the Q-values at each time depending on
the value of the next possible state that has the maximum Q-value.



Chapter 4

Learning Classifier Systems

Researchers have thought that adaptation and learning are important characteristics
that Artificial Intelligence (AI) systems must have. Adaptation allows systems change
in its structure to be more capable of developing a task, while learning allows the
system adjust some internal parameters to get the best performance with that structure.
Traditionally, adaptation has been done using evolutive strategies that are known as
Evolutive Computing, while there are many different approaches for learning.

Evolutive computing is based on Darwin's Evolution Theory. Basically, the main
idea is that there exists a set of individuals called population. This individuals form
part of some generation. Generations are used to produce new generations by selecting,
crossing and mutating the strongest individuals. There are many ways for carrying this
out. Genetic Algorithms (GA) [12, 11, 10] are one of the approaches that uses binary
strings to represent individuals.

Learning can be supervised, unsupervised and by reinforcement [2, 1, 27]. These
three approaches are very different. Supervised learning trains the system with a set
of known data that contain the inputs and the responses. Examples of supervised
learning are pattern recognition and neural networks. With unsupervised learning the
data training does not contain the responses so the system is able to discover patterns.
Examples of this kind of learning are Hopfield's neural networks and decision trees.
Finally, with reinforcement learning the system learns from experiences in the problem
receiving reward when it has acted well and punishment when it has not.

Learning Classifier Systems (LCS) are systems that can adapt and learn from
experiences. To do this, LCSs combine GAs and Reinforcement Learning. Basically,
LCS has a population of rules of the type IF-THEN acting in parallel. Each rule defines
an action for a subset of all the possible perceived states of the environment. This means
that rules have a representation that allows generalization. These rules compete to
determine the actions to be performed over the environment. Using a reward mechanism,
a LCS can learn which rules are the best ones for performing a task. Rules are adapted
by evolution depending on how good they are. Therefore, these characteristics make
LCSs good adaptive systems that can learn from the environment without previous
knowledge using reward as a guide. The following lines review the most important
existing LCSs.

31
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4.1 Hollands LCS (The first LCS)
This LCS [13] is composed by a message list, a population of rules, a performance
component, a learning component, and a discovery component.

• Message List. It contains a set of messages that can be produced from the
environment or from the other rules. Each message is a sequence of Os and Is. So
a message looks like 01011010.

• Population of Rules. It has a fix set of rules [P]. This set is called population.
Each rule RI has the following structure:

Xi,...,xn:a1,...,am; FI; (4.1)

The condition and action parts are separated by a colon, and are formed by a set
of input and output variables, xt € {0,1} and aj € {0,1} with i = 1,2,..., n and
j = 1,2,..., m, respectively. The parameter FI represents the strength of the rule.
Rules define relationships between input and output variables by letting them take
some specific values. These variables, in the condition and action parts, can also
take the symbol #. The symbol # has different meanings depending on where it
appears. A # symbol in the condition part means that that place could take the
value either 0 or 1. A # symbol in the action part of a rule has two meanings.
The first is when the rule is going to post a message that determines an action
(an action message), in this case the value of that position does not matter. The
second is when the rule is going to post a message for rules (a rule message), in
this case it takes the value of the same position in the message that matched the
rule. In this way, the rule 00#1 : 01## is matched by the messages 0001 and
0011. That rule would propose the action messages Ol^^ or 01#^ and the rule
messages 0101 or 0111 depending of which message 0001 or 0011 matched the rule.

• Performance Component. It determines the way in which the LCS decides
what to do. Each time step, the perceived state x of the environment is trans-
formed into rule messages that are posted in the current list of messages. Then,
these messages are used to match rules in the population of rules [P]. In this
way, a matching set [M] that includes all the matched rules is formed. At this
point, which rule from [M] is going to post its action message or rule message on
a new message list is determined. To do this selection, first each rule RI € [M]
gives a bid proportional to its strength, BI = 0Fi with /? € [0,1], and then, a rule
from [M] is selected with probability proportional to its bid Bt. The message of
the selected rule a is posted in the new message list. The current message list is
replaced by the new message list. Each time step, the message list is checked to
detect action messages. If there are actions messages on the message list, then
the actions proposed are performed. This procedure is repeated while the agent
is acting on the environment. Figure 4.1 depicts how the performance component
works. It can be seen how an action message is differentiated from a rule message
by the first bit. That bit means 1 for action messages and 0 for rule messages. All
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Figure 4.1: Performace Component of the Holland's LCS
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of the rules in [P] also have 0 in the first position, because they are referring to
rule messages. This example uses tags to differentiate the type of messages. The
use of tags is common but not indispensable.

• Learning Component. This component is used to learn the best rules for the
task in the corresponding environment. Holland devised a learning mechanism
based in the way that commerce works. This mechanism was called the Bucket-
Brigade Algorithm (BBA). In BBA when a rule RI 6 [M] is selected, it has to
pay its bid Bt to the message with which it matched, and it receives a payment
when the posted message receives payment. Its message can receive payment from
another rule that match it or from the environment. So each selected rule modifies
its strength in the following way:

Ft <- Fz - Bl + R, (4.2)

where R is the reward from the environment.

• Discovery Component. This component is the part of the system that creates
and deletes rules. It decides which rules RI € [P] are good and which ones are bad
based on their strengths Fj. So the one that has the higher Fj is the best one. The
worst rule is deleted when a new one is created. It uses a GA to create new rules. It
selects two rules form [P] with probability proportional to their Fj. Then it applies
crossover with probability x and mutation with probability /x. The rule created is
placed in [P]. This mechanism creates a new rule on intervals of time. Therefore,
this component allows the agent to determine from the environment which rules
are the best based on what they have learned by the learning component.

This LCS can represent generalizations because of the symbol #. This means that a
rule can associate an action to many states. This LCS could also chain rules. This
can be seen through the mechanism of the messages. A rule can post a rule message
without performing an action. In this manner, one rule can activate another rule and,
that other rule another one, and so on, as shown in Fig. 4.2. In this manner, the system
has the ability of planning. One more thing this system could do would be the creation
of default-exception rules. In this case, the creation of a pair of rules, where one is a
general rule that works well over most of its domain except for a small subset of it in
which the other rule works better, would be possible. For example, let us have a set
of possible states of the environment that are associated with their correct actions as
follows:

x a
10000, 00100;
10001, 10010; (4.3)
10100, 00100;
10101, 00100.

There are three states out of four that have the same action. If all the states had the
same action 00100 it would be easy to represent them by only one rule RI 10#0#:00100.
But, there is only one state where R! fails. In that state, the next rule R% 10100:10010
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Figure 4.2: Rule chaining

could be created. If J?2 were only used in that state and R\ in the rest three states
there would be a pair of rules working together doing their best in those four states.
The rule R\ is called the default and the rule R2 is called the exception. In this way,
the number of rules needed to represent the environment would be reduced. However,
the LCS could not exhibit neither chained rules nor general-exception rules.

In general, the LCS used a scheme of paying and receiving bids as learning. The
amount of these received bids was accumulated in a parameter called strength. The
GA evolved classifiers based on strength. This LCS by its nature can just be applied to
discrete problems.

4.2 LCSs with Fitness Based on Accuracy

An important approach made on LCSs is the idea of introducing accuracy. It originated
the LCS that was called XCS [33]. It can deal with discrete problems with great success.
It was tested on discrete non-Markov problems [17] too. Many attempts have been made
to modify XCS to deal with real input variables [26, 35, 8]. These efforts carried on to
the design of the XCSF [34] that was proved in continuous spaces. The following two
sections show how XCS and XCSF work.

4.2.1 XCS

Wilson simplified Holland's LCS [13] framework avoiding the idea of using a message
list. He designed a LCS that can act on the environment immediately after perceiving
it. So, in XCS [33, 9] rules do not post messages for other rules. This means the system
perceives and acts over and over again. Wilson used Q-learning in XCS [24, 27] instead
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of Holland's Bucket-Brigade Algorithm so the system was able to learn by rewards. He
introduced the accuracy of the expected reward instead of strength to determine the
quality of rules. This quality determined which rules were used by the GA to create
new ones and which rules were deleted. XCS has the next components:

• Population of Rules. It has a set of rules [P]. This set is called population.
Each rule RI has the following structure:

xi,...,xn:ai,...,am; p/;
ei; (4.4)
fi;

where the condition and action parts are separated by a colon and are formed
by a set of input and output variables, Xi € {0, 1} and a,j € {0, 1} with i =
1, 2, . . . , n and j — 1, 2, . . . , m, respectively. There are three parameters that are
the prediction pi, the error of the prediction ei, and the accuracy of the prediction
called fitness F;. Rules define relationships between input and output variables by
letting them take some specific values. In the condition part of a rule, a variable
can also take the symbol #. # means that the corresponding variable can take
the value either 0 or 1, in other words, it does not matter which value it takes.

• Performance Component. It determines how XCS works when the agent is
acting in the environment. First, it takes a perception that is a discrete vector x.
This perception is used to get the rules that match it, which form the matching set
[M]. From those rules RI £ [M] the prediction array P is calculated as follows:

F = [P(a1),P(a2),...,P(a2m)], (4.5)

with
E fin

(4.6)

and k = 1, 2, . . . , 2m. 3k is the k-ih action vector. There are 2TO possible action
vectors a = (ai,a2, . . . ,am) since the variables are binaries. pt, F/, RI and [M]fc

represent the prediction of the Z-th rule, the fitness of the l-ih rule, the Z-th rule
and a subset of rules in [M] that contain the fc-th action vector at, respectively.
With P, there are two ways of selecting the action that it is going to be done.
The first one is when the action selected 3E has the maximum value in P:

aE = argmax fp(a1), P(a2), ..., P(a2™)] , (4.7)
a "- -"

and the other one is when the action a# is selected randomly. These two ways of
selecting actions have to be combined with probabilities PE of applying the first
one and PR = (I — PE) of applying the second one. The former procedure is known
as exploitation and the latter as exploration. Then an action set [A] is formed with
the rules that propose the selected action, either aE or aR, and finally the action
is performed in the environment. This procedure is repeated over and over again
and is depicted in Fig. 4.3.
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Figure 4.3: Performance Component of the XCS

Learning Component. After each action given by the performance component,
the agent receives a reward. This reward is a real function R(x) over all the
possible perceived states x. This function is a requirement for Q-learning. So the
prediction pi of each rule represents the Q-values. The states (x, a) are represented
by the condition and the action of the rules. In this way, the Q-function is part
of the rules. Each rule is able to represent, not only one state (x, a), but several
states that have the same action and the same Q-value. This component updates
the parameter p\ on the rules from the action set that proposed the previous action
(A}t-, by:

Pi '[(' (4.8)

where /3 G [0,1], 7 € [0,1] and pi, xt-i and Pt are the prediction of the J-th rule
RI € [X]t-i, the perceived state x in the time t — 1 and the vector of prediction at
time t, respectively. Eq. 4.8 is similar to Eq. 3.12 in Q-learning. XCS, as it was
said before, incorporated not only the Q-leaning mechanism, but also two more
parameters ei and FI in each rule that determine the convergence of the Q-values
and the fitness, respectively. The convergence of the Q-value is measured through
the error in the prediction of pi and the fitness is determined by an accuracy
measure. The more accurate a rule is, the more fitness it has. A rule is more
accurate if it has a smaller error. So these parameters are also updated in the



38 CHAPTER 4. LEARNING CLASSIFIER SYSTEMS
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Figure 4.4: Learning Component of the XCS

rules RI € [A]t-i as follows. For error ei is:

lax Pt} - pi - eJ
a J J

(4.9)

where e.\ is the error of the l-ih rule /^ and the other factors are the same ones as
in update 4.8. And for the fitness F\ is:

Ft + 0 (K, - F,),

with

and

£

In a if ei > eo;
otherwise,

(4.10)

(4.11)

(4.12)

where FI, KI and fcj are the fitness of the Z-th rule RI, the relative accuracy of the
/-th rule RI, and the accuracy of the l-ih rule Rt. The other factors are the same
ones as in update 4.8. In Fig. 4.4, the relationships over time among the factors
used in adjusting the parameters pi, ei and FI of each rule is shown. It represents
a sequence of actions done by the agent. In each state on the time it receives
reward from the environment, it calculates the prediction vector P, decides what
action to do, gets the action set [A], and changes the parameters pi, ei, and FI on
the rules from [A] in the previous time step.

Discovery Component. XCS has two ways of generating new rules. The first
one, called covering, creates random rules when [M] is empty. These rules have to
match the perceive state. The second one uses a GA on the rules from the previous
time step [A]. In this way, two rules are selected with probability proportionally
to their fitness Fj. They are crossed-over and mutated with probability x ^d A*>
respectively. XCS also deletes rules in such a way that it maintains all possible
[A]s with the same number of rules and with their fitness over the average fitness
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of the population [P]. The probability of deleting the l-ih. rule P1
D is calculated

as:
E FI'

otherwise,

where RI, F, FI, EI and N are the Z-th rule RI € [P], the average fitness of the
rules on [P], the fitness of the l-ih rule RI, an estimation of the sizes of [A]s where
RI have been, and the number of rules in the population [P]. EI is updated in the
rules RI € [A] each time [A] is created as:

- EI] , (4.14)

where N^ is the number of rules of [A].

The accuracy concept measures the convergence of the Q-values of rules. Thus, the
fitness is higher when the classifier is accurate. Then, the GA evolves classifiers based
on this accuracy. The used learning algorithm is Q-learning.

XCS can find rules that exhibit a kind of generalization called maximally gener-
alization. In this type of generalization, a rule assigns one correct action to as many
states of the perceived environment as possible with the constraint that all of the possi-
ble pairs (x,a), represented by the rule, share approximately the same prediction value
Pi. It means that it is not always possible to assign a rule to all possible states that
share the same action and the same value pi.

XCS worked well in simple environments like the n-multiplexer and woodsl. The
n-multiplexer consist of binary stings as states. The string is divided into two subsets
A and B. A combination of Os and Is in subset A represent one binary element of the
subset B. Therefore, the actions of the problem are to place in the output the value of
the bit in B that was selected by the set A. For example: in the string 100110, A = 10
and B — 0110, thus if combination 01 represents the third bit from left to right of B
then to place 1 as the output is the action. The other problem, woodsl was a navigation
problem in a periodic two-dimensional grid space of 5 x 5. The system had to reach the
goal that was in the corner of the objects. There was a big obstacle which the system
could not pass. The actions were go up, down, left and right. This problem is shown
in Fig. 4.5. The obstacles are in dark gray and the goal in gray. These problems are
discrete.

4.2.2 XCSF

XCS [33] was modified to deal with real input variables. The main changes are in the
type of input variables from discrete to continuous, the domain of the output variables,
the way of predicting pi that is done as a linear combination of the input variables, and
the way of applying the GA that is modified to work with continuous values. XCSF [34]
has the same components as XCS but with its respective changes. The description of
these changes is given next.



40 CHAPTER 4. LEARNING CLASSIFIER SYSTEMS

Figure 4.5: Woodsl

Population of Rules. It has a fix population of rules [P]. Each rule RI has the
following structure:

= (in1 in1 in1 } •^U>Q, uyj, ..., wnj ,

Fj; (4.15)

where XQ, [min^max^], a € {ai,a2,... ,am}, ttJj, ej, FI and n^ are a constant,
the lower and upper limits of an interval for the i-ih continuous input variable
Xi €. [x™111^™^], a discrete variable for an action, the weight vector that has a
constant for each input variable including the constant XQ, the error, the fitness
and the numerosity that represents the number of copies in the population of the
l-th rule, respectively. The colon separates the condition from the action.

Performance Component. It determines how XCSF works when the agent is
acting in the environment. First, it takes a perception that is a real vector x. This
perception is used to obtain the matched rules [M]. A rule is matched when each
component of x are in the corresponding intervals of its condition. From those
rules in [M], the prediction array P is calculated as follows:

= [P(ai),P(aa),...)P(aB (4.16)
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Figure 4.6: Performance component of the XCSF

with

PK) = (4.17)

and pi = wi • £*, where x4 = (xl
0, x) . (4-18)

Pi represents the prediction of RI and [M]fc is the set of rules in [M] that have the
fc-th action afc. With P there are two ways to select the action that is going to be
done, by either exploitation or exploration. The first is when the action a# with
the maximum value in P is selected as

aE = argmax
n. L

(4.19)

and the second is when the action a# is selected randomly. These two ways of
selecting actions are combined with probabilities PE of applying the first one and
PR = (I — PE) of applying the second one. Then an action set [A] is formed with
the rules that propose the selected action either aE or aR and finally the action is
performed in the environment. This procedure is shown in Fig. 4.6 and is repeated
over and over again.

• Learning Component. In this component, the weight vector wi, the error e\ of
the prediction and the fitness FI of the rules RI G [-<4]t_i axe updated as follows:

•n
X t-l\

R (xt-i) + 7 max Pt} - Pi

R 0?t-i) + 7 max pi

(4.20)

(4.21)
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F, <-*} + /? (is, -F,), (4.22)

with

«, = *"" , (4.23)

and
if e< > e°;

(4.24)
otherwise,

where 77 € [0, 1], 7 € [0, 1], /3 € [0, 1], a is a constant, CQ is the error threshold,
x\_i is f at time (t — 1), xt-i is s at time (t — 1), Pt is P at time t, K; is the
relative accuracy of the l-ih rule, A;; is the accuracy of the l-ih rule and HI is the
number of copies of the l-ih rule in [P].

• Discovery Component. The creation and deletion of rules is similar to the one
used in XCS [33]. It uses a GA and a covering mechanism to create new rules
that are inserted in [P] . The GA takes two rules based on their fitness and applies
two-point crossover and mutation with probabilities x and p-, respectively. In the
GA, mutation is applied over the condition parts of the rules by adding a real
number randomly on the interval [— //o, Mo] where //o is a constant; when mutation
is applied over the action parts it takes an action randomly. The offspring inherits
wi from their parents. The covering mechanism creates rules with wi = 0, action
a at random, and the limits of the intervals of the variables xt from the condition
parts of the rules are set randomly in [x™m, x?***]. The way of deleting rules is the
same as in XCS [33].

First, XCSF was designed to be capable of learning continuous functions. It had
one action that was not used. The functions were represented by the Q-values.

The main contribution of XCSF was the calculus of the prediction through a dot
product between the input vector and the weight vector. This made classifiers approx-
imate the Q-function by hyper-planes. In general, XCSF had a set of discrete actions.
Therefore, the classifier associated a continuous set of input vectors with one action.

XCSF was applied to many navigations tasks [15] that were: the discrete and
continuous linear corridor problem and the 2D discrete and continuous gridWorld prob-
lem. These problems are shown in Fig. 4.7. In these learning tasks, XCSF perceived
continuous inputs and chose an action from a set of discrete actions.

4.3 Fuzzy LCSs
The incorporation of FL [32] to LCSs has been sought in the hope of being able to
deal with continuous spaces because of the many problems of the real life that can be
represented in that way. There are two different and important approaches to FCSs
that are worth describing. The former is due to the FCS by Valenzuela [30, 31] and
the FCS by Parodi and Bonelli [20]. They learn continuous functions with fixed and
unfixed fuzzy sets, respectively. The latter is due to Bonarini [3]. He uses a dilemma
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Figure 4.7: The linear corridor problem and the 2D GridWorld problem

of competition and cooperation among rules. The substantial difference between the
traditional approach and the fuzzy approach is that in the former the rules compete and
in the latter they cooperate. But in Bonarini scheme, rules compete and cooperate at
the same time. Bonarini's scheme has been used to learn continuous action functions
using reinforcement learning.

4.3.1 Valenzuela's FCS

This LCS [29, 30, 31] uses fuzzy rules that cooperate based on their membership values.
Therefore, a rule with a big membership value has a larger influence on the output
of the system and vice versa as it is in FL [32]. Rules received payment from the
environment using a modification of the BBA (Eq. 4.2) that determines the amount
of payment they receive based on their membership values. The FCS is compound by
a set of linguistic variables, a list of minimal messages, a population of fuzzy rules, a
performance component, a learning component, and a discovery component.

• Linguistic Variables. It has a set of linguistic variables (X\, X?,..., Xn, A) that
match with the corresponding continuous variables (xi, x2 . . . , xn, a) that represent
the input and the output variables. In each variable a set of linguistic values is
defined with membership function given by:

4e~

(a) =

1+e

4e-
2'

(4.25)

(4.26)
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Figure 4.8: Membership functions of a linguistic variable in Valenzuela's PCS

where p,xir(xi) (or /MS(O)) is the membership function for r-th fuzzy value of the
i-th linguistic variable Xi (or for s-th fuzzy value of the linguistic variable .A) that
approximate a normal function with parameter 0* (or a). The parameter hir (or
hs) is define by:

-l
(4.27)

= (S-1) 6) - (amin -
+ (amin - 6} , (4.28)

M and 6) are the range of the x; (or
M-l

where [xfn,xt
max], Ni and ^ (or [amin,amax];

a), the number of the fuzzy values on X± (or .A) and a parameter that controls
the center of the first and the last membership functions of the fuzzy values of Xi
(or A), respectively. Figure 4.8 shows the membership functions of the linguistic
variables.

List of Minimal Messages. In this FCS messages exist. There is a message
for each fuzzy value. It is to say that, the r-th (or s-th) message M.ir (or Ms)
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represents the r-th (or s-th) fuzzy value from the linguistic variable Xi (or .A) with
r € {1,2,..., Ni} (or s € {1,2,..., M}). The structure of a minimal message is:

For Xi For A ,. 2q^
i, 000...00100, //r; 000...00010, //s; ( ' '

that contains the number i of variable Xi (or without number if it belongs to
variable .4), a sequence of Ni (or M) Os and Is that represent only one fuzzy value
in Xi (or .A) that means there is only one 1 in each message, and an activity level
fitr (or p,s). So a 1 in the r-th (or s-th) position means that the r-th (or s-th)
fuzzy value from Xi (or A) is represented by this message and a 0 determines fuzzy
values that are not taken by this message. For example 4:0100:0.2 means the 2-th
fuzzy values of X± with /x42 = 0.2. Since the messages represent only one fuzzy
value, they are called minimal messages. FCS has a list of these minimal messages
that represent a perception or an action on the environment.

• Population of Rules. FCS has a fixed population of N rules [P]. Each rule RI
has a condition, an action, an activity level ̂  and strength Fl as follows:

TT7 I" v Yl A A V Yl 1 TTJTTM F A 4'1 . .. •lr L<i = AJ A ... A sin = -^nl iilrjIN |yl = A 1 ; /ij,

where X\ (or A1) is a fuzzy disjunction of a subset of fuzzy values 5] (or Sl) of the
fuzzy values of linguistic variable Xi (or A). It means 5' C {A^i, A^,... ,XiNi}
(or Sl C {Ai, -A 2 , . . . , .AM})- These rules are coded in the next way:

1100,..., 1010 : 0110; m;

where commas represent the AND connectors and the sequence of Os and Is be-
tween AND connectors represent the fuzzy values X\ (or A1) using a similar codi-
fication than in the minimal messages but in this case there can be more than one
1 since X\ (or A1} is the fuzzy disjunction of fuzzy values in S\ (or Sl). This char-
acteristic represents the ability of generalizing. A colon separates the condition
from the action.

• Performance Component. This component determines the way the FCS acts.
First, it fuzzifies the input real vector XQ into a set of input minimal messages.
Then, the inference machine produces an output fuzzy fact A'. And finally, it
deffuzzifies the output fuzzy fact A' to produce the real output OQ and the set of
output minimal messages that are needed for the learning.

— Fuzzification. It represents the input real vector XQ = (x®,x®,... ,x°) into
the set of minimal messages M.ir. To achieve this, the activity level fitr of
the r-th minimal message Ai»r is obtained by

VT / Q\ / /I OO\
\i = HXir(%i)l (,4-O^J

Then, for all the minimal messages that have their p,ir below a minimal value,
their yuir are set to zero.
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— Inference Machine. Each minimal message Aiir. with (jfr ^ 0 in the mes-
sage list is used to match rules. Each message Mir matches a rule when its
fuzzy value Xir € 5'. A rule is satisfied when all of its input variables have
matched at least one message. A satisfied rules form the match set [M]. The
fuzzy fact A' is obtained by the combination of all fuzzy facts A[ of rules
Ri 6 [M] as

»A> (a) = J^ A*4 (a)- (4.33)

The fuzzy fact A[ of each rule RI e [M] is form as

[ B 1
7^7 [2iA*A1(o) + fl^MAa(a) + ... + a'M/iAM(o)] (4-34)
P I J

where \Sl\ means the cardinality of 5', al
s € {0,1} determines the fuzzy value

As that is in the rule RI as

l, if As e S; ,4 35-
0, otherwise,

and .Bj means the bid of the rule RI € [M] calculated as

BI = Pi^Fi, (4.36)

where fj,i is obtained as:

Hi = min [//i, /4> • • • > M!»] i (4-37)

where
/4 = max [z^/i*1, x'2/xi2,..., 3?iN.(iiNi], (4.38)

with
~j _ J 1, > if (Xjr € 5') A (^t*1 ^ 0); , ,

ir ^ 0, otherwise. '

Defuzziflcation. The output fuzzy fact A is defuzzified by the center of
gravity (Eq. 2.41) to produce the real output a = OQ. This output is repre-
sented by the set of minimal messeges Ms with p,3 as

These minimal messages are needed because the payoff is done through them.

Figure 4.9 shows an example with a few classifiers that follows the procedure
described.



4.3. FUZZY LCSS 47

[P]
F

[M] Inference Process

1100:0110 22.1
0011:1001 15.6
1001:1000 9.51
1110:0100 16.31

t
0010

4
1

|
0100

4
x^ = 0.4

^

F n
1100:0110 22.1 0.21
0011:1001 15.6 0.65
1001:1000 9.51 0.10
1110:0100 16.31 0.47

^

Action fiF
0110
1001
1000
0100

Fuzzification

i

Input Defuzzification a —

4.64
10.14
0.95
7.67

0.61

4 i
Environment

Figure 4.9: Diagram of the performance component of the Valenzuela's PCS.

Learning Component. When FCS is learning, in each step of the performance
component B\ (Eq. 4.36) is calculated as:

(4.41)

where N (cr^oise) represents a randomly number with a Gaussian probability den-
sity with standard deviation crnoise. Matched rules have to pay their bids to the
messages with which they matched. This payment is divided in equal parts into
the input messages. The environment gives reward to output messages. This re-
ward is divided into the output messages proportionally to their activity levels.
Then each output message pays its reward to the rules that post it proportionally
to their contributions. So matched rules receive payment from the messages they
post.

• Discovery Component. A GA is used to create new rules. Two rules are selected
according to their FI, they are crossed-over and mutated with probabilities x &nd,
H respectively and finally one of the offspring is inserted in [P] substituting the
worst rule. The GA is applied after OGA steps of the performance component.

The FCS uses fixed fuzzy sets. Classifiers are represented by fuzzy rules. The com-
petition is replaced by cooperation because that is how rules are combined to produce
outputs in Fuzzy Logic. The FCS is actually a fuzzy system. For learning, it uses a
similar scheme to the Holland's LCS. It is based on receiving and paying bids. The bids
are accumulated. Rules are evolved by a GA based on strength. The FCS was applied
to learn continuous functions. This problem is single step.
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4.3.2 Parodi and Bonelli's FCS

This FCS [20] is similar to Valenzuela's FCS [30, 31] but it does not have a message list
and its fuzzy values can change during the learning. This FCS has a set of linguistic
variables, a population of rules, a performance component, a learning component, and
a discovery component.

• Linguistic Variables. It has a set of linguistic variables (X\ , . . . , Xn, A) that
match with the corresponding continuous variables (xi,... ,£„, a) and represent
the input and the output variables. In each variable, there are N linguistic values
with triangular membership function defined as

(4.42)
L ' * J '

0, otherwise,

(4.43)
L • *r

0, otherwise,

(a) =

where /xxi(xj), c^ and w\ (or //^(a), c* and wl) with I € {1,2, . . . , ./V}, are the
membership function of the fuzzy value X\ (or A1} of the variable Xt (or .A), the
center of the p,xi(xi) (or /^i(a)) and the wide of p,xi(xi) (or AMI (a)) respectively.

Population of Rules. This FCS has a fixed population of N rules [P]. Each
rule RI e [P] has a condition, an action, an activity level fn and strength Ft as it
follows:

IF [* = X{ A . . . A X» = Xl
n] THEN [A = A1} ; W;

• * i i

where X\, A1, fj,t and FI denote the l-th fuzzy value associated to Xi in the Z-th
rule, the l-th fuzzy value associated to A in the Z-th rule, the activity level of the
Z-th rule, and the strength of the l-th rule. These rules are coded in the next way:

[4, w{] , . . . , [<£, wl
n] : [J, w1} • m-

where [c|, «;{] (or [cf, w1}} represents the center and the wide of fjLxi(xi) (or /x^;(a))
and the commas the AND connectors.

Performance Component. This component determines the way the FCS acts.
First, it fuzzifies the input real vector x0 into a set of membership values. Then,
the Inference Machine produces an output fuzzy fact A'. And finally, it deffuzzifies
the output fuzzy fact A' to produce the real output OQ.
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Figure 4.10: Diagram of the performance component of the Parodi and Bonelli's PCS.

— Fuzzification. It represents the input real vector x0 = (x^x^,...,or") into
a set of values p,\ computed as

/4 = /iXi(z°). (4.46)

Each fuzzy value X\ in rule RI has its /zj.

— Inference Machine. A match set [M] is form from all of the rules RI € [P]
that have n\ ̂  0 for all z € {1,2,..., n}. The fuzzy fact A' of rule RI € [M]
is form as

Rl€(M]

where

— Defuzzification. The output fuzzy fact A' is defuzzified by the center of
gravity (Eq. 2.41) to produce the real output a = OQ.

Figure 4.10 shows an example with a few classifiers that follows the procedure
described.

• Learning Component. In each step of the performance component, the envi-
ronment gives to FCS a reward R. This reward is always a positive number. Then
the FI of the matched rules RI € [M] are modified as:

Fl - R, (4.49)

where 0 6 [0,1].

• Discovery Component. A GA is used to create new rules. Two rules are selected
according to their Ft. They are crossed-over and mutated with probabilities x and
// respectively. Then, one of the offspring is inserted in [P] in placed of the worse
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rule. The worst rule is determined by the rule that has the lower value on FI.
Crossover is done interchanging fuzzy sets between the rules. Mutation adds a
real random number in [—^0,^0] to the values c^ and w\ (or cf and wl).

The FCS is similar to Valenzuela's FCS. The main differences are that it does not
use messages and that the fuzzy sets are not fixed anymore. Thus, the fuzzy sets are
also evolved. The FCS was applied to continuous functions, too. This problem is again
single-step, continuous in the input and continuous in the output.

4.3.3 Bonarini's FCS
In this FCS [3], rules not only cooperate as it is the normal in FL [32], rules can also
compete among them. It uses fuzzy states that are a combination of fuzzy sub-states.
These sub-states are something similar to the minimal messages from Valenzuela's FCS
[30, 31]. The states are used to separate the matched rules into a set of subsets. In
these subsets, the rules can compete while the best rules of each subset cooperate to
produce the output fuzzy state. This FCS is compound by a set of linguistic variables,
a population of rules, a performance component, a learning component and a discovery
component.

• Linguistic Variables. It has a series of linguistic variables (X^X2,...,Xn,A)
that match with the corresponding continuous variables (xi, x% ..., xn, a) that rep-
resent the input and the output variables. In each variable Xi (or A), a set of JVj
(or M) linguistic values {Xn,..., XiNi} (or {-Ai,.. . , AM}} is defined. fJ,Xir(xi)
(p'As(

a}} axe defined as symmetric trapezoidal functions given by:

(4.50)
3A,);

VAS (a) - { J rj_-| n _,_ ri.+3Ai -f fx
8

 ± o A ^ ^ „ ̂  (^ _L Q A \ . (4-51)

where

- 2JVi-l ' - 2M-1 '

Sir = iC" + (2r - 3)Ai; 8. = amin + (2s - 3)A. (4.53)

with [x?in, x?**] (or [amin, amax]) the lower and the upper limits of the variable z,
(or a). Figure 4.11 shows the membership functions of these linguistic variables.

• Population of Rules. This FCS has a fixed population of rules [P]. Each rule
RI has a condition, an action, an activity level //j, and strength FI as it follows:

IF ...
-*l!
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Figure 4.11: Membership functions of a linguistic variable in Bonarini's FCS
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where X[ and A1 denotes a fuzzy value of Xi in the Z-th rule that can also be the
symbol # and a fuzzy value of A in the /-th rule. The symbol # means that any
fuzzy value can match the corresponding variable. These rules are coded as:

2,4,#,5,2, . . . ,#,#:2; /,,;
Flt

where the commas represents AND connectors, the numbers the fuzzy values of
the corresponding linguistic variables, and the colon the separation between the
condition and the action.

• Performance Component. This component determines the way the PCS acts.
It repeats the following steps:

— Fuzziflcation. First, the input real vector x0 = (x^z-l, • • • >x*n) *s usec^ *°
create a set of fuzzy sub-states Mir. Each sub-state Mir is compound as a
fuzzy value Xir and an activity level fj,tr as follows

Mir=[Xir,fS
r], (4.56)

where [iir is obtained as
f = HxM\ (4-57)

The sub-states are combined to generate fuzzy states A/"ri?I-2,...,rn. These fuzzy
states have the next structure:

,r«, /*Plira-"rB] , (4.58)

where each r< 6 {1, 2, . . . , Nn} and ̂ r^-'r^ is

//i'
p"™'r« = min [//ri , ̂  , . . . , //r"] . (4.59)

Therefore, there are (NiN2 . . . Nn) fuzzy states since each variable Xi has Nt

fuzzy values.

Inference Machine. A set of matched rules [Af]n,r2,...,rn is created for each
fuzzy state Nn,r2,...,rn that has ^ri'r2>->r" ^ Q. The activity level /xj of rules
RI e [Af]n,r2,...,rn are set equal to the activity level of the fuzzy state ̂ ri'r2>-.r«.
So the matching set [M] is form by the union of all of the [M]riir2v..)rn. A rule
Rn,r2,...,rn from each [M]rijr2j...jT.B is selected. Rn,r2,...,rn is the one with the
highest FI. These selected rules Rri,r2,...,rn form a set of rules [F]. An action
set [A] is formed with all of the rules from sets [M]ri)7.2i...jTVi that propose the
same actions as rules RI 6 [F]. The fuzzy fact A' is obtained by:

), (4.60)

where 77 € [0,1].

— Defuzzification. The output fuzzy fact A' is defuzzified by the center of
gravity (Eq. 2.41) to produce the real output a = OQ.
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Environment

Figure 4.12: Diagram of the performance component of the Bonarini's FCS.

Figure 4.12 shows an example with a few classifiers that follows the procedure
described.

• Learning Component. The actual and the past contributions of the rule RI e
[F] are defined as:

(4.61)

R,,€(F]

i j if c^> < e;
otherwise.VP «- \ i *u • (4-62)I Cp, otherwise.

Now, there are four possible ways of applying learning that have been studied:

1. The FI of all rules Rt e [F]t are modified using the reward R given by the
environment as

IV .1
(4.63)

2. This is a version of the Bucket-Brigade Algorithm. First, all the FI in the
rules RI € [A]t are modified as follows:

I - (3cl
AFh (4.64)

where /? G [0,1]. At the same time, the Ft of all of the rules RI € [A]t-i are
modified as follows:

IV 1
(4.65)
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with
Bi=

where R is the reward at time t.

3. It uses Q-learning. The FI of the rules RI € [-A]t-i are modified as follows:

+ 13 W\ \ ( Rt^ + 7 max
LCpJ IA «,/e[A]t

- F , (4.67)

where (3 e [0,1], 7 e [0,1] and Rt-i is the reward obtained at time (t — 1).

4. It uses Q-learning but in a different way. The FI of the rules RI € [-<4]t-i is
modified as follows:

I + /3cl
A

where ft <E [0,1], 7 € [0,1].

(4.68)

• Discovery Component. A GA is used to create new rules on [P] (or [M]). Two
rules are selected according to their FI, they are crossed-over and mutated with
probabilities x and A4, respectively, and finally one of the offspring is inserted on
[P] (or [M]) in placed of the worse rule. The worse rule is the rule that has the
lowest value of FI.

Bonarini's PCS introduces the idea of making competition and cooperation among
rules in different stages of the algorithm. The key ingredient is that classifiers that
represent fuzzy rules do not form a fuzzy system but a subset of them. This subset is
always different and begins by the fuzzification of the state of the problem into a set of
internal fuzzy states. For each fuzzy state an activation set is created. Rules in each
activation set compete to select one. Those selected rules, one per each activation set,
form the fuzzy set and, thus, cooperate to create the output.

This PCS was applied in a navigation task with a CAT robot moving in a corridor.
The robot is moving with constant speed through the corridor. The task is to maintain
the robot in the center of the corridor. The problem is shown in Fig. 4.13. The reward
function is continuous and depends on the distance between the robot and the center.
The goal is the line in the center of the corridor. This problem is continuous in its states
and in its actions. A more complex problem would be the one with reward only in the
goal. This means that with continuous reward the robot is guided in the learning and
with reward only over the goal, the robot has to discover how to keep itself in the center.

4.4 General Discussion

LCSs described in this chapter were selected by the elements they introduced that
are fundamental for this research. They were also taken as the foundations of the
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Corridor Problem

Center

Figure 4.13: Corridor problem with a CAT robot.

LCSs. Holland's LCS was the first one to introduce the idea. Some researchers make
research about LCSs because their capabilities of adaptation and learning. This has
taken researchers to consider this could be how our brains work. In a simplified view,
our brains learn about the world adjusting the weights of the neural nets, but also they
change those connections creating new ones and eliminating others. Nobody knows how
this is done precisely but it seems to be an adaptable system that is able to learn. Due
to this parallelism with LCSs, LCSs have called attention. But the classifiers of LCSs
also act in parallel and can make generalizations. These characteristics make LCSs good
system for many applications [5] of the real world in such domains as data mining [6],
modelling and optimization, and control.

As it was shown in this chapter, LCSs work well in discrete problems like Holland's
LCS and XCS. But many other problems of the real life are not discrete. Due to this,
LCSs have been changed to cover these limitations. A proof of this is XCSF that is able
to deal with continuous inputs. The introduction of fuzzy logic allows LCSs to work
with continuous inputs and with continuous outputs as well. The FCSs of Valenzuela
and Parodi et al. only learn continuous functions while the one from Bonarini is capable
of learning more complex problems defined with continuous inputs and outputs. These
problems are the ones that require more than one action to solve the task and with a
continuous reward function.

QFCS is different from these FCSs because QFCS classifiers are not fuzzy rules
but fuzzy systems. This allows the introduction of a hyper-matrix to learn not only
one parameter to approximate the Q-function but many. The problem with traditional
FCSs is that they use a single parameter to approximate the Q-function. But fuzzy
rules work in combination with other fuzzy rules that are not always the same ones
in their neighborhoods. So, that value is not representative of the Q-function in those
neighborhoods. Therefore, the introduction of the hyper-matrix in each fuzzy system is
to learn directly the Q-function over the input state space. That is why QFCS associates
the hyper-matrices to small areas in the activation regions of the classifiers. Therefore,
it is very important to remark that QFCS is trying to learn the Q-function.
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4.5 Summary

There axe many approaches to LCS. Some of them axe:

• HOLLAND'S LCS. It was the first one. Classifiers associate a set of discrete
states with an action. Classifiers compete to place their actions as outputs. The
learning is done by the Buckade-Brigade Algorithm. A GA evolves classifiers based
on strength.

• XCS. Classifiers associate a set of discrete states with an action. Classifiers com-
pete to place their actions as outputs. The learning is by Q-learning. A GA
evolves classifiers based on accuracy. The accuracy measures the convergence of
the Q-values. XCS solved navigations tasks.

• XCSF. Classifiers associate a set of continuous states with an action. Classifiers
compete to place their actions as outputs. The learning is by Q-leaxning. Classi-
fiers approximate the Q-function through dot products formed by the input vector
with a weight vector. A GA evolves classifiers based on accuracy. The accuracy
measures the convergence of the Q-values. XCSF learned continuous functions
and solved navigations tasks.

• VALENZUELA's FCS. Each classifier is a fuzzy rule. The PCS is a fuzzy system.
Therefore, the FCS associates a set of continuous states with another set of con-
tinuous actions. The fuzzy sets are fixed. Rules cooperate to create the output.
Learning is based on the Buckade-Brigade Algorithm. A GA evolves classifiers
based on their strength. FCS learned continuous functions.

• PARODI AND BONELLFs FCS. It is similar to Valenzuela's FCS but with unfixed
fuzzy sets that are also evolved by the GA.

• BONARINI's FCS. Each classifier is a fuzzy rule. The fuzzy sets are also fixed.
Rules cooperate and compete to create the output. Learning is based on Q-leaxning
and by the Buckade-Brigade Algorithm. A GA evolves classifiers based on their
strength. FCS was applied in the movement of a CAT robot in corridor with a
continuous reward function.



Chapter 5

Proposed Solution Model

This chapter describes QFCS [21, 22, 23]. QFCS is a Fuzzy Classifier System that is able
to learn by reward in continuous spaces with a set of continuous vector actions. Fuzzy
Logic [32] is used as the main representation of classifiers. Each classifier is a Small
Fuzzy System (SFS). This SFS represents a relationship between input and output
variables. That relashioship is a vector field. Q-Learning [27, 24] is used to provide
QFCS with the ability of learning by reward. Classifiers approximate the Q-function
by hyper-matrixes over the vector fields. Therefore, QFCS is learning the Q-function.
Two different QFCS are described, one with fixed fuzzy sets and another with unfixed
fuzzy sets. QFCS with unfixed fuzzy sets was introduced as a generalization with the
hope of having classifiers better adjusted to the solution. These QFCSs were tested in
simple continuous problems with different levels of difficulty. These problems are the
Frog Problem, the n-Environment Problem in one and two dimensions that represent
navigation tasks, and two different versions of the Inertial Particle Problem in one
dimension. All of them will be described in the next chapter.
5.1 QFCS with Fixed Fuzzy Sets

In QFCS [21, 22], each classifier contains a small fuzzy system (SFS), a matrix contain-
ing the expected prediction, and a square sub-region of activation over the input space.
The classifiers can only act over their sub-region of activation. In that sub-region of
activation, each fuzzy system proposes a continuous vector field as an action by denazi-
fication. In that way, when an input vector enters the QFCS, classifiers compete to place
their actions according to their expected predictions. A Q-learning algorithm is used to
learn the task from the environment, i.e., the learning of the continuous vector action
function. This algorithm is used to change the values of the matrices of the expected
predictions for each classifier in the QFCS. A GA is applied to evolve rules based on
their average expected predictions. This GA evolves only the action parts of the fuzzy
systems.

The components of the QFCS, that are shown in Fig. 5.1, are a set of N classifiers
defined over n input variables and m output variables, a performance component, a
learning component, and a discovery component:
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Figure 5.1: Diagram of components of the QFCS

• Classifiers. Each classifier Cli contains a SFS; over the input x\ . . . xn and output
ai . . . am spaces, and a square region Rl over that input space defined as

Rl = i, . . . , xn] | < xl < A ... A

where min
l

< xn < max^J} ,
(5.1)

and max^. with i = 1,... ,n are constants, and a set of elements
P'di,...,dn

 Wltn the subscripts d; € {1,..., d}, i = 1,.. . , n and d a constant that
constitutes an n-dimensional matrix. The classifiers can act only over their regions
Rl. To form these regions, the whole input space is divided into cn (c to the power
of n) uniform square regions -Rclj...,Cn with the subscripts Q e {1, ...,c}, i =
1,..., n and c a constant that determines the number of divisions per dimension.
Then, classifiers can only take one out of them. Each -RClj...,Cn is again divided
into d™ (d to the power of n) uniform square regions A^...^ that are associated
one by one with Pdlv..jdn- Figure 5.2 shows an example with n = 2, c = 4 and
d = 4. In figure 5.2.a it can be seen, in light gray, the input space that is a
two dimensional space. Figure 5.2.b represents the input space divided in c = 4
square regions. One of these regions, region f?43 in medium gray, is taken by the
classifier Cli. Figure 5.2.c shows how the region #43 is divided again into d = 4
square uniform sub-region. This division is of the same size of the Cli's matrix.
Each element of the matrix is then associated with each respective sub-region one
by one. In dark gray, as an example, it is represented the element A32 that is
associated with the element pl

32- These pl
di ^ elements represent the Q function

Q(XI, . . . , xn, ai, . . . , am). Since each classifier has a SFS;, each Cli represents a
continuous vector field over the region Rl. This vector function is formed by the
SFS; of each Cli • Therefore, each component of that vector field is a continuous
function a*-(xi.. .xn). Figure 5.2.d shows the j-th component of the vector field
for Cl,,

Performance Component. This component determines the procedure QFCS
follows to select actions as responses to the inputs. First, it receives a real vector
x0 as input; then, all classifiers that contain the input in their own regions are
activated to form a match set [M]. At that time, the input is fuzzified and is
introduced into each SFS; of the classifiers in [M]. The fuzzy inference machine of
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.'.'2

Input Space
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c = 4

Cl b)

Aja associated
-n-ith ff32

O d)

Figure 5.2: a. Input space x\.. .xn with n = 2. b. Square regions Rclj...,Cn with c = 4.
c. Square sub-regions Adli...id?i with d = 4. d. j'-th component of the vector field
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ff1 SFS,
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Environment

Figure 5.3: Diagram of performance component

each SFSj works to produce an output fuzzy set that is defuzzified into an output
vector a/ = (a[, . . . , a^) proposed by each classifier Cl\ in [M]. Then, one of those
Si is selected as the output of the QFCS OQ in the following manner:

= argmax[Pdl)...)dn],
3i€[M]

where Pd^...,dn is a set defined by

€ Adl,...;dn A ai £ [M] } .

(5.2)

(5.3)

Figure 5.3 depicts a diagram of the performance component. Figure 5.4 presents
an example in one dimension with more detail. In this example n = 1 and m = 1.
Thus, each classifier Cl\ represents a curve in the space (xi,ai) (Fig. 5.4.a).
This curve means all of the possible responses a* = [a{] (that is a vector of one
component, an scalar) from the Cli tb all of the possible inputs x0 € Rl. Therefore,
the system can be seen as a series of curves in the space (xi, ai). Figure 5.4b shows
the performance component described above. In that figure one can see 4 classifiers
represented as red curves with their corresponding prediction vectors. The input
XQ cuts all the classifiers Cli, C\i, Cl% and Cl± forming the red points. This input
also cuts the prediction hyper-matrices p1, p2, ̂  and p4, that are vectors now, in
the second components p\, p%, p|, and p\. These classifiers Cli, Cl^, C73 and Cl^
propose the outputs a\, a\, a\ and a\ that compete depending of which prediction
value p\, p%, p|> and p\ is maximal to form the output of the system OQ. The
prediction vectors can be seen in Fig. 5.4c. They can be placed over the rules.
It means that each value represents the expected prediction of the system over a
little piece of the curve of a rule. Following this way of thinking, it is represented
the Q-values of the Q-function from Q-learning only over little pieces of lines, not
in the complete domain.
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c)

Figure 5.4: a. Meaning of a classifier, b. Performance component, c. Meaning of the
prediction vectors
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Figure 5.5: a. Component a[ of classifiers Cli € [M]. b. Component a2 of classifiers
Cli G [M]. c. Matrix of elements pl

d d2 of the classifier Cli. d. Matrix of elements p^ d2

of the classifier CZ2.

Figure 5.5 presents another example in two dimensions with detail. In this example
n = 2 and m = 2. Figures 5.5.a and 5.5.b show the components of the output
vectors of the SFS/s in [M]. There are only 2 classifiers in [M] in this example
and they are called for simplicity classifiers 1 and 2. Surfaces with the same color
belong to the same classifier. In that picture, the input vector x0 is observed. That
vector pass through sub-region A32 of region .R43 and pass through the surfaces
of the classifiers determining their output vectors ai and 02. Figures 5.5.C and
5.5.d represent the matrices of prediction values pdl-d2 and j^i,d2 of Cli and Cl-z,
respectively. These matrices can be seen as placed over the surfaces. Both of the
component of the same classifier share the same matrix. It is also seen that the
elements p\2 and p|2

 are tne ones tnat satisfy 5.2. This means these values are
associated with A32 and A32 contains the input vector x0. So, if p\2 > p\2 then
Cli places its output vector as the output vector of the QFCS a0 and vice versa.
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• Learning Component. This component makes the QFCS learn the task using
Q-learning. QFCS receives, from the environment, a reward R(x) that defines
the task to achieve. At each time, QFCS decides what to do, exploiting the
knowledge it has acquired or exploring new possible actions. The exploitation is
done with probability Pg, while exploration is done with probability PR = 1 — PE-
Exploitation is achieved by selecting ao as in the performance component (Eq.
5.2), and exploration by selecting one of the possible ai e [M] at random. Each
time t, the expected prediction values pl

di ^ at time (t — 1) are adjusted as
follows:

(5-4)

where (3, 7 6 [0, 1] and

A Cli =

A CZ< =

with xt-i and C/t_i that are the input and the classifier that was selected by
the performance component at time (t — 1), and xt and Clt are the input and the
classifier that would be selected by exploitation at time t. /3 is variable throughout
time depending on how old 5i, the classifier Cli, is. In other words:

. (5.7)
^ /3b, otherwise,

where 60 is a constant. The age 61 of the classifiers starts in 0 and is incremented
in one unit every time step.

Figure 5.6 depicts this procedure in an example with n = I and m = I. There
is shown the match set at different times. In the left are the classifiers activated
at time (t — 1) that are Cli, C12, Cl^ and Cl±. In the right are the classifiers
activated at time t that are Ch, Cle, Cl? and CZ8. The input values xt-\ and xt

cut with lines the classifiers and the prediction vectors. Red points represent the
action proposed by the classifiers. The action of the Cl^, that is OQ = a\ is the
action selected by QFCS at time (t — 1). The action of the Cl^, that is a\ is the
one that has the maximal prediction value at time t. This is

c^ = arg max [j%,j%,i%, pi] (5.8)
<H

Then, pfj is used to modify p| that belongs to Cl$.

Figure 5.7 shows another example with n = 2 and m — 1. Figure 5.7.a represents
the match set [M] at time (t — I). It contains only 3 classifiers called Cli, C12

and C73. Figure 5.7.b represents the match set [M] at time t. It contains also
3 classifiers called Cl^, Cl*, and Cl§. The matrices of the prediction values are
represented over the surfaces of each classifier as a grid. In those grids, there are
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Figure 5.6: Learning component

Figure 5.7: a. QFCS at time (t - 1). b. QFCS at time t.
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regions drawn in dark gray that have the prediction values of interest. Classifier
Cli is the one selected at time (t — 1) while classifier C15 is the one that would be
selected at time t by exploitation. The difference between both of these classifiers
is that, the former can be selected either by exploitation or by exploration while
the latter is always selected by exploitation. With these conditions, the element
p21 of the classifier Cl$ is used to update the element Pg2 of the classifier Cli
according to 5.4. Note that p21 is associated with A2i in .R43 and that xt € A2i-
In the same way, p32 is associated with A32 in R^i and that xt-\ € A32. As it
can be seen, this procedure is similar to Q-learning. The difference is that in this
case QFCS is trying to represent with its rules a discrete Q function over certain
regions (the surfaces of the classifiers) of the continuous space x\...xna\...am and
not over a discrete space.

• Discovery Component. QFCS uses a GA to create new rules. The GA is
applied over [M] at time before (t — 1). It only evolves the action parts of the
fuzzy rules of the SFSjS. First, the pt value of each Cli € [M] is computed by
averaging their expected values p^...^. Then the GA takes two classifiers from
[M] selecting them with probability proportional to their pt. These classifiers
are copied, crossed-over with probability %, and mutated with probability /x. One-
point crossover is used. Mutation changes a 0 by a 1 or vice versa. Then, one of the
two classifiers is inserted in [M] replacing one in [M] that is selected proportional
to b/pt. The GA is applied over [M] on time intervals that are determined by the
classifiers in [M]. Each classifier stores the last time ej in which it was involved
in a GA, so when [M] happens, the average time e of its classifiers, for the last
application of the GA, is calculated by:

£ (t-d)
_ C
e=

where | [M] | represents the number of classifiers in [M] . If e > QGA the G A is
applied. This part evolves the surfaces of the classifiers to those that represent
the higher Q-values. These surfaces end up covering the most important regions
of the space for the task. A classifier by itself can not represent all the solution in
its activation region. Therefore all the classifiers in that activation region define
a piecewise solution. This is the approach of the Learning Classifier Systems.

Each classifier in QFCS has a SFS. This SFS is defined over the activation region
of the classifier. The SFS defines a relationship between the input and the output
variables. In general, QFCS has n input variables and m output variables. So, the
SFS represents a continuous vector field. The components of the vector field are each
one a scalar function over the input variables. These scalar functions are functions of
n variables. Thus, if n > 3, the functions are known as hyper-functions. This is very
important because those hyper-functions define some points in the joined input-output
space that are related by the fuzzy system. It is over those points where QFCS learns the
Q-function through a hyper-matrix in n dimensions associated to those points defined
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by the hyper-functions. The fact that the activation regions are fixed and that the SFSs
do not change in its structure follows that the input fuzzy sets are also fixed.

In QFCS, classifiers combine the fuzzy systems with Q-learning through the hyper-
matrices. Therefore, each classifier represents hyper-functions that define hyper-surfaces.
The hyper-matrices represent the Q-values over those hyper-surfaces. In this way, each
classifier tries to learn the Q-function over those hyper-surfaces. Those hyper-surfaces
do not represent all of the input-output space but just a small sub-region. Since, there
are many classifiers, it is possible to cover all input-output space. It is important to
note that QFCS evolves classifiers moving the hyper-surfaces to those places where the
Q-function is higher and because of that is that QFCS finishes with a mapping over the
regions in the input-output spaces that are important for making decisions.

The parameters to be defined are in Table 5.1. Since the activation regions of
classifiers are fixed. The number of classifiers that contain a determined activation region
do not change over time because the GA only evolves the action parts of the fuzzy rules.
This number is about NAR ~ N/c™ where cn is the number of activation regions. Thus,
NAR has to be of enough size to allow the GA to evolve classifiers. The bigger NAR,
the better. QFCS uses NAR ~ 50. Therefore, the number of the population of QFCS
is N pa NARC™ = 50c". Parameter d defines the number of elements per dimension of
the hyper-matrices. This value has to be small enough to allow a well learning of the
Q-function. If d = 1 then each classifier has one Q-value to approximate the Q-function
which is too optimistic. If d —> oo is bigger, QFCS would take too much time in learning
the Q-function with that precision. Therefore, QFCS uses d « 5. Parameter c has to
be small enough to allow hyper-surfaces connect following the curvature of the solution.
Curvature is constructed by the connection of many hyper-surfaces. If c = 1 then the
connection among hyper-surfaces has almost no curvature which is also too optimistic.
If c —> oo allows hyper-surfaces connect with high curvatures. Therefore, QFCS uses
c « 4. This parameter determines which problems are easy for QFCS depending on
the curvature of the solution, but its elimination let the activation regions be free or
be unfixed allowing hyper-surfaces to follow the curvature of the solution. Because of
this reason, QFCS with the unfixed fuzzy sets was introduced and is explained in next
section.

The spatial complexity of this QFCS is shown in Table 5.2. There is shown the
number of elements of memory needed in each part of the QFCS. Thus, the addition of
number of elements of memory from those parts of QFCS gives the spatial complexity
that is

S(n, m, N, d, M) = N[2n + (T + TmM + 2] (5.10)

In this way, the spatial complexity is O(dn] with respect to the number of input variables
n of the problem. It is O(m) with respect of the number of the output variables m of
the problem. It is O(N) with respect of the number of classifiers. And finally, it is O(m)
with respect of the number of fuzzy actions per output variable.

The temporal complexity of QFCS in one cycle is shown in Table 5.3. One cycle
means the introduction of an input vector, activation of classifiers, updating the hyper-
matrices by the learning component, application of the GA if applicable and selection
of an action. In that table the number of different operations carried out by QFCS are
shown. It is difficult to formulate the temporal complexity with one common operation,
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Table 5.1: Parameters of QFCS with fixed fuzzy sets.

Part of QFCS
Activation regions Pf

Prediction values pl
di ^

Age 61
GA application time e\

Fuzzy actions

Elements of Memory
N(2n)
NcT
N
N

N(2n)(mM]

Table 5.2: Spatial complexity of different parts of QFCS with fixed fuzzy set.

Operation Number
Comparison with jR*

Finding the maximum pl
dl_ ^

Fuzzy Inference Machine Process
Updating of pl

dl ^
Random selection of Cl\
Application of the GA

N
N/cn - I

N/cn

I
I

Table 5.3: Temporal complexity of different parts of one cycle of QFCS with fixed fuzzy
set.
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since they are different. Therefore, each of the operations is considered in the table as
the unit to get an idea about the complexity in spite of being different. In this manner,
the whole temporal complexity is the addition of all of those operations as

(5.11)
c GA

The temporal complexity is O(l/c") with respect of the number of input variables n. If
the population is kept fixed, the complexity decreases with an increment in n but this
is fictitious because, as it was said before, the population is set as N K; NARcn where
NAR is the number of classifiers per activation region. Thus, the complexity is

T(n, NAR, c, 6GA) « NARcn + 2NAR + -!- + 1 (5.12)
VGA

In this way, the temporal complexity is O(c") with respect to the number of input
variables n. It is O(NAR) with respect of the number of classifiers per activation region
NAR. And it is O(\/OGA] with respect to the interval time 0GA of application of the GA.
5.2 QFCS with Unfixed Fuzzy Sets

QFCS with unfixed fuzzy sets [23] is a generalization of the QFCS with fixed fuzzy
sets. Therefore, it works similarly to the one described before but with a few simple
modifications. These modifications have something to do specifically with the activation
regions of the classifiers that are not fixed any more, with the Learning Component
where it is necessary to make a normalization of prediction values used by the Genetic
Algorithm, and with the Genetic Algorithm that is applied now to both the activation
regions and the fuzzy action parts of the fuzzy rules of the SFS; of the classifiers. For
clarity this generalization will be described with all of its details but paying special
attention to the differences due to the generalization. These differences are remarked in
bold.

In the generalization, each classifier contains also a small fuzzy system (SFS), a
matrix containing the expected prediction, and a square sub-region of activation over
the input space. The classifiers can only act over their sub-region of activation. In that
sub-region of activation, each fuzzy system proposes by defuzzification a continuous
vector field as an action. Therefore, when an input vector enters the QFCS, classifiers
compete to place their actions according to their expected predictions. A Q-learning
algorithm is used to learn the task from the environment. This algorithm is used to
change the values of the matrices of the expected predictions for each classifier in the
QFCS. A GA is applied to evolve rules based on their average normalized expected
predictions. This GA evolves both the condition and the action parts of the fuzzy
systems.

The components of the QFCS are a set of N classifiers, a performance component,
a learning component, and a discovery component:
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algorithm is used to learn the task from the environment. This algorithm is used to
change the values of the matrices of the expected predictions for each classifier in the
QFCS. A GA is applied to evolve rules based on their average normalized expected
predictions. This GA evolves both the condition and the action parts of the fuzzy
systems.

The components of the QFCS are a set of N classifiers, a performance component,
a learning component, and a discovery component:
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• Classifiers. Each classifier Cli contains a SFS; over the input Xi... xn arid output
ai.. . am spaces, and a square region Rl over that input space defined as

I? = {(xi, ...,IB) |(min^ < xi < maxJ.J A ... A (min^ < xn < max^)} ,
(5.13)

where min^. and max^ with i = 1,..., n are constants, and two sets of elements
pl

di ^ and Ndi «k that constitutes two dual n-dimensional matrices with
the subscripts di € { 1 , . . . , d}, i = 1 , . . . , n and d a constant. The classifiers
can only act over their regions Rl. To form these regions, first in each
dimension, the center and the width of the interval [min .̂ ,maxi,.J with
i = 1 , . . . , n is calculated. The center is random in the input variable x^
The width is random in [cm;n, cmax]. Then, with the center and the width,
the limits [min^,max^..] are obtained. These limits are truncated if they
are out of the defined input space. Each Rl is divided into <f (d to the
power of n) uniform square regions A^ ^ that are associated one by one with
pfdi ^ and Ndi dn. Figure 5.8 shows an example. As it can be seen, everything
is similar to the classifiers described in the previous section except for the regions
Rl that now are not fixed regions anymore and that sub-regions A^ ^ depend
specifically on regions Rl. That is why sub-regions A^ ^ have the super index
I.

• Performance Component. It receives a real vector XQ as input; then, all clas-
sifiers that contain the input in their own regions are activated to form a match
set [M]. At that time, the input is fuzzified and is introduced into each SFS; of
the classifiers in [M]. The fuzzy inference machine of each SFSj works to produce
an output fuzzy set that is defuzzified into an output vector a$ = (a\,... ,al

m)
proposed by each classifier Cli in [M]. Then, one of those oj is selected as the
output of the QFCS OQ in the following manner:

a0 = argmax [Pdl,...,dJ , (5-14)
Sl€[M]

where P^,...^ is a set defined by

î,...,*. = K,..,*. I fo € A^...idn A a, € [M] } . (5.15)

Figure 5.9 presents an example in one dimension with more detail. In this example
n — 1 and m = 1. Thus, each classifier Cli represents a curve in the space (xi, 01)
(Fig. 5.9.a). This curve means all of the possible responses a* = [a^] (that is
a vector of one component, an scalar) from the Cli to all of the possible inputs
x0 € Rl. Therefore, the system can be seen as a series of curves in the space
(xi,ai). Figure 5.9b shows the performance component described above. In that
figure we can see 4 classifiers represented as red curves with their corresponding
prediction vectors. The input XQ cuts the classifiers Cli and C13 forming the red
points. This input also cuts the prediction hyper-matrices p2 and p8, that are
vectors now, in the components p\ and p\. These classifiers Cli and Cl^ propose
the outputs a\ and of that compete depending of which prediction value p| and
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Figure 5.8: a. Input space X i . . . x n with n = 2. b. Square region .R'. c. Square
sub-regions A^ ^ with d = 4. d. j'-th component of the vector field a; = (a[ , . . . , al
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Figure 5.9: a. Meaning of a classifier, b. Performance component, c. Meaning of the
prediction vectors
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p\ is maximal to form the output of the system a$. The prediction vectors can
be seen as in figure 5.9c. They can be placed over the rules. It means that each
value represents the expected prediction of the system over a little piece of the
curve of a rule. With this way of thinking, we are representing the Q-values of
the Q-function from Q-learning only over little pieces of lines, nor in the complete
domain.

Figure 5.10 shows another example. In figures 5. 10. a and 5.10.b are the compo-
nents of the output vectors. Regions .R1 and R2 of Cli and Cli intersect. The
matrices of the expected prediction values pl

bl^ are drawn over the surfaces as
grids. The gray square over each surface determines the prediction value of inter-
est. In this case, they are for Cl\ p\2 and for Cl? p%3. Figure S.lO.c represents the
prediction matrix pjlid2 placed over the region R1 and figure S.lO.d represents the
prediction matrix p^ d2 placed over the region R2. These images also represent the
sub-regions Al

di d2. It can be seen how the expected prediction values of interest
£»32 and p|3 are the ones in dark gray and are in Ag2 and A^ respectively. The
performance component selects the rule to which its prediction value, p\2 or j?|3,
is the biggest.

• Learning Component. QFCS receives, from the environment, a reward R(x)
that defines the task to achieve. At each time, QFCS decides what to do exploiting
the knowledge it has acquired or exploring new possible actions. The exploitation
is done with probability PE, while exploration is done with probability PR = 1— P#.
Exploitation is achieved by selecting a0 as in the performance component (Eq.
5.14), and exploration by selecting one of the possible 0,1 6 [M] at random. Each
time t, the expected prediction values pl

dl ^ at time (t — 1) are adjusted as
follows:

^
where fl, 7 € [0, 1] and

PL..,<0-1 = {Pdi,..4« } *«-i € A*,...A A Cll = Clt-i } , (5-17)

A Cli =
with xt_i and Clt-i that are the input and the classifier that was selected by the
performance component at time (t — 1), and xt and Clt are the input and the
classifier that would be selected by exploitation at time t. /? is variable through
time depending on how old <5j, the classifier Cli, is. In other words:

' ; (5.19)
/?o, otherwise,

where 50 is a constant. The age 61 of the classifiers starts in 0 and is incremented
in one unit every time step. At each time t the expected prediction values
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Figure 5.11: Learning component

pl
di dn at time (t — 1) are updated, the values Nl

di dn at time (t — 1) are
normalized as:

NJ, j_ t_i = I — I Jtj.

where PI is a constant,

and

= max

A

(5.20)

(5.21)

(5.22)

where [M]t_i is [M] at time (t — 1).

Figure 5.11 depicts this procedure in an example with n = 1 and m = 1. There
are shown the classifiers that are matched at different times. This example only
has four classifiers. At time (t — 1) the classifiers that activated by the input
£t_i are Cl? and Cl^. At time t the classifiers that activated by the input xt

are Cli and Cl^. The input values cuts with dashed lines the classifiers and their
prediction vectors. Those elementd cut by the dashed lines are used in the learning
component. Red points represent the action of the classifiers to the input values
xt-i and xt. At time t — I the action selected as the action of the system is the
one of the CZ2 that is af. At time t the action with the maximal prediction vale
at time t is that of the Cl^ that is a*. This is

%,Pz\ (5-23)

Then, p\ is used to modify p\ that belongs to Cli.

Figure 5.12 shows another example with n = 2 and m = 1. In that example
the prediction value p\^ is updated using the prediction value p|2 since C/t-i, the
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Figure 5.12: a. QFCS at time (t-l). b. QFCS at time t.

classifier selected at time (t — 1), is Cl\ and Clt the classifier that would be selected
by the performances component (by exploitation) is Cl$. After this update, the
prediction values p\^ p|2 andp|3 are the f5t ^ttit_1. In that way, if p|2

 = maxjp^,
j»32, p|3} then Pmax = j?32- With this, N^4, Nj2 and 7V|3 are update according to
5.20. Note that the classifiers have different regions of activation, therefore the
sub-regions A^ ^ and the matrices Pdlv..idnit are different for each classifier. The
sub-region A^ dn of interest contains the input vectors xt or xt~\ at different
times.

Discovery Component. QFCS uses a GA to create new rules. The GA is
applied over [M] at time before (t — l). It evolves the condition and the action
parts of the fuzzy rules of the SFS^s. First, the NI value of each Cl\ e [M] is
computed by averaging their expected values Nl

di dn. Then the GA takes
two classifiers from [M] selecting them with probability proportional to their
NI. These classifiers are copied, crossed-over with probability x, and mutated
with probability /z. One-point crossover is used. Mutation changes a 0 by a 1 or
vice versa and a real number by adding a random number with normal
distribution. Then, one of the two classifiers is inserted in [M] replacing another
one in [M] that is selected proportional to b/Ni. The GA is applied over [M]
on time intervals that are determined by the classifiers in [M]. For this, each
classifier stores the last time e\ in which it was involved in a GA, so when [M]
happens, the average time 1 of its classifiers, for the last application of the GA, is
calculated by:

(*-«»)E
e =

\[M}\
(5.24)

where |[M]| represents the number of classifiers in [M]. If e > OGA the GA is
applied.
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Table 5.4: Parameters of QFCS with unfixed fuzzy sets.

In this QFCS the activation regions of the classifiers that are not fixed any more.
Therefore, because of the SFS is defined over activation region, the input fuzzy sets are
not fixed anymore. This freedom degree is to avoid the parameter c in the version of
QFCS before. Parameter c controlled the curvature formed by connecting the hyper-
curves. Without fixed region of activation this parameter is not needed anymore and
with that, the curvature formed by the connection among hyper-surfaces is controled
by the GA. Therefore, the GA evolves the activation regions and the fuzzy actions
based on the normalized Q-values formed by the hyper-matrices. Normalized Q-values
are also hyper-matrices. These new hyper-matrices are needed because now the hyper-
surfaces move to those places in the state^action space where the Q-values are maximal.
Thus, hyper-surfaces have the tendency to go to goal leaving holes in the state-action
space. To avoid this behavior, QFCS re-scales the Q-values for all possible actions
over each possible state to the maximal reward possible. This operation produces the
hyper-matrices of the normalized Q-values.

The parameters to be determined are in Table 5.4. The thumb rule for the number
of classifiers is followed to have about the same number of classifiers for the QFCS with
the fixed fuzzy sets. Parameter d ~ 5 by the same reason as in the other QFCS.

The spatial complexity of this QFCS is shown in Table 5.5. There is shown the
number of elements of memory needed in each part of the QFCS. Thus, the addition of
number of elements of memory from those parts of QFCS gives the spatial complexity
that is

S(n, m, N, d, M) = N[2n + 2d" + TmM + 2] (5.25)

In this way, the spatial complexity is O(dn) with respect to the number of input variables
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Part of QFCS Elements of Memory
Activation regions If

Prediction values pl
di dn

Nomalized prediction values Nd dn

Age Si
GA application time &i

Fuzzy actions

N(1n)
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NcT
N
N
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Table 5.5: Spatial complexity of different parts of QFCS with unfixed fuzzy set.

Operation
Comparison with If

Finding the maximum pl
di dn

Fuzzy Inference Machine Process
Updating of p^ ^

Random selection of Cli
Application of the GA

Number
N

X-l
X
I
1

Table 5.6: Temporal complexity of different parts of one cycle of QFCS with unfixed
fuzzy set.

n of the problem. It is O(m) with respect of the number of the output varibles m of the
problem. It is O(N) with respect of the number of classifiers. And finally, it is O(m)
with respect of the number of fuzzy actions per output variable.

The temporal complexity of QFCS in one cycle is shown in Table 5.6. One cycle
means the introduction of an input vector, activation of classifiers, updating the hyper-
matrices by the learning component, application of the GA if applicable and selection
of an action. In that table is shown the number of different operations carried out
by QFCS. It is also difficult to formulate the temporal complexity with one common
operation, since they are different. Therefore, each of the operations are considered in
the table as the unit to get an idea about the complexity in spite of being different. X
is a random variable that determines the number of classifiers activated in each cycle.
The density of probability of X is difficult to compute and it is not going to be obtained
here. But that does not matter if the average X is considered. In this manner, the
whole temporal complexity is the average of the addition of all of those operations as

7GA
(5.26)

The temporal complexity is O(X) with respect of the number of classifier per activation
region. It is O(N) with respect of the number of classifier in the population N. And it
is O(\/OGA) with respect to the interval time OGA of application of the GA.
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Figure 5.13: a. Memberships of the fuzzy sets from SFS; for the input variables £;. b.
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5.3 Small Fuzzy Systems (SFS/)

The SFS;S of classifiers Cli are defined over their regions Rl and the output space.
Two fuzzy sets X& and X[2 are defined with triangular membership functions per input
linguistic variable Xi and per classifier Cli as follows:

-[i]
o,

+̂
 -1 if cl < x-JT _^ *"-/t

otherwise.

(5.27)

where i € {1,..., n}, r € {1,2}, w = (max^ — min^), ̂  — min^ and cl
i2 = max!,... In

the output linguistic variables Aj, the fuzzy sets Ajs are singletons defined by:

_ f 1, if flj = ag;
= = ) otherwise;

where j € {1,..., m}, s € {1,..., M} and

M-l

(5.28)

(5.29)

where a™m and a™3^ are the lower and the upper limits of dj. Figure 5.13 depicts these
fuzzy sets for the input and output variables. In this way, the fuzzy rules have the next
form:

IF THEN (5.30)

where X\ e {X^, Xl
i2} and Aj is a fuzzy disjunction (fuzzy OR) with the maximum oper-

ation (Eq. 2.5) of a subset Sj of the fuzzy sets in Tj = {Aji, Aj%, Aj3,..., AJ^M-I), AJM}-
In the starting settings each possible fuzzy set in Tj has a probability PA of being in Sj.
The fuzzy rules in each SFS/ use all the possible combinations of their input fuzzy sets
in the condition parts, therefore, there are 2™ possible fuzzy rules in each classifier Cli.
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the output linguistic variables Aj, the fuzzy sets Ajs are singletons defined by:

_ f 1, if flj = ag;
= = ) otherwise;

where j € {1,..., m}, s € {1,..., M} and

M-l

(5.28)

(5.29)

where a™m and a™3^ are the lower and the upper limits of dj. Figure 5.13 depicts these
fuzzy sets for the input and output variables. In this way, the fuzzy rules have the next
form:

IF THEN (5.30)

where X\ e {X^, Xl
i2} and Aj is a fuzzy disjunction (fuzzy OR) with the maximum oper-

ation (Eq. 2.5) of a subset Sj of the fuzzy sets in Tj = {Aji, Aj%, Aj3,..., AJ^M-I), AJM}-
In the starting settings each possible fuzzy set in Tj has a probability PA of being in Sj.
The fuzzy rules in each SFS/ use all the possible combinations of their input fuzzy sets
in the condition parts, therefore, there are 2™ possible fuzzy rules in each classifier Cli.
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Next is an example of a SFS; in one dimension with n = 1, m = 1 and M = 5:

-+[Al = (An\/A™\fA15)], (5'31)

where Rl
k means the k-ih fuzzy rule of the SFS;. And next is another example of a SFS;

in two dimensions with n = 2, m = 2 and M = 5:

Xu A Af2 — JC21

Xn A <Y2 = -̂ 22

-X12 A ™2 = -^21

-̂  12 '•'2 ~~ -^*-22

V— v/*il v ^i4y ,.^ — v^S/J i (r oo\

= 04i4VA15),A = (A21VA22)], ^j

Each SFS; uses the Minimum Inference Engine (Eq. 2.33) [32] that uses generalized
Modus Ponens Inference (Eq. 2.28). The input is fuzzined into an n-dimension singleton
(Eq. 2.38). The fuzzy output is defuzzified by the center of gravity (Eq. 2.41).

Figure 5.14 shows an example in one dimension with n = 1 and m = 1. Figure
5.14.a shows how the input vector is fuzzined into a singleton membership function
V-x0(x\) in the input space x\. Then, the singleton function is cylindrical expanded
to the complete space x^a^ forming a two dimension membership function /i£0(xi,ai).
This function is a surface. Figures 5.14.b and 5.14.C represent the membership func-
tions in x\a\ of the fuzzy implications R\ and R^. These membership functions of the
implications fj,Ri (x\, a\) are obtained by first applying cylindrical extension to the fuzzy
sets of the antecedent and the consequent parts of the implications and second apply-
ing the Mamdani's Minimum operation over those antecedent and consequent. These
operations mean the membership functions of the implications are obtained applying
the minimum operation to the antecedent and the consequent fuzzy sets. This gives
those triangles in x\ai. Figures 5.14.d and 5.14.e show the inference operation using
the Generalized Modus Ponens. The T-norm is the minimum, so with ^x0(xi,ai) of
the figure 5. 14. a and the implications HRI (xi,ai) of the figures 5.14.b and 5.14.C, the
surfaces of the figures 5.14.d and 5.14.e are obtained. These surfaces are singletons on
Xidi. Then those singletons 'are projected to a\ to obtained the results of the inference
operation, the HSO^RI (ai)s- In figure 5.14.f, the /%oA#' (ai)s are combined with fuzzy. . , o

union (maximum) to obtain the output fuzzy set of the SFSj. Finally, the center of
gravity is used to obtained the output vector of the SFSj.
5.4 Implementation of Classifiers (Cli)

Since the classifiers have to be evolved, they need to be coded in a data structure. This
data structure involves only the activation regions Rl of the classifiers Cli and the fuzzy
consequent parts of the fuzzy rules A with j = 1,..., m. The antecedent parts of
the fuzzy rules are not involved since they are fixed membership functions over regions
Rl, therefore they never change explicitly. They only change implicitly when activation
regions Rl do. The elements placed in the data structure for a classifier Cli in one
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Figure 5.14: a. Fuzzyfication and cylindrical extension of the input vector XQ. b. Mem-
bership function of the implication R[. c. Membership function of the implication F^.
d. Membership function of the inference operation with fuzzy rule R[. e. Membership
function of the inference operation with fuzzy rule R^. f. Membership function of the
union over the results of the inference operations.
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dimension are:

Fuzzy Rule

R(:
fy

&

minLi
mil4

maxLi
max^,

Au

0
1

AIZ

I
0

AIM

1
0

(5.33)

where the Is represent the fuzzy sets in S[. As R1 is the same in all the fuzzy rules, it is
placed once in the data structure. The sets S{ of each fuzzy rules are placed one after
the other. Therefore the data structure is:

Rl

mini, ma4,

S{ of R(

01... 1

S [ o f R ^

10. . .0
(5.34)

In this way, a structure for a classifier in two dimensions would be:

Rl

mini, max^ minL ma42

s[ of R{

01... 1

S[ofR^

10. . .0

S{of^

01... 0

S{ of #4

11... 0

S1
2 of R{

11... 1

S£of/$

00... 1

S'offl*

10. . .0

S2 of #4

01. ..0

(5.35)

The Genetic Algorithm is given these data structures of the classifiers.
5.5 General Discussion

QFCS was designed to solve continuous problems by reward. These continuous problems
are the ones defined by the n-Envfronment Problem. This problem is defined over a set
of n continuous input variables known as the states space and with another set of m
continuous output variables known as the action space. Actions define transitions in
state space that depend on the particular problem. The objective of the problem is to
reach by means of the actions a small region called goal where a reward is given.

QFCS with fixed fuzzy sets intended to learn the Q-function in the combined state-
action space but only in those regions determined by the classifiers. To do this, classifiers
represent relationships between the states and the actions. Classifiers do so through the
use of SFSs. A hyper-matrix in each classifier approximates the Q-function.

The main difference in letting the activation regions evolve is that classifiers let the
GA that task of finding the curvature of the solution, which is very important because
in QFCS with the fixed fuzzy sets this is a parameter that has to be adjusted. Finding
the correct curvature of the solution introduces more complexity to the GA and this is
going to be seen in the experiments, where in general there is not a better performance.
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5.6 Summary

There are two QFCSs: one with fixed fuzzy sets as input and the other one with unfixed
fuzzy sets. One is the generalization of the other one. QFCS with the fixed fuzzy sets
is compounded by:

• SET OF CLASSIFIERS. There exists a fixed set of classifiers. Each classifier
contains an activation region, a SFS defined over that activation region and a
hyper-matrix.

• PERFORMANCE COMPONENT. It determines how QFCS works. It receives an
input vector. Classifiers that contain that input vector in their activation regions
form a match set. Classifiers in the match set compete to place their action. The
action is calculated by the SFS. The selected classifier is the one that has the
maximum Q-value.

• LEARNING COMPONENT. It uses Q-learning. This algorithm modifies the
hyper-matrices of classifiers that work as approximations to the Q-function. The
learning is applied in the match set in the previous time.

• DISCOVERY COMPONENT. It uses a GA to evolve the fuzzy actions of the
classifiers.

QFCS with the unfixed fuzzy sets has the same components as QFCS with fixed
fuzzy sets but with some modifications. The modifications are in the classifiers, in the
learning component and in the discovery component.

• SET OF CLASSIFIERS. Each classifier introduces another hyper-matrix that de-
fines a normalization of the Q-values.

• LEARNING COMPONENT. At the same time that the hyper-matrix of the Q-
values in each classifier is modified, the normalized hyper-matrix has to be nor-
malized again.

• DISCOVERY COMPONENT. The GA evolves the activation regions and the
fuzzy actions of the classifiers.



Chapter 6

Test Problems

This chapter describes the problems that were used to test QFCS. These problems are
the Prog Problem proposed in [36] and five different instances of the n-Environment
Problem proposed in [22]. The first was used to prove that QFCS is able to deal with it
since it is a simple version of the more general 1-Environment. This is a one-step problem
since the frog acts once and receives a reward that depends only on its present state and
action. Therefore, Q-learning is not required. The second is an abstract problem that
QFCS is able to deal with. It matches many different real problems where continuous
state spaces are needed. QFCS was tested in five different instances of this problem:
World;!,0, World^0, World^°, Particle*0 and Particle^0. Each instance introduces a new
level of complexity. Therefore, World*0 is a navigation task in one continuous dimension
with displacement equal to its actions that are continuous. The problem is to reach the
goal. WorldjP and World^ are navigation tasks in two dimensions with displacement
equal to their vector actions which are also continuous. In World^° there are no obstacles
while in World^ there is one. This introduces difficulty because the system has to avoid
the obstacles. Particle*0 and Particle1,0 simulates an inertial particle in one dimension.
The task is to take a particle that initiates with velocity zero to another position with
velocity zero too. These particle problems are more complex than the others before
because of the inertia. The dynamic of an inertial particle is described at the end of the
chapter.

6.1 The Prog Problem

The Frog Problem [36, 28] consists of a frog that lives in a continuous one-dimensional
space x € [zmin, xmax] = [0,2], and that can jump a distance a € [amin, amax] = [0,1]. A
fly is placed on x = 1 and the frog is placed at a random position x € [0,1]. The goal
for the frog is to jump just once and catch the fly. That is considered a trial. After each
trial, the frog receives a reward given by:

, , f x + a, i f (x + a ) < l ; , ,
R(x,a) = < / , \ ..u • (6.1)L 2 — (x + a), otherwise. v '

Figure 6.1.a shows the reward function. An optimal solution means to catch the fly
always from each possible position of the frog. Thus, the optimal solution of the problem

83
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Figure 6.1: a. Reward function R(x, a), b. Optimal solution

is shown in Fig. 6.1.b. That figure represents the action the frog takes in each position.
For example, if the frog is in position 0.2 the action that represents the length of the
jump has to be 0.8 to catch the fly. If the jump were 0.79 the frog would not reach the
fly. The frog really has a set of continuous actions that define the length of the jump.
The action is whichever value in the range [0,1], but it is a one-step problem since the
frog only has one chance. This problem is tackled to demonstrate that QFCS can solve
it. This problem is important because it is the first with continuous actions in the LCS's
literature. This problem is difficult because the classifiers have to represent all possible
actions which is impossible because they are infinite due to continuity.

Kovacs et al. [36] solved this problem by implementing three different architec-
tures that used a combination of two XCSFs. The approaches were: one was based
on interpolation, the second on an actor-critic paradigm, and the third on treating the
action as another input for the system. The first uses one XCSFi with a discretization
of the actions of the problem and the other XCSF2 is programmed to learn a continu-
ous function based on the actions taken by the XCSF^ Thus, this system works as an
interpolation algorithm. The second uses a system XCSFi that makes an action based
on a weight and the input vectors, and an XCSF2 that works as an approximation func-
tion to predict the reward to be obtained. In the third approximation the input and
output of the problem are introduced as input to XCSF. This system approaches the
solution by pieces of continuous curves. QFCS works better in this problem than the
approximations mentioned before; moreover, QFCS can deal with problems that are
more complex than the frog problem. A generalized frog problem could be the same
frog in one dimension but with a fly too far to catch in one jump. It means that to catch
the fly it has to make more than one jump. This problem could be taken to the frog
in two dimensions that is also more complex. QFCS can deal with these more complex
problems of the fly.

Trung et al. [28] also solve this frog problem modifying XCSF by the introduc-
tion of two GAs. First, a change in the representation of classifiers was done. This
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change introduced the calculus of an action through a dot product of two vectors: an
action vector and an input vector. This generates lines in the input-output space. The
prediction values now were approximated by a plane over the state-action space and
were used to extrapolate the prediction of reward out of the curve that represented by
the dot product of the action vector and input vector. Therefore, one GA evolves the
action vectors of the classifiers and the other the classifiers. This approach works better
than the ones proposed by Kovacs et al. [36] and it works better than QFCS but this
algorithm only was tested on this simple problem.

Next section defines a more complex problem than the frog problem called the n-
Environment Problem. The frog problem is an instance of the n-Environment Problem.
Therefore, this problem is a more general one.

6.2 The n-Environment Problem

The n-Environment Problem [22] is an n-dimensional continuous space that is deter-
mined by a square region:

R = {(xi, . . . , xn) | (xfn < xi < xf") A ... A (zf n < xn < a£")} , (6.2)

where x™m and rrf18* represent the lower and the upper limits of the variable £j. An
agent lives in R taking the position x. This environment has a set of ra-dimensional
continuous action vectors defined as:

where a™m and a™3* represent the lower and the upper limits of the component a,- of a.
The goal in the environment is defined as a sub-region RQ C R. There can be obstacles
Ok that are also defined as sub-regions Rok C R. Obstacles are prohibited regions. The
reward function is defined as:

and is given to the agent each time step. A trial in this environment means to begin in
a random position x e R and finish in the goal RQ. Since a trial takes more than one
step, the n-Environment Problem is a multistep problem.

As it was said, the n-Environment problem is defined as an abstract problem. It
has n continuous input variables that define continuous vector states and m continuous
output variables that define continuous vector actions. The transition function can be
whichever. One important characteristic is that a reward is obtained only when reaching
the goal. This is important because it introduces a greater degree of difficulty, contrary
to what happens with the frog problem, where the frog receives reward even if it does
not catch the fly. Giving reward only in goal states resembles that QFCS has to find out
how to solve the task. If QFCS never reaches the goal, it will never know how to solve
the task. As an example, let us suppose that a dog is left on a street in the city. It is
required that the dog learn how to reach a certain house and to do so the dog is given
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Figure 6.2: a. World*0. b. Optimal solution of World*15.

a big piece of steak when it reaches the house. Each time the dog reaches the house, it
is left in some another street at random. This procedure is repeated many times again
until the dog knows how to reach the house.

Thus, the n-Environment problem can match many different real problems that are
defined in state spaces and that the solution means to reach some states, known as goals.
Examples of those are the navigation tasks, controlling the motion of an inertial particle,
controlling temperature, etc. Some of these problems were used to test QFCS, all of
them with different levels of difficulty. These instances are described in the following
sections.

6.2.1 The 1-Environment Problem:

World*0 is a navigation task in one continuous dimension. It has n = 1 and m = 1.
The limits of the space R are

R = {Xl | (0 < xi < 10)} .

The limits of the possible actions a are

(6.5)

(6.6)

An action a\ means a displacement, so the next position x\ of the agent that is in
position x\ is

X\ = Xi+ GI- (6.7)

There is only one goal defined as

RG = {xi | (6 < xl < 7)}. (6.8)

There are no obstacles. In the reward function, pf — 10. This problem can be thought
as a Generalized Frog Problem, where the frog can jump forward and backward more
than once to catch the fly. This is particularly important because if the fly is too far
away, it cannot be reached by the frog in a single step. Figure 6.2.a shows World*0.
A solution is optimal when the goal is reached with the smaller number of steps from
each position. Therefore, the problem has many optimal solutions. Figure 6.2.b shows
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Figure 6.3: a. World^. b. Optimal solution of World;;1

in gray the optimal solution on space x\a\. This solution is not a function but a region.
For example, if the agent is in position 2 the optimal possible actions are whichever in
[0,1]. It means that taking 0.5 or 0.9 or 0.001 are optimal actions. They are optimal
actions because whichever takes the agent to the goal in a smaller number of steps.

6.2.2 The 2-Environment Problem:

is a navigation task in two continuous dimension without obstacles. It has
n = 2 and m = 2. The limits of the space jR are

R = {(xi, z2) (0 < X! < 10) A (0 < x2 < 10)} . (6.9)

The limits of the possible actions a are

a = {(ai, 02) | (-2 < ai < 2) A (-2 < a2 < 2)} . (6.10)

An action a means a displacement, so the next position x' of the agent that is in position
x is

= x + a. (6.11)

These actions allow the agent move in each possible direction. In the reward function
R(x), pi = 10. There are no obstacles and there is only one goal defined as

RG = {(Xl, x2) (2 < xi < 3) A (4 < z2 < 5)}. (6.12)

This problem can be also thought as a Generalized Frog Problem in two dimensions.
Figure 6.3.a shows World^0. A solution is optimal when the goal is reached with the
smaller number of steps from each position. Therefore, this problem also has many
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Figure 6.4: a. World|D. b. Optimal solution of WorldfD.

optimal solutions. Figure 6.3.b shows, in different gray levels, the regions that have
points that can be connected to reach the goal in an optimal path. The width of these
regions depends on both, the possible actions defined by Eq. 6.10, and the transitions
denned by Eq. 6.11. These regions are consecutive. Some points are shown with their
optimal transitions. Since there are many transitions for each point, the solution is also
a region. In this way, it is considered that the agent can reach the goal using the smaller
number of possible steps but with a trajectory that does not have the minimal distance.
Q-learning does not take into account the minimization of this distance while QFCS
does, in spite of using Q-learning. This problem is more difficult than the navigation
task in one dimension since the dimensionality is higher.

6.2.3 The 2-Environment Problem:

World^-° is similar to WorldJ0 except for the definition of the goal that has an obstacle.
The goal is defined as

(6.13)

(6.14)

Figure 6.4 shows World^ and its optimal solution similarly to World;;;0. This problem
introduces another level of difficulty due to the existence of an obstacle. This means
that the system has to avoid the obstacle to reach the goal.

RG = {(xi, z2) \ (7 < xi < 8) A (2 < x2 < 3)},

and the obstacle is defined as

RO, = {(ari, x2) | (3 < zi < 5) A (0 < x2 < 6)}.
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6.2.4 The 2-Environment Problem: Particle^
Particle*0 simulates an inertia! particle in one dimension. The particle is initialized in
a position x with velocity v — 0. The goal is to apply a force F to take the particle
to the goal RQ. This force is applied in a constant way during an interval of time At.
Therefore, this problem is a 2-Environment Problem with n = 2 and m = 1. The input
space is x\x^ = xv and the output space is ai = F. The limits of the space R are

R = {(x, v) | (0 < x < 10) A (0 < v < 5)} . (6.15)

The limits of the possible actions a are

a = {F| ( -2<F<2)}. (6.16)

The force F determines the transitions between states (x, v). The transition from state
(x, v) to state (xr, v') applying the force F in a constant way during the time interval
At is given by

T F 1
x' = x+\ — At2 + v At; (6. 17)

2m

-
v' = v+ — At. (6.18)

[mj

that are the Eqs. 6.50 and 6.51. This transition function is more complicated than
the ones for the navigation tasks. The main complexity is introduced by the inertia of
the particle. This inertia hinders the agent to move in any arbitrary direction in the
state space xv. Therefore, there are defined directions that are preferred by the particle
depending on which velocity it has.

The mass of the particle is m = 1 for convenience. In the reward function R(x, u),
Pi = 10. There are no obstacles and there is only one goal defined as

RG = {(x, v) | (9 < x < 10) A (0 < v < 0.25)}. (6.19)

As, it can be seen, this problem is similar to a car that can only accelerate forward and
reduce its velocity; negative velocities are not allowed. Therefore, applying the brakes
does not matter if the car is stopped, i.e., v = 0.

Figure 6. 5. a shows Particle*0. An optimal solution also means to reach the goal
with the smaller number of steps. Figure 6.5.b shows the optimal solution. The space
xv is divided in two regions. The maximal force F = 2 is applied on region in light
gray to accelerate the particle to its maximum possible. The minimal force F = —2 is
applied on the region in dark gray to desaccelerate the particle until stop. The curve
that divides both regions can be determined as follows. From relations of figure 6.5.b, if
the initial position of the particle is x, then the particle has to accelerate its maximum
possible applying the maximum force possible FM until it reaches half the distance to
goal

x' = x + Ax- (6.20)

(6.21)
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Figure 6.5: a. Particle*0, b. Optimal solution of Particle1/3.

b)

Eq. 6.17 with the replacement of Eq. 6.21, the initial velocity v = 0 and the maximal
force FM gives

x

•M

'xG

'XG

'XG

—
2

2

X

X

X

2

= x (0)At;

2m

= At2;

FM ' At2;

771
[xG-x] = At.

Replacing At, v = 0 and FM in Eq. 6.18 it is possible to find the final velocity

v' = (0) +

Getting x from Eq. 6.21

a;

2x' =

2x —

x XG

2 2 ;

x + xG]
x,

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)
(6.32)
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and replacing it in Eq. 6.27

v' = M^[xG-(2x'-xG)}- (6.33)

(6.34)

J\^][2xG-2x'}- (6.35)
V L m J

,„ 0«x(6-36)

Eq. 6.36 is in general the curve of points (x1^'} that separates the regions. The
particular curve of Particle^0 with the replacement of the quantities XG = 9, m = 1 and
FM = 2 is

v' = V4[9-x']. (6.37)

This problem is introduced with the spirit of taking QFCS to be applied in more real
problems.

6.2.5 The 2-Environment Problem: Particle^

Particle^ is similar to Particle*0 except for the definition of the space and goal. There-
fore, the limits of the space R are

R = {(x, v) | (0 < x < 10) A (-3 < v < 3)} , (6.38)

and the goal is denned as

RG = {(x, v) | (4.5 < x < 5.5) A (-0.25 < v < 0.25)}. (6.39)

In this problem, the particle can have negative velocities. Figure 6.6 shows Particle^13

and the optimal solution applying the maximal force possible similarly to Particle^0.
This problem is more complex than Particle^. The difficulty is introduce by allowing
negative velocities.

6.3 Dynamics of an Inertial Particle

Let us have a particle of mass m, in position x0 with velocity v0 at time t0. Then, let
us apply on that particle a constant force F during a time interval At. This is shown
in figure 6.7. The solution x(t) of the movement of the particle is determined by the
differential equation

(6.40)
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Figure 6.6: a. Particle^0, b. Optimal solution of Particle^.
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Figure 6.7: a. Initial conditions of the particle with mass m.

under the initial conditions x(t0) = x0 and v(t0) = v0. Eq. 6.40 is known as the
Newton's Movement Equation. Since F is constant during time interval At, Eq. 6.40
can be directly integrated to get

dx
1 " n~dt'

where C\ is a constant that can be determined by the initial conditions as

Then Eq. 6.41 takes the form

dx
Ft + [mv0-Ft0] = m—,

(6.41)

(6.42)

(6.43)

that can be directly integrated one more time to give

-Ft2 + [mv0 - Ft0]t + C2 = mx, (6.44)

where C2 is also another constant that can be determined by the initial conditions as

= mx0 - -Ftl- [mvQ - Ft0}t0. (6.45)
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In that way, the solution x(t) is given by

*(*) =
771

771

-Ft2 + [mv0 - Ft0]t

-Ft2 + [mv0 - Ft0]t

mx0 - -Ft2, - [mv0 - Ft0]t0

m[x0 - v0tQ] - Ft2, - - 1

[ F 1 \rnvo-Fto] \ Ft2
= hr~ * + *+ p>-t*>*o + —I,[2mJ i m J [ 2m I

and by deriving Eq. 6.48, the velocity v(t] is obtained as

; (6.46)

(6.47)

(6.48)

m
(6.49)

Thus, the particle at time t = (t0 + At) will be in position a; (to + At) and velocity
v(t0 + At). From Eqs. 6.48 and 6.49, and with some simple algebra, the position and
velocity will be

z(t0 + At)

t>(to

= x0 +
_F_
2m
F
771

At.

(6.50)

(6.51)

6.4 General Discussion

The problems defined in this section are the ones used to test QFCS. The main char-
acteristic of these problems is that they have a set of continuous vectors as actions. It
introduces difficulty for traditional LCSs and, in general, for all Artificial Intelligence.
LCSs relate one action to many possible states of the problem, regardless of whether
the state are discrete or continuous. It is not so difficult to modify classifiers to work
with continuous inputs. XCSF is an example of this. The problem is that it is difficult
to imagine or conceive a LCS that manages at the same time a set of continuous ac-
tions. The number of actions would be infinite because of the continuity. If it had to
associate one action to many states per each classifier, it would take an infinite number
of classifiers. Q-learning discretized the possible actions, but when the discretization is
higher the algorithm does not converge. Therefore, a mechanism is needed to represent
those infinite number of actions.

Kovacs et al. [36] and Trung et al. [28] took small steps in this direction. Their
representations introduce continuous relationships between the states and actions. But
those are not enough since those work only in one-step problems.

The n-Environment problem introduces more complexity since it has continuous
vectors as actions and it is multi-step. But one more characteristic that the frog problem
does not have is that of receiving reward only in goal states. The frog problem receives
reward even in those states that are not part of the goal. This is called continuous
reward.
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6.5 Summary

QFCS was designed to deal with the n-Environment problem. The n-Environment
problem is defined in a continuous state space with a continuous action space. The task
is defined by reaching some goal. The goal is some region defined in the state space. The
transition function is arbitrary and defines how the states changed by the performed
actions. A reward is given when the goal is reached. QFCS was tested in five different
instances of this problem with different levels of difficulty. Next are the instances used:

• WORLD*0. It is a navigation task in one continuous dimension with continuous
displacements.

• WORLD^D. It is a navigation task in two continuous dimensions with continuous
vector displacements. It does not have an obstacle.

• WORLD\D. It is a navigation task in two continuous dimensions with continuous
vector displacements. It has an obstacle.

• PARTICLE*0. It is a simulation of an inertia! particle with only positive velocities.

• PARTICLE1,0. It is a simulation of an inertia! particle with positive and negative
velocities.

QFCS was also tested on the frog problem. This is about a frog that has to catch a fly
in a continuous environment with continuous jumps.



Chapter 7

Experiments and Results

This chapter describes how the experiments with QFCS were conducted, the employed
methodology, the parameter settings, and the results. These experiments were con-
ducted to test the capabilities of QFCS. Therefore, the problems defined in Chapter 6
have different levels of complexity. The experiments begin with the frog problem [36]
because, as it was said before, this problem is the most tackled in the literature that
has the characteristic of a set of continuous actions. The experiments continue with the
five instances of the re-Environment problem: World^, WorldJP, WorldjJ15, Particle^
and Particle^0. These instances have something to do with navigation task in one or
two dimensions and with the motion of an inertial particle. The methodology that was
used is similar to the ones that are found in LCSs literature. In literature, this method-
ology consists of reporting averaged results. The important variables to measure are the
number of steps the system takes to reach the goal during learning, this measures the
convergences of learning, the action function learned by the system that shows which
action it takes in each possible state, and the number of steps the agent makes from
each possible state to reach the goal. The next sections give a whole description of the
used methodology, the experiment settings and the obtained results.
7.1 Parameters and Experiment Structure

In all of the experiments, there are some parameters that are general because they
were set up to the same values. It means that they took the same values in all of the
problems. In the classifiers structure c = 4 and d = 5. These values were selected
considering the characteristics of QFCS they control, c controls the curvature of the
action function while d controls how well-defined is the approximation of Q-function.
A value of 4 of c makes the curvature not being too high and not being flat at all. A
high value of d makes classifiers take too much time to learn the Q-function, but the
approximation is very good. A low value of d approximates the Q-function with very
small precision. A value of 5 of d makes the robustness of the approximation of the
Q-learning acceptable. These values resulted to be acceptable in the experiments. In
the SFS,, M = 5 and PA = 0.05. These parameters defined the number of output fuzzy
sets of the SFSs and the probability of being in the fuzzy rules. The value of M was
selected based on not having too many output fuzzy sets and, at the same time, not a
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0.3

-

_

Table 7.1: General parameters in all of the experiments.

few ones. The selection was for robustness. PA was obtained by experimentation. It
was desired to have in the initial conditions of QFCS classifiers uniformly distributed
over the state-action space of the problem. Therefore, a value of 0.05 accomplishes that
objective. The next parameters were set according to the ones used in other LCSs in
literature. Thus, in the learning component {30 = 0.2, j3 = 0.2, 7 = 0.1, PE = 0.7 and
PR = 0.3. In the discovery component b = 0.5, x = 0-8 and p, = 0.04. These values are
also shown in Table 7.1. The rest of the parameters [xfD, xt

max], [afn, a™3*}, [cmin, cmax],
QGA, N, n, m, and 60 depend on the particular characteristics of the problem and the
type of QFCS used (the one with the fixed fuzzy sets or the one with the unfixed fuzzy
sets).

The experimentation was done following the standard methodology used in litera-
ture similar to Lanzi et al. [15]. This methodology consists of reporting averaged results
comparing with Q-learning. The averages are taken over samplings of size 10. The
important variables to measure are the1 number of steps the system makes to reach the
goal during learning, measuring the learning convergence, the action function learned
by the system that shows which action it takes in each possible state, and the number
of steps the agent makes from each possible state to reach the goal.

Therefore, the followed methodology was to report averages over samplings of size
20. All of the results obtained with QFCS were compared with the ones obtained by
Q-learning with a high discretization. An instance of the sampling is an agent that
uses QFCS or Q-leaning with initial conditions defined at random. In QFCS, the initial
conditions are the initial values of the hyper-matrices and the output fuzzy sets of the
fuzzy rules in the SFSs. In Q-learning, the initial conditions are the initial Q-values of
the Q-function. The experiments consist of runs of the 20 agents in learning stage called
learning runs. During a learning run, an agent is allowed a number of trials NT in the
problem. Each trial consists of leaving the agent in some random state of the problem
and letting it act until it reaches the goal. Thus, each trial consists of a maximal number
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Table 7.2: Particular parameters in the Frog Problem.

of steps NS or less if QFCS reaches the goal before the N§ steps. If this maximal number
of steps NS is reached the trial finishes. The important variables to measure are the
number of steps the system makes to reach the goal during learning that measures the
convergences in learning, the action function learned by the system that shows which
action it takes in each possible state, and the number of steps the agent makes from
each possible state to reach the goal.
7.2 The Frog Problem

The frog problem, as it was denned before, is about a frog that lives in a line. The
objective is that the frog has to jump just once to catch a fly. This problem is single-
step and has continuous reward because the frog is given a reward regardless of catching
the fly or not. The particular parameters used in the Frog Problem for QFCS with fixed
fuzzy sets, QFCS with unfixed fuzzy sets and Q-learning are shown in Table 7.2. Each
axes of the space xa in Q-learning is discretized over 100 intervals. Therefore, Ax = 0.01
and Aa = 0.01. This is so, because the problem is defined in continuous variables. The
size of the population is 200 which gives about 50 classifiers per activation region since
there are 4. NS is 1 since the problem is single step. 60 and OGA were adjusted by
experimentation. NT is high to show convergence of learning.

At the start of each experiment, the pl
di in QFCSs and the Q-values of Q-learning

are set up at random between [0,10]. 10 is used because it is the maximum value
obtained by reward. Thus, Figure 7.1 shows the initial states of three instances of this
problem. Figure 7.1.a is an instance of QFCS with fixed fuzzy sets. Figure 7.1.b is an
instance of QFCS with unfixed fuzzy sets. And Figure 7.1.c is an instance of Q-learning.
In that figure, Fig. 7.1, rows represent the same concept —rules, Q-values, normalized
Q-values and actions— but with different systems. Therefore, the classifiers are in the



7.3. THE l-ENVIRONMENT PROBLEM: WORLD\D 103
a 0.5-

QFCS (Fixed FS)
QFCS (Unfixed FS) -

0.5
X

QFCS (Fixed FS)
QFCS( Unfixed FS)

a)

250000

Trials
500000

b)

Figure 7.5: a. Average over 20 runs of the action learned in the Frog Problem, b.
Average over 20 runs of the error in the Frog Problem.

These results show how QFCS can solve the frog problem and that was the objective
because of the importance of that problem in LCSs literature. In comparison, QFCS
and Q-learning have a similar performance. It means they converge similar and with
almost the same results. But it is important to take into account that QFCS learns
the action function by parts that are continuous while Q-learning learns the discretized
action. On the other hand, QFCS is expected to model more complex problems where
a high discretization is needed and Q-learning would not converge. The next section
describes results with some instances of the n-Environment Problem.
ID7.3 The 1-Environment Problem: World

World*75 is an instance of the 1-Environment problem. It is a navigation task in one
continuous dimension. The objective is from some position in the environment to reach
another one called goal where a reward is given. This problem is important because
is multi-step and with a set of continuous actions. The particular parameters used for
QFCS with fixed fuzzy sets, QFCS with unfixed fuzzy sets and Q-learning are presented
in Table 7.3. The axes of space xa in Q-learning are also discretized over 100 intervals.
Therefore, Ax = 0.01 and Aa = 0.01. This is so because the problem is defined over
continuous variables. The size of the population is 200 which gives about 50 classifiers
per activation region since there are 4. 50 and OGA were adjusted by experimentation.
NT is high to show convergence of learning. When each experiment begins, the pl

di in
QFCSs and the Q-values of Q-learning are also set up at random between [0,10]. 10
is used because it is the maximum value obtained by reward. Thus, Figure 7.6 shows
the initial states of three instances of this problem. Similarly to the Frog Problem, Fig.
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Table 7.3: Particular parameters in World*1*.

01 o

Figure 7.6: a. Initial State of the QFCS with fixed fuzzy sets in World*0, b. Initial
State of the QFCS with unfixed fuzzy sets in World*0, c. Initial State of Q-learning in
World10.
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7.6.a is an instance of QFCS with fixed fuzzy sets, Fig. 7.6.b is an instance of QFCS
with unfixed fuzzy sets, and Fig. 7.6.C is an instance of Q-learning. In that figure,
Fig. 7.6, rows represent the same variable but with different systems. Therefore, the
classifiers are in the first row, the prediction values or Q-values in a gray scale are in
the second row, the normalized prediction values in a gray scale in the third row and
the action functions in the last row. Since this problem is also one-dimensional, the
classifiers represent curves over xiai, too. These curves are obtained by drawing, for
each classifier and for each possible possition in the activation region of the classifier,
its proposed action. Thus, for each position, the classifier gives an action and these
values, the position and the action, are represented using a point in the space xa. This
is done for all of the positions in the activation region of the classifier producing a
curve. This process is repeated for all of the classifiers in the population generating the
curves shown in the first row. The curves represented by the classifiers are also almost
uniformly distributed over space XiOi. QFCS with the fixed fuzzy sets has also the
curves represented by the classifiers distributed over four regions that are

Region! = {(x, a)\ (0 < x < 2.5) A(-2 < a < 2)},
Region2 = {(x, a)j (2.5 < x < 5) A (-2 < a < 2)},
Region3 = {(x,a)\ (5 < x < 7.5) A (-2 < a < 2)},
Region4 = {(x, a)| (7.5 < x < 10) A (-2 < a < 2)};

(7.2)

while the QFCS with unfixed fuzzy set does not. This is due to the activation regions.
QFCS represents the Q-function of Q-learning only in those curves determined by the
classifiers. Therefore, the Q-function is not represented in all of the space x\a\ as Q-
learning demands. Moreover, it is expected that QFCS will be able to evolve classifiers
to find out those regions of the space x\a\ in the form of curves such that the Q-learning
is determinant for making decisions. The initial proposed action by any of these systems
has no meaning.

Figure 7.7 shows 3 instances of an experiment of 20 QFCSs with fixed fuzzy sets.
The first row in that figure shows how classifiers evolved in such a way to represent
the Q-function over the region where the Q-values are maximal given an x\. It means
that the classifiers follow the optimal solution region. For example, from Fig. 7.7, if
x = 2.5 then classifiers are arranged in such a way that they cover the action in the range
[0.5,2]. Classifiers do not cover all of this region but some points of it. For example point
(2.5,0) is not covered. The curvature of the solution is controlled by the parameter c.
The optimal solution of this problem is a region, it means that there are many possible
optimal solutions and QFCS finds one. The solutions found by QFCS are in the third
row. These are curves. Contrary of what happened with the frog problem where the
optimal solution was a line, here the solutions show some curvatures. It is easy to see
that QFCS could modify the classifiers to follow the curvature of the optimal solutions.
The second row shows the prediction values pl

di. This prediction values are a function
of the space x\a\. Therefore, the values are shown in a gray scale. Black is for 10 and
white for 0. These gray colors are over the curves represented by the classifiers. These
learned Q-values show that the Q-function has its maximum values where the curves
of the classifiers are. The third row shows the learned actions. This action function
is continuous with some discontinuities and is in the region of the optimal solution
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Figure 7.7: Three instances of the QFCS with fixed fuzzy sets in World*13.

according to Fig. 6.2.b except for those places where it is difficult for QFCS to evolve
classifiers since the fuzzy sets are fixed. This condition makes the curves be on a region
in [min^, max^J with their ends in x = min^ and x = maxf^. These ends can only
move over lines x = min^ and x = max^. In this case, the difficulty is in points (0,2),
(2,2), (4,2) and (9,—2), where the solution is only one point and not a region (Fig.
6.2.b). Therefore, these functions are sub-optimal solutions. The prediction values pl

di

are maximal only in those places where the action is important and the evolved classifiers
are over those places too. The fourth row shows the number of steps the system takes
to reach the goal from each possible position x. QFCS does not do more than three
steps. Therefore, QFCS can learn an optimal solution.

Similar results are shown in figure 7.8 where there are 3 instances of an experiment
of 20 QFCSs with unfixed fuzzy sets. The classifiers were evolved similarly to QFCS
with the fixed fuzzy sets, but in this case, there is no limitation to some activation
regions. Classifiers could change in any direction without any restrictions. Therefore,
the curvature of the solution is followed better than with the fixed activation regions.
This is why the liberations of the shape of the activation regions was done. Again,
the prediction values pl

di have higher values in places closer to the goal and over the
curves represented by classifiers. The normalized prediction values N^ are shown in
the third row. They are always in a gray scale similar to Q-values. These values were
introduced in QFCS with unfixed fuzzy sets to allow the GA evolve classifiers over the
solution action curve. Thus, they have to reach, per each possible state, the maximum
value of reward 10. Thus, the normalized function is bigger close to the solution action
curve. Classifiers are better distributed in this QFCS that in the other one. The action
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Figure 7.8: Three instances of the QFCS with unfixed fuzzy sets in World*73.
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Figure 7.9: Three instances of the Q-learning in World*0.

function is also continuous with some discontinuities due to the classifiers that represent
curves with finite lengths. The steps to goal from each position Xi is similar to the other
QFCS. Therefore, the performance in this problem is similar in both QFCSs.

Figure 7.9 shows 3 instances of an experiment of 20 Q-learning systems. In this
case, there are only the Q-values over a grid of 100 x 40 in gray scale. Therefore,
the solution has many discontinuities due to that discretization but it is in the solution
region according to Fig. 6.2.b. Therefore, the action function is not optimal. Comparing
these results with those of the QFCSs, it can be seen how classifiers evolve to those parts
in the space xa with higher reward for a given x-^.

Figure 7.10 shows the averaged action function in the World*1', the averaged num-
ber of steps to goal in each possible position Xi and the averaged number of steps to
goal against trials. These averages are over 20 instances of each system, QFCS with
fixed and unfixed fuzzy sets and Q-learning. Fig. 7.10.a shows how the averaged so-
lution of QFCSs is similar but differs to Q-learning. Both solutions are optimal since
both of them are in the optimal solution region of the problem. QFCS learns the opti-
mal solution that represents taking bigger steps. This is what a human would do. To
Q-learning that does not matter because it reaches the goal with the minimum steps
possible. Figure 7.10.b shows that the number of steps to goal is similar in both QFCSs.
It also demonstrates how QFCS with the unfixed fuzzy sets makes fewer errors than
QFCS with the fixed fuzzy sets. Figure 7.10.C shows that the convergence compared
with Q-learning is similar. The convergence is reached at about 250000 trials. There
is no better performance than Q-learning and this is because QFCS also learns using
Q-leaning with a discretization of d = 5.

This problem is more complex than the frog problem because it is multi-step and
it gives reward only in the goal states. However, it was shown how QFCS was able to
make classifiers follow the curvature defined by the optimal solution in spite of using a
small value in c = 4. This is what makes QFCS robust. QFCS with unfixed fuzzy sets
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Figure 7.10: a. Average over 20 runs of the action learned in World*1'. b. Average over
20 runs of the number of steps to goal against x{ in World^D. c. Average over 20 runs
of the number of steps to goal against trials in

also showed to be able to follow the curvature in a better way than with the fixed fuzzy
sets. This represented a good achievement in the generalization formalism of QFCS.
7.4 The 2-Environment Problem: World

is an instance of the 2-Environment problem. It is a navigation task in two
continuous dimensions. The objective is, starting from a position in the environment, to
reach another one called goal where a reward is given. This problem is important because
is multi-step and with a set of continuous vector actions. The particular parameters used
for QFCSs with fixed and unfixed fuzzy sets and Q-learning are shown in Table 7.4. In
Q-learning, the axes x\ and x% of space x^x^a-^a^ are discretized over 25 intervals and
the axes ai and a2 are discretized over 10 intervals. Thus the Q-learning table for the
Q-function is of 25 x 25 x 10 x 10 in this problem. This discretization was chosen because
Q-learning does not converge with a high discretization of 100 x 100 x 40 x 40 that was
used in the problems before. The size of the population is 800 which gives about 50
classifiers per activation region since there are 4 x 4 = 16 due to c = 4. 60 and OGA
were adjusted by experimentation. NT is high to show convergence of learning. NS is
200 to avoid that the system never reaches the goal. This number is much higher than
the optimal number of steps to reach the goal. When each experiment begins, the pl

d d

in QFCSs and the Q- values of Q-learning, are at random in [0, 10]. 10 is the maximum
reward.
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Table 7.2: Particular parameters in the Frog Problem.

of steps NS or less if QFCS reaches the goal before the N§ steps. If this maximal number
of steps NS is reached the trial finishes. The important variables to measure are the
number of steps the system makes to reach the goal during learning that measures the
convergences in learning, the action function learned by the system that shows which
action it takes in each possible state, and the number of steps the agent makes from
each possible state to reach the goal.
7.2 The Frog Problem

The frog problem, as it was denned before, is about a frog that lives in a line. The
objective is that the frog has to jump just once to catch a fly. This problem is single-
step and has continuous reward because the frog is given a reward regardless of catching
the fly or not. The particular parameters used in the Frog Problem for QFCS with fixed
fuzzy sets, QFCS with unfixed fuzzy sets and Q-learning are shown in Table 7.2. Each
axes of the space xa in Q-learning is discretized over 100 intervals. Therefore, Ax = 0.01
and Aa = 0.01. This is so, because the problem is defined in continuous variables. The
size of the population is 200 which gives about 50 classifiers per activation region since
there are 4. NS is 1 since the problem is single step. 60 and OGA were adjusted by
experimentation. NT is high to show convergence of learning.

At the start of each experiment, the pl
di in QFCSs and the Q-values of Q-learning

are set up at random between [0,10]. 10 is used because it is the maximum value
obtained by reward. Thus, Figure 7.1 shows the initial states of three instances of this
problem. Figure 7.1.a is an instance of QFCS with fixed fuzzy sets. Figure 7.1.b is an
instance of QFCS with unfixed fuzzy sets. And Figure 7.1.c is an instance of Q-learning.
In that figure, Fig. 7.1, rows represent the same concept —rules, Q-values, normalized
Q-values and actions— but with different systems. Therefore, the classifiers are in the
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ts,

Figure 7.1: a. Initial State of the QFCS with fixed fuzzy sets in the Frog Problem, b.
Initial State of the QFCS with unfixed fuzzy sets in the Frog Problem, c. Initial State
of Q-learning in the Frog Problem.
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first row, the prediction values or Q-values in a gray scale are in the second row, the
normalized prediction values in a gray scale in the third row and the action functions
in the last row. Since this problem is one-dimensional, the classifiers represent curves
over space xa. These curves are obtained by drawing, for each classifier and for each
possible position in the activation region of the classifier, its proposed action (the size
of the jump). Thus, for each position, the classifier gives an action and these values,
the position and the action, are represented using a point in the space xa. This is done
for all of the positions in the activation region of the classifier, which produces a curve.
This process is repeated for all of the classifiers in the population generating the curves
shown in the first row. The curves represented by the classifiers are almost uniformly
distributed over space xa. QFCS with the fixed fuzzy sets has the curves represented
by the classifiers distributed over 4 regions that are

(7.1)

while the QFCS with unfixed fuzzy set does not. This is due to the activation regions.
QFCS represents the Q-function of Q-learning only in those curves determined by the
classifiers. Therefore, the Q-function is not represented in all of the space xa as Q-
learning demands. Moreover, it is expected that QFCS will be able to evolve classifiers
to find out those regions of the space xa in the form of curves so that Q-learning
is determinant for making decisions. The proposed action by any of the systems is
meaningless. This occurs because the solution cannot be expected to be in the initial
conditions. This problem is a bit difficult for QFCS because the goal is not a region but
a point. Despite of that, QFCS provides good results.

Figure 7.2 shows 3 instances of an experiment of 20 runs of the QFCS with fixed
fuzzy sets. The first row in that figure shows how classifiers evolved in such a way to
represent the Q-function over the region where the Q-values are maximal for a given x.
It means that the classifiers follow the optimal solution curve a(x). For example, from
Fig. 7.2, if x = 0.2 then the classifiers are arranged in such a way that they cover the
action in the range [0.4,1]. Classifiers' do not cover all of this region but some points of it.
For example point (0.2,0.2) is not covered. The curvature of the solution is controlled
by the parameter c. In this problem there is no curvature and the curves represented
by the classifiers do not have curvature, either. This is seen, when it is considered all
the classifiers in combination as forming a thick and diffuse curve. The second row
shows the prediction values pfdi. This prediction values are a function of the space xa.
Therefore, the values are shown in a gray scale. Black is for 10 and white for 0. These
gray colors are over the curves represented by the classifiers. These learned Q-values
show that the Q-function has its maximum values where the curves of the classifiers
are. And the third row shows the learned actions. These action functions are not the
optimal solution but QFCS does very well in spite of the discontinuities.

Figure 7.3 shows 3 instances of an experiment of 20 QFCSs with unfixed fuzzy sets.
The classifiers evolved with less strength. It means that classifiers are more scattered
but at the same time the classifiers over space xa seem denser. The prediction values
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Figure 7.2: Three instances of the QFCS with fixed fuzzy sets in the Frog Problem.
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Figure 7.3: Three instances of the QFCS with unfixed fuzzy sets in the Frog Problem.
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.1-

Figure 7.4: Three instances of the Q-learning in the Frog Problem.

ptdi have their maximal value over the function that is the solution. The normalized
prediction values Njll are shown in the third row. They are always in a gray scale
similar to Q-values. These values were introduced in QFCS with unfixed fuzzy sets to
allow the GA evolve classifiers over the solution action curve. Thus, they have to reach,
per each possible state, the maximum value of reward 10. Thus, the normalized function
is bigger close to the solution action curve. The discontinuities in the action functions
continue to exist. These results show that the extra degree of freedom introduced by
letting the activation regions evolve complicate the problem because the classifiers are
more scattered compared with those obtained in QFCS with the fixed fuzzy sets.

Figure 7.4 shows 3 instances of an experiment of 20 Q-learning systems. In this
case, there are only the Q-values over a grid of 100 x 100 in gray scale. It can be seen
how the Q-values are similar to the reward function. Therefore, the solution has many
discontinuities due to that discretization. Comparing these results with those of the
QFCSs, it can be seen how classifiers evolve to those parts in space xa with higher
reward.

Figure 7.5 shows the average action function of the Frog Problem and the average
error obtained during the experiments over 20 instances of each system, QFCS with
fixed and unfixed fuzzy sets and Q-learning. The QFCSs, with fixed and unfixed fuzzy
sets, have similar performance in this problem. In the average error, it can be seen
how QFCS is slightly better in convergence than Q-learning since QFCS decreases the
error faster than Q-learning. This problem was tackled to show that QFCS is capable of
solving this kind of one step problems with continuous inputs and outputs; even though
QFCS was designed to deal with multistep problems.
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Figure 7.5: a. Average over 20 runs of the action learned in the Frog Problem, b.
Average over 20 runs of the error in the Frog Problem.

These results show how QFCS can solve the frog problem and that was the objective
because of the importance of that problem in LCSs literature. In comparison, QFCS
and Q-learning have a similar performance. It means they converge similar and with
almost the same results. But it is important to take into account that QFCS learns
the action function by parts that are continuous while Q-learning learns the discretized
action. On the other hand, QFCS is expected to model more complex problems where
a high discretization is needed and Q-learning would not converge. The next section
describes results with some instances of the n-Environment Problem.
ID7.3 The 1-Environment Problem: World

World*75 is an instance of the 1-Environment problem. It is a navigation task in one
continuous dimension. The objective is from some position in the environment to reach
another one called goal where a reward is given. This problem is important because
is multi-step and with a set of continuous actions. The particular parameters used for
QFCS with fixed fuzzy sets, QFCS with unfixed fuzzy sets and Q-learning are presented
in Table 7.3. The axes of space xa in Q-learning are also discretized over 100 intervals.
Therefore, Ax = 0.01 and Aa = 0.01. This is so because the problem is defined over
continuous variables. The size of the population is 200 which gives about 50 classifiers
per activation region since there are 4. 50 and OGA were adjusted by experimentation.
NT is high to show convergence of learning. When each experiment begins, the pl

di in
QFCSs and the Q-values of Q-learning are also set up at random between [0,10]. 10
is used because it is the maximum value obtained by reward. Thus, Figure 7.6 shows
the initial states of three instances of this problem. Similarly to the Frog Problem, Fig.
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Figure 7.10: a. Average over 20 runs of the action learned in World*1'. b. Average over
20 runs of the number of steps to goal against x{ in World^D. c. Average over 20 runs
of the number of steps to goal against trials in

also showed to be able to follow the curvature in a better way than with the fixed fuzzy
sets. This represented a good achievement in the generalization formalism of QFCS.
7.4 The 2-Environment Problem: World

is an instance of the 2-Environment problem. It is a navigation task in two
continuous dimensions. The objective is, starting from a position in the environment, to
reach another one called goal where a reward is given. This problem is important because
is multi-step and with a set of continuous vector actions. The particular parameters used
for QFCSs with fixed and unfixed fuzzy sets and Q-learning are shown in Table 7.4. In
Q-learning, the axes x\ and x% of space x^x^a-^a^ are discretized over 25 intervals and
the axes ai and a2 are discretized over 10 intervals. Thus the Q-learning table for the
Q-function is of 25 x 25 x 10 x 10 in this problem. This discretization was chosen because
Q-learning does not converge with a high discretization of 100 x 100 x 40 x 40 that was
used in the problems before. The size of the population is 800 which gives about 50
classifiers per activation region since there are 4 x 4 = 16 due to c = 4. 60 and OGA
were adjusted by experimentation. NT is high to show convergence of learning. NS is
200 to avoid that the system never reaches the goal. This number is much higher than
the optimal number of steps to reach the goal. When each experiment begins, the pl

d d

in QFCSs and the Q- values of Q-learning, are at random in [0, 10]. 10 is the maximum
reward.
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Table 7.4: Particular parameters in World^° and

Figure 7.11 shows the vector field in the initial conditions of the QFCSs and Q-
learning. These vector fields show how the classifiers really represent random vector
fields at the beginning. Classifiers are not shown here because they represent vector
fields with their two components functions of two variables. Q-values have the same
problem because they have to be represented in four dimensions.

Figure 7.12 shows 3 instances of QFCS with fixed fuzzy sets from an experiment
with 20 QFCSs. The vector fields are in the first row and the graphics of the number
of steps to reach the goal from each possible state 0:1X2 are in the second row. The
graphics of the number of steps to goal are two-dimensional functions represented in a
gray scale. Black is for 10 steps and white for 0 steps. It can be seen how the vector
fields learned by pointing to the goal. This shows that QFCS is not only looking for
reaching the goal with the minor number of steps but also reducing the distance to goal.
Thus the vector field is smooth. This is also shown in the second row where the number
of steps reflects this behavior generating rings contrary to what happen in Fig. 6.3.b
where that function formed square rings. The maximum number of steps to goal is 5.
This is not the optimal solution, but it is a good solution. Thus, QFCS with fixed fuzzy
sets is able to learn a vector field to reach the goal. This vector field as it has been
explained comes from a set of continuous vectors. Therefore, the learned vector field
is continuous. It is obvious from the structure of classifiers that there are going to be
discontinuities, but as it was said before, the solution of this problem is not a vector
field but a region of vector fields similar to that in World*1'. It means that in each state
Xix% there are many vector solutions. Parameter c now has to measure the curvature
of a vector field. The vector field introduces two functions of the state spaces x\x^ that
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Figure 7.11: a. Initial State of the QFCS with fixed fuzzy sets in World2-0, b. Initial
State of the QFCS with unfixed fuzzy sets in World20, c. Initial State of Q-learning in
World20.

Figure 7.12: Three instances of the QFCS with fixed fuzzy sets in World20.
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Figure 7.13: Three instances of the QFCS with unfixed fuzzy sets in

are surfaces. So, QFCS has to learn the curvature of those surfaces. Since they are two
surfaces, the problem is more difficult than the others before. This is the reason why
QFCS learns only sub-optimal solutions.

Figure 7.13 shows 3 instances of the results obtained with QFCS with the unfixed
fuzzy sets from an experiment of 20 QFCSs. As it can be seen, QFCS with unfixed
fuzzy sets is also capable of learning the needed vector field but it has some problems in
certain small regions. Thus, it is more difficult for QFCS to learn the vector field due
to the unfixed fuzzy sets that introduce more complexity to the problem. Nevertheless.
QFCS does not perform too badly. In some parts, QFCS takes more steps to reach
the goal than the minimum needed. Again QFCS learns the vector field that tries to
minimize not only the number of steps to goal but also the distance to goal. This is
obvious from this figure. The problem of the curvature of the solutions is given to the
GA. These results show that QFCS has a similar performance to QFCS with the unfixed
fuzzy sets and that the GA does not evolve a better curvature.

Figure 7.14 shows 3 instances of Q-learning from an experiment of 20. As it can
be observed, the vector fields do not point to the goal in every state x\x-i but those
vector fields give an almost optimal solution. It is not optimal due to discretization of
Q-function and that that discretization is not high enough to represent the problem in
its continuous nature. That is one of the reasons for the need of new algorithms that
can deal with continuous problems. At this point Q-learning does better than QFCS,
but this is a first step in this direction. It is remarkable that QFCS also minimized
the distance while Q-learning does not. This is important because that is part of the
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Figure 7.14: Three instances of Q-learning in World^D.

intelligent behavior. A dog does not get for the food following whichever route with
less steps but the one with the minimum distance. If both minimize the number of
steps, and the distance is taken into account, the system would seem more intelligent.
QFCS does not have anything in its formalism that minimized distance, so, it seems
more intelligent. This shows that QFCS is giving good new lines to follow.

Figure 7.15 shows the average of the obtained results by the QFCSs and the Q-
learning system. Figures 7.15.a, 7.15.b and 7.15.c show the averages obtained by the
QFCS with the fixed fuzzy sets, QFCS with the unfixed fuzzy sets and Q-learning respec-
tively. These vector fields demonstrate how QFCS minimized the distance, not only the
number of steps, while Q-learning only minimizes the number of steps. Therefore, the
obtained vector field in the average is smoother than the one obtained by Q-learning.
Figure 7.15.d shows the convergence of the three systems. The peaks in QFCS with
unfixed fuzzy sets are due to the GA because when a new classifier is introduced, the
activation region can be out of the correct actions proposed. These results are an average
over 20 runs.
7.5 The 2-Environment Problem:

Worldj0 is an instance of the 2-Environment problem. It is also a navigation task in two
continuous dimensions. The objective is, starting from a position in the environment, to
reach another one called goal where a reward is given. This problem is important because
is multi-step and with a set of continuous vector actions. The difference with
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QFCS does not have anything in its formalism that minimized distance, so, it seems
more intelligent. This shows that QFCS is giving good new lines to follow.

Figure 7.15 shows the average of the obtained results by the QFCSs and the Q-
learning system. Figures 7.15.a, 7.15.b and 7.15.c show the averages obtained by the
QFCS with the fixed fuzzy sets, QFCS with the unfixed fuzzy sets and Q-learning respec-
tively. These vector fields demonstrate how QFCS minimized the distance, not only the
number of steps, while Q-learning only minimizes the number of steps. Therefore, the
obtained vector field in the average is smoother than the one obtained by Q-learning.
Figure 7.15.d shows the convergence of the three systems. The peaks in QFCS with
unfixed fuzzy sets are due to the GA because when a new classifier is introduced, the
activation region can be out of the correct actions proposed. These results are an average
over 20 runs.
7.5 The 2-Environment Problem:

Worldj0 is an instance of the 2-Environment problem. It is also a navigation task in two
continuous dimensions. The objective is, starting from a position in the environment, to
reach another one called goal where a reward is given. This problem is important because
is multi-step and with a set of continuous vector actions. The difference with
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Figure 7.15: a. Average over 20 runs of the action and number of steps to goal against
x\Xi obtained with QFCS with fixed fuzzy sets. b. Average over 20 runs of the action
and number of steps to goal against x^x2 obtained with QFCS with unfixed fuzzy sets.
c. Average over 20 runs of the action and number of steps to goal against XiX2 obtained
with Q-leanring. d. Average over 20 runs of the number of steps to goal against trials
in World^.
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Figure 7.16: a. Initial State of the QFCS with fixed fuzzy sets in World^. b. Initial
State of the QFCS with unfixed fuzzy sets in World^0. c. Initial State of Q-learning in

is the addition of an obstacle that makes the problem more complex and realistic. The
particular parameters used for QFCSs with fixed and unfixed fuzzy sets and Q-learning
are also presented in Table 7.4. These parameters are the same as those in World^0

problem because the only difference between World^ and World;P is the introduction
of an obstacle and the change of the goal.

Figure 7.16 shows the vector fields in the initial conditions of the QFCSs and Q-
learning. These vector fields also show how the classifiers really represent random vector
fields at the beginning. In the obstacle position, the vector field is not drawn because
that is a region the systems cannot access. Therefore, the vector field there does not
matter. The obtained vector field will depend on its neighborhood vector field.

Figure 7.17 shows 3 instances of QFCS with fixed fuzzy sets from an experiment
with 20 QFCSs. The vector fields are shown in the first row and the graphics of the
number of steps to reach the goal from each possible state Xix2 are in the second row.
The graphics of the number of steps to goal are two-dimensional functions represented
in a gray scale. Black is for 10 steps and white for 0 steps. It can be seen how the vector
fields learned by pointing in the road to goal. This shows that QFCS is not only looking
for reaching the goal with the minor number of steps but also reducing the distance to
goal. Thus the vector field is smooth. This is also shown in the second row where the
number of steps reflects this behavior generating rings around the goal contrary to what
happen in Fig. 6.4.b where that function formed square rings around the goal. The
maximum number of steps to goal is 10. This is not the optimal solution, but it is a
good solution. Thus, QFCS with fixed fuzzy sets is able to learn a vector field to reach
the goal. This vector field, as it has been explained, comes from a set of continuous
vectors. Therefore, the learned vector field is also continuous. It is also obvious, from
the structure of classifiers, that there are going to be discontinuities but as it was said
before the solution of this problem is not a vector field but a region of vector fields
similar to that in World*0. It means that in each state x\x<± there are many vectors as
solutions. Parameter c now has to measure the curvature of a vector field. The vector
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Figure 7.17: Three instances of the QFCS with fixed fuzzy sets in World;;0.

field introduces two functions of the state spaces Xix% that are surfaces, so, QFCS has to
learn the curvature of those surfaces. Since they are two surfaces, the problem is more
difficult than the others before. This is a reason why QFCS learns only suboptimal
solutions. Parameter c appears to work well.

Figure 7.18 shows 3 instances of the obtained results with QFCS with the unfixed
fuzzy sets from an experiment of 20 QFCSs. As it can be seen, QFCS with unfixed
fuzzy sets is also capable of learning the vector field needed but it has some problems in
regions far from the goal. Thus, it is more difficult for QFCS to learn the vector field due
to the unfixed fuzzy sets that introduce more complexity to the problem. Nevertheless,
QFCS does not perform too badly. In some parts, QFCS takes more steps to reach
the goal than the minimum needed. Again QFCS learns the vector field that tries to
minimize not only the number of steps to goal but also the distance to goal. This is
obvious from this figure. The problem of the curvature of the solutions is given to the
GA. These results show that QFCS has a similar performance to QFCS with the unfixed
fuzzy sets and that the GA does not evolve a better curvature.

Figure 7.19 shows 3 instances of Q-learning from an experiment of 20. As it can
be observed, the vector fields do not point through the road to the goal in every state
Xix2 but those vector fields give almost optimal solutions. It is not optimal due to the
discretization of Q-function and that that discretization is not high enough to represent
the problem in its continuous nature.

Figure 7.20 shows the average of the obtained results by the QFCSs and the Q-
learning system. Figures 7.20.a, 7.20.b and 7.20.c show the averages obtained by the
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Figure 7.18: Three instances of the QFCS with unfixed fuzzy sets in WorldjD.

Figure 7.19: Three instances of Q-learning in
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Figure 7.20: a. Average over 20 runs of the action and number of steps to goal against
XiX-2 obtained by QFCS with fixed fuzzy sets. b. Average over 20 runs of the action
and number of steps to goal against Xix2 obtained by QFCS with fixed fuzzy sets c.
Average over 20 runs of the action and number of steps to goal against xiX2 obtained
by Q-learning. d. Average over 20 runs of the number of steps to goal against trials in



7.6. THE 2-ENVIRONMENT PROBLEM: PARTICLE1,0 119

Structure

Classifiers (Cli)

Learning Component
Discovery Component

Experiments

Parameter
n
m

r~.min _max]
Lxi > xi J
r~min ™maxl
LX2 , X2 J
Ifjtnin .-max]
lal , "1 J

Axi
Ax2

Aai
AT

[Cmin, ^max]

S0

OGA
NT
Ns

QFCS
Fixed FS

2
1

[0,10]
[0,5]

[-2,2]
-
-
-

800
-

1000
5000

1000000
200

Unfixed FS
2
1

[0,10]
[0,5]

[-2,2]
-
-
-

800
[1,4]
2000
10000

1000000
200

Q- Learning
2
1

[0,10]
[0,5]

[-2,2]
0.4
0.2
0.4
-
-
-
-

1000000
200

Table 7.5: Particular parameters in Particle*0.

QFCS with the fixed fuzzy sets, QFCS with the unfixed fuzzy sets and Q-learning
respectively. These vector fields demonstrate how QFCS minimized the distance not only
the number of steps while Q-learning only minimizes the number of steps. Therefore,
the obtained vector field in the average is smoother than the one obtained by Q-learning.
Figure 7.20.d shows the convergence of the three systems. The convergence of QFCS
with unfixed fuzzy sets is noisier. These results are an average over 20 runs.
7.6 The 2-Environment Problem: Particle^

Particle*0 is a 2-Environment problem about the simulation of an inertial particle in one
dimension. The goal is to take the particle from some position to another one through
a set of continuous forces. The particle cannot have negative velocities so it resembles a
car that can only slow down and accelerate. The particular parameters used for QFCSs
with fixed and unfixed fuzzy sets and Q-learning are shown in Table 7.5. In Q-learning,
the axes x\ = x and x^ = v of space XiX2a1 = xvF are discretized over 25 intervals
and the axes 01 = F is discretized over 10 intervals. Thus the Q-learning table for the
Q-function is of 25 x 25 x 10 in this problem. This discretization was chosen because
Q-learning does not converge with a high discretization of 100 x 100 x 40. The size of
the population is 800 which gives about 50 classifiers per activation region since there
are 4 x 4 = 16 due to c = 4. <5o and QQA were adjusted by experimentation. NT is high
to show convergence of learning. NS is 200 to avoid the system to never reach the goal.
This number is much higher that optimal number of steps to reach the goal. When each
experiment begins, the pl

dld2 in QFCSs and the Q-values of Q-learning are also set up
at random in [0,10]. 10 is the maximum reward possible.
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Table 7.5: Particular parameters in Particle*0.

QFCS with the fixed fuzzy sets, QFCS with the unfixed fuzzy sets and Q-learning
respectively. These vector fields demonstrate how QFCS minimized the distance not only
the number of steps while Q-learning only minimizes the number of steps. Therefore,
the obtained vector field in the average is smoother than the one obtained by Q-learning.
Figure 7.20.d shows the convergence of the three systems. The convergence of QFCS
with unfixed fuzzy sets is noisier. These results are an average over 20 runs.
7.6 The 2-Environment Problem: Particle^

Particle*0 is a 2-Environment problem about the simulation of an inertial particle in one
dimension. The goal is to take the particle from some position to another one through
a set of continuous forces. The particle cannot have negative velocities so it resembles a
car that can only slow down and accelerate. The particular parameters used for QFCSs
with fixed and unfixed fuzzy sets and Q-learning are shown in Table 7.5. In Q-learning,
the axes x\ = x and x^ = v of space XiX2a1 = xvF are discretized over 25 intervals
and the axes 01 = F is discretized over 10 intervals. Thus the Q-learning table for the
Q-function is of 25 x 25 x 10 in this problem. This discretization was chosen because
Q-learning does not converge with a high discretization of 100 x 100 x 40. The size of
the population is 800 which gives about 50 classifiers per activation region since there
are 4 x 4 = 16 due to c = 4. <5o and QQA were adjusted by experimentation. NT is high
to show convergence of learning. NS is 200 to avoid the system to never reach the goal.
This number is much higher that optimal number of steps to reach the goal. When each
experiment begins, the pl

dld2 in QFCSs and the Q-values of Q-learning are also set up
at random in [0,10]. 10 is the maximum reward possible.
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Figure 7.21: a. Initial State of the QFCS with fixed fuzzy sets in Particle^, b. Initial
State of the QFCS with unfixed fuzzy sets in Particle^, c. Initial State of Q-learning
in Particle^.
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Figure 7.22: Three instances of the QFCS with fixed fuzzy sets in Particle^0.

Figure 7.21 shows the vector fields in the initial conditions of the QFCSs and Q-
learning. These vector fields are of one dimension and represent the force. The vector
fields are represented as arrows that determine the directions of the vectors and with
colors in a gray scale to show their intensities. Thus, force is applied over the particle
to move it to right or left. These vector fields show how the classifiers really represent
random vector fields at the beginning.

Figure 7.22 shows 3 instances of QFCS with fixed fuzzy sets from an experiment
with 20 QFCSs. The vector fields are in the first row. The graphics of the number of
steps to reach the goal from each possible state xv are in the second row, represented in
a gray scale since they are two dimensional functions. The plots of the number of steps
to reach the goal from each possible state xv with v = 0 are in the third row. A number
of 20 in the number of steps to goal means either the system takes 20 steps or more to
reach the goal, or the system simply could not reach the goal at anytime. It can be seen
how QFCS learns the vector field that takes it to the goal. The learned vector field is
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Figure 7.23: Three instances of the QFCS with unfixed fuzzy sets in Particle^.

noisier, farther away from the goal and the line with v = 0. In the graph of number of
steps to goal against xv, it is shown how QFCS is capable of learning to reach the goal
from another initial state xv with v 7^ 0. This problem is more complex than the others
because the QFCS is not able to move in any arbitrary direction over the state space
xv since the particle has inertia. QFCS learns well how to reach the goal.

Figure 7.23 shows 3 instances of the obtained results with QFCS with the unfixed
fuzzy sets from an experiment of 20 QFCSs. As it is shown, QFCS with unfixed fuzzy
sets is also capable of learning the needed vector field but it has some problems in
regions far from goal. This is shown in the black regions of the plots of the second
row. Those regions mean that QFCS does not reach the goal in less than 20 steps if the
particle initiates from a point over those black regions. Those regions do not matter
because these states have velocities different from zero and the particle initiates with
zero velocity. However, if the particle has to pass through those states to finish the
task then the system fails in the task. Thus, it is more difficult to QFCS to learn the
vector field due to the unfixed fuzzy sets that introduce more complexity to the problem.
Nevertheless, QFCS does not perform too badly. In some parts, QFCS takes more steps
to reach the goal than the minimum needed.

Figure 7.24 shows 3 instances of Q-learning from an experiment of 20. As one
observes, the learned vector fields are similar to the ones learned by QFCSs. Q-learning
learns how to reach the goal in all of the state space xv.

Figure 7.25 shows the average of the obtained results by the QFCSs and the Q-
learning system. The first row shows the averaged vector fields learned by the QFCSs
and Q-learning. In the second row, there are the number of steps the agent makes to
reach the goal from each possible state (x, v). It is shown how QFCS with the unfixed
fuzzy sets has more dark regions than the QFCS with the fixed fuzzy sets, but Q-learning
has dark areas also. It means that the problem is not only complex for QFCSs but also
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Figure 7.24: Three instances of Q-learning in Particle*13.

for Q-learning. Figure 7.25.d shows how QFCS with fixed fuzzy set works better than
the QFCS with unfixed fuzzy sets. These numbers of steps in the average converge to
Q-learning's number of steps. Figure 7.25.e shows how QFCS with the unfixed fuzzy
sets converges noisier than the other QFCS, and both of the QFCSs converge similarly
to Q-learning.
7.7 The 2-Environment Problem: Particle^

Particle^ is a 2-Environment problem about the simulation of an inertial particle in one
dimension. The goal is to take the particle from a starting position to another through
a set of continuous forces. The particle can have negative velocities now. Therefore is
more complex than the other one before. The particular parameters used for QFCSs
with fixed and unfixed fuzzy sets and Q-learning are shown in Table 7.6. In Q-learning,
the axes Xi = x and #2 = v of space x^x^ai = xvF are discretized over 25 intervals
and the axes 01 = F is discretized over 10 intervals. Thus the Q-learning table for the
Q-function is of 25 x 25 x 10 in this problem. This occurs because of the convergence
of Q-learning. The size of the population is 800 which gives about 50 classifiers per
activation region since there are 4 x 4 = 16 due to c = 4. S0 and QGA were adjusted by
experimentation. NT is high to show convergence of learning. N$ is 200 to prevent the
system from never reaching the goal. This number is much higher than optimal number
of steps to reach the goal. When each experiment begins, the pl

did2 in QFCSs and the
Q-values of Q-learning are also set up at random in [0,10]. 10 is used because it is the
maximum value obtained by reward.

Figure 7.26 shows the vector fields in the initial conditions of the QFCSs and Q-
learning. These vector fields are also of one dimension. Therefore, the vector fields are
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Figure 7.24: Three instances of Q-learning in Particle*13.

for Q-learning. Figure 7.25.d shows how QFCS with fixed fuzzy set works better than
the QFCS with unfixed fuzzy sets. These numbers of steps in the average converge to
Q-learning's number of steps. Figure 7.25.e shows how QFCS with the unfixed fuzzy
sets converges noisier than the other QFCS, and both of the QFCSs converge similarly
to Q-learning.
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the axes Xi = x and #2 = v of space x^x^ai = xvF are discretized over 25 intervals
and the axes 01 = F is discretized over 10 intervals. Thus the Q-learning table for the
Q-function is of 25 x 25 x 10 in this problem. This occurs because of the convergence
of Q-learning. The size of the population is 800 which gives about 50 classifiers per
activation region since there are 4 x 4 = 16 due to c = 4. S0 and QGA were adjusted by
experimentation. NT is high to show convergence of learning. N$ is 200 to prevent the
system from never reaching the goal. This number is much higher than optimal number
of steps to reach the goal. When each experiment begins, the pl

did2 in QFCSs and the
Q-values of Q-learning are also set up at random in [0,10]. 10 is used because it is the
maximum value obtained by reward.

Figure 7.26 shows the vector fields in the initial conditions of the QFCSs and Q-
learning. These vector fields are also of one dimension. Therefore, the vector fields are
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Figure 7.25: a. Average over 20 runs of the force and number of steps to goal against
xv obtained by QFCS with fixed fuzzy sets. b. Average over 20 runs of the force
and number of steps to goal against xv obtained by QFCS with unfixed fuzzy sets. c.
Average over 20 runs of the force and number of steps to goal against xv obtained by
Q-learning. d. Average over 20 runs of the number of steps to goal with v = 0 against
x in Particle*0. e. Average over 20 runs of the number of steps to goal against trials in
Particle*0.
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Figure 7.26: a. Initial State of the QFCS with fixed fuzzy sets in Particle^, b. Initial
State of the QFCS with unfixed fuzzy sets in Particle^, c. Initial State of Q-learning
in Particle\D.



124 CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.27: Three instances of the QFCS with fixed fuzzy sets in Particle^0.

also represented as arrows that determine the directions of the vectors and with colors
in a gray scale that determine their intensities. These vector fields show how initially
the classifiers really represent random vector fields.

Figure 7.27 shows 3 instances of QFCS with fixed fuzzy sets from an experiment
with 20 QFCSs. The vector fields are in the first row. The number of steps to reach the
goal from each possible state xv are in the second row represented in a gray scale since
they are two dimensional functions. The number of steps to reach the goal from each
possible state xv with v = 0 are in the third row. A number of 20 in the number of steps
to goal also means that the system takes 20 steps or more to reach the goal, or that
the system simply could not reach the goal at any time. The learned vector field is also
noisier, far from the goal and the line with v = 0. This is shown by the dark areas in
the second row. These areas are in states with v ̂  0 in its majority but they are in the
line with v = 0 in some instances like the one that is in the left of the goal. The third
row shows this with more clarity. Close to goal, QFCS does not learn how to reach the
goal. But it is not always since there are instances where QFCS has learned. Particle^
is more complex than Particle^ because of the allowing of negative velocities. QFCS
learns well how to reach the goal when it learns.

Figure 7.28 shows 3 instances of the obtained results with QFCS with the unfixed
fuzzy sets from an experiment of 20 QFCSs. QFCS with unfixed fuzzy sets can learn
a better needed vector field to reach the goal against QFCS with the fixed fuzzy sets.
Regions where QFCS does not learn the solution are smaller than with the other QFCS.
These regions are similar to small circles. The space xv is also almost learned. This
means that, in this case, the freedom of letting the GA learn the activation regions of
the classifiers works better.
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Table 7.6: Particular parameters in Particle^0.
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Figure 7.29: Three instances of Q-learning in Particle^.

Figure 7.29 shows 3 instances of Q-learning from an experiment of 20. As it can
be observed, the learned vector fields are similar to the ones learned by QFCSs but
less noisy. Q-learning learns how to reach the goal in all of the state space xv. There
are some instances where Q-learning has dark regions. These dark region means that
Q-learning takes more steps than the normal. This shows that Q-learning also has
difficulties with this problem and remarks the complexity of the problem.

Figure 7.30 shows the average of the obtained results by the QFCSs and the Q-
learning system. The first row shows the averaged vector fields learned by the QFCSs
and Q-learning. In the second row, there are the number of steps the agent makes to
reach the goal from each possible state ( x , v ) . It is shown how QFCS with the unfixed
fuzzy sets has more dark regions than the QFCS with the fixed fuzzy sets, but Q-learning
has dark areas also. It means that the problem is not also complex for QFCSs but for
Q-learning as well. Figure 7.25.d shows how QFCS with fixed fuzzy set works better
than the QFCS with unfixed fuzzy sets. These numbers of steps in the average converge
to Q-learning's number of steps. Figure 7.25.e shows how QFCS with the unfixed fuzzy
sets converges noisier than the other QFCS, and both of the QFCSs converge similarly
to Q-learning.

The first row shows the averaged vector fields learned by the QFCSs and Q-learning.
Note how QFCS with unfixed fuzzy set has a vector field better defined than the other
QFCS. In the second row, there are the number of steps the agent makes to reach the
goal from each possible state (x, v). QFCS with fixed fuzzy sets has more dark areas
than the one with the unfixed fuzzy sets and Q-learning. But Q-learning has also more
dark areas than QFCs with unfixed fuzzy sets that are presented as small black lines.
Figure 7.30.e shows the average of the number of steps taken initiating with velocity
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zero. It shows how QFCS with fixed fuzzy set has problems also close to the goal.
Finally, Figure 7.30.e shows how QFCS with the fixed fuzzy sets converges noisier than
the other QFCS, and both of the QFCSs converge similar to Q-learning.
7.8 General Discussion

Results showed that QFCS is capable of dealing with the frog problem and the five
instances of the n-Environment problem. The performance was good compared with Q-
learning with a high discretization over the same problems. Consequently, it is important
to note that Q-learning cannot have the same high discretization for the two dimensional
problems because it does not converge anymore. Furthermore, not all of the problems
were easy for Q-learning, like the particle problems. The advantage of QFCS against
Q-learning is that of dealing with continuous actions, because in a task where a high
discretization is needed Q-learning will not converge. By the contrary, to QFCS this is
natural. Another point is that Q-learning with problems of high dimensionality needs
a table bigger in dimension and therefore the elements will increase exponentially, for
example, if there are n = 2 input variables and m = 2 input variables and NE = 100
elements of discretization per dimension then the number of elements needed in the
table will be

(NE)n+m = 1002+2 = 100,000,000 (7.3)

while with QFCS, it would be

N(dn) = 800(52) = 20,000 (7.4)

where N is the number of the population and d is the size per dimension of the prediction
hyper-matrices. This makes a huge difference specially with higher dimensions. Thus,
QFCS simplifies the learning of the Q-function and it is worthwhile to continue this
research in this matter. Another way of representing the Q-values instead of using the
hyper-matrices could be by using linear functions given by dot vector products between
the input vector and some weight vector as it is done in XCSF. These linear functions
approximates the Q-function by hyper-planes. This approach could make QFCS learn
by accuracy as XCSF does, and this would reduce drastrically the elements needed to
approximate the Q-function.

The navigation task in one dimension shows that both QFCSs can follow, with
their classifiers, the curvature of the optimal solution. Therefore, the parameter of
curvature c = 4 in the QFCS with fixed fuzzy sets works well. In the other QFCS, the
one with the unfixed fuzzy sets, the GA was able to find out the adequate activation
regions to follow the curvature of the optimal solution. This supposition also works well
with the navigation in two dimensions. This is suggested by the obtained results where
QFCSs learned sub-optimal solutions. Obviously these problems are more complex than
the simple navigation task in one dimension since they introduce not only one more
dimension in the states but also one more dimension in the actions. Another point is
that the introduction of the QFCS with unfixed fuzzy sets was to avoid the problem of
having to sintonize the parameter c but the results showed that the introduction of the
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zero. It shows how QFCS with fixed fuzzy set has problems also close to the goal.
Finally, Figure 7.30.e shows how QFCS with the fixed fuzzy sets converges noisier than
the other QFCS, and both of the QFCSs converge similar to Q-learning.
7.8 General Discussion

Results showed that QFCS is capable of dealing with the frog problem and the five
instances of the n-Environment problem. The performance was good compared with Q-
learning with a high discretization over the same problems. Consequently, it is important
to note that Q-learning cannot have the same high discretization for the two dimensional
problems because it does not converge anymore. Furthermore, not all of the problems
were easy for Q-learning, like the particle problems. The advantage of QFCS against
Q-learning is that of dealing with continuous actions, because in a task where a high
discretization is needed Q-learning will not converge. By the contrary, to QFCS this is
natural. Another point is that Q-learning with problems of high dimensionality needs
a table bigger in dimension and therefore the elements will increase exponentially, for
example, if there are n = 2 input variables and m = 2 input variables and NE = 100
elements of discretization per dimension then the number of elements needed in the
table will be

(NE)n+m = 1002+2 = 100,000,000 (7.3)

while with QFCS, it would be

N(dn) = 800(52) = 20,000 (7.4)

where N is the number of the population and d is the size per dimension of the prediction
hyper-matrices. This makes a huge difference specially with higher dimensions. Thus,
QFCS simplifies the learning of the Q-function and it is worthwhile to continue this
research in this matter. Another way of representing the Q-values instead of using the
hyper-matrices could be by using linear functions given by dot vector products between
the input vector and some weight vector as it is done in XCSF. These linear functions
approximates the Q-function by hyper-planes. This approach could make QFCS learn
by accuracy as XCSF does, and this would reduce drastrically the elements needed to
approximate the Q-function.

The navigation task in one dimension shows that both QFCSs can follow, with
their classifiers, the curvature of the optimal solution. Therefore, the parameter of
curvature c = 4 in the QFCS with fixed fuzzy sets works well. In the other QFCS, the
one with the unfixed fuzzy sets, the GA was able to find out the adequate activation
regions to follow the curvature of the optimal solution. This supposition also works well
with the navigation in two dimensions. This is suggested by the obtained results where
QFCSs learned sub-optimal solutions. Obviously these problems are more complex than
the simple navigation task in one dimension since they introduce not only one more
dimension in the states but also one more dimension in the actions. Another point is
that the introduction of the QFCS with unfixed fuzzy sets was to avoid the problem of
having to sintonize the parameter c but the results showed that the introduction of the
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GA to solve this sintonization, since it is the GA which evolves the activation regions,
does not offer any advantages over the manual sintonization.

Parameter d = 5 demonstrated to be enough to represent the Q-function according
to results of the experiments. Higher values of this makes QFCS not work because there
would be many Q-values to learn. Lower values could be not enough to represent the
Q-function.

The particle problems were the most difficult ones because of the inertia. However,
one QFCS showed to work better in one particle problem and the other QFCS showed
to work better in the other particle problem. This means that in this kind of problems
there are many subtle details that determine if the GA would evolve well the activation
regions or the parameter c = 4 would work better.

Another point is that the difficulty of the problem was in the transition function.
QFCS does not care which transition function is used, since what it matters is the
transition, and it is that transition that makes QFCS have difficulties to solve the
problem.
7.9 QFCS against other approaches
It is clear that, similarly to what has been done with Q-learning, a corresponding dis-
cretization of the problem could be given to XCS or XCSF. The problem with doing
this is that rules in XCS or XCSF relate a set of states of the problem with one action.
Therefore, a high discretization would make XCS to have too many rules to be accept-
able, specially in the problems where a vector field is requiered. For example in the
navigation task in two dimensions the action was a continuous two dimensional vector.
A discretization of NE = 100 elements per dimension would give

(NE)m = 1002 = 10,000 (7.5)

Therefore, with 10,000 classifiers at least there is one classifier per possible action. It
is needed at least more than one classifier per action because XCS learns the complete
Q-function. In simple problems where XCS was tested the population was about 2000
classifiers. This means that using XCS or another classifier to compare with QFCS
would require a lot of resources. This also shows how continuous problem as the n-
Environment need better algorithms that are not based on discretization of the actions
like Q-learning, XCS or XCSF. Thus, QFCS does not have that problem and that is an
advantage.

The fuzzy classifier like those of Valenzuela's FCS and Parodi and Bonelli's FCS
can also deal with the frog problem. This has not been tested yet but in principle they
can. The frog problem is simple for these approaches since it is a single step problem.
But, for more complex problems like the multi-step ones these FCSs seem not to be
capable of dealing with. This is because all of the classifiers form a fuzzy system that
represent a function. Thus the function has to change in its forms slowly until it reaches
a solution. But it needs reward at each time to make possible this good changes in
the form of the function. It is not clear at all if giving only reward in the goal these
approaches would work. Therefore, QFCS has that advantage over these FCSs in using
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the form of the function. It is not clear at all if giving only reward in the goal these
approaches would work. Therefore, QFCS has that advantage over these FCSs in using
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Q-learning to learn by reinforcement. This allows QFCS to learn the task only receiving
reward in the goal.

Bonarini's approach introduces by the contrary Q-learning. Thus it can model
continuous output variables and learning by reinforcement. But the approach is different
from the other FCSs. Bonarini's FCSs form sets of classifiers that match different
internal fuzzy states. Thus taking one classifier from each set is form a fuzzy system,
another selection of the classifiers taken form another fuzzy system and so fourth. In
this way, Bonarini's FCS is finding out combinations of fuzzy rules that can form fuzzy
system to form the problem. In that manner, there could be many fuzzy systems that
solve the problem not only one. This approach has the disadvantage of using only one
value per fuzzy rule to approximate the Q-function. This is not good because each rule
forms part of many other different fuzzy systems and with those that simple value is
not enough. QFCS is finding out fuzzy systems that can solve the problem intead of
looking fuzzy rules to form them. With this and with the introduction of a hyper-matrix
is capable of learning the Q-function more precisely. Thus, QFCS and Bonarini's FCS
solve the problem using many fuzzy systems not only one as the other FCSs. QFCS
solved problems where the reward was given only in the goal states while Bonarini's
FCS has only been tasted in problems where the reward is given at each time.
7.10 Summary

Experiments were done to test the performance of QFCS. It was used a methodology
similar to the common used in LCSs literature. This methodology consists of reporting
averaged results. The averages were taken using a sampling of size 20. The important
variables to measure are the number of steps the system makes to reach the goal during
learning that measures the convergences in learning, the action function learned by the
systems that shows which action it takes in each possible state, and the number of steps
the agent makes from each possible state to reach the goal. The problems used to test
QFCS were:

• THE FROG PROBLEM. This problem was used to prove that QFCS can solve
it.

• WORLD^. In this problem both QFCS with the fixed fuzzy sets and QFCS
with the unfixed fuzzy set showed to have learned optimal solutions and with a
convergence of learning similar to Q-learning.

• WORLDf. In this problem both QFCS with the fixed fuzzy sets and QFCS
with the unfixed fuzzy set showed to have learned sub-optimal solutions and with
a convergence of learning similar to Q-learning. QFCSs also demonstrated to
minimize distance. Thus, the vector fields learned were smoother than the ones
obtained by Q-learning.

• WORLD^. QFCS with unfixed fuzzy set shows to have more difficulty in learning
the vector field than the other QFCS. Both QFCSs learned sub-optimal solutions.
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The performance of both QFCSs were similar to Q-learning. QFCSs also demon-
strated to minimize distance. The learned vector fields were smoother than the
ones obtained by Q-learning.

• PARTICLE*0. QFCS with the fixed fuzzy set shows to have better performance
than the other one.

• PARTICLE^75. QFCS with the unfixed fuzzy set shows to have better performance
than the other one.





Chapter 8

Conclusions

This chapter presents a summary of the dissertation with its implications, and the pos-
sible future directions to be followed to find better systems to solve multi-step problems
by reward with continuous state spaces and with continuous vector action fields.

8.1 Summary

QFCS was introduced as a new fuzzy classifier system. It uses Q-learning and fuzzy
logic as its internal representation. It was designed in two versions, one with fixed
fuzzy sets and the other one with unfixed fuzzy sets. The second is the generalization
of the first. QFCS is capable of solving the ra-Environment problem, which was also
introduced and is an abstract problem. This n-Environment problem is a multi-step
continuous task that is defined through a reward function. This continuous task is
defined over a continuous state space, with continuous vector action field, and with an
arbitrary transition function. Next is a summary of each QFCS.

• QFCS with fixed fuzzy sets. In QFCS, each classifier contains a small fuzzy
system (SFS), a matrix containing the expected prediction, and a fixed square
sub-region of activation over the input space. The classifiers can only act over
their sub-region of activation. In that sub-region of activation, each fuzzy system
proposes a continuous vector field as an action by defuzzification. In that way,
when an input vector enters the QFCS, classifiers compete to place their actions
according to their expected predictions. A Q-learning algorithm is used to learn
the task from the environment. This algorithm is used to change the values of
the matrices of the expected predictions for each classifier in the QFCS. A GA
is applied to evolve rules based on their average expected predictions. This GA
evolves only the action parts of the fuzzy systems.

• QFCS with unfixed fuzzy sets. QFCS with unfixed fuzzy sets is a generaliza-
tion of the QFCS with fixed fuzzy sets. Therefore, it works similarly to the one
described before but with a few simple modifications. These modifications have
something to do specifically with the activation regions of the classifiers that are
not fixed any more, with the Learning Component where it is necessary to make
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a normalization of prediction values used by the Genetic Algorithm, and with the
Genetic Algorithm that is applied now to both the condition and the action parts
of the classifiers.

These QFCSs were applied to six different instances of the n-Environment problem
called: The Prog Problem, World^, World*0, World*0, Particle^ and Particle^.

• The Frog Problem is about a frog that has to jump once to catch a fly. It
is a one-step task in a continuous one dimensional state space with a continuous
one dimensional action. The Prog Problem is tackled in literature with classifier
systems.

• World*0 is a one dimension navigation task. It is a multi-step task in a continuous
one dimensional state space with a continuous one dimensional action. The main
remark in this problem is that it does not have a function as solution but a region.
QFCS is capable of obtaining an optimal solution.

• World*0 and World*0 are two dimension navigation tasks. The first is without
obstacle and the second with them. They are multi-step tasks in continuous two
dimensional state spaces with continuous two dimensional action fields. These
problems also do not have one optimal solution but many since the solutions are
vector regions not a vector functions. QFCS find suboptimal solutions in these
problems.

• Particle*0 and Particle1,0 are more realistic problems. They have something to
do with the movement of an inertial particle in one dimension. The first simulates
a particle that begins from the rest state and can move only in one direction. It
can accelerate and desaccelerate and has to reach another region with velocity
almost zero. The second is similar but the particle is allowed to move in both
directions. These problems are multi-step tasks in continuous two dimensional
state spaces with continuous one dimensional actions. QFCS with fixed fuzzy sets
showed to work better than the other and vice versa according to the problem.

All of the results obtained with the QFCSs were compared with the ones obtained
by Q-learning using high discretizations of the continuous state-action spaces and the
continuous action vector fields.

8.2 The Main Essence of QFCS

It was shown how the key ingredient of QFCS is the use of hyper-curves in the state-
action space of the problem. These hyper-curves are the domain of the Q-function.
The approach is to learn the Q-function over these hyper-curves and evolve them to
obtain ones that are in the regions of the state-action space where the Q-function is
maximal. To do this, the classifiers incorporate a fuzzy system with a few fuzzy rules
and hyper-matrices.
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8.3 Implications

The traditional approach used in Fuzzy Classifier Systems (PCS) is changed in QFCS.
QFCS does not use fuzzy rules as classifiers but complete fuzzy systems as classifiers.
These fuzzy systems are the simplest possible. Thus, it is possible to associate contin-
uous states with continuous actions. This suggests the connection with other possible
representations different to fuzzy logic.

The introduction of Q-learning, makes QFCS capable of solving tasks by reinforce-
ment. The Q-values are learned by the classifiers through their prediction matrices.
This is also different from the traditional approach because QFCS approximates the Q-
values over all of the hyper-surface while in the traditional FCSs one value is learned per
fuzzy rule. Classifiers in QFCS compete as in traditional Learning Classifier Systems
(LCS) and use an average of the Q-values as strength. This approach is different to the
one used in XCSF where the accuracy is used. QFCS have showed to solve multi-step
problems where continuous action vector fields are needed while XCSF has not been
tested.

Due to the continuous nature of the n-Environment problem, QFCS could be ap-
plied to many real life problems, for example: in control problems, because they are
defined on continuous state spaces. The advantage of QFCS is to have a system that
can learn a task without prior knowledge of the transition function of the task (because
the n-Environment problem does not define a particular transition function but an ar-
bitrary one) and that can learn at the same time while acting in the task. Thus QFCS
does not matter which transition function the n-Environment is using. Obviously, there
are going to be tasks with transitions functions more difficult to QFCS than others, this
means that many problems can have the same continuous state-action space and this is
all QFCS needs.

8.4 Future Work

QFCS is a first step in the looking for new mechanisms to deal with problems like the n-
Environment. QFCS showed that the use of hyper-curves is a good approach for simple
continuous problems but with more realistic problems it does not work well. This needs
more research. Some ways could be:

• The hyper-curves could be changed by other forms not only by Fuzzy Logic Sys-
tems. Using the one used in XCSF [15] is faster when learning and acting since
they are hyper-planes. These hyper-planes would have the next form per classifier

0; = C^Xi + . . . + CinXn + bi: (8.1)

where Cij and 6, are constants and j € {1,..., n}.

Replacing the matrices by hyper-planes as in XCSF [15] and using a similar concept
that the accuracy could work. In this case, the classifiers will not evolve over those
regions where the Q-function is maximal any more. Instead, the Genetic Algorithm
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Input Fuzzy Sets

Figure 8.1: Curves generated by one classifier in combination with all of its close clas-
sifiers

(GA) evolves classifiers that represent the Q-values over all of the state-action
space. These prediction functions would have the next form per classifier Cli

Qi = + . . . + CinUn + 6; (8.2)

where QJ and 6j are constants and the variables Uj represent a parametization of
the hyper-surfaces of the fuzzy systems over the activation region as follows

(8.3)

Following the XCSF introduced in [28], the possible way would be to associate a
hyper-plane over the state-action space as the prediction of Q-values and use two
GAs. one to evolve classifiers and another one to evolve actions. This prediction
function would have the next form per classifier Cli over the activation region and
all of the action space

+ - . . cinxn] + . . . + dimam] + (8.4)

where Q , dn and 6; are constants.

It would be possible to make a new FCS where the classifiers are fuzzy rules and
cooperate based on QFCS. This approach is similar to Bonarini's FCS but without
the competition among fuzzy rules. Figure 8.1 shows the curves formed by one
classifier Cli with all of its neighbors. Each curve has to have a matrix prediction
as in QFCS. These matrices will be stored out of classifiers. The decision of taking
an action is similar than in QFCS. It takes the action that has the maximum pre-
diction value in the prediction matrix corresponding to the intersections between
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the input x0 and the curves formed by all of the matched classifiers. The fitness
Fi value of the classifier Clt will be

Fi = max{<te}, (8.5)

where ̂  is the average of the prediction values over the curve formed by the
classifiers Clk, Cli and Cli.
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