WSTITUTO TECMOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY

ESCUELA DE GRADUADOS

COMPARUCON DE DOS METODOS DE BUSOUEDA LHEAL EV PROBIEMS DE OPTMIZCON

IESIS
PRESENTADA COMO REQUISITO PARCIAL PARA OPTAR AL GRADO ACADEMICO DE VAESTRO EN CIENCIAS POR
GERMAN BARON MACIAS

INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY ESCUELA DE GRADUADO 8

Señor Director de la Escuela de Graduados:

La tesis elaborada por el señor ingeniero
GERMAN BARON MACIAS
COMPARACION DE DOS METODOS DE BUSQUEDA LINEAL
EN 'PROBLEMAS DE OPTIMIZACION

HA SIDO ACEPTADA COMO REQUISITO PARCIAL PARA OPTAR AL GRADO ACADÉMICO DE:

MAESTRO EN CIENCIAS
Especialidad en Investigación de Operaciones.

Sólo SE PODRÁN PUblicar los datos de esta tesis con autorización del Comité de la escuela de Graduados.

1ND1CE

CAP ITULO
SUMARIO 1
Il CONSIDERACIONES GENERALES. 4
I11 CONSIDERACIONES MULTIDIMENSIONALES.. 15
IV PROCESOS DE BUSQUEDA SOBRE UNA LINEA 25
V DESCRIPCION DE LOS METODOS MULTIDI- MENSIONALES 37
VI RESULTADOS 53
VII ANALISIS Y CONCLUSIONES 69
VIII RECOMENDACIONES 77
APENDICE 81
$B|B L I O G R A F| A$ 89
 1PAGINA
\square

SUMARIO

UNO DE LOS ASPECTOS IMPORTANTES EN LOS PROBLEMAS DE BÚSQUEDA DE ÓPTIMOS EN UNA FUNCIÓN DE VARIAS VARIABLES, CUANDO SE USAN MÉTODOS SEGUENCIALES DE DIRECCIONES FACTI-bLES, ES EL RELACIONADO CON LA LOCALIZACIGN DE EXTREMOS -EN UNA DIRECCIÓN LINEAL Y EN UN ESPACIO DE N DIMENSIONES.

ESTE SUB-PROBLEMA AL PROBLEMA ORIGINAL, REQUIERE EN MUCHOS CASOS GRAN PARTE DEL ESFUERZO COMPUTACIONAL NE-CESARIO Para poder llegar a una solución.

EL PROPÓSITO DE ESTE TRABAJO, ES LA OBSERVACIÓN - de los efectos que tiene el uso de dos metodos diferentes de búsqueda a lo largo de una línea.

El PRIMERO DE ELLOS, DESARROLLADO POR DAVIES, SWANN Y CAMPEY, Y EL SEGUNDO CORRESPONDIENTE A UN MÉTODO COMBI-NADO CUYA FASE INICIAL ES SIMILAR A LA DEL PROCEDIMIENTO ANTERIOR PERO CON UNA FASE FINAL DE LOCALIZACIÓN DE EXTRE~ MO, POR EL MÉTODO GOLDEN-SEARCH.

La JUSTIficación y presentación detallada de estos MÉTODOS, ASí COMO LOS ALGORITMOS QUE LOS CONTIENEN, SE - presenta en el texto de este trabajo.

De las pruebas realizadas, se lograron conclusiones PARCIALES, QUE INDICABAN QUE EL PRIMERO DE LOS METODOS PROPUESTOS ES MÁS CONVENIENTE QUE EL SEGUNDO. LAS CONCLUSIO-NES SON PARCIALES EN EL SENTIDO DE QUE SON EL PROOUCTO DE LOS RESULTADOS OBTENIDOS Y NO PUEDEN SER GENERALIZADOS, SIN ANTES COMPROBAR UNA GRAN VARIEDAD DE SITUACIONES.

$$
C A P \mid T U L O \quad 1
$$

$1 N T R O D U C C 1 O N$

1.1.- ENFOOUE Y CONSIDERACIONES GENERALES.

La optimización de funcionales con o sin restriccio nes constituye el problema central de la programación mateMÁTICA.

Un problema de búsqueda, trata de determinar median te algún procedimiento, un conjunto de valores de las va- riables independientes y un valor asociado del funcional, donde se cumple la condición de tener un valor máximo o - mínimo del mismo.

La determinación de métodos que permitan determinar SOLUCIONES A LOS PROBLEMAS de optimizacion, ha dado lugar a la creación de la programación matemática que proporcio-NA LOS FUNDAMENTOS TEÓRICOS Y AÚN PRÁCTICOS PARA EL aNÁLI-sis de una gran variedad de situaciones.

Se puede dividirel desarrollo teórico de la optimi zación, en categorías de acuerdo a su complevidade problemas de tipo lineal, cuya solución por métodos algoritmicos está claramente definida y generalizada. La programacióncuadrática, o sea aquella que tiene como proposito la soluCIÓN DE PROBLEMAS CON FUNCIÓN OBUETIVO CUADRÁTICA Y RESTRIC ciones lineales, se puede considerar como un paso superior en la escala a la cual nos estamos refiriendo. Se ha logra do en Esta un gran avance en lo que se refiere a análisis -
tebrico y métodos domputacionales.

La siguiente fase, mucho más compleja que las ante-riores, Comprende la optimización de func ionales no lineales, CON O SIN RESTRICCIONES DEL MISMO tipo. DENTRO de ESta ca-tegoría se incluyen métodos de características muy diversas entre los cuales se podrían mencionar: procedimientos de -búSQUEDA AL AZAR, POR DIRECCIONES fACTIBLES, MÉTODOS DIREC- tos, etc. (11, 9, 4). EN este trabajo se considera el pro-blema de un funcional no lineal sin restricciones.

Se consideran en este trabajo, métodos de optimiza-CIÓN PARA FUNCIONALES SIN RESTRICCIONES, PUES EL ENFOQUE GEneral de los procedimientos que consideran funciones restric tivas es el de tratar de convertir el problema en uno sin -restricciones, haciendo que el efecto de éstas sea cada vez MENOR.

AL usar un método de tipo directo, en la optimización de funcionales, o sea, un procedimiento donde a partir de un pUNTO INICIAL SE REALIZAN MOVIMIENTOS TENDIENTES A MEJORAR esta primera aproximación al bptimo, se encuentra el problema de hallar el punto extremo del funcional a lo largo de -una dirección lineal, esto es, se busca un valor λ tal que
 el Vector dirección.

Este problema es uno de los más importantes, ya que CONSTITUYE POR SUS CARACTERÍSTICAS UN SUB-PROBLEMA DE OPTImización. Es en esta fase del problema donde la unimodalindad se hace menos evidente, pues el proceso usado general-MENTE ES EL DE CONVERTIR EL FUNCIONAL EN UNA FUNCión de - -
una sola variable, sobre cuya forma y características es difícil concluir algo con anticipación.

Se trata de observar las diferencias que se producen EN EL ASPECTO COMPUTACIONAL AL USAR DOS MÉTODOS DE BÚSQUEDA linealg la influencia del tamã̃o oe paso empleado en la solUCión de un problema, númerc de iteraciones necesarias, diferencias en las soluciones obtenidas, mayor o menor número de evaluaciones del funcional, son los criterios de compa--ración utilizados.

El capítulc |l, comprende el desarrollo matemático general y las suposiciones y conceptos básicos de los proble mas de localización de puntos extremos.

El capítulo $\|\|$ presenta diversas consideraciones -SOBRE ESPACIOS mULTIDIMENSIONALES Y problemas CONVEXOS, así COMO CONDICIONES DE OPTIMALIDAD EN LOS MISMOS.

El capítulo iv contiene la explicación de los métodos de búsqueda lineal; los algoritmos multioimensionales se explican en el capítulo v.

La parte correspondiente a la implementación y análí sis de resultados se incluyen en un apéndice y el capítulo VIIrespectivamente. Los programas de gomputador y diagramas de flujo forman el contenido del apéndice.

$$
\text { CAP I TULO } 11
$$

CONSIDERACIONES GENERALES

2.1.- PROCEDIMIENTO DE BUSQUEDA.

Los planes de búsqueda se pueden clasificar en dos ¢ A TEGORÍAS PRINCIPALES\& DIRECTOS E INDIRECTOS.

Un procedimiento en el cual se especifica la localización de cada experimento antes de que se conozca cualquier resultado se denomina indirecto.

El plan de búsqueda directo permite al experimentador basar los próximos experimentos en resultados anteriores. En el caso de que no se conozca una relacion o historia del comportamiento de un sistema, todo lo que el investigador puede hacer es tomar medioas aleatoriamente; por lo general siem-pre se sabe algo o se pueden hacer ciertas suposiciones de -tal manera que la situación de incertidumbre se reduzca.

MÉTODO INDIRECTO CLÁSICO.
Los métodos usados actualmente en problemas de opti-mización son del tipo directo generalmente. Esto es, se asume un valor inicial y mediante un proceso logico se va mevoran do hasta lograr el oftimo.

Entre las principales técnicas usadas, ya bien sean del tipo directo o indirecto, se encuentran las siguientes Enumeración exhaustiva, acercamiento diferencial, indirecto, direcciones factibles. (13)

ENUMERACIÓN EXHAUSTIVA.

EL MÉTODO, CONSISTE EN LA PRUEBA DE TODOS LOS VALORES POSIbles de LOS VARIABLES INDEPENDIENTES, DENTRO DE -SUS RESPECTIVOS RANGOS, E IR GUARDANDO EL VALOR MÁXIMO DEL FUNCIONAL PARA LOS POSIBLES VALORES. EL MÉTODO NO EXAMI-NA CONDICIONES DEL FUNCIONAL; SGLO CONSIDERA EVALUACIO- NES DEL MISMO.

El método es teóricamente el más simple pero gene-ralmente es el menos aconsejado, debido al gran volumen de ćálculos requeridos. Recibe también el nombre del "método de fuerza brutal, y sólo se recomienda en el caso de un -problema cuyo número de combinaciones posibles es muy pe-QUEÑo COMPARADO CON La VELOCidad de las facilidades de com putación. EL óptimo se localiza cuando no se puede encon-trar un valor mayor (o menor) que el guardado como bptimo hasta ese momento.

ACERCAMIENTO DIFERENCIAL.

La idea de resolver problemas de optimización usando técnicas diferenciales, ha sido usada extensivamente y su desarrollo se debe al matemático Kepler (14), quien notó en sus cálculos astronómicos que las diferencias entre Los valores sucesivos de una variable dependiente, calcu-Ladas a espaciamientos iguales de la variable independiente, tendían a desaparecer cerca del optimo.

Fermat (14) basado en las experiencias de Kepler -desarrollo un método para hallar puntos optimos interiores de funciones continuas. SU razonamiento aunque poco fun-damentado matemáticamente constituía la solución diferen--

CIAL ACTUAL DEL PROBLEMA, QUE CONSISTE EN HALLAR DERIVA- DAS PARCIALES CON RESPECTO A CADA UNA DE LAS VARIABLES, $-=$ IGUALANDO LAS ECUACIONES RESULTANTES A CERO Y RESOLVIENDO EL SISTEMA DE ECUACIONES.

EL MÉTODO INDIRECTO, NO EXAMINA CONDICIONES NI REALIZA ENSAYOS; LA SOLUCIGN SE OBTIENE DE LA SOLUCIGN DEL SISTEMA DE ECUACIDNES GENERADO A PARTIR DEL FUNCIONAL EN ESTUDIO. SI ESTE TIPO DE POL\{TICA PUEDE SER USADO EN LASOLUCIÓN DE UN PROBLEMA, SIN QUE EL GRADO DE COMPUTACIONSEA EXCESIVO, DEBE PREFERIRSE A CUALQUIERA DE LAS TECNICAS DIRECTAS.

Los métodos de cálculo diferencial o que impliquen SOLUCION DE SISTEMAS DE ECUACIONES, SON DEL TIPO INDIREC-TO.

El método, es una extensión a varias variables del usado por fermat y en el se introduce la nocion of deriva DAS PARCIALES.

TAYLOR DEMOSTRÓ QUE SI C Q ES UNVECTOR DE DESVIA-CIONES PEQUEÑAS

$$
\vec{x}=\left(3 x_{1}, \ldots 0 x_{N}\right)
$$

La DIFERENCIA ENTRE $Y(X+\partial X) Y Y(X)$ LLAMAOACY ES- TÁ DADA EN EL PUNTOX POR LA SERIE

$$
\partial Y=\sum_{P^{\prime}}^{n}\left(\partial y / \partial x_{J}\right) \partial x_{j}+0\left(\partial x^{2}\right)
$$

Se puede probar que la expresión o(∂x^{2}) desaparece en el limite cuando $\partial \mathrm{X}_{\mathrm{J}}$ tiende a cero.

Si se considera una expresión que envuelve desvianciones finitas du」

$$
\Delta y=\sum\left(\Delta y / \Delta x_{J}\right) \Delta x_{J}
$$

La sumatoria expresa el producto vectorial de un -vector de desviaciones por el de derivadas parciales.

$$
\Delta Y=\nabla Y \Delta X
$$

Para el caso de desviaciones finitas o

$$
\partial Y=\nabla Y \Delta X
$$

Para desviaciunes infinitesimales.
básicamente, la politica indirecta, usa la propie-dad de que el valur del gradiente en el optimo es igual A cero.

La técnica indirecta es por lo general de difícil MANEJO, CUANDO EL FUNCIONAL ES UN POLINOMIO DE DRDEN MAYOR que 2, o contiene funciones trascendentales, ya que la obtención de una solución tiene como paso intermedio la reso lución de sistemas de ecuaciones simultáneas no lineales,lo cual trae consigo problemas bastante serios (Ver refe-rencia 13).

DIRECCIONES FACTIBLES. (15)

EL MÉTODO MÁS COMÚN DE OPTIMIZACIón ES AQUEL EN EL cual partiendo de un punto X_{k} mediante una aplicación D, hallamos una dirección ok

LUEGO haciendo una nueva aplicación m1 maximizamos la función obuetivo sobre segmento de la línea que pasa por X_{k} en la dirección D_{K}

$$
\text { El nuevo punto hallado } X_{k}+1 \text { es }
$$

$$
x_{k}+1=x_{k}+i_{k} D_{k}
$$

CON
$F\left(X_{K}+1\right)=\operatorname{MAX}\left(F\left(X_{K}+\lambda_{K} D_{K}\right)\right)$
Donde los limites del intervalo del parámetro k son infinito o un escalar; es importante este intervalo en el proceso de búsqueda lineal.

Expresando matemáticamente las aplicaciones D, M1 tenemos

$$
D: E^{N} \rightarrow E^{Z_{N}^{N}}
$$

Dado X nos conduce a la pareja $(X, \quad d) E E^{2 N}$ donde d es una dirección en E^{N} y cuya determinación depende del -algoritmo.

$$
M: \quad E^{2 N} \longrightarrow E^{N}
$$

Se define como

$$
M_{1}(X, D)=\left(Y \mid F(Y)=\operatorname{MAX}_{\lambda \in J} F(X+\lambda 0), Y=Y+\lambda_{0} 0\right)
$$

\checkmark es el intervalo de variación de λ.
PODEMOS HACER UNA COMPOSICION DE LAS APLICACIONES D, M

$$
A=M_{1} \quad D
$$

Para que el mapa a, sea cerrado cada uno de sus commPUESTOS DEBE SERLO, CON EL FIN DE LOGRAR LAS PROPIEDADES DE CONVERGENCIA REQUERIDAS PARA LOGRAR EL ACERCAMIENTO AL GPTIMO.

LEMA: SEAF, UNA FUNCIÓN CONTINUA, M ES CERRADO SI J ES UN INTERVALO CERRADO Y ACOTADO.

Prueba* sea

(A)
$(B) \quad\left(X_{K}, D_{K}\right) \rightarrow\left(X_{k}, D_{S}\right)$
$\begin{array}{ll}(B) & Y_{K} \in M \cdot\left(X_{K}, D\right) \\ Y_{K} \longrightarrow Y_{00}\end{array}$

DONDE EL SUBíNOICE INDICA CONVERGENCIA HACIA EL ÓPTIMO. SEA

$$
Y_{K}=X_{K}+\boldsymbol{\lambda}_{K} D_{K}
$$

DONDEX λ_{K} ES EL TAMAÑO ÓPTIMO DEL AVANCE SOBRE LA LÍNEA.

COMO $\lambda_{K} \in J$ Y COMO J ES CERRADO Y ACOTADO DEBE existir una subsecuencta convergente

$$
\lambda_{k} \rightarrow \quad \lambda_{\infty}
$$

AHORA, PARA CUALQUIER $\lambda \in J, F I J O$ POR LA DEFINICIÓN $D E \quad Y_{K}$.

$$
F\left(Y_{K}\right) \geqslant F\left(X_{K}+\lambda_{o_{k}}\right)
$$

y por la continuidad de f, podemos tomar limites obteniendo $F(Y: x)=L I M F\left(Y_{K}\right) \geqslant \operatorname{LIMF}\left(X_{K}+\lambda D_{K}\right)=F\left(X_{L i}+\lambda_{D_{x 2}}\right)$ esta ecuación vale para cualquierit y y dado y'

$$
F(Y \propto) \geqslant F\left(Y^{\prime}\right)
$$

Por otro lado, como y'e M, maximiza sobre todas las $\lambda \in U$

$$
F\left(Y^{\prime}\right) \geqslant F\left(Y_{x}\right)
$$

concluimos que

$$
Y_{0} \& M,\left(\begin{array}{ll}
X_{x} & 0
\end{array}\right)
$$

CONSIDERACIONES IMPORTANTES: (14)

UNIMODALIDAD.

Debido a que el problema de optimización consiste en determinar un punto extremo local o global, se requieren -CIERTAS CONDICIONES QUE DEBEN SER CUMPLIDAS POR EL FUNCIO-nal en la región de búsqueda.

La propiedad llamada de unimodalidad constituye la base central de todo problema de búsqueda lineal.

La propiedad de unimodalidad no requiere que la función sea del tipo suave (smooth), o aún que sea continua.

SI CONSIDERAMOS tres tipos de func iones unimodales se ve fácilmente que las restricciones impuestas por esta PROPIEDAD NO SON MUY FUERTES Y POR LO TANTO ASUMIR DICHA -

CONDICIÓN EN UN PROBLEMA DE BÚSQUEDA NO REPRESENTA UN GRA-VE RIESGO Y ES VÁLIDA EN UN GRAN NÚMERD DE CASOS.

FUNCIONES UNIMODALES

La definición formal de unimodalidad se puede expresar de la siguiente formaz

SEA la función

$$
Y=F\left(x_{1}(\lambda), x_{2}(\lambda), \ldots \ldots, x_{k}(\lambda)=F(\lambda)\right.
$$

Consideramos que la función obtiene su valor máximo (O MINIMO EN UN PUNTO QUE TIENE POR COORDENADA $\left(\boldsymbol{\lambda}_{m}\right)$ y SU valor es miesto es

$$
\begin{aligned}
M & =\operatorname{Max} Y(\lambda) \\
0 \quad Y(X M) & =M
\end{aligned}
$$

SEAN $\lambda_{1}, Y \lambda_{2}\left(\lambda_{1}<\boldsymbol{\lambda} 2\right)$ dos Valores del parámetro en el intervalo considerado. Entonces decimos que yes. UNIMODAL EN EL INTERVALO SI

$$
\lambda<\lambda_{m}
$$

IMPLICA QUE

$$
y\left(\lambda_{1}\right)<Y \quad\left(\lambda_{2}\right)
$$

Y S:

$$
\lambda_{\ldots}<\lambda_{1}
$$

$1 M P L I C A$

$$
y\left(\lambda_{1}\right)>y\left(\lambda_{2}\right)
$$

La definición de unimodalidad se puede formular en FORMA MÁS SIMPLE INTRODUCIENDO EL CONCEPTO DE TRAYECTORIA ESTRICTAMENTE CRECIENTE.

SI CONSIDERAMOS D, ${ }_{2}$, DALORES DEL PARÁMETRO $\lambda, Y \operatorname{CONLA}$ CONDICIÓN

$$
\lambda_{1}<\lambda_{2}
$$

SI SE CUMPLE QUE

$$
Y\left(\lambda_{1}\right)<Y\left(\lambda_{2}\right)
$$

SE dice que la trayectoria seguida es estrictamente CRECIENTE.

De esto podemos decir que una función y (X) es unimodal si para cada punto de la region de búsqueda existe una trayectoria creciente hacia el máximo X^{*}.

En el caso de que la región de búsqueda no sea unimodal sino multimodal, el punto de entrada a la búsqueda es un factor importante. Se pueden ojtener varios bptimds locales con la variación del punto inicial, pues las condiciones - -

DE OPTIMALIDAD SE CUMPLEN EN CADA UNO DE LOS EXTREMOS DEL FUNCIONAL.

UNA FUNCIÓN CON UNA CONFIGURACIÓN AGUDA O AFILADAPUEDE DAR LUGAR A SERIOS PROBLEMAS DEBIDO A LA EXISTENCIA DE RISCOS CUYA DEFINICIÓN Y EXPLICACIÓN SE VERÁ MÁS ADELANTE.

DEBIDO A LA EXISTENCIA DE ESTOS PROBLEMAS ES CONVE-NiENTE DEFINIR FUNCIONES FUERTEMENTE UNIMODALES.

Se llama funcional fuertemente unimodal aquel que - CUMPLE LA INDICACIÓN DE QUE CUALQUIER LíNEA RECTA DESDE - UN PUNTO DE LA SUPERFICIE, AL ÓPTIMO X ES UNA TRAYECTORIA creciente. En la siguiente figura se muestran tres funcio-m NES DE ESTE TIPD, DONDE LAS LÍNEAS REPRESENTAN GURVAS DE -Nivel.

ES NECESARIO MENCIONAR QUE EN UN FUNCIONAL CON UN - BUEN ESCALAMIENTO DE SUS VARIABLES INDEPENDIENTES, SE REDUCEN MUCHO LOS PROBLEMAS PUES LA INTERACCION DE LAS VARIABLES SE PUEDE REDUEIR O ELIMINAR AUN, CON UN ADECUADO CAMBIO DE ESCALA; ESTO HACE QUE SEA MUY CONVENIENTE EXAMINAR CUALQUIER PROBLEMA ANTES DE APLICAR UN METODO DE SOLUCIÓN DETERMINADO.

Una función del tipo (a) no ocurre muy frecuentemente por lo cual se puede hacer una nueva division que excluye funcionales de esa forma.

Definimos una funcional como linealmente unimodal SI es unimodal a lo largo de cualouier línea recta en la -región de búsqueda.

Una restriccion final para ciertas clases de funciones se logra definiendo el concepto de funciones cóncavas hacia abajo.

Un funcional de estas características es cóncavo hacia abajo a lo largo de cualquier línea en la región de bús queda, lo cual quiere decir que para dus puntos cualquiera A, B, el funcional cumple la condición.
$Y(A+\lambda(B-A)) \geqslant Y(A)+\lambda(Y(B)-Y(A))$

Donde i es el parámetro de la línea recta que pasa POR LOS PUNTOS A, B.

$$
\text { CAP I TULO } 111
$$

CONSIDERACIONES MULTIDIMENSIONALES

ANTES DE PRESENTAR LOS MÉTODOS DE BUSQUEDA, ES CON-VENIENTE CONOCER ALGUNAS CARACTERÍSTICAS SOBRE LOS ESPA- -CIOS N DIMENSIONALES, SU DEFINICIÓN Y CARACTERÍSTICAS, ASí COMO ALGUNAS CONSIDERACIONES QUE DEBEN TENERSE EN CUENTA -AL RESOLVER UN PROBLEMA DE BÚSQUEDA, DESDE SU INICIO, CON LAS EXPLORACIONES PREPARATORIAS, HASTA LA OBTENCION DE UNA SOLUCIÓN FINAL QUE REQUIERE VERIFICACIONES ADICIONALES POR LAS CONDICIONES ESPECIALES QUE PRESENTAN LAS DERIVADAS PARCIALES DEL FUNCIONAL EN LA VECINDAD DEL ÓPTIMO.
3.1.- HIPERESPACIOS. (2)

SE PUEDE DEFINIR UN ESPACIO VECTORIAL N-DIMENSIONAL SOBRE EL CAMPO DE LOS NÚMEROS REALES, EN LA SIGUIENTE FORMA\& SEAREL CAMPO DE LOS NÚMEROS REALES Y SEAV UN CON-JUNTO DE ELEMENTOS JUNTO CON UNA OPERACION DE SUMA, UNA-OPERACIÓN ESCALAR DE MULTIPLICACIÓN DE ELEMENTOS DE V POR elementos de R, que cumplen las condiciones:

$$
\begin{aligned}
& \text { 10.- SI } X, Y \in V(R) \text { ENTONCES } X+Y \& V(R) \\
& \text { 20.- SI } X, Y, Z \in V(R) \text { ENTONCES } \\
& (X+Y)+Z=X+(Y+Z) \\
& \text { 30.- EXISTE UN VECTOR } O \in V(R) \text { TAL QUE } \\
& 0+X=X+0=X \text { PARA TODO } X \in V(R) \\
& \text { 40.- PaRA TODO } X \text { \& } V(R) \text { EXISTE UNVECTOR-X }-V(R)
\end{aligned}
$$

TAL QUE

$$
x+(-x)=(-x)+x=0
$$

$$
\begin{gathered}
\text { 50.- PARA } X, Y \text { GV(R) SE CUMPLE QUE } \\
X+Y=Y+X \\
\text { 60.- SI } X \in V(R) Y \text { A ES UN NÚMERO REAL } \\
A X \in V(R) \\
\text { 70.- PARA A, B REALES Y } X \in V(R) \\
(A \text { B) } X=A(B X) \\
\text { 80.- PARA A, B REALES } \\
(A+B) X=A X+B X
\end{gathered}
$$

$$
\text { 90.- Para a real y } X, Y \in V(R)
$$

$$
A(X+Y)=A X+A Y
$$

$$
\text { 100.- } X=X \text { PARA TODO } X \in V(R)
$$

Un funcional de la forma

$$
Y=F\left(x_{1}, x_{2}, \ldots \ldots, x_{N}\right)
$$

se define como una hifer-superficie en un hiper-espacio

Se define un hipercontorno como la intersección de una superficie de respuestag que es el conjunto de todos -los valores de la variable dependiente para las posibles com binaciones de valores de las variables independientes, con un hiperflano donde y es una constante.

EL PROBLEMA DE OPTIMIZACIÓN DE HIPERFUNCIONES, ES -el de hallar puntos extremos de un func ional cuya forma - PUEDE SER Aún desconocida para el experimentador pero que puede ser probada para valores o eneadas que pertenecen - al ESPAC10.
3.2.- CONSIDERACIONES EN BUSQUEDA MULTIDIMENSIONAL.

LOS PROBLEMAS EN BÚSQUEDAS EN ESPACIOS N-DIMENSIO-nales, no se reducen solamente a un aumento en computación Con respecto a la búsqueda unidimensional.

Una de las mayores dificultades, es la que respecta a la definición de unimodalidad, debido a que se hace más difícil asggurar el cumplimiento de esta condición a medida que aumenta la dimension del espacio.

La medición del grado de efectividad del procedimien to de búsqueda empleado se hace más difícil, pues las condi ciones que son válidas en una dimensión no son fácilmente generalizables.

Existe una dificultad adicional que se relaciona con la extensión de los espacios n-dimensionales. Se refiere esta complicación a la forma como aumenta la extensión de una región factible cuando el número de variables indepen-dientes va creciendo.

3.3.- ESTRATEGIA MULTIDIMENSIONAL.

Según como se ha definido anteriormente, un problema de búsqueda consiste en encontrar, después del menor número de experimentos posibles, un conjunto de condiciones de ope RACIÓN QUE SEA BASTANTE CERCANO AL VALOR OPTIMO DEL FUNCIO-

NAL CONSIDERADO.

Geométricamente el problema consiste en realizar-m UNA SERIE DE MOVIMIENTOS, TAN RÁPIDO COMO SEA POSIBLE, SObre una superficie de respuesta, aunque ésta sea de caracTERÍSTICAS NO CONOCIDAS POR EL EXPERIMENTADOR.

DE ESTA FORMA, LOS PROPÓSITOS CENTRALES DE UNA BÚS-QUEDA, SE PUEDEN REDUCIR A: LOGRAR INFORMACION ÚTIL PARA-LA LOCALIZACION DE FUTUROS EXPERIMENTOS Y TRATAR DE ENCON-TRAR UNA BUENA APROXIMACIÓN AL ÓPTIMC. DURANTE EL PROCESO SE DEBE ESTAR DECIDIENDO CONTINUAMENTE ENTRE DOS ALTERNATIVAS: DESCENSO (O ASCENSC), E INSPECCIÓN. ES CLARO QUE UNA POLÍTICA ÓPTIMA NO SE DEBE LIMITAR A AVANZAR SIN EXAMINAR LAS CONDICIONES DEL PUNTO ACTUAL.

TODO PLAN DE GÚSQUEDA debe necestariamente comenzar CON UN EXAMEN DE CONDICIONES EN UN PUNTO INICIAL O DE EN- TRADA, QUE SE ESCDGE EN MUGHAS CCASIONES EN FORMA ALEATORIA.

Sigue a este proceso una segunda etapa o fase inter-MEDIA QUE EMPIEZA CON UN MOVIMIENTO MÁS RÁPIDO SOBRE LA RE-GIÓN.

La etapa finales aquella en la cual estamos cerca-DEL ÓPTIMO Y QUE REQUIERE INSFECCIÓN EXTENSIVA PARA LOGRAR UN MEJORAMIENTD DEBIDO A LAS CONDICIONES ESPECIALES DE LAS DERIVADAS PARCIALES. EL EXAMEN DE LA SITUACION EN ESTA FA-SE DEBE SER EXTENSIVO PARA ASEGURARSOS QUE EL PUNTO ES EN -REALIDAD UN EXTREMG, MEDIANTE LA APLICACIĆN DE LAS CONDICIONES DE OPTIMALIDAD.

En resumen se ha hablado de tres fases esenciales - (14) EN TODO PROCEDIMIENTO DE OPTIMIZACION. UNA FASE INICIAL

QUE SIRVE PARA DEFINIR UN PUNTO INICIAL SOBRE LA REGIÓN. SIGUE A ÉSTA UNA ETAPA INTERMEDIA QUE PROPORCIONA, DESPUÉS DE LA EXPLORACIÓN INICIAL, LOS PASOS PARA LLEGAR AL OPTIMO. Viene luego la fase final que permite verificar la existenCIA de un punto extremo.

La VASE INTERMEDIA COMPRENDE LOS ALGORITMOS EXPLICAdos en el Capítulo V.

3.3.1.- FASE INICIAL.

COMPRENDE EL PUNTO DE ENTRADA Y SÓLO DA INFORMACIÓN de la elevación en la superficie de respuesta y de qué maneRA NOS DEBEMOS MOVER PARA SITUAR EL GRUPO DE ENSAYOS INICIALES.

Para efectos de simplicidad, se va a considerar en EL SIGUIENTE DESARROLLO UN FUNCIONAL DE DOS VARIABLES. SE PARTE DE UN PUNTO INICIAL $X=\left(X_{O 1}, X_{O 2}\right)$ Y SE HALLA EL VA-LOR DE LA FUNCIÓN, YO. DEBIDO A LA POCA INFORMACIÓN QUE -BRINDA UN PUNTO, SE DEBE TRATAR DE CONOCER UNA ESTIMACIÓN DE LA PENDIENTE DE LA SUPERFICIE EN LA VECINDAD DE ESE PUNTO.

Para lograr esa estimación, se hace una nueva obserVACIÓN EN EL PUNTO $\left(X_{01}, X_{12}\right)$ DONDE LA PRIMERA COORDENADA ES LA MISMA QUE LA DEL PUNTO INICIAL Y LA SEGUNDA DIFIERE DE LA ORIGINAL POR UN PEQUEÑO INCREMENTO QUE DEPENDE DEL-MARGEN USADO PARA SEPARACIÓN ENTRE DOS SALIDAS.

Y es el valor de la función en este nuevo punto. UNA ESTIMACIÓN DE LA DERIVADA PARCIAL CON RESPECTO A X X_{1} ES EL SIGUIENTE:

$$
2 Y / \Delta X_{1} \cong\left(Y_{1}-Y_{0}\right) /\left(X_{11}-X_{01}\right)
$$

De La misma forma se pueden hacer estimativos para La derivada parcial con resfecto a X_{2}.

$$
z y / 0 x_{2}=\left(y_{2}-y_{0}\right) /\left(x_{22}-x_{02}\right)
$$

UNA VEZ CONOCIDAS LAS PENDIENTES dE LA SUPERFICIE de respuesta en las direccionex X_{1} y X_{2} se puede hallar La ecuación del plano tangente a la superficie en el punTO Yo Y qUE PASA ADEMÁS POR Y Y Y Y Y_{2}. La ECUACí́N de UN -PLANO EN TRES DIMENSIONES ES DE LA FURMA

$$
Y\left(X_{1}, X_{2}\right)=M_{0}+m_{1} X_{1}+m_{2} X_{2}
$$

DONDE MO, M_ Y M_{2} SON CONSTANTES.

La determinación de las constantes se logra mediante la solución de un sistema de tres ecuaciones simultáneas CON TRES INCÓGNITAS, PUESTO QUE LA ECUACIóN GENERAL PARA EL PLANO SE DEBE CUMPLIR PARA LOS TRES PUNTOS QUE HEMOS DETERMINADO.

Se puede resolver en forma más sencilla el sistema ANTERIOR SI SE HACE UNA TRASLACIÓN DE COORDENADAS, DEL ORIGEN AL PUNTO DE ENTRADA DE LA BÚSQUEDA. DE ESTA FORMA, SE DEFINE

$$
\begin{aligned}
& \Delta x_{11}=x_{11}-x_{01} \\
& \Delta x_{12}=x_{12}-x_{02} \\
& \Delta Y_{1}=Y_{1}-Y_{0}
\end{aligned}
$$

Esta traslación evita el cálculo de la cunstante mo

Se obtienen entonces expresiones de la forma

$$
\Delta y_{1}=m_{1} \Delta x_{11}+m_{2} \Delta x_{12}
$$

Debido a la característica de que en la búsqueda se mantuvo constante una de las coordenadas para cada exploración, SE OBTIENE

$$
\begin{aligned}
& m_{1}=\left(\Delta Y_{1} / \Delta X_{11}\right) \Delta\left(\partial Y / \partial X_{1}\right) \\
& M_{2}=\left(\Delta Y_{2} / \Delta X_{22}\right):\left(\lambda Y / \partial X_{2}\right)
\end{aligned}
$$

con lo cual se puede deducir una expresión para el plano tangente.

La fase inicial requiere por lo tanto tres ensayos Para determinar el plano de aproximación. Hay una condi-CIÓN PARA QUE EXISTA UNA SOLUCIÓN ÚNICA PARA LA M'S Y ES que los puntos no sean colineales.

La aproximación del funcional por medio de un plano coincide parcialmente con la aproximación de taylor

$$
\Delta Y=\left(\partial Y / c X_{1}\right) \Delta X_{1}+\left(\partial Y / \partial X_{2}\right) \Delta X_{2}+0\left(\Delta X^{2}\right)
$$

donde los términos de drden mayor que dos se desprecian.
La generalización del procedimiento anterior para -casos de más de dos variables es la siguiente:

SEAY=F $\left(x_{1}, x_{2}, \ldots ., x_{0}\right)$ UN FUNCIONAL CON K variables independientes.

$$
x_{0}=\left(x_{01,} x_{02} \quad, \ldots, x_{0 k}\right.
$$

es el punto de entrida para la búsqueda y con un valor - asociado del funcional, Yo.

$$
\begin{aligned}
& \dot{\Delta} x_{J}=x_{J}-x_{0 J} \\
& \dot{\Delta y}=Y-Y_{0}
\end{aligned}
$$

corresponden a la traslación de coordenadas.
Seam, la derivada (ay/ $\overline{X_{j}}$) en yo

La aproximación lineal de y enel punto yoes

$$
A Y=\sum_{d}^{M_{J}} x_{J}
$$

donde, para evaluar las constantes mes necesario realizar K ensayos además del inicial. Si como en el caso de dos dimensiones, se hace

$$
\Delta x_{1 J}=0 \quad \text { PARA TODO } 1 \neq J
$$

se obtienen las expresiones para m

$$
M_{1}=\Delta Y_{1} / \Delta x_{11} \quad 1=1,2, \ldots \ldots, k
$$

con lo cual se obtiene la ecuación del plano tangente a -la superficie en Yo.

La fase inicial comprende por lo tanto, una aproxima ción lineal para poder estimar la pendiente de la superfi-cie en el punto de entrada y poder tener un conocimiento -de la dirección hacia la cual se debe orientar la búsqueda.

3.3.2.- EASE FINAL.

Esta etapa del proceso de búsqueda, comprende una exploración de tipo local pero con ciertas consideraciones que dependen de la magnitud de las desviaciones o incremen tos definidos en la sección anterior.

La aproximación lineal es válida en la etapa ini- cial pero por lo general no se auusta a las exigencias de una región, en la vecindad del ótimo. Es por lo tanto -necesario realizar un acercamiento que comprenda terminos de orden mayor en la expresión para el funcional por el -desarrollo de Taylor.

Considerando el caso de dos variables independien-tes, se tiene

$$
\begin{aligned}
& \Delta Y=\left(\partial Y / \partial x_{1}\right) \Delta x_{1}+\left(\partial Y / \partial x_{2}\right) \Delta x_{2}+(1 / 2)\left(\left(\partial^{2} y / \partial x_{1}^{2}\right) \Delta x_{1}^{2}\right. \\
& \left.+2\left(\partial^{2} Y / \partial x_{1} \partial x_{2}\right)\left(\Delta x_{1}\right)\left(\Delta x_{2}\right)+\left(\partial^{2} Y / \partial x_{2}^{2}\right) \Delta x_{2}^{2}\right)+0\left(\Delta x^{2}\right) \\
& \text { DONDE LAS DERIVADAS PARCIALES SE EVALÚANEN Y }{ }_{0} \text {. }
\end{aligned}
$$

Si se denota

$$
m_{J K}=\left(\partial^{2} Y / \partial x_{J} \partial x_{k}\right)
$$

y se obtiene
$A Y=M_{1} A x_{1}+m_{2} \Delta x_{2}+(1 / 2)\left(m_{11} \Delta x_{1}^{2}+2 m_{12} \Delta x_{1} \Delta x_{2}+m_{2} \Delta x_{2}^{2}\right)$
donde las m's se obtienen mediante la realización de cinco EXPERIMENTOS.

Se hace el ajuste de tipo cuadrático cuando se em-plean métodos que no usan la información sobre derivadas parciales o su cálculo es difícil de hacer con el margen de exactitud requerido.

Esta folítica de auustar una función cuadrática --permite obtener una mejor informacióin de las condiciones de la función en las cercanías del óptimo y se auusta más a las características de curvatura existentes en la vecinoad de un extremo. La computación necesaria para auustar La expresí́n cuadrática, se ve compensada por la ventaua de estar logrando el obuetivo, teniendo en cuenta además que el número de exploraciones requeridas en la fase final, de acuerdo a la definición dada anteriormente, no es muy -grande comparado con el requerido para la fase media.

Este análisis supone que se cumple la condición -de unimodalidad. No es fácil determinar si esta característica se cumple. En muchos casos, lo que se hace es -tomar puntos iniciales al azar y examinar si siempre se llega al mismo valor bptimo, lo cual se trata de concluir el supuesto antes mencionado; esto es, la unimodalidad no es muy exigente en lo que al funcional se refiere, pero -la existencia de ella no es de fácil verificación.

$$
C A P \mid T U L O \quad 1 V
$$

PROCESOS DE BUSQUEDA SOBRE UNA LINEA

4.1.- CONSIDERACIONES GENERALES.

AL USAR MÉtODOS DIRECTOS DE OPTIMIZACIÓN BASADOS EN direcciones factibles, se determina la dirección de movi-miento, para luego hacer un avance de magnitud óptima en ESA DIRECCIÓN.

Se requiere entonces, realizar un desplazamiento -a partir del púnto de iteración actual en forma tal que -permita localizar el punto siguiente en la mejor forma posible haciendo que el acercamiento a la solución final sea RÁP 100 .

Existen diversos métodos de búsqueda lineal (9) - Siendo el más eficiente de ellos el de fibonacci. es el QUE logra la más rápioa reducción del intervalo de búsqueda, pero requiere la determinación anterior del número de ensayos que se van a hacer en el mismo.

El problema básico de la búsqueda de valores extre-mos, CONSISTE EN DETERMINAR UN INTERVALO DONDE SE ENCUENTRA el Valor óptino (asumiendo unimodalidad), para posterior- mente emplear alguna técnica de reducción que localice el extremo con la precisión requerida y con el menor esfuerzo COMPUTACIONAL POSIBLE.

Se puede de esta forma definir un proceso de bósqueda lineal, en forma general, como aquél que consta de las SIGUIENTES FASES:

$$
\begin{aligned}
& \text { A).- } \text { LOCALIZACIÓN DEL INTERVALO QUE CONTIENE EL } \\
& \text { OPTIMO. } \\
& \text { B).- DETERMINACIÓN DEL VALOR OPTIMO. }
\end{aligned}
$$

La mayor parte de los métodos conocidos para búsque da sobre una línea no incluyen como parte del proceso la primera fase por lo cual es necesario determinar con anterioridad el intervalo que contiene la solución. El prin-CIPIO básico, SI ES EN TODOS ELLOS EVitar la búSqueda - POR MÉTODOS EXHAUSTIVOS.

4.2.- METODO DE DAVIES, SWANN Y CAMPEY. (1)

EL PRINCIPIO báSICO del método es desarrollar un -procedimiento acelerado para la localización del interva-lo y una segunda fase donde se realizan interpolaciones -del tipo cuadrático.

El método procede en la siguiente forma: se evalóa la función en un punto inicial; se avanza luego en la di-rección de búsqueda una distancia igual al tamaño del paso y se evalúa la función en este nuevo punto. Si el valor de la función en este punto es menor o fgual que en el ante rior, se dobla el tamaño del paso y se hace un nuevo movi-miento. El proceso se repite hasta que el valor de la función aumenta, lo cual indica que existe un punto extremo.

Cuando se produce esta situación, se reduce el tamaत̃o de paso a la mitad y se hace una nueva evaluación de la función en un punto intermedio a los dos oltimos considerados. Esto produce cuatro puntos con igual espaciamiento -entre ellos; se elimina uno de ellos, escogiendo el menor y LOS dos adyacentes, queriendo significar por menor el - -
punto que corresponde a la ordenada o valor de la función, MÁS PEqUEÑO.

Un diagrama del avance del método para la primera -fase se representa en la figura.

Una aclaración importante es que si en el primer -avance no se cumple la condición de menor valor de la función, se debe realizar la exploración en la dirección contraria cambiando el signo del paso.

Como consecuencia de lo anterior, cuando los avan-ces iniciales en las dos direcciones son fracasos, se tiene en ese mumento el intervalo buscado en la primera fase y se puede pasar a la fase de reducción.

Se tienen entonces tres puntos x_{1}, x_{2}, x_{3} con sus CORRESPONDIENTES EVALUACIONES DE LA FUNCION $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$. Se auusta una cuadrática por estos puntos con lo cual se OBTIENE UNA FUNCIÓN DE LA FORMA

$$
H(U)=A U^{2}+B U+C
$$

QUE SE DEBE SATISFACER PARA CADA UNO DE LOS TRES PUNTOS -ANTERIORES DANDO LUGAR A UN SISTEMA DE ECUACIONES CON - - tres incógnitas.

EL VALOR OPTIMO DE U SE OBTIENE EN FORMA ANALÍICA POR DERIVACIÓN

DE DONDE

$$
\begin{align*}
H^{\prime}(U) & =2 A U+B=0 \\
U & =-B / 2 A \tag{4.2.3.}
\end{align*}
$$

Para el problema, existe una condición especial QUE ES LA IGUAL SEPARACIÓN ENTRE LOS TRES PUNTOS. La RELACión entre ellos está oada por

$$
\begin{aligned}
& x_{3}=x_{2}+S \\
& x_{1}=x_{2}^{+} S
\end{aligned}
$$

DONDE. S ES EL TAMAÑO DE PASO USADO EN EL Último avance

$$
\text { SI FORMAMOS EL SISTEMA DE ECUACIONES CON LOS } 3 \text { PUN- }
$$

TOS

$$
x_{1}, x_{2}, \quad x_{3}
$$

$$
\begin{aligned}
& F_{1}=A \times{ }^{2}+B \times{ }_{1}+B \\
& F_{2}=A \times{ }^{2}+B \times{ }_{2}+C \\
& F_{3}=A \times{ }^{2}+B+C
\end{aligned}
$$

SI SE HACE LA SOLUCIÓN EN FORMA PARAMETRICA, CON $x_{1}=0$: $x_{2}=T, \quad x_{3}=2 T$ SE OBTIENE AL RESOLVER EL SISTEMA.

$$
\begin{aligned}
& F_{1}=C \\
& A=\left(F_{1}+F_{3}-2 F_{3}\right) / 2 T^{2} \\
& B=\left(4 F_{2}-3 F_{1}-F_{3}\right) / 2 T=
\end{aligned}
$$

Despejando para u en (4.2.1.)

$$
U=T\left(3 F_{1}-4 F_{2}+F_{3}\right) /\left(2 F_{1}-4 F_{2}+2 F_{3}\right)
$$

Para comprobar que u es un minimo

$$
\cdot H^{\prime \prime}(U)=2 A>0 \Rightarrow A>?
$$

se deberá cumplir que

$$
F_{1} \neq F_{3}>2 F_{2}
$$

El oftimo de esta parábola está en un punto con -abcisa igual a $X_{2}+S_{m}$, donde S_{m} está oado por

$$
S_{M}=\frac{1}{2} S\left(F_{1}-F_{3}\right) /\left(F_{1}-2 F_{2}-F_{3}\right)
$$

El valor óptimo para u, obtenido mediante la soluCIón para a Y B, SE hace igual a:

$$
u=x_{2}+S_{M}
$$

de donde se obtiene la fórmula (4.2.2) para el factor de CORRECCIÓN.

La realización de un ciclo completo del proceso se Cumple con la terminación de las dos fases. En el caso de obtener un valor óptimo que no cumpla las necesidades de precisión, se inicia el proceso nuevamente en uno de los dos puntos $x_{2} 0 x_{2}{ }^{+} S_{M}$; Se escoge aquel que tenga menor valor de la función. Es necesario también al ini--
ciar un nuevo ciclo reducir el tamaño del paso.

El factor de reducción del intervalo no se puede hallar en forma general, fues depende del tamaño de paso UTILIZADO. ADEMÁS EL FACTOR DE CORRECCION S DEPENDE DE La función obuetivo oel problema.

4.3.- METODO COMBINADO.

TIENE COMO EL MÉTODO ANTERIOR DOS FASES. LA PRIMEra de ellas, localización del intervalo que contiene el - ÓPTIMO. ESTA FASE ES IDENTICA A LA USADA EN EL PROCEDI- miento de Davies, Swann y Campey.

La segunda fase se hace por el método de Goloen -SEARCH. SE ESCOGÍ́ EStE PROCEDIMIENTO SOBRE EL DE FIbO--NACC1, POR NO DEPENDER DEL NÚMERO DE EXPERIMENTOS AUNQUE es menos eficiente que aquel.

EL MÉTODO ES BÁSICAMENTE UNA TÉCNICA PARA LA REDUCCIÓN DE UN INTERVALO EN FORMA ACELERADA SIN HACER EXAMEN EXHAUSTIVO, MEDIANTE LA COLOCACIÓN DE OBSERVACIDNES DENTRO DEL MISMO. BASADO EN LA DIFERENCIA ENTRE LOS VALORES DEL FUNCIONAL O VALORES DE SALIDA, SE ELIMINAN CIERTAS SECCIONES DEL INTERVALO, DONDE SE SABE QUE NO SE ENCUENTRA EL - PUNTO GPTIMO.

AL REALIZAR UNA BÚSQUEDA PORFIBONACCI SE PUEDE PRO BAR (14) QUE

$$
\begin{equation*}
L_{N-J}=L_{N-J+1}+L_{N-J+2} \tag{4.3.1}
\end{equation*}
$$

donde nes el número de ensayos que se van a realizar y u es el ensayo actual. Ln-j la longitud del intervalo que se va a investigar en la observación n-u

En el procedimiento de Golden-Search, no se condce -el valor de n, lo cual hace que la ecuación anterior no sea de mucha utilioad como tal, pero sí algunas relaciones que se pueden deducir de ella.

Sea

SI SE DIVIDE (4.3.1) POR $L_{N-J}+2$ Y TENIENDO EN - cuenta que

$$
L_{N-J-1} / L_{N-U+1}=7^{2}
$$

SE obtiene

$$
r^{2}=r+1
$$

donde solo es de interés la raíz fositiva

$$
T=(1+\sqrt{5}) / 2=1.6180339
$$

El valor T sirve para determinar la magnitud de un intervalo después de nensayos.

$$
L_{N}=1 / \gamma^{N-1}
$$

Fibanacci y el de Golden-Search, usando la relación desa-rrollada por lucas, entre los números de fibonacci y $\mathrm{T}^{\text {r }}$

$$
F_{N}=\left(T^{N+1}-(-T)^{-(N+1)}\right) / \sqrt{5}
$$

La relación se deduce del hecho que

$$
\begin{equation*}
F_{N+2}=F_{N+1}+F_{N} \tag{4.3.2}
\end{equation*}
$$

El n-esimo número de fibonacci se puede considerar COMO UNA FUNCÍ́N F_{N} de LOS ENTEROS NO NEGATIVOS. CONSTRU-yendo una serie de potencia cuyos términos son potencias -decrecientes negativas de un parémtro Z y donde el coefi-ciente del l-ésimo término es fi

$$
F_{N}()=F_{0}+F_{1} z^{-1}+F_{2} z^{-2}+\ldots=\sum_{i=0}^{00} F_{1} z^{-1}
$$

Se ve que esta función es la transformada Z de la -función F_{N}. La transformada - Z del $(n+1)$ número de fibonacci ES:

$$
\begin{aligned}
& F_{N+1}(Z)=F_{1}+F_{2} Z^{-1}+F_{3} Z^{-2}+\cdots \\
& =Z\left(F_{O}+F_{1} Z^{-1}+F_{2} Z^{-2}+\ldots\right)-Z F_{O} \\
& =Z F_{N}(Z)-Z F_{O} \\
& \text { DE LA MISMA FORMA SE OBTIENE }
\end{aligned}
$$

$$
F_{N+2}(Z)=Z F_{N+1}(Z)-Z F_{1}
$$

COMBINANDU ESTAS DOS ECUACIONES

$$
F_{N+2}(z)=z^{2} \quad F_{N}(z)-z^{2}-z
$$

Si se aplica la transformada Z a (4.3.2)

$$
F_{N+2}(z)=F_{N+1}(z)+F_{N}(z)
$$

de la cual se obtiene por reemplazo

$$
F_{N}(z)=z^{2} /\left(z^{2}-z-1\right)
$$

El lado derecho de esta ecuación, se puede expresar COMO

$$
1+z^{-1}+2 z^{-2}+3 z^{-3}+5 z^{-4}+\ldots
$$

O también se puede hacer

$$
F_{N}(z)=\frac{z^{2}}{(z-r)\left(z+r^{-T}\right)}=\frac{z^{2}}{\sqrt{5}}\left[\frac{1}{z-7}-\frac{1}{Z+r^{-1}}\right]
$$

$$
\text { PERO } \frac{1}{z-7}=\frac{z^{-1}}{1-7 z^{-1}}=z^{-1}\left(1+z^{-1}+2 z^{-2}+\cdots\right)
$$

$$
\frac{1}{z+-1}=\frac{z^{-1}}{1+T^{-1} z^{-1}}=z^{-1}\left(1-T^{-1} z^{-1}+T^{-2} z^{-2}-\tau^{-3} z^{-3}+\ldots .\right)
$$

Según esto

$$
F_{N}(z)=\frac{1}{\sqrt{5}} \sum_{0}^{\infty}\left[\tau^{1+1}-(-\tau)^{-(1+1)}\right] z^{-1}=\sum_{0}^{\infty} F_{1} z^{-1}
$$

De esta ecuación, se puede deducir la relación

$$
F_{N-2}^{2}-F_{N-1} F_{N-3}=(-1)^{N}
$$

Cuando nes bastante grande, el segundo término se vuelve despreciable, obteniéndose

$$
F_{N}=T^{N+1} / \sqrt{5}
$$

Si L_{n} es el intervalo resultante oespués de nensayos por Golden-Search y $S_{\text {N }}$ es el obtenido por fibonacci

$$
\begin{aligned}
L_{N} / S_{N} & =\left(T^{N+1}\right) /\left(\sqrt{5} \tau^{N-1}\right) \\
& =\gamma^{2} / \sqrt{5}=1.1708
\end{aligned}
$$

De esta forma se ve que el intervalo obtenido por -Golden-Searches un 17% mayor que el obtenido usando fiboNACCI.

El método halla puntos mínimos a lo largo de una -línea. SU descripción es bastante sencilla.

Una vez que se han obtenido los limites superioreinferior correspondientes a la fase l, se situán dos experimentos en el intervalo. Sean u y blos límites inferior y superior respectivamente

$$
\begin{aligned}
& F_{1}=(3-\sqrt{5}) / 2=0.382 \\
& F_{2}=1-F_{1}=0.618
\end{aligned}
$$

Las observaciones se sitúan en dos puntos

$$
\begin{aligned}
& w_{1}=U+F_{1}(V-U) \\
& w_{2}=U+F_{2}(V-U)
\end{aligned}
$$

SITUACIONES POSIBLES EN GOLDEN-SEARCH

> EN (a) $F\left(W_{1}\right)<F\left(W_{2}\right)$. En este caso se elimina una Parte del intervalo, produciendo un intervalo resultante menor que es $\left[U, W_{2}\right]=L_{1}$

En (b) $F\left(W_{1}\right)>F\left(W_{2}\right)$. EL intervalo resultante -para la nueva localización de ensayos es [W, $Y_{1}^{7}=L_{2}$ En caso de igualdad de los dos valores del funcional se -puede escoger cualquiera de L_{1} o L_{2}.

Se puede ver una gran diferencia entre los dos méto dos usados en la fase final de la búsqueda lineal. La im-
plementación del Golden-Search es muy sencilla y requiere -sólo efectuar una comparación para determinar el intervalo para la siguiente serie de ensayos. Este menor número de -comparaciones es ya una ventaja considerable.

$$
C A P \perp T U L O \quad V
$$

DESCRIPCION DE LOS METODOS MULTIDIMENSIONALES

5.1.- GENERALIDADES.

LOS MÉTODOS CONSIDERADOS TIENEN COMO OBJETIVO LA OPTImización de funcionales sin restricciones. Existe una característica común a todos los métodos, que es la de ser procedimientos de búsqueda del tipo directo y trabajar en base a oirecciones factibles.

Dentro de los métodos directos existe una gran varie-dad de algoritmos, algunos de ellos con aplicaciones muy es-pecíficas, y Con oiferentes grados de compleuldad para su deSARROLLO COMO Proceso computacional. Algunos muy simples, -como el método de tabulación o el de búsqueda al azar, pero Con las desventauas obvias de requerir un gran número de cálculos.

Los métodos secuenciales, o sea aquellos que van avanZANDO A PARTIR DE UNA SOLUCIÓN INICIAL EN FORMA PROGRESIVA, SON los que han tenido más vasta aceptación. además de los presentados en este capítulo, se pueden mencionar entre otros: el método simplex, desarrollado por Spendley, hext y hinsnorth (12), métodos de alternación de variables (1), métodos que -emplean rotación de coordenadas como el de Rosembrock (10), además de una gran cantidad de algoritmos que utilizan las -propiedades de las derivadas parciales para determinar los -avances.
5.2.- METODO DE DAVIES, SWANN Y CAMPEY MULTIDIMENSIONAL. (1)

Este método, similar en algunas de sus partes al desarrollado por rosembrock, trabaja en base a búsquedas en direcciones ortonormales.

Se define una etapa del procedimiento como la serie de localización de óftimos en todas y cada una de las direcciones. Al final de cada etapa se hace una redefinicion de las mismas por el procedimiento de Gram-Schmidt.

Se definen las direcciones originales como los vectores unitarios e, o sea, el sistema original de coordenadas qUE CUMPLEN LAS CONDICIONES DE ORTONORMALIDAD

$$
\xi_{1}=E_{1}
$$

- es la suma algebraica de los avances en la dirección denotada por

气, DURANTE LA ETAPA J.
 males para la etapa J.

Se define un proceso de ortonormalización de Gram- SChmidt (2) comd aquel que produce a partir de n vectores, UN CONJUNTO BASE PARA UN ESPACIO VECTORIAL N DIMENSIONAL CON la característica adicional de ser vectores unitarios y orto normales.

Se definen los vectores A_{1}, A_{2},, A_{n} en la forma

$$
A_{1}=\sum_{k=1}^{N} \Delta_{k} \xi_{k}^{J}
$$

De esta ferma se puede considerar cada uno de los -vectores a, como el acumulado de los avances durante la - etapa J, siendu a el acumulado o avance total, a el avance total exceptuando el avance en la frimera dirección, etc.

$$
\text { EL VEctor ortonormal } \leqslant_{1}^{1} \text { SE obtiene }
$$

$$
\xi_{1}^{\prime}=A_{1} /\left|A_{1}\right|
$$

Los vectores auxiliares, d, sirven para determinar LOSE! finales, y están definidos pur

$$
\begin{aligned}
& D_{k}=A_{k}-\sum_{i=1}^{k-1}\left(A_{k}^{\top} \xi_{1}^{J+1}\right) \xi_{1}^{J+1} \\
& \xi_{k}^{\prime}=D_{k} /\left|D_{k}\right| \quad k ? 2
\end{aligned}
$$

Durante la fase de búsqueda lineal a lo largo de --cada eje, es posible que el avance Δ_{1}, en algunos de ellos sea cerc o muy pequeño; bajo esta circunstancia el proceso de ortonormalización no funciona adecuadamente.

Sea $P>0$ el número de vectores asociados cun un -- -- igual a cero. Existen n-p vectores direccionales sobre los cuales hubo avance efectivo. Se hace un reordenamiento DE LOS VECTORES DE TAL FORMA QUE LOS PRIMEROS N-P, ESTO ES -

LOS CORRESPONDIENTES A LOS SUBÍNDICES 1,, N-P, SEAN-precisamente aquellos que están asociados con un $\Delta_{\text {I }}^{\text {diferen }}$ te de cero, y es en éstos donde se efectúa el proceso de - ortonormalización. Los demás vectores permanecen sin cambio, ESTO ES

$$
\xi_{1}^{J+1}=\xi_{1}^{J} \quad 1=N-P+1, \ldots \ldots, N
$$

Por las características del procedimiento de Gram - SChmidt, los primeros n-p vectores son ortonormales. por -LA CONDICIÓN

$$
\Delta_{k}=0 \quad k=N-P+1, \ldots \ldots, N
$$

y la fórmula (5.2.1), los vectores ξ_{1}, ξ_{2},, ξ_{n-p} no tienen componentes en las direcciones restantes, que - sun a su vez ortonormales. De esto se concluye que el sistema total es mutuamente ortonormal.

Las consideraciones anteriores describen en forma -COMPLETA La totalidad de pasos que contiene el algoritmo. El criterio de convergencia es bastante sencillo y se reduce a la consideración del avance total en una etapa. este avance está oado por la suma de los componentes del vector $A_{1} Y$ SE denota por \triangle. Si $\Delta<\dot{C}$, donde δ es el tamaño de paso usado en la búsqueda lineal, se divide é por una constante y se efectúan nuevamente optimizaciones lineales en Las n direcciones. El proceso termina cuando d es un vaLor lo suficientemente pequeño.

SI $\triangle>\delta$ SE PaSa a una nueva etapa directamente.

5.3.- METODO DE POWELL (8)

Este método es uno de los más efectivos cuando se -trata de minimizar una expresión cuadrática, ya que llega a la solución ofptima después de un número n de iteraciones; el algoritmogenera además direcciones mutuamente conuuga- das después de n pasos.

Cada etapa del proceso iterativo empieza con la - búsqueda lineal a lo largo de n direcciones linealmente - INDEPENDIENTES, A PARTIR DE LA MEJOR APROXIMACIÓN AL GPTI-mo, P_{0}. Las direcciones iniciales se escogen como los eves COORDENADOS Y SE CAMBIA EN CADA ITERACIÓN UN VECTOR DIRECcion ξ a lo sumo. Este procedimiento asegura que la conver gencia al minimo es satisfactoria aunque la aproximación ini cial no sea muy buena.

El algoritmo considera la posibilidad, y esta es - una de las principales ventauas del mismo, de que se esco-JaN direcciones que son aproximadamente dependientes, lo -cual es una seria dificultad cuando el número de variables independientes crece, pues las direcciones resultantes pueden no generar el espacio completamente.

Los pasos del algoritmo de powell son los siguientes:

$$
\text { 1.-) PaRAR }=1,2, \ldots \ldots, N, \text { CALCULAR } \lambda_{R} \text { TAL QUE }
$$

$$
F\left(P_{R}-1+\lambda_{R} \xi_{R}\right)
$$

sea un mínimo y se definen

$$
P_{R}=P_{R-1}+\lambda_{R} \xi_{R}
$$

Esto es, se hace una búsqueda lineal a lo largo de -CADA DIRECCÍ́N Y SE SITÚÁ EL PUNTO INICIAL DE EXPLORACIÓN-de cada eue como el óptimo obtenido hasta la búsqueda ante-RIOR.
11.-) Hallar el número entero m, $1 \leqslant m \leq N$, tal que

$$
F\left(P_{M-1}\right)-F\left(P_{M}\right)
$$

SEA UN MÁXIMO y SE DEFINE

$$
\Delta=F\left(P_{M-1}\right)-F\left(P_{M}\right)
$$

En este paso se busca una dirección de máximo avance.

$$
(11 .-) C_{A L C U L A R ~} F_{3}=F\left(2 p_{N}-P_{0}\right)
$$

$$
F_{1}=F\left(P_{0}\right) \quad Y \quad F_{2}=F\left(P_{N}\right)
$$

Se hacen tres observaciones sobre la funcion para -determinar sus condiciones de pendiente.

$$
\begin{aligned}
& \left(V_{0}-\right) \quad S_{1} \quad F_{3} \geqslant F_{1} \quad Y / 0 \\
& \left(F_{1}-2 F_{2}+F_{3}\right)\left(F_{1}-F_{2}-\Delta\right)^{2} \geqslant 1 / 2 \Delta\left(F_{1}-F_{3}\right)^{2}
\end{aligned}
$$

Se deben usar las direcciones actuales sin cambio, para la Siguiente iteración y tomar como punto de partida po, el VECTOR P_{N}.

> SI NO SE CUMPLE NINGUNA DE ESTAS DOS CONDICIONES, - pasar al paso v)
V.-) EN ESTA FASE SE HACE EL CAMBIO DE UNO DE LOS VECTORES DIRECCIÓN.

SE DEFINE $\boldsymbol{K}^{=} P_{N}-P_{0}$ Y SE CALCULA EL VALORATAL QUE $F\left(P_{N}+\lambda \xi_{马}\right)$ SEA MÍNIMO (BUSQUEDALINEAL) . SE USAN COMO -VECTORES DIRECCIÓN TODOS LOS ANTERIORES A EXCEPCIÓN DE - F_{1}, QUEDANDO LOS NUEVOS DIRECCIONALES EN EL SIGUIENTE ORDEN.

$$
\xi_{1}, \xi_{2} \cdots \cdots \xi_{M-1} \xi_{M+1}, \ldots, \xi_{N}
$$

EL CRITERIO DE CONVERGENCIA SE LOGRA CUANDO LOS CAM BIOS EN.LAS.VARIAGLES INDEPENDIENTES, X, SON MENORES QUE LA PRECISI6N REQUERIDA.

POWELL EN LA DESCRIPCION DEL ALGORITMO DESCRIBE UN CRITERIO DE CONVERGENCIA QUE ES BASTANTE SEGURO PUES VERIFICA EN FORMA UN POCO EXAGERADA QUIZÁS, QUE SE CUMPLANREALMENTE LAS CONDICIONES DE OPTIMALIDAD. LA DESCRIPCIÓN DEL PROCEDIMIENTO PARA DETERMINAR SI SE HA HALLADO UN PUNTO OPTIMO ES COMO SIGUE:
1.- SEGUIR LOS PASOS DEL ALGORITMO GENERAL HASTA-QUE LOS CAMBIOS OBTENIDOS EN CADA VARIABLE SEAN MENORES QUE UN E ESPECIFICADO. EL PUNTO QUE SE OBTIENE AL FINAL DE-ESTE PASO ES A.
11.- AUMENTAR CADA VARIABLE EN UNA CANTIDAD IGUAL A DIEZ VECES LA PRECISION REQUERIDA.
111. REPETIR EL PROCESO DETERMINADO POR EL ALGORITMO HASTA LOGRAR UN CAMBIO PEQUEÑO EN CADA VARIABLE. EL - PUNTO OBTENIDO ES B.
iv.- Hallar el mínimo c sobre la línea que pasa por A Y B.
v.- Se logró convergencia si los componentes de - ($A-C$) Y ($B-C$) SON todos menores que un décimo de la preciSión requerida. Si no se cumple esto,
VI.- La dirección $\boldsymbol{\varepsilon}_{1}$ del algoritmo se cambia por --(A-C) Y SE VA AL PASO 1)

El criterio, como se ve, es excesivamente seguro. tiene la ventaja de cambiar el oftimo inicial hacia direcciones donde la función varía muy lentamente.
5.4.- METODO DE STEEPEST. (1)

La diferencta esencial entre los métodos anteriores y los que se describen a continuación, es la necesidad que tienen estos fltimos del cálculo de derivadas parciales.

La determinación de las direcciones de búsqueda reqUiEREN EL CONOCimiento del valor del gradiente y aún de derivadas de orden mayor, en el punto considerado. Se pue den emplear dos políticas para solucionar esta situación: expresar las derivadas en forma explícita o evaluar numeri camente mediante ecuaciones de diferencia. En el caso de USAR LA SEGUNDA POSIBILIdAD, SURGEN algunos problemas que es conveniente mencionarg se aumenta notoriamente el no-mero de evaluaciones de la función obuetivo, pues sere- quiere hacer exámenes cerca del punto considerado. En geNeral, la precision obtenida por ecuaciones de diferencia es muy pobre y por lo tanto se obtiene una estimación no -

MUY CONVENIENTE DEL VECTOR DIRECCIÓN D

SI SE USA POR EJEMPLO, LA EXPRESIÓN

$$
\frac{\partial F}{\partial x_{J}}=\frac{F\left(x_{1}+H\right)-F\left(x_{1}\right)}{H_{J}}+O\left(H_{J}^{2}\right)
$$

PARA ESTIMAR EL GRADIENTE DE F (X), LA ESCOGENCIA DEL IN-CREMENTO H, PUEDE CAUSAR PROBLEMAS. SI H ES MUY PEQUEÑO, SE PRODUCE UN ERROR DE CANCELACION DE DÍGITOS SIGNIFICATI-VOS CUANDO SE EFECTÚA LA RESTA EN LA OPERACION ANTERIOR, -MIENTRAS QUE SI H ES GRANDE, EL ERROR SURGE POR TRUNCA- = CIÓN EN LA fórmula de diferencias.

EL PROBLEMA ES MAYOR AÚN SI SE TRATA DE ESTIMAR DER£ VADAS DE ORDEN MAYDR QUE UNO Y SE PUEDE CASI AFIRMAR QUE EL USO DE METODOS NUMERICOS, PARA ESTE TIPO DE CONSIDERACIONES, debe evitarse hasta donde sea posibleg aunque también es - CIERTO QUE LA EXPRESIÓN ANALÍTICA PARA LAS DERIVADAS PARCIA les no siempre es fácil de obtener.

EL MÉTODO DE STEEPEST, ASCENT O DESCENT, ES UNO DE LOS MÁS CONOCIDOS Y DEBE SUS FUNDAMENTOS TEORICOS Y REALI-ZACIGN AL MATEMÁtico CaUCHY.

La DIRECCIÓN DADA POR EL GRADIENTE DEL FUNCIONAL EN UN PUNTO, ES PROPORCIONAL AL VECTOR DE PRIMERAS DERIVADAS PARCIALES.

Si Se considera una pequeña perturbación al punto en CONSIDERACION x_{1}, DADA POR EL VECTOR ($\mathcal{E} x_{1}, \delta x_{2}, \ldots \delta x_{N}$) LA FUNCIÓN OBUETIVO CAMBIARÁ, SI SE CONSIDERA UNA APROXIMACIÓN DE PRIMER ORDEN, POR UNA CANTIDAD

- 46 -

$$
d F=\sum_{J=1}^{N} \quad \frac{\partial F}{\partial x_{J}} \delta x_{J}
$$

DE TODAS LAS POSIBLES PERTURBACIONES A x_{1}, DE - -
MAGNITUD

$$
\Delta=\left[\left[\delta x_{j}^{2}\right]^{\frac{1}{2}}\right.
$$

el método de multiplicadores de Lagrange, indica cómo obtener la perturbación con mayor cambio en el funcional, a - partir del Lagrangiano

$$
\begin{aligned}
& \phi(x, \lambda)=d F+\lambda\left(\sum \delta x_{J}^{2}-\Delta^{2}\right) \\
& =\sum \frac{\partial F}{\partial x_{J}} \delta x_{J}+\lambda\left(\sum \delta x_{J}-\Delta^{2}\right)
\end{aligned}
$$

Derivando con respecto a δx_{J}

$$
\frac{\partial x_{F}}{\partial x_{J}}+2 \lambda \delta_{X_{J}}=0 \quad j=1,2, \ldots, N
$$

Se obtiene así una condición que deben cumplirse -para todas las perturbaciones

$$
\frac{\delta x_{1}}{\frac{\partial F}{\partial x_{1}}} \cdot \frac{\delta x_{2}}{\frac{\partial F}{\partial x_{2}}}=\cdots \cdot .=\frac{\delta x_{N}}{\frac{\partial F}{\partial x_{N}}}
$$

LO CUAL MUESTRA QUE EL MAYOR CAMBIO EN EL FUNCIONAL, SE - LOGRA CUANDO LOS SXJ SE ESCOGEN PROPORCIONALES A LOS CORRES PONDIENTES OFF/ O x_{J} 。

La CONDICION DE CAMBIO EN LA FUNCIÓN, SE PUEDE CONS 1 DERAR EN DOS SENTIDOS: POSITIVO O NEGATIVO SEGUN SE QUIE-RA MAXIMIZAR O MINIMIZAR. EN EL ÚLTIMO CASO, LA CONSTANTE DE PROPORCIONALIDAD ES NEGATIVA Y LA DIRECCIÓN ES LA DE - -steepest-descent.

SE PUEDE FORMALIZAR EL PROCESO DE OPTIMIZACIÓN POR GRADIENTE, CON EL SIGUIENTE TEOREMA (15) QUE INDICA LA OP-TIMALIDAD DEL PROCESO de búSqueda.

TEOREMA: SEA F UNA función diferenciable en el -punto X. Se supdne que existe una dirección d tal que

$$
\nabla_{F}(x) \cdot D<0
$$

ENTONCES EXISTE UN $\boldsymbol{\alpha}>0$ TAL QUE, PARA TODO λ QUE CUMPLA

$$
0<\lambda<\alpha
$$

$$
F\left(X+\lambda_{0}\right)<F(X)
$$

La prueba del teorema, se cunsidera como una aplicacien de La definición de derivada parcial ya que
$L I M\left(F(X+\lambda D)-F(X) / \lambda=\nabla_{F}(X) \cdot D\right.$
$\lambda \rightarrow 0$
QUE POR LA SUPOSICIÓN EXPRESADA EN EL TEOREMA, DEBE SER - MENOR QUE CERO. La definición de Límite indica que debe -EXISTIR UN $\boldsymbol{x}>0$, TAL QUE PARA $\lambda \neq 0 \quad Y$

$$
F\left(X+\lambda_{0}\right)-F(X) / \lambda<0
$$

Si se selecciona $\boldsymbol{\lambda}>0$, se cumple la condición.
Este resultado indica que si $\nabla f(x) \neq 0$ y se selecciona la dirección de avance, como la del gradiente, se pue de obtener una disminución en el valor del obuetivo.

El procedimiento para efectos computacionales, se -puede representar así:

Sea a, un conjunto formado por el compuesto de dos FUNCIONES

$$
A=M D
$$

donde $\quad \mathrm{D}: \quad \mathrm{E}_{\mathrm{N}} \rightarrow \mathrm{E}_{2 \mathrm{~N}}$ es la función de X dada por

$$
D(x)=(x, \nabla F(x))
$$

O SEA, D ASIGNA A CADA PUNTO MEDIANTE UNA APLICACIĆN, EL PUNTC MISMC Y SU GRADIENTE;M ES LA APLICACIÓN CORRESPON- DIENTE AL PARÁMETRO DPTIMIZADOR λ.

EL PROCESO DA UNA SECUENCIA DE PUNTOS, QUE PERTENECEN A A, Y QUE DEBE SER CONVERGENTE A UN PUNTO QUE CUMPLE LA CONDICIÓN

$$
\nabla F(X)=0
$$

PARA LOGRAR ESTO, EL CONUUNTO A DEBE SER COMPACTO $Y S I \quad \forall F(X) \neq 0$ SE DEBE CUMPLIR QUE

$$
\underset{\lambda}{\operatorname{MAX}} \quad F\left(X_{K}+\quad \dot{\lambda} \nabla\left(X_{K}\right)\right)<F\left(X_{K}\right)
$$

0 SEA $F\left(X_{K+1}\right)<F\left(X_{K}\right)$

De estas dos ecuaciones se fuede deducir el crite- RIO PARA DETERMINAR NUEVOS PUNTOS, 0 FGRMULA RECURRENTE DEL ALGORITMO.

$$
x_{k+1}=x_{k}-\lambda_{k} \nabla F\left(X_{k}\right)
$$

UNA PROPIEDAD IMPORTANTE ES QUE GRADIENTES SUCESI-VOS EN EL PROCESO, SON ORTAGONALES, ESTO ES

$$
\nabla F\left(X_{k+1}\right) \nabla F\left(X_{k}\right)=0
$$

EL Método produce buenos resultados en cierto tipo DE FUNCIONES, PERO SU APLICACIÓN ESTÁ MUY LIMITADA POR SUS CARACTERISTICAS PROPIAS.
5.5.- METODO DE NEWTON.

TAMbién se llama este procedimiento de segundo orden PUES TIENE LA CARACTERISTICA DE CONSIDERAR DERIVADAS PARCIA LES DE SEGUNDO ORDEN; ES POR ESTA RAZÓN MÁS VENTAJOSO QUE EL DE SteEpest pues considera mayor información sobre el -FUNCIONAL Y SU PRINCIPIO ES LA EXPANSIÓN DE TAYLOR PARA - F (X), CON RESPECTO AL PUNTO MíNIMO X^{*}, DONDELAS X REPRESENTAN VECTORES MULTIDIMENSIONALES.
$F(x)=F\left(x^{*}\right)+\sum_{J=1}^{N} H_{J}\left[\frac{\hat{C}_{F}\left(x^{*}+H\right)}{\partial x_{J}}\right]_{x^{*}}+\frac{1}{2} \sum \sum H_{J}^{H}\left[\frac{\partial x_{k}^{2}}{\partial x_{j}}\right]_{-1}^{*} x^{*}$
donde $x=x^{*}+h$ y las derivadas se evalúan en X^{*}.

Derivando la ecuación anterior

PARAL $=1,2, \ldots . .$.

Como en el mínimo el gradiente es cero,

$$
\left[\frac{\partial_{F}}{\partial x_{L}}\right]_{x^{*}}=0
$$

y la componente ldel gradiente de f(x), $\quad \nabla_{\text {l }}$ f satisface la relación.

$$
\begin{equation*}
\psi_{L} F=\frac{\partial_{F}}{\partial x_{L}}=\left[H_{J}\left[\frac{\partial^{2}}{\partial x_{J} \partial x_{L}}\right] x^{*} \quad L=1,2, \ldots, N\right. \tag{5.5.1}
\end{equation*}
$$

El mínimo se obtiene en este caso haciendo que -$x^{*}=x-H$
donde los componentes del vector h, se hallan resolviendo el sistema de ecuaciones (5.5.1)

Si se define H como la matriz hessiana o sea, la matriz simétrica de derivadas parciales de drden dos, con $H_{j K}=\partial^{2} f \partial_{X_{J}} \partial X_{K} \quad$ se tiene que (5.5.1) se puede exPRESAR COMO:

$$
\begin{align*}
\nabla F(X) & =H H \\
H & =H^{-1} \nabla_{F}(x) \\
X^{*} & =x-H^{-1} \nabla F(x) \tag{5.5.2}
\end{align*}
$$

se obtiene de esta forma el esquema general de iteración del proceso. En vista de que el avance dado por (5.5.2) no conduce generalmente al oftimo a lo largo de la dirección -$-H^{-1} \nabla F(x)$, SE HACE LA MODIFICACIÓN

$$
x_{1+1}=x_{1}-\lambda_{i} H^{-1} \nabla F(x)
$$

donde λ_{1} es el valor del avance bptimo sobre la línea a partir de K_{I} en la dirección - $\mathrm{H}^{-1} \nabla_{\mathrm{f}}(\mathrm{X})$.

La formalización matemática del proceso se puede hacer en forma análoga al caso de steepest. Se requiere un COMPACTO A, Y UNA APLICACIÓN D

$$
D: \quad E_{N} \longrightarrow E_{3 N}
$$

tal que $D(X)=(X, \nabla f, H)$.

La aplicación m, que es el conjunto de todos los valores del parámetro λ,

$$
M(\lambda)=\lambda^{*} \text { O VALOR OFTIMO }
$$

Y

$$
A=M \cdot D
$$

- 52 -

Zangwill (15) prueba que a es un compacto y gamrantiza que el método bajo ciertas condiciones, converge hacia el bptimo.

CAPITULO VI

RESULTADOS

6.1.- DESCRIPCION.

Como se ha mencionado anteriormente, se usaron - dos métodos de búsqueda lineal como base para la comparación. Se adoptó la siguiente notación en la presenta- ción de resultados:

Método A: Búsqueda lineal por el método de Davies, Swann y Campey.
MÉtodo B: MÉtodo combinado.

Además de éstos, se usaron los cuatro algoritmos -multidimensionales descritos en el capítulo V.

Para efectuar las fruebas, se utilizaron tres fun-cionales, tratando de que presentaran problemas y situacio nes diferentes. La notación y descripción de éstos es como Sigue:

Funcional 1: Es del tipo cuadrático

$$
f(X)=\sum^{N} A_{1} x_{1}^{2}
$$

donde a, $Y X_{1}$ son números reales. Este tipo de funciona-Les es el que presenta menos inconvenientes por sus caracterfsticas de simetría con respecto a los eues, si se lo-gra tener un escalamiento adecuado.

En este tipo de funcionales, la interacción entre variables no existe y se logra mejor adecuación a meuida que se hacen más circulares las representaciones del funcional, lo cual en último término se reduce a un proble-ma de escala.

Funcional l|: Es oe características muy especiales y fue ideado por Rosembrock (10). SU EXPRESIÓN ANALÍTICA ES:

$$
F\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

Funcional lli: tiene como el anterior, terminos compuestos, o sea, interacción entre las variables. Su expresión analítica es:

$$
F\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-x_{2}\right)^{2}+\left(x_{1}-1\right)^{2}+4
$$

El punto inicial para todas las pruebas fue (3, 2) y se escogió arbitrariamente. Debe aclararse que el punto inicial es un factor importante, pero no era el proper-sito de las pruebas coservar sus efectos en las solucio- nes de los problemas.

Las soluciones óptimas son: el punto (1, 1) para -los funcionales l| y l|l, y (0,0) faf́a el primero de - ELLOS.

Los resultados obtenidos están contenidos en las - tablas y figuras que se presentan a continuacion.

Las tablas y gráficas 1 a 4 corresponden a las prue bas con el funcional I. Los resultados para el segundo -funcional corresponden a las Tablas 5 y 6.figura 5. Las restantes corresponden al funcional ll|. Se incluye además (Tabla 10) el tiempo total, compilación y ejecucióng reque RIdo para cada algoritmo y cada método de búsqueda lineal, en un computador CDC - 3300 con 64 K palabras de 24 bits CADA UNA.

En las gráficas se usó la siguiente notación:

Q Iteraciones
a evaluaciones del obuetivo
—— Línea continua para el método b

- . - MÉtodo A.

TABLA 1
FUNCIONAL 1 METODO DE NENTON

$\begin{aligned} & \text { TAMAÑO } \\ & \text { DEL } \end{aligned}$	NÚMERO DE ITERACIONES		$\begin{gathered} \text { EVALUACIONES DEL } \\ \text { OBUETIVO } \\ \hline \end{gathered}$		$\begin{aligned} & \text { SOLUCIÓN } \\ & \text { OBTENIOA } \\ & \hline \end{aligned}$		
Pasc.	A	B	A	B	A	B	
0.1	1	2	15	70	0.00, 0.00	0,00,	0.00
0.2	1	2	16	68	$0.00,0.00$	0.00	0.00
0.3	1	2	16	72	$0.00,0.00$	0.00,	0.00
0.4	1	2	16	72	$0.00,0.00$	0,00,	0.60
0.5	1	2	16	76	$0.00,0.00$	0,00,	0.00
0.6	1	2	15	70	0.00, 0.00	0,00,	0.00
0.7	1	2	17	70	$0.00,0.00$	0,00,	0.00
0.8	1	2	17	70	0.00, 0.00	0.00	0.00
0.9	1	2	17	70	$0.00,0.00$	0.00,	0.00
1.0	1	2	17	70	$0.00,0.00$	0.00	0.00

TABLA 2
FUNCIONAL 1 METODO DE STEEPEST-DESCENT

$\begin{aligned} & \text { TAMAÑO } \\ & \text { DEL } \end{aligned}$	NÚMERO DE ITERACIONES		Evaluaciones del ObuETIVO		SOLUCION OBTENIDA			
Paso	A	B	A	B		A	B	
0.1	12	12	180	372	0.00,	0.00	0.00	0.00
0.2	12	12	306	360	0.00,	0.00	0.00	0.00
0.3	12	12	192	384	0.00,	0.00	0.00,	0.00
0.4	12	12	201	378	0.00,	0.00	0.00	0.00
0.5	12	12	303	368	0.00 ,	0.00	0.00	0.00
0.6	12	12	186	372	0.00,	0.00	0.00	0.00
0.7	12	12	198	370	0.00,	0.00	0.00	0.00
0.8	12	12	254	370	0.00,	$0.0 n$	0.00	0.00
0.9	12	12	312	366	0.00 ,	0.00	0.00 ,	0.00
1.0	12	12	321	374	0.00,	0.00	0.00	0.00

TABLA 3
FUNCIONAL 1 METODO DE POWELL

$\begin{gathered} \text { TAMAÑO } \\ \text { DEL } \end{gathered}$	NÓMERO DE ITERACIONES		EVALUACIONES DEL obuetivo			Solucion OBTENIDA
PASO.	A	B	A	B	A	B
0.1	2	2	72	124	$0.00,0.00$	0.00, 0.00
0.2	2	2	56	126	$0.00,0.00$	$0.00,0.00$
0.3	2	2	55	131	$0.00,0.00$	$0.00,0.00$
0.4	2	2	55	135	0.00, 0.00	0.00, 0.00
0.5	2	2	55	139	0.00, 0.00	$0.00,0.00$
0.6	2	2	77	137	0.00, 10.00	$0.00,0.00$
0.7	2	2	61	137	$0.00,0.00$	$0.00,0.00$
0.8	2	2	61	137	0.00, 0.00	0.00, 0.00
0.9	2	2	61	145	0.00, 0.00	$0.00,0.00$
1.0	2	2	61	145	0.00, 0.00	$0.00,0.00$

TABLA 4
FUNCICNAL 1 METODO DE DAVIES, SWANN Y CAMPEY

TAMAÑO	NÚMERO DE		EVALUACIONES DEL obuetivo		Solución OBTENIDA			
DEL								
PASO	A	B	A	B	A			B
0.1	2	2	79	201	0.00,	0.00	0.00,	0.00
0.2	2	2	88	204	0.00,	0.00	0.00,	0.00
0.3	2	2	128	203	0.00,	0.00	0.00,	0.00
0.4	2	2	85	213	0.00,	0.00	0.00,	0.00
0.5	2	2	85	215	0.00,	0.00	0.00,	0.00
0.6	2	2	83	211	0.00,	0.00	0.00,	0.00
0.7	2	2	110	213	0.00,	0.00	0.00,	0.00
0.8	2	2	116	213	0.00,	0.00	0.00,	0.00
0.9	2	2	121	204	0.00,	0.00	0.00,	0.00
1.0	2	2	94	213	0.00,	0.00	0.00,	0.00

$T A B L A \quad 5$
METODO DE POWELL
FUNCIONAL 11 * SOLUCION NO OPTIMA

$\begin{gathered} \text { TAMAÑO } \\ \text { DEL } \end{gathered}$	$\begin{aligned} & \text { NÚMERO OE } \\ & \text { ITERACIONES } \end{aligned}$		Evaluaciones del ObJETIVO		$\begin{aligned} & \text { SOLUCION } \\ & \text { OBTENIDA } \end{aligned}$		
PASO	A	B	A	B	A	B	
0.1	2	2	86	114	1.413* 1.998	1.4135,	1.997
0.2	7	2	290	119	1.000, 1.000	1.413,	2,000
0.3	2	14	78	984	$1.413, * 1.997$	1,000,	1,000
0.4	2	2	90	130	1.413,*1.997	1.413,	1.997
0.5	2	2	82	132	$1.413, * 2.000$	1.413,*	2.000
0.6	9	2	286	138	1.413, 1:998	1.413,*	1.997
0.7	2	2	92	138	1.000, 1.000	1.413,*	1.998
0.8	2	13	96	962	1.413,*1.998	1,000	1.000
0.9	2	13	84	980	1.413,*2,000	0.999,	0.999
1.0	2	2	98	146	1.413,*1.997	1.413,*	1.998

TABLA 6
FUNCIONAL II METODO DE DAVIES, SWANN Y CANPEY * SOLUCION NO OPTIMA.

TAMAÑo DEL	Número de ITERACIONES		EVALUACIONES DEL ObJETIVO		$\begin{aligned} & \text { SOLUCION } \\ & \text { OBTENIDA } \end{aligned}$		
Paso	A	B	A	B	A	B	
0.1	11	16	375	829	1.0001 .001	1.000	. 002
0.2	11	15	408	829	1.001,1.002	0.997, 0	. 995
0.3	27	25	1043	1483	0.999,0.998	1.000,	. 000
0.4	11	14	445	876	1.001, 1.002	1.00236,	1.00536
0.5	11	15	472	938	1.000, 1.000	1.00205,	1.00299
0.6	13	2	742	138	0.999,0.999	1.41329,	*1.99770
0.7	1.1	11	451	734	1.000,0.999	1.0025,	1.00476
0.8	13	33	634	2188	1.000,1.000	1.00256,	1.00469
0.9	11	26	458	1828	1.000, 1.000	1.00103,	1.00268
1.0	11	9	482	636	0.999,0.999	1.005,	1.010

$T A B L A$
7
FUNCIONAL III METODO DE NEWTON

$\begin{gathered} \text { TAMAÑO } \\ \text { OEL } \end{gathered}$	Número de ITERACIONES		Evaluaciones del ObuETIVO			$\begin{aligned} & \text { SOLUCION } \\ & \text { OBTENIOA } \\ & \hline \end{aligned}$		
PASO	A	B	A	B	A		B	
0.1	8	9	209	316	1.000,	0.999	0.999,	1.000
0.2	6	8	150	274	1.000,	1.000	1.000,	0.999
0.3	7	13	175	441	1.000,	0.999	1.000,	1.000
0.4	6	9	161	310	0.999,	1.000	1.000,	0.999
0.5	7	6	199	218	1.000,	0.999	1.000,	1.000
0.6	6	8	193	286	1.000,	1.000	1.000,	0.999
0.7	11	12	375	422	1.000,	0.999	1.000,	0.999
0.8	6	8	158	283	1.000,	1.000	1.000,	0.999
0.9	6	12	154	443	0.999,	1.000	1.000,	0.999
1.0	6	7	166	257	1.000,	1.000	1.000;	0.999

TABLA 8
FUNCIONAL 111 METODO DE POWELL

$\begin{gathered} \text { TAMAÑO } \\ \text { DEL } \end{gathered}$	Número de ITERACIONES		EVALUACIONES DEL Qbuetivo		SOLUCION OBTENIDA			
Paso	A	B	A	B	A		B	
0.1	4	4	132	225	1.000,	. .000	1.000,	1.000
0.2	5	5	183	289	1.00),	1.000	1.000	1.000
0.3	4	5	158	303	1,000,	1.000	1.000	1.000
0.4	5	5	246	316	1.000,	. 000	1.000,	1.000
0.5	4	4	139	256	1.000,	. .000	1.000,	1.000
0.6	5	4	214	270	1.000,	1.000	1.000	1.000
0.7	5	5	202	336	1.000,	1.000	1.000,	1.000
0.8	4	4	198	272	1.000 ,	1.000	1.000 ,	1.000
0.9	4	4	176	286	1.000,	1.000	1.000,	1.000
1.0	4	4	185	286	1.000,	. 000	1.000,	1.000

TABLA 10

TIEMPOS PARA CADA CORRIDA (SEgundos)

| FUNCIONAL | 1 | | 11 | | 111 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | B | A | B | A | B |
| STEEPEST | 278 | 282 | - | - | - | - |
| NEWTON | 44 | 61 | - | - | 247 | 270 |
| POWELL | 32 | 95 | 327 | 352 | 151 | 382 |
| DAVIES
 SWANN Y
 CAMPEY | 70 | 144 | 280 | 361 | 203 | 242 |

FIGURA 1

$$
-63-
$$

FIGURA 3

- 64 -

$$
\begin{array}{clll}
\text { FIGURA } & 4 & \text { A EVALUACIONES } \\
\text { FUNCIONAL } 1 & \text { METODO DE DAVIES, } & \mathbf{O} & \text { ITERACIONES }
\end{array}
$$

Eval. Iter.

- 67 -

FIGURA 7
EVAL.
ITER.

- 68 -

$$
\text { CAP } A \text { TULO VI I }
$$

ANALISIS Y CONCLUSIONES

Se trata en este capítulo de mostrar las pruebas -QUE SE EfECTUARON Y bajo qué CONDICIONES SE REALIZARON, -asi como un análisis de los resultados obtenidos.

Cada algoritmo de búsqueda multidimensional se probó CON LOS DOS métodos de búsqueda lineal, para los tres funcionales de prueba. Esto da un total de 24 corridas, curos resultados aparecen en las tablas del capítulo vi.

Dentro de cada uno de los cuatro procedimientos mul tidimensionales, se hizo la búsqueda con 10 tamaños de paSo diferentes. A partir de un paso de magnitud ot, se hacían incrementos de 0. 1 hasta llegar al valor de 1.0, pues se considero que dentro de este rango de valores se podría obtener uniformación sobre la influencia del paso en el -proceso total.

Se registrb el total de iteraciones, número de evaLUACIONES DE LA FUNCIón OBJETIVO G SOLUCIÓN OBTENIDA PARA CADA Método con los diferentes tamaños de paso y proce- -DIMIENTOS DE BÚSQUEDA LINEAL MENCIONADOS ANTERIORMENTE, Y el tiempo total usado por cada programa en realizar todo el proceso.

7.1.- ANALISIS DE RESULTADOS OBTENIDOS.

7.1.1.- ANÁLISIS PARA EL FUNCIONAL 1 .

Si se observan las tablas 1 a 4 se puede apreciar -

LO SIGUIENTE: LA DIFERENCIA ENEL NÚMERO DE ITERACIONES -PARA LOS MÉTODOS A Y B SÓLO APARECE EN EL ALGORITMO DE - Newton. Se observa que al usar el método a se halla el ópTIMO EN UNA SOLA ITERACION, MIENTRAS QUE CON B SE REQUIEREN DOS. AL USAR B, DESPUÉS DE LA PRIMERA ITERACION, EL PUNTO OBTENIDO ESTÁ CERCA DEL ÓPTIMO PERO NO CUMPLE LAS NECESIDADES REQUERIDAS EN UNA SITUACIÓN DE OPTIMALIDAD FARA LAS TOLERANCIAS ESPECIFICADAS. INDICA QUE LA PRECISIÓN AL OBTE-NER EL ÓPTIMO SOBRE LA LíNEA, EN CADA ITERACION, NO ES LO SUFICIENTEMENTE BUENA, REQUIRIÉNDOSE LA REALIZACIÓN DE UNA nueva iteración.

Para los métodos de búsqueda linealg se usó el si-mGUIENTE CRITERIO: CUANDO LA DIFERENCIA ENTRE EL VALOR DE UNA ITERACIÓN Y LA ANTERIOR ES MENOR QUE O.OOO5 SE CONŚ DERA LOCALIZADO EL OPTIMO.

Si Se observa la tabla 10, se aprecia que existe - una notable diferencia de tiempo para los métodos a y B. EL TIEMPO TOTAL PARA B ES 39% MAYOR QUE EL ENPLEADO EN A. NO SÓLO INFLUYE EL MAYOR NÚMERO DE ITERACIONES SINO EL - MAYOR NÚMERO DE EVALUACIONES DEL FUNCIONAL, QUE ESTÁN, EN PROMED10, EN LA RELACIÓN 1:4.4 PARA A YB.

DE ACUERDO A LOS GRITERIOS DE COMPARACIÓN CONSIDERADOS, EL MÉTODO DE NEWTON ES EL MÁS EFECTIVO CUANDO SE TRATA de funcionales del Tifo l, exceptuando el criterio de tiemPO, EN EL CUAL EL MÉTODO DE POWELL ES MUCHO MÁS EFICIENTE de acuerdo a la Tabla 10.

UNA CARACTERÍSTICA IMPORTANTE DE LOS MÉTODOS DE----Newton y Steepest, es la que se refiere a las propiedades DEL VECTOR DIRECCIÓN. EN EL MÉTDDO DE STEEPEST LOS VECTO--
res dirección apuntan siempre en dirección al origen cuando se trata de funcionales tipo l. En el método de newton - las direcciones generadas son siempre proporcionales al gra olenteg por el hecho de ser la matriz hessiana, de valores constantes, esto es, sus elementos no dependen de los valores de las variables independientes, y además sólo posee -elementos diferentes de cero, en la diagonal, ya que si

$$
\begin{aligned}
& F(x)=\sum^{N} A_{1} x_{1}{ }^{2} \\
& \frac{\partial F}{\partial x_{1}}=2 A_{1} x_{1} \\
& \frac{\partial^{2} F}{\partial x_{1} \partial x_{J}}= \begin{cases}0 & 1 \neq J \\
2 A_{1} & 1=v\end{cases}
\end{aligned}
$$

y en el método de newton la dirección se calcula de acuerdo a la relación

$$
S=-H^{-1} \nabla f
$$

Las características de h hacen que el gradiente solo sea multiplicado por constantes.

La simetría con respecto al origen hace que métodos COMO EL DE NEWTON PRODUZCAN SOLUCIONES EN FORMA RÁPIDA.

De la observación de las gráficas, para el número de evaluaciones del funcional, se puede decira en el método de Davies al usar b, la variación para diferentes tamaños -
de paso es pequeña, lo cual froduce una relación casi uni-forme para las desviaciones entre ellas, con máxima dife- rencia de 14 (215-201). Si se usa a, el comportamiento - gráfico, no muestra una tendencia definida. La diferencia máxima es 49 (128-79) aUNQUE en todos los casos el número de evaluaciones es mayor que para B.
al usar steepest, el acercamiento al óptimo en mu-chos casos es lento y de ahí que se necesite un número ele vado de evaluaciones.

De los cuatro algoritmos usados, con el procedimien to de Steepest, se obtienen los mayores totales para las evaluaciones, con un valor máximo de 384, producido al emplear el método b. Con a, el número se reduce apreciablemente pero sigue siendo gastante grande comparado a los -requeridos por otros frocedimientos. La relación de evalua ciones a tamaño de paso, no tienen un comportamiento defi-Nioo para el método be pues son afreciables las variaciones para diferentes magnitudes. Sólo en algunos casos, se ob-serva una tendencia acerca de la cual se podrían formular conclusiones. El tamaño offimo de λ puede hallarse por experimentación o en forma analítica for derivación del - funcional $F(\lambda)$. Existe una técnica que fermite calcular en forma directa el valor óptimo de λ para cada iteración, pero sólo es aplicable para cierto tipo de funcionales (3).

EL TZMAÑO DE PASO ES UN VALOR TENTATIVO DEL AVANCEen una dirección y sirve para localizar el _ - intervalo que encierra el bptimo con mayor o menor rapidez, por lo cual tiene gran influencia sobre el esfuerzo computacional totalg aunque no se cbtuvierun conclusiones váli-

DAS AL RESPECTO EN ESTE TRABAJO.

Si SE USA EL CRITERIO DEL TIEMPO, POWELL ES EL MÉtodo más convenienteg aún sobre el de newton que es el que -PRESENTA MAYORES VENTAJAS ABSOLUTAS EN COMPUTACIÓN. LA DIFERENCIA DE TIEMPO PARA LOS DOS MÉTODOS, USANDO A EN LA BÚS QUEDA LINEAL, eS de 12 segundos.

El tamaño de paso óptimo es O. 1 para Newton y 0. 2 a O. 5 Para Powell, pues con estas magnitudes se minimiza el esfuerzo de cálculo.
7.1.2.- FUNCIONAL DE ROSEMBROCK

ESTA ECUACIÓN, ES UNA DE LAS MÁS CONOCIDAS EN LA LITERATURA DE OPTIMIZACION, PUES SUS CONDICIONES ESPECIALES Y FORMA, HACEN QUE SEA UNA BUENA PRUEBA FARA CUALQUIER ALGORITMO DE BÚSQUEDA.

El método de Steepest no condujo a ningún resultado Y LO MISMO SUCEDIO AL EMPLEAR EL ALGORITMO dE NEWTON. La-EXISTENCIA DE RISCOS DELGADOS HACE QUE EL PROCESO DADO POR el algoritmo, genere direcciones y puntos consiguientes que NO AVANZAN HACIA EL ÓPTIMO. AÚN EL MÉTODO DE POWELL Para LA MAYORÍA DE LOS PASOS USADOS NO DIÓ LA SOLUCIÓN OPTIMA. SE OBTUVO EN MUCHOS DE ELLOS UNA SOLUCIÓN (1.41, 2) QUE DIS ta bastante de la óptima. Para algunos tamaños de paso se Llegb al óptimo VERDadero (1,1) y NO SIEMPre SE Logró esto EN FORMA SIMULTÁNEA PARA UN TAMAÑO DE PASO AL USAR A Y B.

Al investigar las condiciones en la vecindad de este PUNTO, SE OBSERVÓ QUE CORRESPONDE A UN MÍNIMO LOCAL, SIENDO EL GLOBAL EL PUNTO CON COORDENADAS $(1,1)$.

Este hecho es bastante curioso, fero refleja las diferencias que sobre uno y otro método de búsqueda lineal -puede provocar el tamaño del pasc.

El algoritmo de Davies se comporta bastante bien con este tipo de funcionales debido a la rotación de coordena-das en cada iteración, lo cual hace que se generen direccio Nes que evitan los problemas que presentan los riscos en un funcional. El método llega a la solución óftima en todos los casos (Tabla 6) y para los dos procedimientos a y b.

El criteric de comparaciún entre los dos métodos en tiempo y cómputo, for las razones expuestas no es válido; sólo se pueden hacer consideraciones oe cada método en par ticular y oel método de Davies en esfecial. En este caso se notaron oiferencias apreciables en el número de evaluacicnes e iteraciones. Para a, hay un rango en las itera-ciones de 11 a 27 y de evaluaciones de 375 a 1043. Para B los rangos correspondientes son 11 a 33 y 639 a 2188. El número de evaluaciones es elevado, pues el algoritmo reali za búsquedas lineales en cada dirección ortonormal - - y esto hace que cada iteración represente un apreciable -esfuerzo de cálculo, pero for los resultados obtenidos es el unico recomendable para funcionales de este tipo. nuevamente, el método a sigue siendo más ventajoso que b y -se puede concluir que 0.1 es el tamaño de paso más apropia. DO.

El tiempo necesario en este algoritmo para hacer el proceso de búsqueda total, se aprecia en la tabla 10, sien do el necesario para el método B, 28.9, mayor que el de a.

TODOS lOS GRITERIOS COINCIDEN EN DESIGNAR A A COMO -

EL MÁS FAVORABLE.

7.1.3.- FUNCIONAL 111

El método de steepest no produjo ningún resultado al USAR ESTE FUNCIONAL. LOS DEMÁS ALGORITMOS Sí CONDUCEN SIEMPRE A LA SOLUCIÓN ÓPTIMA CON VARIACIONES EN EL ASPECTO COMPUTACIONAL QUE SON LA BASE PARA LAS COMPARACIONES.

EXISTE EN ESTE CASO UNA FUERTE DOMINANCIA EN TODOS LOS CRITERIOS, DEL MÉTODO DE POWELL. EL FUNCIONAL NO PRE SENTE CARACTERÍSTICAS DE SIMETRÍA BAJO EL ESCALAMIENTO EN QUE ESTÁ PRESENTADO PERO Sí TIENE UNA DIFERENCIA NOTABLE RESPECTO DEL FUNCIONAL II QUE ES LA CARENCIA DE RISCOS - FUERTES.

Métodos como el de newton tienen buen comportamienTO EN ESTOS PROBLEMAS Y AÚN EL TIEMPO DE COMPUTADOR NECE-SARIO ES COMPARABLE CON EL REQUERIDO POR MÉTODOS COMO EL de Davies, aunque no sean aconsevables si se comparan con LOS TIEMPOS Para el método de Powell (Tabla 10). La ca-RACTERÍSTICA DEL ALGORITMO DE POWELL, DE CAMBIAR UNO DE Los vectores linealmente independientes por la dfrección DONDE SE LOGRO EL MAYOR AVANCE, HACE QUE LA APROXIMACIÓN AL OPTIMO SEA RÁPIDA.

La VARIACIÓN MÁXIMA EN EL NÚMERO DE ITERACIONES -PARA POWELL, ES DE 1 CON UN MíNIMO DE 4 Y MÁXIMO DE 5. EL MENOR NÚMERO DE EVALUACIONES SE LOGRA CON UN PASO DE O. 1 y es 132. Aún el método de Davies es bastante eficiente EN NÚMERO DE ITERACIONES PERO EL TIEMPO NECESARIO EN CA-DA ITERACIÓN ES MAYOR QUE REQUERIDO EN EL ALGORITMO DE - Powell, como se puede observar en la tabla de tiempos.

De los anteriores análisis se puede concluir que el método de newton es el más conveniente para func ionales -del tipo I, usado con un tamaño de paso igual a o. 1 y de acuerdo al número de iteraciones, pero powell es mucho más RÁPIDO.

Para el tipo li, Davies es la mejor alternativa con un paso igual a 0.1.

En func ionales tipo \|ll, con iteración pero sin riscos fuertes, fowell es el más conventente para cualquiera de los criterios considerados.

El método de búsqueda lineal de Davies es el que produce resultados más satisfactorios y debe. por tanto preferir SE SObre el método combinado.

Son tantas y tan diversas las situaciones que se -pueden presentar en problemas de optimización que dar reglas generales es muy difícil si no imposible.

Cada logaritmo de optimización tiene sus caracterísmticas propias y puede ser ventauoso en muchos iasos e ineficiente en otros. Es por esto que el análisis de los resul-tados se hace con referencia sólo a los resultados obtenidos y las conclusiones sólo son valioas para los casos considera dos.

$$
\text { CAP } P \text { TULO V111 }
$$

```
RECOMENDAC ONES
```

El uso de métodos de optimización que contiene problemas de búsqueda lineal debe hacerse después de un estud 10 detallado de las características del functonal en conSideración, ya que la unimodalidad no es fácil de suponer y Sí es la base esencial para la aplicación de los algorif mos de búsqueda lineal. En general debe supdnerse como -CIERTA ESTA PROPIEDAD Y OBSERVAR SI LOS métodos aplicados froducen soluciones aceptables; si no se logra obtener -una solución, debe intentarse con otro tipo de algoritmo que no requiera de esta propiedad.

Debe aclararse que la unimodalidad no es del funcio Nal con respecto a las variables independientes sino del parámetro λ, pues el proceso de búsqueda a lo largo de Una dirección lineal considera funcionales en λ y no en X. ya que las variables independientes, al hacer la relación -

$$
x_{1}+\lambda s_{1}
$$

donde s es el vector dirección y X, el punto actual, se con vierten en funciones de $八$ únicamente y el funcional selconvierte en una función de λ, $f(\lambda)$.
en el Capítulo \| se mencionó el problema del escaLamiento, que debe tenerse presente al intentar resolver un problema de optimización. Métodos como el de steepest func ionan adecuadamente con un buen escalamiento y evitan en muchos casos la aplicación de métodos más complejos. -

Keefer (7) cita algunos métodos para resolver el problema de escalamiento mediante el uso de métodos heurísticos Y Wiloe (13 cita métodos analíticos de escalamiento que DEBEN SER CONSIDERADOS POR EL EXPERIMENTADOR QUE DESEE RE SOLVER PROBLEMAS DE OPTIMIZACIÓN.

El método de Steepest, aunque es muy conocido, tie ne algunos problemas que es necesario mencionarg a).- La información de cada iteración no se aprovecha en las si-guientes para tratar de mejorar la convergencia. b).- La tasa de convergencia depende bastante de la forma del fun CIONAL O LO qUE ES LO MISMO, DE LOS VALORES Propios. Estas desventajas hacen que el método de steepest sea cons DERADO COMO UN PROCEDIMIENTO POCO PODEROSO Y QUE SÓLO SEA USADD EN CIRCUNSTANCIAS ESPECIALES.

El método Newton, presenta también algunos incon-venientes:
a).- El inverso de la matriz hessiana puede no - EXISTIR.
b).- El cálculo de las segundas derivadas puede en algunos casos ser muy complicado.
c).- Requiere mayor cantidad de memoria pues es ne cesario almacenar la hessiana y su inverso.
D).- Si la hessiana no es positiva definida un movimiento en la dirección dada por el algoritmo puede resultar en un aumento y no en una dis-minución de f (X)

Fiacco y Mc Cormick (6) han presentado una modifica ción al método tradicional que resuelve esta dificultad y que se basa en las características de los valores propios

La modificación hace que el método de newton sea aplicable a un mayor número de casos aunque los requisi-tos de memoria aumentan considerablemente.

Los métodos aquí considerados, no son aplicables a problemas con restricciones, por lo cual es conveniente mencionar un método desarrollado por fiacco y Mc Cormick (5) QUe incluye las restricciones dentro del funcional -mediante la introducción de una función de castigo, con-virtiendo el problema en uno de un funcional sin restricciones. Las características del método hacen mucho más general la aplicación de algoritmos como los considerados anteriormente, aunque las restricciones deben cumplir - CIERTAS CONDICIONES DE SIGNO。

De los resultados de las corridas y pruebas de los algoritmos se puede decire no se pueden formular reglas precisas sobre el tamaño óptimo del paso pues depende del problema específico que se quiera resolver y del método que se va a usar para hallar la solución.

El mudelo de búsqueda lineal de Davies, Swann y -Campey, debe preferirse de acuerdo a los resultados obteNidos, scbre el método combinado aunque se pueden inten-tar variaciones y nuevos métodos. El método combinado -fue más que todo una idea personal y sólo se trato de pro bar su posible eficiencia respecto a métodos más conoci-dos. SU principal desventaua radica en el hecho de inclu ir un proceso que depende demasiado de valores o evalua-CIONES DEL FUNCIONAL Y QUE NO APROVECHA LA INFORMACIÓN -dada por estos valores, totalmente, como si lo hace el -método de Davies. No se debe pensar en que los algorit-mos escogidos son los mejores, pues existe una gran - -
variedad de métodos con características muy diferentes, -para localizar extremos. Su escogencia no obedeció a ningún criterio en particular pero sí se trató de usar méto-DOS CONOCIDOS.

El trabauo. debe considerarse más cono una ilustra-CION Y NO COMO UNA GUía, SObRE algunos aspectos que son -impgrtantes en problemas de optimización y solo se intentó estudiar una dificultad que se fresenta en algunos procedl mientos de búsqueda.

$A P E N D \mid C E$

DIAGRAMAS DE FLUJO Y LISTADOS.

LOS PROGRAMAS, REQUIEREN COMO DATO DE ENTRADA, EL VALOR DE NO NÚMERO DE VARIABLES INDEPENDIENTES Y EL PUNTO INICIAL. LOS SUB-PROGRAMAS DE BÚSQUEDA LINEAL SON: DSC: MÉTODO DE DAVIES, SWANN Y Campey.

BARON: MÉTODO COMBINADO.

SU FORMA DE LLAMADA ES:
CALL XXX(PASO, X, S, N. HLAN, KTEST)

DONDE:
PASO\& TAMAÑO DEL PASO USADO EN EL MÉTODO.
X : PUNTO A PARTIR DEL CUAL SE HACE La búSQUEda.
S : Vectur dirección.
HLAN: AL TERMINAR, CONTIENE EL VALOR OPTIMO DE λ
KTEST\& CONTADOR DE EVALUACIONES DEL FUNCIONAL.
N : NÚMERO DE VARIABLES INDEPENDIENTES.

LOS PROGRAMAS REQUIEREN, ADEMÁS DE LOS SUB-PROGRAMAS ANTES MENCIONADOS, LOS SIGUIENTES:

STEEPEST: Requiere test y GRADI
NEWTON: REquiere TEST, HESS y GRADI
DAVIES: Requiere test.
powell: Requiere test.

DONDE:
TEST: SUb-PROGRAMA del tipo FUNCTION que incluye EL FUNCIONAL A OPTIMIZAR; ES LA FORMA FUNCTION TEST (X).

- 82 -

GRAD !	Subrutina que devuelve el valor del
	gradiente en un punto X. Su forma de
	llamada es call gradi (Grad, X, N.)
HESS:	Esta subrutina devuelve la matriz Hessia
	na del funcional. Se llama en la forma
	Call hess (F, X, N) donde fes la hessia
	na y X el punto considerado

SUBRUTINA BARON

METODO DE POWELL

METODO DE DAVIES, SWANN Y CAMPEY

METODO DE NEWTON

- 88 -

METODO DE STEEPEST

B $\mid B L 10 G R A F 1 A$

1.- BOX, M. J., DAVIES, D., W. SWANN. Non-linear optimization techniques, Monografía No. 5. Imperial - Chemical industries Lto. 1969.
2.- birkhoff, g., maclane s, linear algebra. Blaisdell - Publishing Co. (1966)
3.- BROYDEN, A. H. QUASI-NEWTONIAN METHODS. JSIAM, 21 (1971) P. 368
4.- Dorn, W. S. Non-Linear Programming. a Survey. Manage-. ment Science. Vol. 9 (19ó3), 171-208
5.- FIACCO, A., MC CORMICK, G., COMPUTATIONAL ALGORITHM - for the Sequential unconstrained minimization -technique. Management Science. Vol. 10, No. 4
6.- fiacco, a. mc CORMICK, G. Non-Linear programming. john Wiley and Sons inc. 1968.
7.- KEEFER, DON, LLD. GGTTFRIED, BYRON. DIfferential CONS-traint scaling in Penalty function optimization Alee. Transactions. Vol. 2, No. 4 (1970)
8.- POWELL, M. J. D. AN EfFICIENT METHOD FCR FINDING THE MINIMUM OF \therefore FUNCTION OF SEVERAL VARIABLES WITHout calculating derivatives, the Computer journal, 7, 155-162.
9.- Powell, m. J. D. a Survey of numerical methods for uncons trained optimization. Simm Review, 12, 79 - 97.
10.- ROSEMBROCK, H. H. AN AUTOMATIC METHOD FOR FINDING THE greatest or least value of a function. the compy ter journal, 3, 175-184.
11.- 3haH, BEUHLER, Some algorithms for minimizing a Function of several variables. JSIAM, 12, p. 74.
12.- SPENDLEY W., HEXT, G. R. Himoworth F. R. Sequential APLICATION OF SIMPLEX DESIGNS IN OPTIMIZATION,Technometrics, 4, 441-461.
13.- Wilde, D. J. Beightler, A. Foundations of Optimization, Prentice, hall, 1967.
14.- Wilde, D. J. Optimum Seeking Methods. Prentice Hall, 1964.
15.- Zangw!ll W. Non Linear Programming, Prentice-hall -(1969).

```
$100,0135 JFKI,OTALORA, 300,5000
$SCHED,CORE =40,SCR=10
SF TN (L,X)
    PROGRAM STEEPEST
    DIMENSION X(20)%XN(20),GRAD(20),S(20),T(20)
C - ****s*s*s********** METODO OE STEEPEST **********************
c
    READ 1100,N
    1100 FORMAT (II)
    REAO 11%I,(XII) ,I=1,N)
C
3--*-\infty-\infty---- LECTURA DE N Y DEL PUNTO INICIAL
1101 FORMAT (8F10.0)
    PRINT 1105,(X(I),I=1,N)
    1105 FORMÃT(Bि(F10.5,3x))
    00 21 I=1,N
    21 T(I) =x(I)
        00 1500 KLM=1.10
        NTEST=0
        00 22 I Im1,N
        22 x(1)=下(I)
        ICON:M
        1 1 ~ C A L L ~ G R A D I ~ ( G R A D , X , N )
        户ASO= 5.1%KLM
C EL VECTOR DIRECCION --- S --- ES EL GRAOIENTE
C
    0020 1=1,N
    20 S(I)=-GRAO(I)
c
C-m*--*--m-* BUSQUEDA LINEAL
    CALL BARON (PASO,X,S,N,HLAN,KIESI)
    NTEST=NTEST+KTEST
    003 1=1,N
    30 XN(I) = X(1)
    SUM=0
    EPS=0.00001
    00 3i i = 1,N
    31 SUM=SUM+XN(I)**2
    CALL GRADI (GRAD,XN,N)
    DO 40I2I,N
C
C-*-*-*-*--- CRITERIO DE OPIIMALIDAD
    IF(ABS(GRAD(I))-EPS)40,40.50
    40 CONTINUE
    60 70 70
    50-00 60 1=1,N
    60 X(I)=xN(I)
    ICON=ICON+1
    60 TO 11
    70 PRINTT 1110
    PRINT 1105:(XN(1),I=1:N)
    PRINT 711,ICON
1110 FORMAT (1H1,11/,53x,15HSOLUCION ORIIMA,/1)
    711 FORMATT (1OX, IBHNO. DE ITERACIONES, ЗX,I6)
    PRINT 932,NTEST
    92 FORMAT (10x,42HNO. DE EVALUACIONES DE LA FUNCION OBJETIVO,18)
1500 CONTINUE
    END
```

SUBROUTINE GRADI（GRAD，X, N ）
EIMENSION GRAD（20）－$\times(20)$

```
C-\infty-\infty-\infty----- CALCULO DEL GRADIENTE
```

 \(0011=20 \mathrm{~N}\)
 1 GRAD (I) =-2. *x(I)
 GRAD (I) \(=-4\) - *X(I)
 RETURN
 ENO
 FUNCTION TEST (X)
 DIMENSION X(20)
 c
C
TEST $=(-2 * * x(1) * * 2)-(x(2) * * 2)-(x(3) * * 2)$
TEST=-TEST
RETORN
END
SUBROUTINE BARON(PASO, X, S, N,HLAN,KTEST)
OIMENSION FUN (4), X(20), SX (20), XN (20),FR(4), S (20), W (2)
c
C- $-\infty-\infty-\infty$ PUNTO DE ENTRADA
C $-\infty-\infty-\infty$ - S VECTOR DIRÉCCION
C $-\infty=-\infty$ HLAN VĀLOR DÉ LAMBDA
C̄ PASO TAMANO DEL PÁSO
DO $55 \mathrm{I}=\mathrm{j}, \mathrm{N}$
55 SX(I) $=X(I)$
SPASÓ=PASO
HLAN $=$
RRED:
KTESTシ1
45 PLANEHLAN
SLAN $A=H L A \bar{A} N$
$F=T E S T(x)$
TO ICON=
IT $=1$
TXP $=1$
$P L A N=P L A N+P A S O$
$60011=19 \mathrm{~N}$
$1 X_{N}(I)=S X(I)+$ PLAN*S(I)
FN=TEST $(X N)$
KTESTシKTEST+1
IF (F二FN) $2,3,3$
2 ICON $=1 C O N+$
IF $(I T-1) 4,5,4$
5 IF (ICON-1) $38,38,101$
101 UP=PLAN+2.BPASO
$B A J=P L A N$
GO TO 102
$38 \mathrm{PLAN}=M L A N$
C
C
C
C
SE INVIERTE LA DIRECCION OE BUSQUEDA
TXP=-1
PLAN=PLAN + TXP*PASO
GO TO 5
3 PASŌシ̈2*PASO
PLAN $=P \dot{L} \hat{A} \hat{N}+I X P * P A S O$
faFN
$\overline{\mathrm{I} T}=\mathrm{IT}+1$
GO TÔ 6
4 FUN(4) $=F N$

```
C-\infty-\infty-\infty-\infty
    FUN(2)=F
    SPL=PLAN=TXP*PASO
    00 1 I=1;2
    IF (PLAN)93,93,94
    93 KK=1*1
    GO TO 95
    94 KK= I
    95 FACT=SPL*(-1)**KK* (PASO!2)
        DO-7 R3 =1,N
        7 XN(K3) =SX(K3) +FACT*S(K3)
    10 FUN(2%I-1)=TEST(XN)
C
C--*-------=- SE CALCULAN LOS CUATRO VALORES DEL FUNCIONAL Y SE ELIMINA
```



```
    KTEST=KTEST + ? 
    PÁSO=PAS̃OスZ
    IF (FUN(2)-FUN (3))12,12,13
    12 KL1=4
    PLAN =PLAN-2*TXP*PASO
    G0 To 21
    13 PLAN=PLAN- TXPOPASO
C
C
C}-\infty-\infty-\infty-\infty- F1 Y F22 SON LOS FACTORES DE PESO PARA LA LOCALIZACION
C}=-\infty-\infty-\infty-\infty-~ DE PUNTTOS DE PRUEEAA
    21 UP=PLAN+TXP*PASO
    BAJ=PLAN=TXP部ASO
    102 +1=(3.-5**0.5)/2.
    F2=1%fl
    23-(1) = 8AJ + (UP-BAJ) *F1
    W(2)=BAJ+(UP-BAJ)aFz
    KRED=KRED +1
    DINT=ABS (UP-BAJ)
    IF (KRED=1)903,904,903
    904 DINTIN=DINT
    90300 20 1=1,2
    DO 22 J=I,N
        22 XN(J) =X (j) + = (I) #S(J)
        20 FUN(I)=TEST(XN)
            KTESTシKTESI*2
c
C-\infty-*-*----- CRITERIO DE CONVERGENCIA
    IF (ABS(W(1)-W(2))-0.0005)24,24.25
    25 IF (FUN(1)-FUN(2))26,26,2?
C
    26 UP=W(2)
    G0 10 23
    2? BAJjW(I)
        GO TO 23
    24 ALANN= (W(1)+W(2))/2
        IF (ABS (HLAN)-0.001)967,967,966
    967 HLANN#̈.
    966 DO 100 I=1,N
    100 X(I)=Sx(I)+HLAN*S(I)
        66 RETURN
```


ST TN（L，x ）

PROGRAM IRENE
OIMENSION P（100，11），DIR $(10,10): \times(10), X P(10), X T(10), X N(10), S(10)$, IFP1（10），FPZ（10），$H J K(1), I X(20)$
READ $40, \mathrm{~N},(\mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
40 FORMAT（I2．7F10．0）
C
3－－＊－－－－＊－＊LECTURA DE N Y DEL PUNTO INICIAL
DO $2223 \mathrm{~K} \downarrow 9=1 \mathrm{~N}$
2223 TX（K」9）$=\mathrm{X}(\mathrm{K} J 9)$
$002222 \mathrm{KLMI}=1,10$
PASO $=1$ HKLMI
$\mathrm{I} T=0$
NTEST＝0
00 222 $24 \mathrm{~K} \cup 9=1, N$
$2224 \times(K J 9)$ 隹（KJ9）
SPASOMPASO
$\stackrel{C}{C}$
C $\because \because \because \circ \because \because \because \because \because \because \because \%$ METODO DE POWELL
$00 \mathrm{I}=1 \mathrm{~N}$
DO $1 \mathrm{~J}=1 \mathrm{o} \mathrm{N}$
IF $(I-J) 2,3,2$
3 OIR（I；j） GOTO I
$2 \operatorname{OIR}(I, J)=0$
i CONTINUUÉ
C
C－w－w－m－m LOS EJES INICIALES SON LOS ORIGINALES

$25007 I=1, N$
$p(1,1)=x(1)$
$7 \times P(1)=X(1)$
$I T=I \dot{T}+1$
$\mathrm{Ni}=\mathrm{N}+1$
DO $4 \mathrm{I}=2$ ，N1
PASO＝SPASO
$00^{-5} \mathrm{j}=1 \mathrm{oN}$
S S（J）＝01R（J，I－1）
\bar{C}
NTEST＝NTEST＋KTEST
DO 6－ $\mathrm{J}=\mathrm{I}$ ON
$X_{N}(j)=X^{(j)}$
$6 P(J, i) \equiv x(j)$
4 CONTINUE
c $c=-\infty=-\infty=-=$ SE CALCULARON LOS NUEVOS VECTORES P
DO 27 IEI， \bar{N}
FP1（I）\＃P（1，1）
27 FP2（1）＝P（1：2）
Ма 2
BAJ＝TEST（FPI）－TEST（FPZ）
$0081=\overline{2} \cdot N$
DO $9 \mathrm{~J}=1 \mathrm{~N}$ ． N
FP1（J）\＃P（おっI）
$9 \quad F P 2(J)=P(j, I+1)$
DELTA二TEST（FPI）－TEST（EP2）

```
C
    IF (DELTA-BAJ)8,10,10
    10 BAJ=DELTA
        M=1+1
    8 CONTINUE
C
    DO 11 Im 1,N
    FP1(I)=P(I,I)
    11 FP2(I)=P(I,Ni)
    F1=TEST(FP1)
    F2=TEST゙(FPZ)
    00 12 1=I,N
    12FP1(I)=2,*FP2(I)-FP1(I)
    F3=TEST (FP1)
    TERM=(F1-2*F2+F3)*(F1-F2-8AJ)**2
    SIDE= .5*8AJ (FI-F3)**2
    IF(F3-F1)13,14;14
C
C-m-\infty--\infty--- PRUEBA DE CONDICIONES OE CAMBIO DE BASE
    13 IF(TERM-SIDE) 15,14.14
    140016 I=1,N
    16.x(I)#P(I,N1)
        G0 To 17
    1500 I8 I=1,N
        S(I) =P(IONI)-P(I,1)
    IB FPI(I)=P(I,NI)
C---------- SE GENERA UN NUEVO VECTOR OIRECCION
    PASO=SPASO
    CALL OSC (PASO,FP1,S,N,HLAN,KIEST)
    F=\mp@code{M=1}
    IF (M-N) 32,33,32
    3200 38 INI,N
    38 DIRII,NI)=0
C
C
    OO 2. I=M,N
    DO 2. J=1,N
    20 DIR (J,I)=0IR (J,I+1)
    330028 I=10N
        X(I)#FPI(I)
        28 DIR(I,N)=S(I)
        270021 1=1,9M
C
C-----*----\infty-- CRITERIO DE OPTIMALIDAD
    IF(ABS(P(1,N1)=P(1,1))=0,0001)21,21:25
        21 CONTINUE
        #RTNT95
        99 FORMATT 120X,16H SOLUCION OPTIMA)
        PRINT 42;(X(\overline{I}), I=1,N)
        42 FORMAT (4X,8(F10:5,2X))
        PRINT-933,1T
    933 FORMMT (1OX,18HNO, DE ITERACIONES,I8)
        PRINT 932,NTEST
    92 FORMÄT (IOX,42HNO. DE EVALUACIONES OE LA FUNCION OBJETIVO,IB?
    2222 CONTINUE
```

ENO
SUBROUTINE DSC (PASO* $X, S, N \cdot H L A N * K T E S T)$
DIMENSION FUN (4), $x(20), S X(20), X N(20), F R(4), S(20)$
PRINT Z2Z,PASO

```
    222 FORMÄT (!?!/!!,10X,15HTAMANO DEL PASO,F10.5,/!/!)
C
C}-\infty-\infty-\infty-- Xe., PUNTO DE ENTRADA
C---*----S :O. VECTOR DIRECCION
```



```
C--m--mÁSO 
    DO 55 I= I,N
    55 SX(I)=X(I)
    SPASÓ=PASO
    KREO =0
    HLAN=S
    KTEST\1
    4 5 \text { PLANEHLAN}
    SLAN=HLAN
    F=TEST(X)
    70 ICONE
        ITm&
        TXP=1
        PLAN=PLAN+PASO
        6001 I=ION
        1 XN(I)=SX(I)+PLAN*S(I)
        FN=TÉST (XN)
            KTEST=KTEST+1
        IF (F=FN) 2,3,3
        2 ICON=ICON+1
        IF (IT-1)4,5,4
        5 IF(ICON-1)38,38,98
    98 IF (AB̈S (PLAN=AL AN)=0.001)66.66*?1
    91 PASÖ=SPASO/15
        SPASO=PASO
        00 TO 45
```

 38 PLAN \(=H L A N\)
 C------m--- SE HACE LA BUSQUEDA EN DIRECCION CONTRARIA A LA INICIAL
\bar{C} - $-\infty-\infty-\infty-\infty \quad, \quad$-DEN IZQUIEROO
TXP=-1
PL AN $=P L A N+T X P \& P A S O$
GO TO
3 PASÓ 2 - PASO
PLAN $=P L A \bar{N}+I X P * P A S O$
$\mathrm{F}=\mathrm{F} \mathrm{N}$
IT=IT+1
60 TO゙ 6
4 FUN(4) =FN
C
C-m-*--*- SE LOCALIZO EL INTERVALO DONDE ESTA EL OPTIMO
FUN (2) $=F$
UP $=P L A N$
KREOUKRED +1
SPL $=P L A \bar{N}=T X P \approx P A S O$
DO $10 \mathrm{I}=1,2$
IF (PLAN) $93,93,94$
93 KK= $\mathrm{F} \% 1$
GO TO 95
94 KK=I
95 FACT=SPL+(-1) **KK* (PASO/2)
c


```
IF(I-1)900,901,900
    901 BAJ=FACT
    900 DO 7 K3M,N
    7 XN(K3)=SX(K3)+FACT*S(K3)
    10 FUN(2*I-1)=TEST(XNN)
    KTEST#KTEST+2
    PASOミPASO/2
    OINT=ÄBS(UP-BAJ)
    IF(KRED=1)903,904,903
    904 DINTINE=DINT
    903 PRINT 902.0INT
    902 FORMAT?/1.10X,22HLONGITUO OEL INTERVALO,F10.3.!)
        IFIFUN(2)=FUN(3))12,12,13
        12 KLl=4
        GO TO 21
        13 KL1=1
C
C}-\infty-\infty-\infty-\mp@subsup{V}{A}{
        DO 20 I m1,3
        20 FUN(I)=FUN(I+1)
    21 IF\IXP=1!22,23,22
C
C---m---ESTO OCURRE RENOMBAR LOS INDICES OE LAO-- FUN=---
    22 IF (KL_m4)24,25,24
    25 FR(1)=FUN(3)
        FR(2)=FON(2)
        FR(3)=FUN(1)
        PLAN=PLAN+2*PASO
        60 10-26
    24 FR(1)=FUN(4)
        FR(2)=FUN(3)
        FR(3) =FUN(2)
        PLAN=PLAN*PASO
    26002? In].3
    27 FUN(I) =FR(I)
        GO TO 30
    23 IF (RLI=4)28,29,28
    29 PLAN=PLAN-2*PASO
        00 T0-30
    28 PLAN=PLAN=PASO
C
C
    30 SM=PASO* (FUN(1) -FUN(3))/(FUN(1) -2"FUN(2) &FUN(3))
    76 SM=SM/2
        ALAN=PLAN+SM
    101 00 40 I=1,N
    40 XN(I)=SX(I) +PLAN*S(I)
        Fl=TEST(XN)
        DO 41 I=1,N
    41 XN(I)=SX(I)*HL.AN*S(I)
        F2=TESTT(XN)
        KTESTミKTEST+Z
        IF (FI-F2) 42.42.43
    4200 48 F=1,N
    4B}\times(II)\equivSX(I)&PLAN*S(I)
```

$H L A N=P L A N$
GO $70^{-4} 4$
$430075 \mathrm{I}=1, \mathrm{~N}$
$75 \times(1)=S X(1)+H L A N * S(I)$
44 PASO $=S P A S O / 5$
PRINT 96. HLAN
96 FORM ${ }^{\text {I }} T(1 / 1,20 \mathrm{x}, 4 \mathrm{HHLAN}, 4 \mathrm{X}, \mathrm{F} 10.5)$
SPASÓapASO

```
C
```


IF (ABS (SLAN-HLAN) $\mathbf{0 . 0 0 0 5) 1 0 3 9 1 0 3 . 4 5}$
103 HLAN = (SLAN+HLAN) 12.
66 PRTNT $95, H$ LAN
FACTR̃E =DINTIN1OINT
PRINT-905,FACTRE, KRED

INUMER̄O DE REOUCZTONES,IB)
END
FUNCTION TEST (X)
DIMENSION X(IO)
$\frac{\mathrm{C}}{\mathrm{C}} \mathrm{C}-\infty-\infty$.-m FUNCIONAL OBJETIVO
TEST $=-x(1) * * 2-x(2) * * 2$
TEST $=-$ TEST
RETORN ${ }^{-}$
ÊNO
FINIS
$\$ x, L G 0$
$2-1.2 \quad 1$.

```
SJOB20135JFKI, OTALORA, 300.5000
SSCMED CORE 40, SCR=10
```



```
§ćoš
MINV DECK/ \(\quad I=10, L, H\)
SFTN (I =SHOOL \(\cap X)\)
\$F TN \((L, X)\)
PROGRAM NEWREVIS
C GERMAN BARON MACIAS \(\$ 35395\)
C MAESTRIA EN INGEENIERIA INOUSTRIAL
REAL L \((15,15)\), LI (15,15)
REAZ LTM1 \((4,4)\)
OIMENSION TXて2)
DIMENSION T(20), \(D(15,15), A(20), S(20), P I V O T(20), F G(20)\) QF1 \((15,15): \times N\)
\(1(20) \%\) 天 20 ) GRAD (20) OF (15015) وW (20)
DIMENSION FMI \((4,4)\)
\(C\)
\(C\)
\(C\)
                                    METODO DE NEWTON DE SEGUNDO ORDEN,REVISADO
READ \(1140, \mathrm{~N}\)
1140 FORMAT (I2)
    READ \(1141,(X(1), I=1, N)\)
C
\(\frac{3}{\mathrm{C}}-\infty-\infty-\infty-\infty-\) LECTURA DE \(N\) Y DEL PUNTO INICIAL
    \(002223 \mathrm{KJ9}=1, \mathrm{~N}\)
2223 TX \((K\) J 9\()=x(K \cup 9)\)
11.41 FORMAT (8F 10.0\()\)
    DO \(2222 K\) KLI=1,10
    NTEST=0
    PASOE.1*KLMI
    SPASO =PASO
    00 2224 R J9 \(=1\), \(N\)
    \(2224 \times(K \mathrm{Jg}) \overline{\mathrm{F}} \mathrm{TX}(\mathrm{KJ9})\)
        ICON:
        101 CALL GRADI (ORAD, X)
        CALL HESS \((F, X, N)\)
        IF (ICÓN̄ 1 ) \(50,51: 50\)
        51 DO \(42 \mathrm{I}=1 \mathrm{~N}\)
        42 PRINT \(40,(F(I, J), 101, N)\)
        40 F̂ORMÃT ( \(10 \times 95\) F 10.5 )
        ,50 IF \((N=2) 324,325,324\)
    325 DETニF \((1,1) * F(2,2)\) FF \((1,2) * F(2,1)\)
        FM1 \((\overline{1}, 1)=F(\tilde{2}, 2)\) ノOET
        FM1 \((2,2)=F(1,1) / 0 E_{T}\)
        FM1 \((1,2)=-F(1,2) / \bar{D} T\)
        FMI \((2, j)=-F(2,1) D D E!\)
        EO TO 200
        \(324001001 \quad I=1, N\)
            \(001001 \mathrm{j}=1, \mathrm{~N}\)
    1001 FM1 (1;J) =F(19J)
C
C------m- CALCULO DE LA INVERSA DE LA MAIRIZ HESSIANA
            CALL MINVIFMI, NODET,L23.MBI)
    \(2000011 \quad 1=1, N\)
        \(F G(I)=0\)
        DO 12 Jmın \(N\)
        \(12 F G(I)=F G(I)+F M I(I \cdot J)\) *GRAD(J)
    C
C
```

```
        11 S(I) =-FG(I)
        DO 80 I=1,N
        80 PRINT 40,(FMI (I,J),J=1,N)
C
C-m---m-*-m--- BUSQUEDA LINEAL
    CALL BARON(PASO*X,S,N,HLAN,KIEST)
    NTEST\approxNTEST+KTEST
    CALL'GRADI (GRAD:R)
    SS=0
    DO 58 I=1,N
    58 SS=SS*GRAD(I)**2
    GR=SS***).5
C
C-me--\infty----- CRITERIO DE CONVERGENCIA
    IF (GR=0,00001)33,33,320
    3 3 \text { CONTINÜE}
    PRINT I11
    1110 FORMÄT (1H1,///,53X,15HSOLUCION OPTIMA,//)
    DO 1148 I=1,N
    1148 PRINT 1146, X(I)
    1146 FORMAT (55X,F12.8)
    60 TÖ 2228
    320 ICON=ICON*1
    PASO=SPASO
    60 T0"101
2228 PRINT 932,NTEST
    932 FORMATT (10X,42HNOO. OE EVALUACIONES DE LA FUNCION OBJETIVO,IS)
    PRINT-933.ICON
    93 FORMAT (10X,18HNO. DE ITERACIONES,I8)
2こうこ CONTINUE
    END
    FUNCTION TEST(X)
    OIMENSION X(2े)
    N=2
C
C-m----=--=- FUNCION,L OBJETIVO
    TEST#X(1)**4-2**X(2)*x(1)**2+x(2)**2+x(1)**2-2*x(1)*5
    RETURN
    ENO
    SUBROUTINE HESS (F, X,N)
    DIMENSION F(15,15) , X(5)
C
C
CALCULO DE LA MATRIZ HESSIANA
    F(1,1)=12.*)
    F(1,2)=-4.*X(1)
    F(2,2)=2.
    001 1=1,N
    001 J=10N
        | F(J,I)=FF(I,J)
            RETURN
            ENG
    SUBROUTINE GRADI (GRAD;X)
    DIMENSION X(20),GRAD(20)
C
C
    GRAD(1)=4**\times(1)**3-4**\times(1)*\times(2)+2.*\times(1)-2
    GRAD(2)=-2.**(1)*#2+2.#x(2)
    RETURN
```

```
$JO8,0135JFKI,OTALORA, 300,5000
$SOHED,CORE=40,SCR=10
$PN(N(L,X)
    PROGRAM COLOMBIA
    OIMENSION PLANOT20),SWT(20),SOEL(20),OIRO(10,10),SDIRO(10,10),S(20
    1), }X(20),T\times(200
    REAO 41,NN,(XIT),Iz1,N)
C
C-\infty-\infty-\infty-\infty-- LECTURA DE N Y DEL PUNTO INICIAL
    41 FORMAT (12,6F10.0)
    DO 22゙え3 KJ9=1;N
    2223 TX(KJ9) =x(RJ9)
    00 2222 KLMI=1,10
        NTEST=0
        PASO#.1*KLMI
        SPASO=PASO
C
```



```
    IT=0
    DO 1 1=1,N
    00 1 J=1,N
    IF(I-J)3,2,3
        2 OIRO(1, J)=1
        GO TO 
        3 DIRO(I, J)=0
        I CONTINUE
            DO 2224 KJ9=1,N
    2224 X(K^99) =TX(KJ9)
    32 IT=IT+1
    3300 5 I=1,N
        00 6 J=1,N
        6 S(J)=DIRO(J,I)
            PASO=SPÄSO
            CALLL DSC(PASO,X,S,N,HLAN,KTEST)
            NTESTANTEST+KTEST
C
```



```
        PLANO(I)=HLAN
        5 CONTINUUE゙
        DO I% IE1,N
    19 SWT (\hat{I})=0
    KSUM=
    DO 20 I=1,N
    IF (AB5 (PLANO(I))=0.0001)21,21,20
    21 SWT(I) =1
    KSOM#KSUM*1
    20 CONTINUE
    IF (RSUM)1841?,18
    18 ki=0
        DO 22 I = I,N
        IF (SWI (I))22.23.22
C
C---\infty-\infty---- K_ ES EL NUMERO DE DIRECCIONES CON AVANCE DIFERENTE DE O
    23 K1=K1+1
    SOEL (K2) mPLANO(I)
    00-424 jw m,N
    424 SOIRO(J,K1)=OIRO(J,I)
    22 CONTINOE
        IF (R1)5i,31,51
    31 CALL GRAMSCH(SDIRO,NOKI.SDEL&RE)
```

```
    KM1#K1+1
        DO 25 I=1,N
        IF(SWT(I))24,25,24
        24 DO 26 Jwi,N
        26 SDIRŌ (J,KMI)=DIRO(J,I)
        SOEL(KMI) =PLANO (I)
        KMI=KM1&1
        25 CONTINUE
        00 27 I=1,N
        0027 J=1,N
        27 DIRO(I;J) SOIRO(I,J)
        G0 TO 28
    17 CALL GRAMSCH(DIRO,N,N,PLANO,RE)
    28 IF (RE=0.001)31,31,32
    P\िNT 42
    4 2 \text { FORMÄT(1OX:1OHSOL OPTIMAO/!)}
        PRINT 141,(X(1),I=1,N)
    141 FORMAT (30X,8F10.5)
    FRINT 933,IT
    933 FORMAT T10X,18HNO, DE ITERACIONES,I8)
    PRINT 932,NTEST
    92 FORMATTIOX,42ANO, DE EVALUACIONES DE LA FUNCION OBJETIVO,I8)
    Z2ट己己 CONTINUE
        END
        SUBROUTINE GRAMSCH(OIRO,N,MPDEL,RE)
    OIMENSION OIRO(\tilde{1}0,10),DEL(10);A(10̈,10),SIG(10),D(10,10)
C----------- ESTA SUBRUTINA REALIZA EL PROCESO DE ORTONORMALIZACION DE
C--m-m--- GRAM-SूCHMIDT EN UNN CONJUNTTO M' DE VECTORES QUE ESTAN EN LA
C--m-*-*-m MATRIZ OIRO: LA NUEVA BASE QUEDA EN CA MATRIZ DIRO.
```



```
C--m---m---- MINAR CONVERGENCIA EN EL' ALGORITMI OO BUSQUEDA
    0010 K=1,M
    0010 I=1,N
    A(I,K)=0
    DO 1, JaK,M
    10 A(I!K) AA(I,K) +DEL(J)*OIRO(I,J)
    RE=0
    00 40 I=1,N
    40 RE=RE + ABS (A (1,1))
    24 SUM尔6
    00 11 I=1,N
    11 SUM=SUM*A(I,1)**2
    SUM=S゙QRT (SUM)
    00 12 I=1,N
    12 OIRO(I,1)=A(I,I)/SUM
    IF (M-1)90,80;90
    80 RETURN
    9000 13 I =2,M
        11=1=1
    DO }14\quadJ1=1,
    14 Sig(J1)=0
    DO 15 j m=1,I1
    SUM=0
    00 16 K=1,N
    16SUM=SUM+A(K,I)*DIRO(K,J)
    DO 17 L=1,N
    17 SIG(L)=SIG(L)+SUM*DIRO(L?J)
    15 CONTINUE
        DO 18 JM=1,N
    18D(JMOI)=A(JMQI) ~SIG(JM)
    SuNlmo
```

DO $19 \mathrm{KI}=1, \mathrm{~N}$
19 SUNI=SUNL + D (KI,I) **?
SUNI $=$ SUNI \# \# O.5
DO $20 \mathrm{KJ}=1$ in
20 DIRO (KJ.I) $=0(K J, I) / S U N 1$
13 CONTINUE.
RETURN
ENO
FUNCTION TEST (X)
DIMENSION X(20)
C
C--*-*---*- FUNCIONAL OBJETIVO
$\overline{\mathrm{C}} \quad$ TEST $=(-2, * x(1) * * 2)-(x(2) * * 2)-(x(3) * *, 2)$
TEST=-TEST
RETORN
END
FINIS

```
$x,LG0
    3-2.5 3. 1.5
```

目禹

