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URN MODELING FOR HEAVY-TAILED PHENOMENA

Oscar Rodŕıguez Morales, M.Sc.

Instituto Tecnológico y de Estudios Superiores de Monterrey, 2003

During the last decade, it was clear that the use of Poisson processes for modeling network

traffic underestimated certain important performance measures such as blocking or queue-

ing delay, among others. Researches around the world agree with the presence of heavy-tail

behavior in almost all the data traffic’s metrics, such as connection arrivals, file sizes, cen-

tral processing unit (CPU) time demands of UNIX processes, etc. As a result, during the

next few years, heavy-tailed distributions will play a principal role in the modelling and

developing of telecommunications systems.

Due to the nature of data traffic, researches demand a discrete heavy-tail distribution,

perfectly well described, that enables them to reflect the impact of the two states present

in all digital systems (on/off, successful/failed, connect/disconnected, enabled/disabled)

in the tail decay. At the present time, there is no distribution with this high degree

of flexibility. This thesis completes the description of the discrete heavy-tail distribution

introduced in [24] by getting their moments and variance derived from a rigorous generating

functions analysis. It validates the model’s heavy-tail nature through mean excess functions

and some related plots such as the Quantile-Quantile or Probability-Probability plot. Also,

the model’s stability and their match with the Pareto distribution are investigated. This

work concludes with a discussion about the initial conditions influence in the model’s tail

decay.
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Durante la década pasada quedo de manifiesto que el uso de procesos Poisson para el

modelado del tráfico presente en redes de Telecomunicaciones, subestima ciertas métricas

de desempeño importantes tales como el bloqueo o el retardo en cola entre otras. In-

vestigadores de todo el mundo coinciden con la presencia de un comportamiento de cola

pesada en casi todas las métricas de interes en el tráfico de datos; tales como los arrivos

de conexión, el tamaño de archivos, el tiempo de servicio demandado a la unidad de proce-

samiento central (CPU) por parte de procesos UNIX, etc. Como resultado, durante los

próximos años las distribuciones de cola pesada jugarán un papel principal en el modelado

y desarrollo de sistemas de telecomunicaciones.

Debido a la naturaleza del tráfico de datos, los investigadores demandan una dis-

tribucion discreta de cola pesada perfectamente bien descrita que les permita reflejar el

impacto de los dos estados presentes en todos los sistemas digitales (encendido/apagado,

exitoso/fallido, conectado/desconectado, habilitado/deshabilitado) en el decaimiento de la

cola. A la fecha, no existe una distribución con este alto grado de flexibilidad. Esta tésis

completa la descripción de la distribución de cola pesada discreta introducida en [24] me-

diante la obtención de sus momentos y varianza a partir de un análisis rigoroso de sus fun-

ciones generatrices. Valida la naturaleza de cola pesada del modelo a través de funciones de

exceso medio y algunos gráficos relacionados, tales como los graficos de Quantile-Quantile

y Probabilidad-Probabilidad. También la estabilidad del modelo y su correspondencia con

la distribución Pareto es investigada. Este trabajo concluye con una discusión acerca de la

influencia de las condiciones iniciales en el decaimiento de la cola del modelo.
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Chapter 1

Introduction

In the telephone era, teletraffic engineering was concerned with the statistical behavior

on the call level only; a telephone call required a fixed amount of bandwidth, and con-

sequently, knowledge of the number and duration of calls was sufficient to determine the

needed resources. In contrast, multimedia traffic is characterized by a high variability in

its bandwidth needs. Data communications between computer terminals usually result in

short periods of high activity, followed by long periods of silence. So, in the multimedia era,

we are interested not only in the number and duration of calls, but also in the statistical

properties of the information flow during the call, in order to make efficient use of the

resources while guaranteeing a high quality of service.

A related observation with the traffic behavior in computer networks is that file sizes

in some systems have been shown to be well described, using distributions that are heavy-

tailed (distributions whose tails follow a power law), meaning that file sizes also often span

many orders of magnitude [4].

Heavy-tailed distributions behave quite differently from the distributions more com-

monly used to describe characteristics of computing systems, such as the normal distri-

bution and the exponential distribution, which have tails that decline exponentially (or

faster). In contrast, because their tails decline relatively slowly, the probability of very

large observations occurring when sampling random variables that follow heavy-tailed dis-

tributions is non-negligible. One of the main characteristics of these kinds of distributions

is their infinite variance, which reflects the extremely high variability that they capture.

As a result, designers of computing and telecommunications systems are increasingly

interested in employing heavy-tailed distributions to generate workloads for use in simula-

tion.

1
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1.1 Objective

The objective of this thesis is to complete the description of the discrete heavy-tail distribu-

tion, presented in [24] through an exhaustive generating-function analysis, and to validate

their matching with the Pareto distribution through mean-excess functions and certain

related plots, such as the Quantile-Quantile or Probability-Probability plots. As a final

contribution, some insight about their stability is given in order to provide the basis for

their application in the modelling of the aggregate traffic at the input of telecommuni-

cations systems when the discrete heavy-tail distribution is used to represent the traffic

generated by independent sources.

1.2 Justification

When modeling network traffic, packet and connection arrivals are often assumed to be

Poisson processes since researchers expected a similar behavior such as in telephone net-

works, and mainly because such processes have attractive theoretical properties [12]. On

the other hand, a number of exhaustive studies have shown evidence indicating that some

aspects of computing and telecommunications systems can show heavy-tailed distributions.

Measurements of computer-network traffic have shown that autocorrelations are often re-

lated to heavy tails; this is the phenomenon of self-similarity [13],[19]. Measurements of

the file sizes in the Web [4], and I/O patterns [22], have shown evidence that file sizes can

show heavy-tailed distributions. In addition, the CPU time demands of UNIX processes

have also been shown to follow heavy-tailed distributions [15], [18].

Due to these observations, heavy-tailed distributions are increasingly used to represent

workload characteristics of computing systems, and researchers interested in simulating

such systems are beginning to use heavy-tailed inputs to simulations.

Unfortunately there is not a discrete distribution that enclosed the heavy-tail behavior

completely, but there have been empirical work loads [8] that fit the measurements obtained

from real environments that can be only applied in a specific context. On the other hand,

the Zipf distribution (considered as the discrete Pareto distribution) has overestimated the

Pareto Behavior [24].

Under this perspective, the complete characterization of the discrete heavy-tail dis-

tribution presented in [24] is of great importance since the behavior of vital parameters in

telecommunications systems could be truly represented and handled in simulations carrying

in consequence a best prediction of their impact in the global performance.
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1.3 Contributions

In this thesis, I have completed the mathematical description of the discrete heavy-tailed

distribution presented in [24] in order to establish the necessary tools for their practical use

in analysis and simulations of telecommunications systems or of any discrete heavy-tailed

phenomena. Since this distribution is based on the Urn theory, throughout this work we

refer to it as the Urn Model distribution.

1.4 Organization

The organization of the present work is as follows. Chapter 2 includes a brief summary

about transformation methods for probability distributions as well as the mathematical

description of heavy-tail distributions and their importance for telecommunications. Chap-

ter 3 presents a complete mathematical description of the Urn Model distribution. Their

heavy-tail nature is validated through excess functions while their moments are derived

from generating functions. Later, I investigate the stability of the Urn Model distribution,

and towards the end of the chapter an analysis about the behavior of the tail is conducted.

In Chapter 4, the parameters’ influence on the behavior of the Urn Model distribution is

investigated through graphics which are discussed in order to point to a range of interest.

Finally, Chapter 5 contains the conclusions of this work, and the opportunities for further

research are commented on.
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Chapter 2

Heavy-Tailed Distributions and Telecommunications

The purpose of this chapter is to present the fundamental aspects of heavy-tailed distribu-

tions and their relationship with telecommunications. For a more detailed description of

these topics, see references [23] and [6].

2.1 Pareto Distribution

The simplest heavy-tailed distribution is the Pareto distribution, which is power law over

its entire range. The classical Pareto distribution, with shape parameter β and location

parameter α, has the following cumulative distribution function

F (x) = P [X ≤ x] = 1−
(

α

x

)β

, α, β ≥ 0, x ≥ α, (2.1)

with the corresponding probability density function:

f(x) = βαβx−β−1. (2.2)

If β ≤ 2, then the distribution has infinite variance, and if β ≤ 1, then it has infinite

mean.

The Pareto distribution (also referred to as the power-law distribution, the double-

exponential distribution and the hyperbolic distribution) has been used to model distri-

butions of incomes exceeding a minimum value and sizes of asteroids, islands, cities and

extinction events [17], [20]. Leland and Ott also found that a Pareto distribution with

1.05< β <1.25 is a good model for the amount or CPU time consumed by an arbitrary

process [18].

5



6 CHAPTER 2. HEAVY-TAILED DISTRIBUTIONS AND TELECOMMUNICATIONS

2.2 Heavy-Tailed Distributions

In communications, heavy-tailed distributions have been used to model telephone call hold-

ing times [9] and frame sizes for variable-bit-rate video [13]. The discrete Pareto (Zipf)

distribution [11],

P [x = n] =
1

(n + 1)(n + 2)
, for n ≥ 0, (2.3)

arises in connection with platoon lengths for cars at different speeds traveling on an infinite

road with no passing, a model suggestively analogous to computer-network traffic.

We define a distribution as heavy-tailed if

P [X ≥ x] ∼ cx−β, as x →∞, β ≥ 0. (2.4)

By this, we mean that for some β and some constant c, the ratio P [X ≥ x]/(cx−β)

tends to 1 as x →∞. This definition includes the Pareto and Weibull distributions.

2.2.1 Excess Functions

A more strict definition of heavy-tailed defines a distribution as heavy-tailed if the mean

excess function e(a) of the random variable X is an increasing function of a [23], where

e(a) = E[X − a|X > a]. (2.5)

Using this second definition of heavy-tailed, consider a random variable X that repre-

sents a waiting time. For waiting times with a light-tailed distribution, such as the uniform

distribution, the mean excess function is a decreasing function of a. For such a light-tailed

distribution, the longer you have waited, the sooner you are likely to be done. For waiting

times with a medium-tailed distribution, such as the (memoryless) exponential distribution,

the expected future waiting time is independent of the waiting time so far. In contrast, for

waiting times with a heavy-tailed distribution, the longer you have waited, the longer your

expected future waiting time is. In order to validate the last statement, Equation (2.6)

gives the mean excess function for the Pareto distribution with β > 1 (that is, with finite

mean) [23]. As it can be seen, this equation is a linear function of a, since

e(a) =
a

(β − 1)
. (2.6)

In order to observe the influence of the parameter β in the Pareto’s excess function, in

Figure 2.1 we can see the plot of Equation (2.6) for certain values of β. From the picture,

it is easy to observe that the heavy-tail behavior of the Pareto distribution is reduced as β

is growing, due to the fact that the distribution represents a less disperse sample.
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b=1.2

b=1.5

b=1.7

Figure 2.1: Plots of Equation (2.6) for different values of β.

Figure 2.2 shows the shapes of certain mean excess functions. This graphic was taken

from [23] and is reproduced as a brief survey.

Figure 2.2: Shapes of certain mean-excess functions.

Equation (2.5) defines the mean-excess function in a general way. In order to derive
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the calculation of e(a) for a specific distribution model 1−F of positive random variables,

it can be done using the following formula

e(a) =

∫ x+
a (1− F (u))du

1− F (a)
. (2.7)

It is easy to see that Equation (2.7) can be expressed as

e(a) =
∞∑

x=a

P [X > x]

P [X > a]
, (2.8)

which defines the mean excess function for a discrete random variable X. Equation (2.8)

will be used to establish the mean excess function of the Urn Model.

Another important parameter in tail estimation when using moment estimators, is the

quadratic mean excess function s(a), defined as

s(a) = E[(X − a)2 |X > a], (2.9)

in addition s(a) plays an important role in fixing a premium along a variance or standard-

deviation principle.

The quadratic mean excess function s(a) is only defined when X possesses a finite

variance, in which case

s(a) = 2

∫ x+
a (u− a)(1− F (u))du

1− F (a)
. (2.10)

In order to establish the quadratic mean excess function for a discrete random variable

X, Equation (2.10) can be written as

s(a) = 2

∑∞
x=a(x− a)P [X > x]

P [X > a]
, (2.11)

Equation (2.11) will be used to establish the quadratic mean excess function of the Urn

Model.

For the Pareto distribution with β > 2 (that is, with finite variance), the quadratic

mean excess function is defined as

s(a) =
2a2

(β − 2)(β − 1)
. (2.12)

In order to observe the influence of parameter β in the Pareto’s square excess function,

in Figure 2.3 we can see the plot of Equation (2.12) for certain values of β. From the

figure, we can observe that Pareto’s square excess function reduces its slope as β grows as

a consequence of a finite variance.
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b=2.2

b=2.5

b=2.7

Figure 2.3: Plots of Equation (2.12) for different values of β.

2.2.2 Statistics in Heavy-Tail Distributions

As discussed above, the distinguishing feature of heavy-tailed distributions is the presence

of long-ranged, power-law tails, which might lead to the divergence of even the lowest order

moments. Moreover, as we know, the most important parameters that summarize the

behavior of a random variable are the expected values and the variance. From these facts,

it is of vital importance to obtain the Urn Model moments in a suitable way that helps us

make the mathematical complexity tractable. In this case, the most powerful mathematical

tool is the generating-functions analysis. A brief survey of this topic is presented in the

following paragraphs, which are compiled from [10].

Probability-Generating Function

Let us consider the sequence of real numbers a0, a1, a2, ...; if

A(t) = a0 + a1t + a2t
2 + · · · , (2.13)

converges in some interval −t0 < t < t0, then A(t) is called the generating function of the

sequence {aj}.
The variable t itself has no significance. If the sequence {aj} is bounded, then a

comparison with the geometric series shows that Equation (2.13) converges, at least for

|t| < 1.
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Now, let X be a discrete random variable assuming only the integral values 0, 1, 2, ....

It will be convenient to have a notation both for the distribution of X and for its tails, and

we shall write

P{X = j} = pj, P{X > j} = qj, (2.14)

then

qk = pk+1 + pk+2 + · · · k ≥ 0. (2.15)

The generating functions of the sequences {pj} and {qk} are

ΦX(t) = p0 + p1t + p2t
2 + p3t

3 + · · · (2.16)

QX(t) = q0 + q1t + q2t
2 + q3t

3 + · · · , (2.17)

as ΦX(1) = 1, the series for ΦX(t) converges absolutely, at least for −1 ≤ t ≤ 1. The

coefficients of QX(t) are less than unity, and so the series for QX(t) converges, at least in

the open interval −1 < t < 1.

Note that the coefficients of ΦX(t) are the values of the probability-density function

of the r.v. X, fX(x); evaluated in x = 0, 1, 2, ... therefore, we can write the probability-

generating function ΦX(t) for a discrete random variable X [16] as follows

ΦX(t) =
∞∑

x=0

P (X = x)tx =
∞∑

x=0

fX(x)tx, −1 ≤ t ≤ 1, (2.18)

and it is called the probability-generating function due to the fact that values of pdf are

obtained from

fX(x) =
1

k!

dx

dtx
ΦX(t) |t=0, (2.19)

note that Equation (2.18) can be viewed as the expected value of a function of x, tx.

On the other hand, since the survival function defines the “tail” probabilities, we can

also write the generating function for these probabilities based on the previous discussion

[1], [10],

QX(t) =
∞∑

x=0

P (X > x)tx =
∞∑

x=0

F (x)tx. (2.20)

Note that QX(t) is not a probability-generating function in a strict sense. Although the

coefficients are probabilities, they do not in general constitute a probability distribution.

A useful result connecting ΦX(t) and QX(t) is that
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(1− t)QX(t) = 1− ΦX(t). (2.21)

Proof. The coefficients of tx in (1− t)QX(t) equals qx− qx−1 = −px when x ≥ 1, and equals

q0 = p1 +p2 +p3 + · · · = 1−p0 when x = 0. Therefore, (1− t)QX(t) = 1−ΦX(t) is asserted.

As we will see, important results will be derived from it.

Simple formulas are available giving the mean and variance of the probability distri-

bution fX(x) in terms of particular values of the generating functions and their derivatives.

Thus, the mean is

E[X] =
∞∑

x=0

xP (X = x) = Φ′
X(t)|t=1, (2.22)

E[X] =
∞∑

x=0

P (X > x) = QX(t)|t=1, (2.23)

where the prime in Equation (2.22) indicates differentiation. The validation from the last

equations is derived from the relation given in (2.21) because

Φ′
X(t)|t=1 = [QX(t)− (1− t)Q′

X(t)] |t=1

= QX(t)|t=1. (2.24)

On the other hand, it can be verified that

E[X(X − 1)] =
∞∑

x=0

x(x− 1)P (X = x) = Φ′′
X(t)|t=1 = 2Q′

X(t)|t=1; (2.25)

hence the variance is

var[X] = Φ′′
X(1) + Φ′

X(1)− [Φ′
X(1)]

2
, (2.26)

var[X] = 2Q′
X(1) + QX(1)− [QX(1)]2 . (2.27)

Similarly, we can obtain the rth factorial moment µ′[r] about the origin as

E[X(X − 1) · · · (X − r + 1)] =
∞∑

x=0

x(x− 1) · · · (x− r + 1)P (X = x)

= Φ
(r)
X (1) ≡ rQ

(r−1)
X (1), (2.28)

i.e., by differentiating ΦX(t) r times and putting t = 1.
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In order to validate the results presented in this section for the given distribution

under study and, mainly, to give some insight into its higher central moments, we need

to investigate its moment-generating function. A review of this topic is presented in the

following section.

Moment-Generating Function

The moment-generating function MX(t) for a discrete random variable X is defined by [16]

MX(t) =
∞∑

x=0

extP (X = x). (2.29)

In the last section, we defined the probability-generating function for such random

variables as

ΦX(t) =
∞∑

x=0

P (X = x)tx, −1 ≤ t ≤ 1. (2.30)

From Equations (2.29) and (2.30), it is clear that

MX(t) = ΦX(et), (2.31)

and Equation (2.31) allows us to determine the moment-generating function directly from

the probability-generating function. On the other hand, it is a well know result that

EXn =
dn

dtn
MX(t) |t=0 . (2.32)

With the previous background over generating functions, we can obtain the statistics

of any heavy-tail distribution.

2.2.3 Their Importance for Telecommunications

Heavy-tailed distributions are an important probabilistic tool used to model the behavior

of vital parameters in communications systems, such as the size of files in a web server and

the transmission times and number of files being transmitted through a packet network. All

of these elements, as well as some others have a deep impact in network performance, and

the theory of heavy-tailed distributions plays a major role in the design and fine adjustment

of telecommunications systems.

But how important are heavy-tailed distributions in telecommunications systems?. As

we will see, this fact was a natural consequence of data traffic. This was pointed out by

the scientific community during the last decade.
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At the beginning of the packet-network era, network arrivals were modelled for analytic

simplicity, as Poisson processes, mainly because there was not any previous experience on

this kind of traffic. Subsequent traffic reports and studies showed that packet inter-arrivals

were not exponentially distributed [8],[21]. What researches found was that user-initiated

transmission control protocol (TCP) session arrivals, such as remote login and file transfer,

were well modelled as Poisson processes with fixed hourly rates, but that other connection

arrivals deviated considerably from Poisson. First efforts on this topic focused on the use of

empirical workloads, such as the Teplib, to simulate packet inter-arrivals obtaining traffic

where the inter-arrivals preserve burstinnes over many time scales; results agree with real

environments far away from the expected results since of the point of view of exponential

arrivals. Another related observation was that file transfer protocol (FTP) data-connection

arrivals within FTP sessions came bunched into a “connection burst,” the largest of which

were so large that they dominated the FTP data traffic.

Certainly, the main contribution of these first works was the observation that the

arrival pattern of user-generated TELNET packets had an invariant distribution, indepen-

dent of network details. Therefore, the natural question concerned the kind of distribution

they had in from. Some insight came from of same work realized in [21]. Paxson and

collaborators found that the distribution of the number of bytes in each burst had a very

heavy upper tail and that a small fraction of the largest burst carried almost all of the FTP

data-connection bytes. This implied that faithful modeling of FTP traffic should concen-

trate heavily on the characteristics of the largest burst. The last statement point towards

a heavy-tail behavior of the network traffic, but the question in the air was left without an

answer, although Paxson’s team finishes its work with a discussion of how its burstinnes

results mesh with self similar models of network traffic.

At about the same time, the statistical analysis of Ethernet traffic measures collected

at Bellcore between 1989 and 1992 is reported in [19]. From their study, they arrived at the

conclusion that the Ethernet traffic is statistically self-similar. Moreover, they proposed a

stochastic model for this self-similar behavior by means of a renewal-reward process through

the aggregation of a sequence of independent, identically distributed (iid) random variables

(r.v.), whose distinctive characteristic is their heavy-tail nature.

From the previous discussions, we can conclude that the fact that network traffic

shows self-similarity means that it shows a noticeable burst at a wide range of time scales.

A related observation is that the number of bytes in each burst could be described by using

distributions that are heavy-tailed (distributions whose tails follow a power law) meaning

that the number of bytes in each burst often span many orders of magnitude, also.

Information about other phenomena observing heavy-tailed behavior can be found in

[7], [5] and [2]. These works show that the distribution of transmission times, the size of

the files available on web servers, the number of files transmitted through the network, the
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average number of request Vs file size, the relative popularity of web pages, and certain

others aspects of the WWW are heavy tailed distributed.

Of special interest is the fact that the results shown in [5] agree with the results

shown in [19] concerning the “heaviness” of the tail presented in the distributions of WWW

traffic. This is the main cause of the presence of long-range dependence (i.e., self-similar)

observed in the WWW traffic. They showed that the tail of the distribution of the ON

times (transmission times) is heavier than the distribution of the OFF times (silent times),

meaning that the self-similarity of the WWW traffic will be governed by parameter α of

the transmission times.

From previous discussion, it is clear, the importance in the modeling of Heavy Tailed

distributions. Of special interest, is the availability of a discrete heavy tail distribution

that enable to researches match the tail decay found in the characterization of actual

telecommunications networks with a mathematical model. From this necessity and due

to the mathematical implications in the study of heavy tailed distributions, the math

background at the beginning of this section was presented.



Chapter 3

Model Description

This chapter introduces the discrete heavy-tail distribution proposed in [24]. The notation

is defined, and the mathematical description of the model is completed. At the end of the

chapter, a closed expression for the nth factorial moment is presented, and the stability of

the urn model distribution is investigated.

3.1 Urn Model for Heavy-Tailed Phenomena

In this section, the Urn Model’s functioning is explained, the main assumptions are dis-

cussed, and a first approximation to its heavy-tailed nature is given.

3.1.1 Probability-Mass Function

As established in chapter two, the holding times of actual network traffic are heavy-tailed

distributed. This implies that the longer that a user has been connected, the longer the ex-

pected future connection time is. In [24] was proposed a discrete heavy-tail distribution that

resembles this behavior for the holding times which can be see as an addictive-connection

process.

From this point of view, the addictive-connection process is represented by a discrete-

time urn process with “connect” and “disconnect” balls operating in such a form that at

any observation time the connection state will be determined by the random selection of a

ball. Any time a ball is selected, m+ 1 balls of the same class are replaced into the urn (m

is known as the Polya constant).

In order to show that adequate selection of initial conditions allows for model on-off

periods with the desired heavy-tailed characteristics, we consider a subscriber that, at a

time t0, is in on-state, and that at a time t1 he will make the decision of quitting the

connection with the following probability:

15
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P (1) = P (X = 1) =
d

c + d
, (3.1)

where c stands for the initial number of “connect” balls and d denotes the number of

“disconnect” balls in the urn.

However, if the decision at time t1 was to remain connected, at time t2 of the second

observation the probability of ending the connection will be d
c+d+m

. Thus the probability

of a connection ending at the second observation will be

p(2) = P (X = 2) =
(

c

c + d

) (
d

c + d + m

)
. (3.2)

This concept can readily be extended so that probability of ending a connection at

the x− th observation window becomes

P (X = x) =
(

c

c + d

) (
c + m

c + d + m

) (
c + 2m

c + d + 2m

)
...

(
c + (x− 2)m

c + d + (x− 2)m

) (
d

c + d + (x− 1)m

)
.

(3.3)

After some algebraic reordering, Equation (3.3) can be expressed as

P (X = x) =

(
d

m

) (
x− 2 + c

m

) (
x− 3 + c

m

)
...

(
c
m

+ 1
) (

c
m

)
Γ

(
c
m

)
(
x− 1 + c+d

m

) (
x− 2 + c+d

m

)
...

(
c+d
m

+ 1
) (

c+d
m

)
Γ

(
c
m

) . (3.4)

It can be noted that for m = 0, Equation (3.3) is reduced to the geometric model. On the

other hand, using the well known property of the gamma function -Γ(n + c) = (n − 1 +

c)Γ(n− 1+ c) = (n− 1+ c)(n− 2+ c)...(c)Γ(c)- and after regrouping, we can write (3.4) as

P (X = x) =

(
d

m

)
Γ

(
x− 1 + c

m

)
(
x− 1 + c+d

m

) (
x− 2 + c+d

m

)
...

(
c+d
m

+ 1
) (

c+d
m

)
Γ

(
c
m

) . (3.5)

The last expression can be formulated as

P (X = x) =
Γ

(
c+d
m

)

Γ
(

c
m

)
Γ

(
d
m

)
Γ

(
x− 1 + c

m

)
Γ

(
d
m

+ 1
)

Γ
(
x + c+d

m

) . (3.6)
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It can be verified that for x = 1, expression (3.4) is reduced to (3.1), thus the support

of (3.4) is x = 1, 2, 3, 4....

Recalling that B(m,n) = Γ(m)Γ(n)
Γ(m+n)

where B(x, y) =
∫ 1
0 tx−1(1− t)y−1 =

∫∞
0

tx−1

(1+t)x+y dt is

the beta function which is known to have the following properties, [14]

B(x, y) = B(y, x), (3.7)

∞∑

k=0

B(x + k, y) = B(x, y − 1). (3.8)

We can rewrite the probability mass function (pmf) of the Urn Model as

p(x) = P (X = x) =
1

B
(

c
m

, d
m

)B

(
x− 1 +

c

m
,

d

m
+ 1

)
, x = 1, 2, 3, .... (3.9)

In order to verify that (3.9) is a valid pmf, we must to verify that
∑∞

x=1 p(x) = 1. For

such objective, if we define j = x − 1, which implies that x = j + 1, and if we use the

relation given in (3.8) we can establish that

∞∑

x=1

B
(
x− 1 + c

m
, d

m
+ 1

)

B
(

c
m

, d
m

) =
∞∑

j=0

B
(

c
m

+ j, d
m

+ 1
)

B
(

c
m

, d
m

) ,

=
B

(
c
m

, d
m

)

B
(

c
m

, d
m

) ,

= 1, (3.10)

setting aside any doubt about the validity of (3.9). As a first snapshot, Figure 3.1 shows

the plot of Equation (3.9) for two different values of the quotient d
m

denoted by α. As it

can be seen, for the small value of α, the heavy-tail behavior is more stressed.

3.1.2 Survival Function

Since our purpose is to study the Urn Model’s tail behavior, we are mostly interested in the

possibility of obtaining a subscriber connected still overshooting a given time observation

x. This is, we are interested in the event

1− F (x) = P [X > x] =
∞∑

k=x+1

p(k), (3.11)
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a=2.3

a=1.2

Figure 3.1: Urn Model probability-density function.

where p(k) is calculated according to (3.9).

In biostatistical applications 1 − F (x), denoted by F , is called the survival function.

This is the notation that we will use throughout this work. Replacing Equation (3.9) in

(3.11) we have

F (x) = P [X > x] =
∞∑

k=x+1

1

B(δ, α)
B(k − 1 + δ, α + 1), x = 1, 2, 3, ... (3.12)

where δ = c
m

> 0 and α = d
m

> 0 defining i = k − x− 1, we get

F (x) =
1

B(δ, α)

∞∑

i=0

B(i + x + δ, α + 1), x = 1, 2, 3, ..., (3.13)

and using (3.8) we obtain

F (x) =
1

B(δ, α)
B(x + δ, α). (3.14)

In Figure 3.2, we can see the plot of Equation (3.14). As we observe, the heavy-tail

behavior is reduced for the larger value of α.
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a=1.2

a=2.3

Figure 3.2: Urn Model survival function.

3.1.3 Distribution Function

From the definition F (x), the cumulative-distribution function of the Urn Model is given

by

F (x) = 1− B(x + δ, α)

B(δ, α)
, x = 1, 2, 3, .... (3.15)

In Figure 3.3, we can see the plot of Equation (3.15). As we observe, for the larger

value of α, the cdf grows faster than for the smaller value.

3.1.4 Heavy-Tail Behavior of the Urn Model

In order to show that p(x) exhibits a heavy-tailed behavior, we consider tail decay of the

survivability function (3.14), which can be formulated as

F (x) =
1

B(δ, α)

Γ(x + δ)Γ(α)

Γ(x + δ + α)
. (3.16)

The heavy-tail behavior of a random variable is characterized by the slow decay of the

survival function for large values. That is, a random is heavy tailed if P [x > ξ] ∼ ξ−α for

large values of ξ. Using property Γ(i)
Γ(i+k)

≈ i−k [14], as k →∞ we have
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a=1.2

a=2.3

Figure 3.3: Urn Model cumulative-distribution function.

F (x) =
1

B(δ, α)

Γ(x + δ)Γ(α)

Γ(x + δ + α)
≈ Γ(α)

B(δ, α)
(x + δ)−α, (3.17)

which shows the heavy-tailed behavior of the distribution. Since δ and α were defined as

δ = c
m

and α = d
m

, it can be seen that the tail decay depends on the initial conditions of the

urn experiment. In order to have an idea about the last approximation, in Figure 3.5, we

can observe the plot of both equations. As we can see for large values of x, the tails show an

identical behavior, confirming what was established: that the Urn Model presents heavy-

tail behavior. In Chapter 4, Q-Q plots show close behavior between a Paretian distribution

and results obtained by the proposed model.

3.2 Excess Functions

In this section, the Urn Model’s excess functions are investigated and their similarity with

the Pareto’s excess functions is commented.

3.2.1 Mean-Excess Function

The excess function of a r.v. X has been defined as e(ξ) = E(X − ξ|X > ξ) which for

discrete r.v. can be written as e(ξ) =
∑∞

x=ξ
P [X>x]
P [X>ξ]

. Replacing Equation (3.14) into the last

expression, we have
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Figure 3.4: Comparison between F (x) (boxes) and their approximation (crosses).

e(ξ) =
∞∑

x=ξ

B(δ, α)

B(δ + ξ, α)

B(x + δ, α)

B(δ, α)
. (3.18)

Now take the dummy variable “y” defined as y = x − ξ ⇒ x = y + ξ. Using again the

well-know reduction formula given in (3.8), the last equation takes the form

e(ξ) =
1

B(δ + ξ, α)

∞∑

y=0

B(y + ξ + δ, α) =
B(ξ + δ, α− 1)

B(ξ + δ, α)
. (3.19)

The previous expression can be reduced by using the relation between the Beta and Gamma

functions, as shown bellow

e(ξ) =
Γ(δ + ξ + α)

Γ(δ + ξ)Γ(α)

Γ(δ + ξ)Γ(α− 1)

Γ(δ + ξ + α− 1)
=

δ + ξ + α− 1

α− 1
. (3.20)

Finally, the mean-excess function of the Urn Model can be written as

e(ξ) =
δ + ξ

α− 1
+ 1. (3.21)

In terms of the model’s parameters, we have the following
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e(ξ) =
c + d + m(ξ − 1)

d−m
. (3.22)

In Chapter 2, it was said that the heavy-tail behavior of a r.v. X was demonstrated by the

increasing behavior of its excess function. As a second validation of the heavy-tail nature

of the Urn Model, in Figure 3.5 we can see the plot of Equation (3.21). As can be seen,

the Urn Model really behaves as a heavy-tail distribution, and even more so if we compare

the next figure with Figure 2.1. We can observe a high similarity between both Pareto and

Urn Model mean-excess functions.

a=1.2

a=1.5

a=1.7

Figure 3.5: Urn Model mean-excess function.

3.2.2 Quadratic Mean-Excess Function

The Quadratic Mean-Excess function for a discrete r.v. X is defined as s(ξ) = 2
∑∞

x=ξ
(x−ξ)P [X>x]

P [X>ξ]
.

Using (3.14), the Quadratic Mean-Excess function for the Urn Model is

s(ξ) = 2
∞∑

x=ξ

(x− ξ)
B(δ, α)

B(δ + ξ, α)

B(x + δ, α)

B(δ, α)
. (3.23)

Setting aside the constant terms, we have

s(ξ) =
2

B(δ + ξ, α)

∞∑

x=ξ

(x− ξ)B(x + δ, α). (3.24)
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Now, making use of the dummy variable “y”, defined as: y = x − ξ ⇒ x = y + ξ, last

equation adopts the following form

s(ξ) =
2

B(δ + ξ, α)

∞∑

y=0

yB(y + ξ + δ, α), (3.25)

in terms of Gamma functions

s(ξ) = 2
∞∑

y=0

y
Γ(δ + ξ + α)

Γ(δ + ξ)Γ(α)

Γ(α)Γ(y + δ + ξ)

Γ(y + δ + ξ + α)
, (3.26)

simplifying and solving

s(ξ) =
2

(α− 1)(α− 2)

Γ(δ + ξ + 1)

Γ(δ + ξ)

Γ(δ + ξ + α)

Γ(δ + ξ + α− 1)
. (3.27)

Finally the Urn Model quadratic mean-excess function is given by

s(ξ) =
2(δ + ξ)(δ + ξ + α− 1)

(α− 1)(α− 2)
. (3.28)

In Figure 3.6, we can observe plots of (3.28) in order to have an idea about its behavior

to different values of α. As it can be seen, the Urn Model quadratic mean-excess function

behaves similarly to the Pareto quadratic mean-excess function.

a=2.2

a=2.7

a=2.5

Figure 3.6: Urn Model quadratic mean-excess function.
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3.3 Generating Functions

In this section, the Urn Model’s generating functions are derived in order to investigate

the moments and the variance of the model. The moments’ existence and their influence

in the sample space that the Urn Model could be represent are commented.

3.3.1 Probability-Generating Function

As was established in Chapter 2, the probability-generating function ΦX(t) for a discrete

random variable X is defined as

ΦX(t) =
∞∑

x=0

P (X = x)tx, −1 ≤ t ≤ 1, (3.29)

so, in order to get the probability-generating function for the Urn Model, we need to

substitute Equation (3.9) into (3.29), taking into consideration that the support of p(x)

given in (3.9) for the urn model is x = 1, 2, 3, ..; in such way we have

ΦX(t) =
∞∑

x=1

1

B (δ, α)
B (x− 1 + δ, α + 1) tx. (3.30)

The previous expression makes their manipulation difficult. Replacing beta functions with

their equivalent in terms of gamma functions, and by moving the constant terms away, we

have

ΦX(t) =
Γ(δ + α)Γ(α + 1)

Γ(δ)Γ(α)

∞∑

x=1

Γ(x + δ − 1)

Γ(x + δ + α)
· tx. (3.31)

By focusing ours efforts on the sum and by expanding certain terms, we have

∞∑

x=1

Γ(x + δ − 1)

Γ(x + δ + α)
· tx =

Γ(δ)t

Γ(δ + α + 1)
+

Γ(δ + 1)t2

Γ(δ + α + 2)
+

Γ(δ + 2)t3

Γ(δ + α + 3)
+ ... (3.32)

It is easy to see that the previous expression can be written as

∞∑

x=1

Γ(x + δ − 1)

Γ(x + δ + α)
· tx =

[
Γ(δ)t

Γ(δ + α + 1)

] [
1 +

δt

(δ + α + 1)
+

δ(δ + 1)t2

(δ + α + 1)(δ + α + 2)
+ ...

]
.

(3.33)

Based on the definition of the hypergeometric function [14], which is

hypergeom([n1, n2, ..., np], [d1, d2, ..., dq], z) =
∞∑

k=0

∏p
i=1

Γ(ni+k)
Γ(ni)

zk

∏q
i=1

Γ(di+k)
Γ(di)

k!
, (3.34)
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we can observe that in Equation (3.33) the right term is the extended form of the hyper-

geometric function of parameters ([1, δ], [δ + α + 1], t). Therefore, Equation (3.31) can be

expressed as

ΦX(t) =

[
Γ(δ + α)Γ(α + 1)

Γ(δ)Γ(α)

] [
Γ(δ)t

Γ(δ + α + 1)

]
hypergeom ([1, δ], [δ + α + 1], t) . (3.35)

For the sake of simplicity, Equation (3.35) can be reformulated as

ΦX(t) =
α · t
δ + α

hypergeom ([1, δ], [δ + α + 1], t) . (3.36)

QX(t) is another useful generating function that allows us to validate the results

derived from ΦX(t). On the other hand, as we will see, with QX(t) we can establish

another way to obtain the tail probabilities. From the explanation in chapter two, QX(t)

for the Urn Model comes from to replace Equation (3.14) into (2.20). That is,

QX(t) =
∞∑

x=0

1

B(δ, α)
B(x + δ, α)tx. (3.37)

Again, in order to facilitate their manipulation, we replace beta functions with their equiv-

alent in terms of gamma functions, and by moving the constant terms away, we have

QX(t) =
Γ(δ + α)

Γ(δ)

∞∑

x=0

Γ(x + δ)

Γ(x + δ + α)
· tx, (3.38)

expanding certain terms and after regrouping, we have

QX(t) =

[
1 +

δ · t
δ + α

+
δ(δ + 1) · t2

(δ + α)(δ + α + 1)
+ · · ·+

]
. (3.39)

Observe that Equation (3.39) is the extended form of the hypergeometric function of pa-

rameters ([1, δ], [δ + α], t). Therefore, the Urn Model’s tail probability-generating function

is given by

QX(t) = hypergeom ([1, δ], [δ + α], t) . (3.40)

In Chapter 2, E[X] = Φ′
X(1) was established. Therefore, we need to find the derivative

of Equation (3.36). To realize such an operation, we can use the chain rule. By the use of

this mathematical tool, we can check that

Φ′
X(t) =

αhypergeom([1, δ], [δ + α + 1], t)

δ + α
+

αδthypergeom([2, δ + 1], [δ + α + 2], t)

(δ + α) (δ + α + 1)
.

(3.41)
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In order to evaluate the previous equation in t = 1, we can make use of the following

relation [14]

hypergeom([τ, β], [γ], 1) =
Γ(γ)Γ(γ − τ − β)

Γ(γ − τ)Γ(γ − β)
. (3.42)

Thanks to reduction formula (3.42) we can write (3.41) as follows

Φ′
X(1) =

(
α

δ + α

) (
Γ(δ + α + 1)Γ(α)

Γ(δ + α)Γ(α + 1)

)
+

(
αδ

(δ + α)(δ + α + 1)

) (
Γ(δ + α + 2)Γ(α− 1)

Γ(δ + α)Γ(α + 1)

)
,

(3.43)

and in consequence, after simplifying we have

Φ′
X(1) =

(
α

δ + α

) (
δ + α

α

)
+

(
αδ

(δ + α)(δ + α + 1)

) (
(δ + α)(δ + α + 1)

α(α− 1)

)
. (3.44)

A final simplification can be obtained from the previous formula, and in the end we get

E[X] = Φ′
X(1) =

δ + α− 1

α− 1
. (3.45)

One way to validate the previous result is through E[X] = QX(1). Therefore,

E[X] = QX(1),

= hypergeom ([1, δ], [δ + α], 1) ,

=
Γ(δ + α)Γ(α− 1)

Γ(δ + α− 1)Γ(α)
,

=
δ + α− 1

α− 1
. (3.46)

As the expected value of the Urn Model has been determined and validated, the next

parameter of importance in the description of the behavior of the Urn Model is the second

moment. The importance of E[X2] resides in the fact that it determines the variance and

therefore gives some insight about the tail decay.

From Equation (2.25), we can establish that

E[X2] = Φ′′
X(1) + Φ′

X(1),

= 2Q′
X(1) + QX(1). (3.47)
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In order to follow the same order in the presentation, the first expression in (3.47) will

be determined and then will be validated through the tail probability-generating function.

Since the derivations of the derivatives and simplifications could make it hard to follow the

presentation, only final results will be presented. We have that the second derivative of

ΦX(t) given by

Φ′′
X(t) = 2

αδhypergeom([2, δ + 1], [δ + α + 2], t)

(δ + α)(δ + α + 1)
+

2
αδ(δ + 1)(t)hypergeom([3, δ + 2], [δ + α + 3], t)

(δ + α) (δ + α + 1) (δ + α + 2)
. (3.48)

Evaluating the last expression in t = 1, we have

Φ′′
X(1) =

2αδΓ(δ + α + 2)Γ(α− 1)

(δ + α)(δ + α + 1)Γ(δ + α)Γ(α + 1)
+

2αδ(δ + 1)Γ(δ + α + 3)Γ(α− 2)

(δ + α) (δ + α + 1) (δ + α + 2) Γ(δ + α)Γ(α + 1)
.

=
2δ

α− 1
+

2δ(δ + 1)

(α− 1)(α− 2)
, (3.49)

replacing the last result in (3.47), we find that E[X2] takes the following form

E[X2] =
2δ

α− 1
+

2δ(δ + 1)

(α− 1)(α− 2)
+

δ + α− 1

α− 1
,

=
2δ(δ + α− 1)

(α− 1)(α− 2)
+

δ + α− 1

α− 1
. (3.50)

As it can be seen E[X2] is only defined for α > 2.

On the other hand, the Q′
X(t) is given by

Q′
X(t) =

δ

δ + α
hypergeom ([2, δ + 1], [δ + α + 1], t) . (3.51)

Evaluating the previous expression in t = 1 and replacing in the second expression of (3.47),

we have

E[X2] = 2

(
δ

δ + α

) (
Γ(δ + α + 1)Γ(α− 2)

Γ(δ + α− 1)Γ(α)

)
+

δ + α− 1

α− 1
,

= 2
δ(δ + α− 1)

(α− 1)(α− 2)
+

δ + α− 1

α− 1
, (3.52)
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from Equation (3.50) and (3.52), we can obtain E[X2] and validate Equation (3.47).

As we have seen, we get the same results from ΦX(t) and QX(t). Therefore, we will

find the variance of X by replacing the appropriate results in Equation (2.26), so we have

V ar[X] =
2δ(δ + α− 1)

(α− 1)(α− 2)
+

δ + α− 1

α− 1
−

[
δ + α− 1

α− 1

]2

. (3.53)

In chapter two was also established a methodology to get the rth factorial moment

µ′r about the origin. It consists in finding the rth derivative of ΦX(t) and evaluating it

with t = 1. The importance of these factorial moments resides in the fact that the rth

central moment can be derived from some combination of them reducing a lot of work, as

will be shown when the moment-generating analysis is exposed. In order to facilitate the

exposition, only final results will be shown.

Note that Φ′
X(1) and Φ′′

X(1) already have been derived (Equations (3.45) and (3.49)),

so let us obtain additional derivatives in order to find a relation for the rth factorial moment.

That is,

Φ3
X(1) = 6

δ(δ + 1)(δ + α− 1)

(α− 1)(α− 1)(α− 3)
, (3.54)

Φ4
X(1) = 24

δ(δ + 1)(δ + 2)(δ + α− 1)

(α− 1)(α− 1)(α− 3)(α− 4)
. (3.55)

From the above results, it is easy to see

µ′r = Φr
X(1) = r!

(δ + α− 1)
∏r−2

i=0 (δ + i)∏r
j=1(α− j)

. (3.56)

From Equation (3.56), we can conclude that the Urn Model’s rth factorial moment will

exist only if α > r.

Before continuing the next section, we have to validate what was established in Chap-

ter 2 about Equations (3.36) and (3.40). Why were they called probability-generating

functions?. As a reminder, this was due to the fact that fX(x) = 1
k!

dx

dtx
ΦX(t) |t=0 and

F (x) = 1
k!

dx

dtx
QX(t) |t=0, respectively. That is, with these equations we are able to obtain

the values of the Urn Model’s pdf and survival function for the x th value, just by taking

the xth derivative and realizing the operations indicated. In order to validate this fact, in

Tables 3.1 and 3.2 we can observe the values obtained through both methods for each case.

As it can be see, the results agree with theory.
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Table 3.1: Numerical comparison for values of fX(x) .

x 1
k!

Φx
X(0) fX(x)

1 .592592593 .592592592

2 .176176176 .176176176

3 .078717015 .078717015

4 .042811008 .042811008

5 .026197781 .026197781

6 .017351777 .017351777

7 .012166189 .012166189

8 .008905148 .008905148

9 .00674128 .00674128

10 .005243218 .005243218

Table 3.2: Numerical comparison for values of F (x) .

x 1
k!

Qx
X(0) F (x)

1 .4074074074 .4074074074

2 .2312312312 .2312312312

3 .1525142163 .1525142163

4 .1097032082 .1097032082

5 .08350542718 .08350542718

6 .06615365009 .06615365009

7 .05398746155 .05398746155

8 .04508231326 .04508231326

9 .03834103278 .03834103278

10 .03309781463 .03309781463

3.3.2 Moment-Generating Function

In Chapter 2, the moment-generating function MX(t) for a discrete random-variable X was

defined as

MX(t) =
∞∑

x=0

extP (X = x). (3.57)

On the other hand, it is a well know result that
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EXn =
dn

dtn
MX(t) |t=0 . (3.58)

Therefore, in order to get the Urn Model´s central moments, we need first to find its

moment-generating function. Substituting Equation (3.9) into (3.57), we have

MX(t) =
∞∑

x=1

ext 1

B (δ, α)
B (x− 1 + δ, α + 1) , (3.59)

the previous expression makes their manipulation difficult. Replacing beta functions with

their equivalent in terms of gamma functions, and moving the constant terms away, we

have

MX(t) =
Γ(δ + α)Γ(α + 1)

Γ(δ)Γ(α)

∞∑

x=1

Γ(x + δ − 1)

Γ(x + δ + α)
· ext. (3.60)

By focusing ours efforts on the sum, and by expanding certain terms, we have

∞∑

x=1

Γ(x + δ − 1)

Γ(x + δ + α)
· ext =

Γ(δ)et

Γ(δ + α + 1)
+

Γ(δ + 1)e2t

Γ(δ + α + 2)
+

Γ(δ + 2)e3t

Γ(δ + α + 3)
+ ... (3.61)

It is easy to see that the previous expression can be written as

∞∑

x=1

Γ(x + δ − 1)

Γ(x + δ + α)
· ext =

[
Γ(δ)et

Γ(δ + α + 1)

] [
1 +

δet

(δ + α + 1)
+

δ(δ + 1)e2t

(δ + α + 1)(δ + α + 2)
+ ...

]
.

(3.62)

We can observe that in Equation (3.62) the term of the right, is the extended form of the

hypergeometric function of parameters ([1, δ], [δ + α + 1], et). Therefore, Equation (3.60)

can be expressed as

MX(t) =

[
Γ(δ + α)Γ(α + 1)

Γ(δ)Γ(α)

] [
Γ(δ)et

Γ(δ + α + 1)

]
hypergeom

(
[1, δ], [δ + α + 1], et

)
, (3.63)

for the sake of simplicity, Equation (3.63) can be reformulated as

MX(t) =
α

δ + α
ethypergeom

(
[1, δ], [δ + α + 1], et

)
. (3.64)

As a validation of Equation (3.64), can be verified that MX(0) = 1 because
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MX(0) =
(

α

δ + α

)
hypergeom ([1, δ], [δ + α + 1], 1) ,

=
(

α

δ + α

) (
Γ(δ + α + 1)Γ(α)

Γ(δ + α)Γ(α + 1)

)
,

= 1. (3.65)

With the Urn Model moment-generating function, we are able to research its central

moments. For this purpose, let us obtain the first derivative of Equation (3.64). That is

M ′
X(t) =

αet

δ + α

[
δet

δ + α + 1
+

2δ(δ + 1)e2t

(δ + α + 1)(δ + α + 2)
+ ...

]
+

hypergeom
(
[1, δ], [δ + α + 1], et

) αet

δ + α
, (3.66)

from the definition of the hypergeometric function and after certain algebraic manipula-

tions, it can be verified that the term between brackets can be reduced to δethypergeom([2,δ+1],[δ+α+2],et)
δ+α+1

.

Therefore, the first derivative of Equation (3.64) can be written as

M ′
X(t) =

αδe2thypergeom ([2, δ + 1], [δ + α + 2], et)

(δ + α)(δ + α + 1)
+

αethypergeom ([1, δ], [δ + α + 1], et)

δ + α
, (3.67)

according to (3.58), we have E[X] = M ′
X(0). For this reason, when evaluating Equation

(3.67) for t = 0 and then simplifying, we find that the first moment of the Urn Model is

given by

E[X] =
δ + α− 1

α− 1
. (3.68)

We note that Equation (3.68) agrees with (3.45). Moreover, it is equivalent to e(0). There-

fore, as a result, we can establish

E[X] = e(0) =
δ

α− 1
+ 1. (3.69)

In order to obtain an expression for the Urn Model’s second moment, we need to find

the derivative of Equation (3.67). Again, we will obtain the derivatives of the series’ terms

and, after regrouping, we will try to find a closed expression in terms of hypergeometric

functions. Note that the second term in (3.67) is already derivative because it is the

generating-moment function, while for the first term we have
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M ′′
X(t) =

αδe2t

(δ + α)(δ + α + 1)

[
2(δ + 1)et

(δ + α + 2)
+

6(δ + 1)(δ + 2)e2t

(δ + α + 2)(δ + α + 3)
+ ...

]
+

hypergeom([2, δ + 1], [δ + α + 2], et)
2αδe2t

(δ + α)(δ + α + 1)
+

M ′
X(t), (3.70)

when replacing M ′
X(t) by its extended form (3.67) and regrouping, we have

M ′′
X(t) =

2αδ(δ + 1)e3t

(δ + α)(δ + α + 1)(δ + α + 2)

[
1 +

3(δ + 2)et

(δ + α + 3)
+ ...

]
+

3αδe2t

(δ + α)(δ + α + 1)
hypergeom([2, δ + 1], [δ + α + 2], et) +

αet

δ + α
hypergeom

(
[1, δ], [δ + α + 1], et

)
. (3.71)

From the definition of the hypergeometric function and after certain algebraic manipula-

tions, it can be verified that the term between brackets is the extended form of hypergeom([3, δ+

2], [δ + α + 3], et). Therefore, the second derivative of Equation (3.64) can be written as

M ′′
X(t) =

2αδ(δ + 1)e3t

(δ + α)(δ + α + 1)(δ + α + 2)
hypergeom

(
[3, δ + 2], [δ + α + 3], et

)
+

3αδe2t

(δ + α)(δ + α + 1)
hypergeom

(
[2, δ + 1], [δ + α + 2], et

)
+

αet

δ + α
hypergeom

(
[1, δ], [δ + α + 1], et

)
, (3.72)

according to (3.58) we have E[X2] = M ′′
X(0). For this reason, when evaluating Equation

(3.72) for t = 0 and then simplifying, we find that the second moment of the Urn Model is

given by

E[X2] =
α2 − 3α + 2 + 3δα− 4δ + 2δ2

(α− 1)(α− 2)
. (3.73)

After certain algebraic work, it can be verified that Equation (3.73) can be written as

E[X2] =
2δ(δ + α− 1)

(α− 1)(α− 2)
+

δ + α− 1

(α− 1)
. (3.74)

Before proceeding to find the third moment of the Urn Model, we note that Equa-

tion (3.74) agrees with (3.50), denoting an absolute convergence in the analysis of the

transformation methods to the Urn Model.
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Continuing with our analysis, and in order to find the third moment of the Urn Model,

we need to derive Equation (3.72). Since the methodology has been already shown and

since the intermediate steps are irrelevant, we will show only the final expression for the

third derivative of the moment-generating function, which has the form

M ′′′
X (t) =

6αδ (δ + 1) (δ + 2) e4 t

(δ + α) (δ + α + 1) (δ + α + 2) (δ + α + 3)
hypergeom([4, δ + 3], [δ + α + 4], et) +

12αδ (δ + 1) e3 t

(δ + α) (δ + α + 1) (δ + α + 2)
hypergeom([3, δ + 2], [δ + α + 3], et) +

7αδe2 t

(δ + α) (δ + α + 1)
hypergeom([2, δ + 1], [δ + α + 2], et) +

αet

δ + α
hypergeom([1, δ], [δ + α + 1], et). (3.75)

Because we know that E[X3] = M ′′′
X (0), when evaluating Equation (3.75) for t = 0 and

then simplifying, we find that the third moment of the Urn Model is given by

E[X3] =
α3 + 7α2δ − 6α2 + 11α− 23δα + 12δ2α− 18δ2 − 6 + 6δ3 + 18δ

(α− 1)(α− 2)(α− 3)
. (3.76)

After certain algebraic work, it can be verified that Equation (3.76) can be written as

E[X3] =
6δ(δ + 1)(δ + α− 1)

(α− 1)(α− 2)(α− 3)
+3

[
2δ(δ + α− 1)

(α− 1)(α− 2)
+

(δ + α− 1)

(α− 1)

]
−2(δ + α− 1)

(α− 1)
. (3.77)

As can be seen, a lot of effort needs to be made in finding the central moments from

the moment-generating function MX(t). We can get at least for the first three central

moments, a significant reduction of work, if we follow the next procedure. Based on the

definition of ΦX(t), we have

d

dt
ΦX(t)|t=1 =

∞∑

x=0

fX(x)xtx−1|t=1,

=
∞∑

x=0

xfX(x),

= E[X],

= µ′1, (3.78)

where µ′k is the k th factorial moment. In the same way,
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d2

dt2
ΦX(t)|t=1 =

∞∑

x=0

fX(x)x(x− 1)tx−2|t=1,

=
∞∑

x=0

x2fX(x)−
∞∑

x=0

xfX(x),

= E[X2]− E[X]. (3.79)

From the previous expression, we can establish

E[X2] = µ′2 + µ′1, (3.80)

while the third moment is found as

d3

dt3
ΦX(t)|t=1 =

∞∑

x=0

fX(x)x(x− 1)(x− 2)tx−3|t=1,

=
∞∑

x=0

x3fX(x)− 3
∞∑

x=0

x2fX(x) + 2
∞∑

x=0

xfX(x),

= E[X3]− 3E[X2] + 2E[X]. (3.81)

Setting E[X2] and E[X] in term of factorial moments and after sorting out, we can verify

that

E[X3] = µ′3 + 3µ′2 + µ′1. (3.82)

Obtain larger central moments represents the same difficulty following any method-

ology. So, the election of which methodology to follow is letting to the reader. On the

other hand, as in any study, the moments of interest are the first three. The exposition is

focused on these. As a validation of the given relations, note that Equations (3.68), (3.74)

and (3.77) agrees with (3.78), (3.80) and (3.82), respectively.

3.3.3 Stability of the Urn Model

A probability density is called stable if it is invariant under convolution [25]; i.e., if there

are constants a > 0 and b, such that

p(u) = f(x) ∗ g(x),

= p(a1x + b1) ∗ p(a2x + b2),

=
∞∑

−∞
p(a1(u− x) + b1)p(a2x + b2),

= p(au + b), (3.83)
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for all real constants a1 > 0, b1, a2 > 0, b2. In (3.83) u represents the sum of two

independent and identically distributed (iid) r.v. and ∗ denotes the convolution operation.

For the sake of simplicity, in our case, let us choose a1 = a2 = 1, b1 = b2 = 0. Moreover,

since the Urn Model’s pmf is only supported for x = 1, 2, 3, 4... and the convolution’s

arguments can not be negative, we have that the convolution of two random variables

distributed according the Urn Model is obtained from

fU(u) =
U∑

x=1

B (U − x + δ − 1, α + 1) B (x + δ − 1, α + 1)

B (δ, α)2 , (3.84)

When replacing the Beta functions with their equivalent in terms of gamma functions, and

after making certain algebraic simplifications, Equation (3.84) can be written as

fU(u) =

[
αΓ(δ + α)

Γ(δ)

]2 U∑

x=1

Γ (U − x + δ − 1) Γ (x + δ − 1)

Γ (U − x + δ + α) Γ (x + δ + α)
. (3.85)

As a first step to find a closed expression for the last sum, let us develop certain terms in

order to clarify the term’s sequence, which is given below:

fU(u) =

[
αΓ(δ + α)

Γ(δ)

]2
Γ(U + δ − 2)Γ(δ)

Γ(U + δ + α− 1)Γ(δ + α + 1)
+

Γ(U + δ − 3)Γ(δ + 1)

Γ(U + δ + α− 2)Γ(δ + α + 2)
+ · · ·

+
Γ(δ)Γ(δ + U − 2)

Γ(δ + α + 1)Γ(δ + α + U − 1)
+

Γ(δ − 1)Γ(δ + U − 1)

Γ(δ + α)Γ(δ + α + U)
, (3.86)

From our experience handling hypergeometric functions, it is easy to observe that the sum

sequence can be expressed as

Γ(U + δ − 2)Γ(δ)hypergeom([1, 2− U − δ − α, δ], [δ + α + 1, 3− U − δ], 1)

Γ(U + δ + α− 1)Γ(δ + α + 1)
, (3.87)

the inconvenient resides in the fact that the hypergeometric function is an infinite series,

so it is necessary to eliminate the terms beyond v = U +1, as can be proof, these remanent

terms can be enclosure by

Γ(δ − 2)Γ(δ + U)hypergeom([1, 2− δ − α, U + δ], [U + 1 + δ + α, 3− δ], 1)

Γ(δ + α− 1)Γ(δ + α + U + 1)
. (3.88)

From the previous discussion, we can establish that the convolution of two random variables

distributed according the Urn Model is given by
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fU(u) =
K0Γ(U + δ − 2)Γ(δ)hypergeom([1, 2− U − δ − α, δ], [δ + α + 1, 3− U − δ], 1)

Γ(U + δ + α− 1)Γ(δ + α + 1)
−

K0Γ(δ − 2)Γ(δ + U)hypergeom([1, 2− δ − α, U + δ], [U + 1 + δ + α, 3− δ], 1)

Γ(δ + α− 1)Γ(δ + α + U + 1)
,

(3.89)

where K0 =
[

αΓ(δ+α)
Γ(δ)

]2
, and u = 2, 3, 4, 5, ....

There is not simplification for Equation (3.89) in order that it takes the form of a

ratio of Beta functions and the Urn Model stability can not be determined. On the order

hand, Equation (3.83) becomes particularly simple in Fourier space, where the convolution

p(u) = f(x) ∗ g(x) reduces to a product of the Fourier transforms. Following this analysis

it is clear that p(u) can be obtained taking the inverse transform of Fourier of this product.

This is

fU(u) = F−1
[(

ΦX(ejw)
)2

]
, (3.90)

under the assumption that both r.v. are iid according to the Urn Model. The operations

indicated in (3.90) take the form

fU(u) =
1

2π

∫ 2π

0

[
αejω

δ + α

]2 [
hypergeom

(
[1, δ], [δ + α + 1], ejω

)]2
e−jωxdω. (3.91)

From Fourier theory, fU(u) exist only if the argument of Equation (3.91) is infinitively

summable, this is if [hypergeom ([1, δ], [δ + α + 1], ejω)]
2

converges. Simplification formulas

are not available and we conclude that the stability of the Urn Model can not be determined

by traditional methods. Fortunately, there are other ways to investigate the Urn Model

domain of attraction problem as we will in the next section.

3.3.4 Domain of attraction for extremes

In practical engineering work, the order statistic T = x(i) is one of the simplest and most

useful, because it allows the decision maker to focus on a specific region of the distribution.

In particular, the extreme x(1) or x(n) is important because it is often a required design

input.

The exact sampling pdf of the ith order statistic is known [3]

fi(x; θ, n) =
n!

(i− 1)!(n− i)!
[F (x; θ)]i−1[1− F (x; θ)]n−if(x; θ), (3.92)



3.3. GENERATING FUNCTIONS 37

where f and F are the pdf and cdf of the measurement variable X, respectively. Moreover,

f(x; θ) simply represent the probability model of the rv X but indexed by a parameter θ,

which often is a vector of two or more parameters.

For the special case of i = n, the pdf of the largest observation x(n) in a sample of size n is

fn(x; θ, n) = n[F (x; θ)]n−1f(x; θ), (3.93)

with cdf

Fn(x; θ, n) = [F (x; θ)]n, (3.94)

Of special interest for us, is the fact, that if the initial distribution f(x; θ) has an unbounded

upper tail, but not all of its moments are finite, then the Frechet distribution arises as the

limiting form of the distribution given in (3.93). In this context the Frechet distribution is

termed a type II extreme value distribution of maxima [3].

A continuous random variable X has a Frechet distribution if its pdf has the form

f(x; σ, λ) =
λ

σ

(
σ

x

)λ+1

e−(σ
x)

λ

; x ≥ 0; σ, λ>0. (3.95)

A Frechet variable X, as defined by (3.95), has the cdf

F (x; σ, λ) = e−(σ
x)

λ

. (3.96)

This model has scale structure, with σ a scale parameter and λ a shape parameter. The

expected value of a rv X distributed according to the Frechet model is defined as

E[X] = σΓ
(
1− 1

λ

)
. (3.97)

The Frechet distribution features a reproductive property for its maximum extreme. That

is, the distribution of X(n) is again Frechet, with the same shape parameter but with the

scale parameter increased to σn1/λ [3]. Thus, the pdf of X(n) has the same shape as that

of X but rescaled as given above.

Back to the Urn Model, we known that it has an unbounded upper tail and that only

the moments of order n < α exits. On the other hand, the Urn Model has not a well defined

scale structure but along this work we have seen that its α parameter determine the tail’s

shape while that its δ parameter influence the tail’s size; this is its scale. For this reason

we can expect that for a given Urn Model distribution its Frechet representation can be

obtained just exchanging parameters of shape and scale. This is

B(x + δ − 1, α + 1)

B(δ, α)
≈ α

δ

(
δ

x

)α+1

e−( δ
x)

α

; (3.98)
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In order to observe how last approximation works, in Figure 3.7 we can see the plot of a

Urn Model distribution with α = 1.2, δ = 1.2 and its Frechet representation. Despite, the

Frechet representation of a Urn model distribution is defined for x ≥ 0 its tail decay is very

close to the Urn Model’s tail decay that the engender.

Figure 3.7: Urn Model distribution and its Frechet representation.

Figure 3.7 gives a good idea about the approximation between an Urn Model and its Frechet

equivalent representation but is desired that this approximation could be quantified. One

way to do it, is quantifying the difference between the expected value of both distributions.

This can be done through the next error function

error =

√√√√
(

E[XUM ]− E[XF ]

E[XF ]

)2

100%, (3.99)

where E[XUM ] represents the Mean Value of a rv X distributed according the Urn Model

and E[XF ] represents the Mean Value of a rv X distributed according the Frechet distri-

bution. After replacing (3.45) and (3.97) into (3.99) and simplifying, last expression take

the form

error =

√√√√
(

δ + α− 1

(α− 1)(δ)Γ(1− 1
α
)
− 1

)2

100%, (3.100)

Fixing the shape parameter α and varying the scale parameter δ along the range of interest

1 < δ < 2 we can obtain a plot about the error incurred when we represent an Urn Model
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through the Frechet model by exchanging their parameters of shape and scale. As a survey,

a family of error plots is show in Figure 3.8 for different values of α. As we can see, when

α grows, the error becomes bigger. Another relative observation, is that for the example

given in Figure 3.7 (δ = 1.2), the error between mean values is about 4.8%.

d

%

a=1.2

a=1.4

a=1.6

Figure 3.8: Family of error Plots as defined by (3.100) for different values of α.

Back to the problem of extremes, from exposed at the beginning of section 3.3.4, we

have that the pdf of the largest observation x(n) in a sample of rv X distributed according

the Urn Model of size n is given by

fn(x; δ, α, n) = n

[
1− B(x + δ, α)

B(δ, α)

]n−1
B(x + δ − 1, α + 1)

B(δ, α)
, (3.101)

From the Frechet’s reproductive property for its maximum extreme, we know that the pdf

of the largest observation x(n) in a sample of rv X distributed according the Frechet model

of size n is given by

fn(x; σ, λ, n) =
λ

σn1/λ

(
σn1/λ

x

)λ+1

e
−
(

σn1/λ

x

)λ

; x ≥ 0; σ, λ>0. (3.102)

Now, since the Urn Model has an unbounded upper tail and not all its moments are finite,

we can expect that equation (3.101) converges to the Frechet probability model. The

question that arise, is to which specific member of the Frechet family (3.101) tends. Since
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we already have seen, that from a given Urn Model we can obtain its equivalent Frechet

representation with the same shape and scale parameters; we can establish the next limiting

density for equation (3.101) as n grows

fn(x; δ, α, n) =
α

δn1/α

(
δn1/α

x

)α+1

e
−
(

δn1/α

x

)α

; x ≥ 0; δ, α>0. (3.103)

In Figure 3.9 we can see the plots of (3.101) and (3.103) for α = 1.2, δ = 1.2 and n = 20.

Despite n is small, the approximation is very acceptable.

Figure 3.9: Plot of (3.101) and its approximation (3.103) for n = 20.

As a second observation, in Figure 3.10 we can see the plots of (3.101) and (3.103) for

α = 1.2, δ = 1.2 but now with n = 40. As we can see the densities are almost identical

even when n is not really big.

3.3.5 Urn Model - Pareto Match

In order to facilitate the use of the Urn Model in the modeling of heavy-tailed phenomena,

we deduce a methodology to obtain the Urn Model’s parameters from a given Pareto

distribution. That is, if we already have at hand a well defined Pareto distribution, and if

it is in our interest to dispose of an Urn Model equivalent representation, we can proceed

in the following way.
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Figure 3.10: Plot of (3.101) and its approximation (3.103) for n = 40.

From a mathematical point of view, the Urn Model version from a Pareto distribution

must have the same mean value, so we can establish

ζβ

β − 1
=

δ + α− 1

α− 1
, (3.104)

where the left term is the Pareto’s mean value. Remember that ζ and β are the location

and shape parameters, respectively, from a Pareto distribution, while that α is the Urn

Model parameter, defined as α = d/m.

On the other hand, in Section 3.1.4 it was indicated that the Urn Model’s heavy-tail

behavior depends predominantly on α; such a fact suggests us that we can assume that α

can be of the same value as β. Under such assumptions, from Equation (3.104), we can

write

δ = β(ζ − 1) + 1. (3.105)

Even though the Urn Model’s parameters have been defined, the definition of the Urn

Model’s initial conditions are still missing. From the two definitions given to α, namely

α = β =
d

m
, (3.106)

it is easy to see that d and m are given by the smallest rational number that gives the best

approximation to β. The value of c can be derived form Equation (3.105), and by replacing
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δ = c
m

and β = d
m

and after making simplifications, we have

c = d(ζ − 1) + m. (3.107)

Under the last conditions in Figure 3.11, we can see the P-P plot for a Pareto distri-

bution and its Urn Model equivalent representation for ζ = 5 and β = 1.25. As can be

seen, the Urn Model’s representation sub-estimates the Pareto distribution that generates

it at the beginning of the sample space but, towards the end, their tail decay is almost

identical.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.11: P-P plot, Pareto distribution versus its Urn Model representation.



Chapter 4

Urn Model Behavior

In this chapter, the Urn Model’s heavy-tail behavior is validated from a practical point of

view. We make an intensive use of graphical tools such as Q-Q and P-P plots. Since the

probability of observing a connection ending at a given time observation x depends mainly

on the “disconnect” balls in the model, graphics are obtained for different values of α, and

ranges of interests are pointed. On the other hand, in order to show the versatility of the

Urn Model, the match of the degenerated case (m = 0) with the geometric distribution is

collaborated with the same methodology.

4.1 Heavy-Tail Behavior

In chapter two, it was said that the Pareto distribution was the simplest heavy-tailed

distribution, so as a first snapshot of the heavy-tail nature of the Urn Model in Figure 4.1,

we can see the Pareto and Urn Model pdf’s plots in order to compare their shapes. As can

be seen, both densities present a high similarity in their tail decay, even since low values of

x.

As expected, their cdf’s must present almost identical shapes, as we can see in

Figure 4.2. As these graphics denote a similar behavior with the Pareto distribution, we

can conclude that the Urn Model really possesses a heavy-tail nature.

As well the Urn Model distribution presents a high similarity with the Pareto distribu-

tion, we need to validate this similarity to a specific description of a heavy-tail distribution.

One way to do this, is by obtaining the Quantile-Quantile plot of both distributions. The

idea of quantile plots, (QQ-plots for short) has come forward from the observation that

for important classes of distributions the quantiles Q(p) are linearly related with the cor-

responding quantiles of a standard example from this class of distributions. A 45-degree

reference line can also be mounted on the QQ-plot. If the quantiles of both distributions

are similar, the points should fall approximately along this reference line. The greater the

departure from this reference line, the greater the evidence for the conclusion that the two

43
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Urn Model

Pareto

Figure 4.1: Comparison between the Pareto and Urn Model pdf’s.

Urn Model Pareto

Figure 4.2: Comparison between the Pareto and Urn Model cdf’s.

distributions present divergent behaviors. On the other hand, if both distributions differ

only by a shift in location, the points should lie along a straight line that is displaced either

up or down from the 45−degree reference line. Therefore, as linearity in a graph can be eas-
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ily checked by the naked eye, we can compare the Urn Model’s quantiles against the Pareto

distribution quantiles, and validate the Urn Model heavy-tail behavior in a trustworthy

way. For more details about this topic, see [23].

In Figure 4.3, we can see the comparison between the quantiles of the Urn Model

and the Pareto distribution for the case of α > 1. As we can observe, the Urn Model’s

heavy-tail behavior is stressed for c > d, while for d > c, the heavy-tail behavior is reduced

as a result of the increased probabilities of a disconnection event.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

c>d

c=d

c<d

Figure 4.3: Q-Q plot of the Urn Model for α > 1.

Another way to validate the similarity between the Urn Model and the Pareto dis-

tribution is by obtaining the Probability-Probability plot (PP-plots for short) for both

distributions. The probability plot is a graphic technique for assessing whether or not a

data set follows a given distribution. The data are plotted against a theoretical distribution

in such a way that the points should form approximately a straight line. Departures from

this straight line indicate departures from the specified distribution. In our case, as we

already have a model at hand, this plot is formed by the cdf’s values of each distribution

obtained to the same value of x. Figure 4.4 shows the Urn Model P-P plot versus the

Pareto distribution for the case α > 1. As we can see, the results agree, since for c > d the

Urn Model’s probabilities are lower than the Pareto ones as a result of a stressed heavy-tail

behavior for this case. In the same way, for d > c, the Urn Model heavy-tail behavior is

similar to Paretian as result of the increased probabilities of a disconnection event.

Another case of interest is for α < 1, that is, for infinite media. What this means is that
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Figure 4.4: P-P plot of the Urn Model for α > 1.

a highest level of variability is captured by the Urn Model distribution. Therefore, what we

can expect is very heavy tail behavior, which implies a slope beyond the 45 degrees. This

is what is exactly shown in Figure 4.5. Against we observe a stressed heavy-tail behavior

for c > d, a match with the Paretian behavior for c = d and a reduced heavy-tail behavior

for c < d, despite α < 1.

Figure 4.6 reaffirms the previous conclusions. That is, for c > d and c = d, the Urn

model really presents a heavy-tail behavior that falls inside the Paretian “family”, while in

that for c < d, the Urn Model even presents a heavy-tail behavior with some discrepancies

at the beginning of the distribution’s low values.

The third case of interest is for finite variance; that is, for α > 2. If the variance is

finite, the Urn Model captures a reduced variability which is far away from the heavy-tail

behavior. But, in order to observe how the Urn model breaks the heavy-tail nature, in

Figure 4.7 we can see the QQ-plots of interest. As we can observe, for c > d, c = d and

c < d, the Urn Model loses its heavy-tail behavior, and there is almost no difference in each

case. This can be collaborated in Figure 4.8, where the PP-plots for c > d, c = d and c < d

are shown. As we can see, there are not any visible differences among each case.

From previous figures, we can make the following conclusions:

• The Urn model presents a truly heavy-tail behavior only for 0 < α < 2.

• For practical proposes (mean finite), the range of interest can be limited to 1 < α < 2.
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Figure 4.5: Q-Q plot of the Urn Model for α < 1.
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Figure 4.6: P-P plot of the Urn Model for α < 1.

• The Urn model’s heavy-tail behavior can be handled from a typical or Paretian behav-

ior until a stressed or very heavy-tail approximation for c = d and c > d, respectively.

• The case of d > c results in a light heavy-tail behavior, and it is not of great interest.
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Figure 4.7: Q-Q plot of the Urn Model for α > 2.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

c>d

c=d

c<d

Figure 4.8: P-P plot of the Urn Model for α > 2.

• Urn Model can be used to get the discrete version from a given Pareto distribution

with identical characteristics.
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4.2 Geometric Behavior

In chapter three, it was pointed out that for m = 0, the Urn Model reduces to the geometric

model. Since the Urn Model’s mathematical description is not supported for m = 0, what

we can do is replace m for a value near 0 and observe its behavior. In Figure 4.9, we can

see the Urn model and geometric cdf’s, as we can observe; the Urn model really behaves

as a Geometric distribution for m ∼ 0. In order to appreciate the match between the

degenerated case of the Urn Model with the geometric distribution, Figure 4.10 shows the

P-P plot for both distributions. As we can observe, the match is perfect for the entire

sample space.
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Figure 4.9: Urn Model and Geometric cdf’s.

On the other hand, in order to appreciate how far away the Urn Model is from the

Paretian behavior in the degenerated case, in Figure 4.11 we can see the P-P plots for the

Pareto and geometric distributions. As can be easily noted, the Urn Model for m ≈ 0 loses

all of its heavy-tail nature and reduces to the geometric model.
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Figure 4.10: P-P plot of the Urn Model for m ≈ 0.
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Figure 4.11: Urn Model P-P plots for m ≈ 0.



Chapter 5

Conclusions

In this chapter, general conclusions of this work are presented. Also, certain projects for

further research are suggested.

5.1 General Conclusions

This work has completed the description of the discrete heavy tail distribution presented

in [24]. It has shown through mean excess functions, that the Urn Model really poses a

heavy tail; which decay is predominantly dominated by the original disconnect condition.

Moreover, by a graphical comparison with the Pareto’s mean excess functions we found

a high similarity between them. Of special attention is the fact that the Urn Model‘s

parameter denoted as “α” plays a similar role that the Pareto’s shape parameter denoted

as “β”. This is in the sense that, both parameters determinate the tail decay of their

respective distribution. From the Urn Model’s generating functions analysis realized in this

work, were derived the most representative model’s moments. Due to moments existence

in specific values for “α”; the Urn Model heavy tail behavior has been identified in the

interval 0 < α < 2. Last fact points towards an Urn Model’s performance near to the

Paretian behavior and is the motivation for the study of the match between both models

presented at the end of Chapter 3. From this study, we conclude that is possible to find an

Urn Model representation from a well defined Pareto Distribution at the hand, with the

same mean value and identical tail decay.

In order to investigate the domain of attraction for the Urn Model maximum extreme

Xn; a match between the Urn Model and the Frechet distribution was done. During this

analysis, was stressed the shaping nature of the parameter α and the scaling properties of

the δ parameter in the Urn Model. Thanks to these properties the Frechet distribution

arise as the limiting distribution for the Urn Model maximum extreme Xn even for reduced

samples.

Summarizing we conclude that
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• The Urn Model really poses a heavy tail; which decay is predominantly dominated

by the original disconnect condition.

• The Urn Model’s parameter denoted as “α” plays a similar role that the Pareto’s

shape parameter denoted as “β”.

• The Urn Model heavy tail behavior has been identified in the interval 0 < α < 2.

• It is possible to find an Urn Model representation from a given Pareto Distribution,

with the same mean value and identical tail decay.

• The Urn Model can be an important tool in the design and simulation of internet-

working devices, because it allows handling of the traffic’s shape from light tailed

(m=0) until heavy tailed (0 < d < 2m).

• From a given Urn Model is possible to obtain its Frechet equivalent representation

with a small difference between its mean values.

• The Frechet distribution arise as the limiting distribution for the Urn Model maximum

extreme Xn.

• Only the Urn Model mean value is useful in the establishment of the maximum value

expected.

5.2 Future Research

There are certain research projects that can continue this work, due to stability implica-

tions. Among these are the following

• Investigate the Urn Model stability through alpha stable distributions theory.

• Pareto type workloads have been used in important works [6]. As a validation of

the Urn Model utility, some of these works could be repeated with its respective Urn

Model version of its workload. As well, this can be done with the finality to clarify

the match between both distributions, the persistence of certain Paretian workloads

properties can be investigated.

• Perform a statistical study about the buffer occupancy in a switch with heavy-tail

input traffic generated through the Urn Model.
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