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Abstract 
Video codecs are thought to be used in systems where codification is done once 

and decodification is done several number of times, this implementation requires the 
encoder to be 5 to 10 times more complex than the decoder [Aaron d] because of the 
interframe codification. 

A new paradigm for distributed video applications have been arising in the last few 
years based on the work of Aaron Wyner and Jacob Ziv. Frames are encoded in an 
intraframe coding scheme but decoded in an interframe scheme using an information 
generated at the decoder known as side information. 

Wyner -Z iv codec modules are designed using V H D L and synthesized for the 
Spartan-3A D S P Video Starter K i t , the modules were designed in pipeline so real-time 
execution can be performed. The hardware implementation has a maximum frequency 
of 64.496 M H z which is enough to process video with 1080i resolution. 

Lossy and lossless compression methods were employed to get the maximum com­
pression rate so the codec can be implemented in a low bandwidth communication 
system. 
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Chapter 1 

Introduction 

Standards for video coding such as H.263 are already well documented and have good 
performance, unfortunately that schemes are not achievable by some devices without 
the desirable processing power such as mobile devices, and also they are only efficient 
for some k ind of applications such as broadcasting. 

Video coding standards such as H.263 and M P E G - 2 exploit statistical information 
from the source signal [Girod 05], hence, any statistical estimation or main codification 
algorithm is being held at the encoder. Codecs under this standards have complex 
encoders but simpler decoders. 

Distributed Video Coding is a paradigm which states that efficient compression can 
also be achieved by exploiting source statistics at the decoder only [Girod 05]. 

David Slepian and Jack Wolf in [Slepian 73] proved that, for two independent but 
correlated signals X and Y, if they are encoded separately and jointly decoded i n ­
formation can be reconstructed as if they were jointly encoded. Their algorithm also 
included how to select the minimum number of bits of representation per character, 
Rx and Ry, for the information to be correctly reconstructed by proposing an ad­
missible error region bounded by the conditional probabilities of Rx > H(X\Y) and 
Ry > H{Y\X). 

Aaron Wyner and Jacob Ziv then proposed a random variable known as side infor­
mation Y in order to increment the rate distortion performance [Wyner 76], this side 
information can be known by both the encoder and the decoder or only by the decoder, 
by Wyner and Ziv work it can known that both are equally efficient. In practice, side 
information frames Y are also called key frames and are usually special encoded frames 
or a noisy version of X, also this information is important for any distributed video 
coding implementation. [Peixoto 08] 

Figure 1.1 shows the basic structure of a Wyner-Ziv codec [Girod 05], the architec­
ture consists in a quantization module, a Slepian-Wolf encoder, a Slepian-Wolf decoder 
and a reconstruction module, it can be seen from the diagram that the decoder have 
access to the side information Y which is the Wyner-Ziv codec main characteristic. 

This block diagram is not the final system diagram, it is just a general representation 
of how the codec is constructed, it is possible to add or modify the modules as they 
are needed with in the constrains of the codec. 

1 
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Figure 1.1: Basic Wyner-Ziv Codec Structure. [Girod 05] 

Some implementations under Wyner-Ziv scheme had been done already, each one 
with different implementations and algorithms. Some examples of this implementa­
tions are the P R I S M algorithm by P u r i and Ramchandran [Puri 02], pixel domain 
transformation used by Bernad Girod , et al . [Girod 05]. 

Eduardo Peixoto, et al . proposed a method where the movement between two 
consecutive key frames F2k — 1 and F2k + 1 can be modeled to obtain the frame 
F2k [Peixoto 08]. Joao Ascenso, et al . proposed an improved side information con­
struction based in motion compensated frame interpolation algorithms at the decoder 
[Ascenso 06]. 

These methods were implemented during the last years, the first one was done in 
2008 and the second one in 2006, by these examples a new codec can be implemented 
by looking for opportunity areas. 

1.1 Video Basics 
Before going further, some basic concepts about video have to be discussed as they 
serve as general knowledge and wi l l help to understand some modules functionality. 

Video works over the principle that motion is generated by showing a sequence of 
slightly different images at a rate high enough for the human eye to be able to interpret 
motion. This effect is possible because the human visual system and its property to 
retain an image even if it was removed from the sight [Haskell 97]. 

A video system can process this individual images, from now on referred as frames, 
generated by a video source like a camera. Frames can be processed independent from 
each other or they can be processed as a group of frames that depend one from each 
other, these processing methods are known as intraframe coding and interframe coding 
respectively. 

For intraframe coding, each frame is processed individually, no temporal redundan­
cies are taken into account, only statistical redundancies are used to encode data. This 
codec scheme sends al l the information of each frame in the video sequence. Str ict ly 
speaking, this would be an optimum codification method as the decoder does not have 
to estimate or predict any of the frames in the sequence, in reality this is not an efficient 
method as a lot of information is sent from the encoder to the decoder and the decoder 
is not always fast enough to reconstruct the information so these codecs are usually 
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slow. 
It was said before that video can be interpreted as a sequence of slightly different 

frames, but even if it is true that no frame captured depends from past frames as it is 
possible to capture totally different images at the same rate they are being captured, 
the reality is that frames in a video sequence are correlated because, for a sequence of 
frames, the frame N + 1 is most likely to be similar to the frame N and so, the frame 
sequence wi l l have temporal redundancies that can be used to reduce the amount 
of information to be sent from the encoder to the decoder. These are the basis for 
interframe coding, it takes advantage from statistical and temporal redundancies in a 
video sequence. Of course less information is needed to be sent but more hardware is 
required to interpret this temporal redundancies and so, there are devices that are not 
able to encode video in this manner. 

The discussion so far have covered the two coding schemes used to process video, 
but in order to understand what steps have to be taken to correctly encode and decode 
the information it is important to know where this information comes from and how it 
comes. 

Imaging is the representation of a physical scene, there are different types of imag­
ing, e.g., video, X-rays , just to list few [Haskell 97]. The one important for this project 
is the video which comes from different sources, the most recent are the solid-state 
sensors, the image in the lens is scanned and converted into an electrical signal that 
can be read and manipulated [Haskell 97]. 

There are two methods for scanning the image in the camera lens. The first one is 
called progressive and it consists in scanning the image from left to right and from the 
top to the bottom of the image, i.e., the first line of the image is scanned from left to 
right and converts the intensity perceived in each point to an electrical signal, when 
it finishes the first line it moves to the next line and continues the scanning unti l it 
reaches the end of the image [Haskell 97]. 

The second method is known as interlaced scan, it separates the image in two fields 
that are sampled at different times and then lines from both fields are interleaved, this 
way consecutive lines wi l l be from different fields. As there are specific solutions for 
every problem, how the image is scanned wi l l depend on the application target, for 
example, for computer displays the progressive scanning is more efficient while for T V s 
interlaced scanning wi l l be more efficient [Haskell 97]. 

This thesis is focused in progressive video and this is important because there is a 
module in the codec that w i l l scan 8 x 8 quantized blocks, and the scanning pattern is 
different for progressive and interlaced video applications. 

It is worthily to know that each electrical value read by the imaging scan that is 
known as a pixel is most commonly known in video terminology as a pel and it is the 
minimum area reproduced by an imaging device. This was explained because the next 
characteristic about video that wi l l be covered is the Image Aspect Ratio ( IAR) , which 
determines the ratio between the width and the height of the image to be displayed. 

Before displaying video over a display it is necessary to know if the display supports 
the I A R of the video or if the video has to be adjusted to be compatible wi th the I A R 
of the display where the video is intended to be showed, the most common I A R s used 
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are the 4:3 and 16:9 which are I A R s for standard and widescreen displays respectively 
[Haskell 97]. 

Pels are shapeless so their size can be adjusted depending the I A R used by the 
display, their size are calculated by calculating the Pel Aspect Rat io ( P A R ) wi th E q . 
1.1. 

P A L system uses the YUV color space which values can be calculated with E q . 1.3 
and it assigns from 5 M H z to 5.5MHz of bandwidth for luminance while it uses 1.3MHz 
of bandwidth for chrominance values [Haskell 97]. 

(1.1) 

Now that some aspects about representation and size of the frames have been 
explained it is also important to know how video takes care of color. To understand 
the next discussion two concepts are introduced, hue, which is the color produced by 
visible light, and saturation, which is the degree of purity of the color [Haskell 97]. 

The image scanning wi l l give three values for three different colors, one value for 
red, one for blue and one for green, the combination of different amounts of these 
three colors generates a new color, and so, al l the visible colors can be represented 
by combining these colors. The main problem is that video systems do not use this 
color space and it has to be transformed in order to be processed, when video has been 
processed it is again converted to R G B space and displayed. 

The most common video system is the composite video system which consists in 
three different systems that wi l l be further discussed, the N T S C system, used in North 
and South America, the Caribbean, and some parts of As ia , the P A L and S E C A M 
systems, used in the rest of the world [Haskell 97]. 

N T S C , P A L and S E C A M video systems are called composite systems because their 
luminance and chrominance values are multiplexed over the same carrier and send over 
the same transmission media [Haskell 97]. 

The color space transformation is easy as the spaces employed by the composite 
video systems can be generated from the R G B color space, in fact, the values used 
to convert from R G B to any other color space wi l l be R', G' and B' which are the 
same R G B values but gamma corrected, which is an energy and luminance balance 
correction as they are not linear when read. 

N T S C system uses the YIQ color space which values are calculated with E q . 1.2, 
it uses 4.2MHz of bandwidth for luminance, 1.3MHz for / and 0 .6MHz of bandwidth 
for Q [Haskell 97]. 
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S E C A M system uses the color space YDrDb which values for luminance and 
chrominance are found with E q . 1.4, this system uses 6 M H z of bandwidth to the 
luminance while it uses at least 1 M H z of bandwidth for chrominance [Haskell 97]. 

This knowledge is useful because, when designing a video system it is necessary to 
know where it is going to be implemented as every system has its own parameters, 
bandwidth usage and transmission media, then, this characteristics have to be known 
for the system to be compatible. 

So far analog component systems have been reviewed but it is for the interest of 
this thesis that digital component system is reviewed as the codec is implemented over 
a digital system. 

Digi ta l component system uses the color space known as YCrCb that derives from 
the YUV color space as its values are found with an offset of a scaled version of E q . 
1.3, so the values for luminance and chrominance are found with E q . 1.5, each value 
is represented w i th 8 bits. 

When working wi th digital video another concept is introduced, the video format, 
which is the distribution and number of samples for the luminance and chrominance 
values. Each format represents a relation between luminance and chrominance samples 
and if they are vertical or both vertical and horizontal distributed. 

4:2:0 format implies that there are going be half the chrominance samples (Cr 
and Cb) than the luminance samples (Y) in both directions, horizontal and vertical, 
this format is used by M P E G - 1 and M P E G - 2 and it can be used for interlaced and 
non-interlaced configurations [Haskell 97]. 

4:2:2 format is almost the same as 4:2:0 format in the number of samples for lumi ­
nance and chrominance values but with the difference that they are only distributed 
in the vertical axis of the image. This format is also used by M P E G - 1 and M P E G - 2 
architectures and it can also be implemented as interlaced and non-interlaced, an­
other difference is that even when both configurations can be used, interlaced video 
is the most common for this video format as it takes advantage on the characteristic 
that this format eliminates the color degradation associated with the interlaced 4:2:0 
chrominance [Haskell 97]. 
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AAA format uses the same number of samples for luminance and chrominance 
values, also they are distributed both horizontally and vertically, this format is most 
commonly used in computer displays, hence, is more associated to progressive video 
system and is only supported by M P E G - 2 [Haskell 97]. 

Discussion before was important because, just like I A R , it is important to know 
what kind of application wi l l be implemented to know the functionality of the video 
system and how it has to be adapted so it can work. 

1.2 M P E G - 2 
So far concepts about how video is obtained and what kind of formats it supports had 
been discussed, the information generated by the video source has to be processed, 
as it was mentioned before, there are two ways to code video, intraframe coding and 
interframe coding, the first one takes each frame captured, process it as an indiv idual 
image and sends it through a transmission media, this is suitable for devices w i th low 
processing capabilities as they wi l l use only the incoming data to encode video. 

The second way, interframe, not only uses the incoming data, but it also uses past 
frames to encode the present frame, this coding style sends less information as it takes 
advantage from temporal redundancies but it requires more hardware to encode the 
data. 

Both styles take advantage from statistical redundancies as both sends the data wi th 
variable length codes that are assigned depending of the probability of the event to be 
encoded. Only the interframe codec wi l l take advantage from temporal redundancies. 

This is where codec standards are involved, they encode and decode the incoming 
data following a number of rules that determine what happens when a luminance or 
chrominance block is being encoded, how the data wi l l be processed for an intraframe 
or interframe codec and all that decisions to be made in order to comply with a certain 
standard. 

One of the most commonly video codec used is the M P E G - 2 which is able to work 
in both intraframe and interframe coding schemes. The standard not only covers video 
but also audio and additional information such as video manipulation by the user. The 
standard sends al l this information through the same channel by data multiplexing 
[Haskell 97]. 

As M P E G - 2 is a standard that takes into account video, audio and additional data, 
this discussion wi l l only review the second part of this standard which talks about 
video. It is important to note that the official name of the M P E G - 2 standard is ISO-
113818 and is divided in 10 parts, each one states the rules and requirements for a video 
system to comply with this standard, as it was said before in the same paragraph, the 
second part is the one that states the rules for video coding. 

M P E G - 2 does not standardize encoding techniques, it does have some coding tech­
niques but they are not standardized, M P E G - 2 defines the rules for the bitstream and 
decoding semantics [Haskell 97], hence, M P E G - 2 encoders are generic and they are 
built however the designer wants the encoder to be, the only restrictions is that the 
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output bitstream has to be constrained inside a set of rules declared by the standard. 

Figure 1.2: M P E G - 2 Generic Block Diagram 

F i g . 1.2 shows a generic M P E G - 2 codec architecture for interframe coding, it takes 
advantage from both spatial and temporal redundancies, the D C T module wi l l take 
advantage from the spatial redundancy and the motion estimator wi l l take advantage 
from the temporal redundancies. 

The motion estimator/compensator is the module that makes the codec an inter­
frame codec, it categorize frames in three types, / , B and P frames. A n I-frame is an 
intra frame, this picture wi l l be encoded in an intraframe fashion, i.e., al l information 
about the picture is sent, not caring if there are st i l l images inside the picture. A 
P-frame is a predicted frame also known as delta-frame, this frame wi l l only send dif­
ferences between the actual frame and the past frames and so, few information is sent 
over the channel. A t last, the B-frame is a bidirectional frame which takes information 
from past frames and next frames to determine the contents of the picture. 

This information is important because of how M P E G - 2 standard asks for informa­
tion. The standard divides the video sequence en groups of pictures ( G O P ) , the G O P 
wi l l assign each picture as an I, P or B frame. Then, the encoder wi l l have information 
enough to know how the frame wi l l be encoded and how it has to send the bitstream. 

Now that it is known how many pictures there are going to be in the G O P and how 
it w i l l encode each of those pictures, the codec has to know how the image is separated. 
First , the image is cut into slices, each slice contains a group of macroblocks, that wi l l 
be discussed later. This slices are for synchronization so transmission errors can be 
prevented [Haskell 97]. 

Macroblocks are 16 x 16 motion compensation units [Haskell 97]. When the codec 
is found to be encoding a P-frame or a B-frame, some macroblocks can be skipped and 
so, they are not sent to the decoder. They are groups of blocks, which are the smallest 
data and the ones that are processed by the codec. 

Blocks are 8 x 8 data blocks and they are the ones that are processed by each 
module in the video codec, some codecs use 4 x 4 blocks but this thesis uses 8 x 8 data 
blocks. 

Of course the codec architecture presented in Figure 1.2 is just a simple represen­
tation of how a M P E G - 2 codec looks like but the designer can modify the modules he 
thinks are more convenient or efficient but always within the constrains dictated by 
the M P E G - 2 standard. 

The reason for discussing the M P E G - 2 standard is because the encoder for this 
thesis is closely related to the M P E G - 2 encoder. As the encoder wi l l be designed as an 
intraframe encoder, the pictures can be thought to be I-frames in the M P E G - 2 codec. 
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There are differences like the fact that the Wyner-Ziv encoder does not have a motion 
estimator module. 

Some of the basic modules that are found in a M P E G - 2 encoder are the D C T 
module, the Quantization module and the Entropy encoder, the Wyner -Z iv codec w i l l 
use the quantization table for M P E G - 2 for I-frames and the Huffman tree used in such 
standard for the entropy encoder. 

1.3 Slepian-Wolf 
The work presented in [Slepian 73] about noiseless coding of correlated sources is to pro­
pose a codec structure where, for two independent but correlated signals X and Y that 
are encoded independently but conditionally decoded, the decoded data wi l l fall in an 
admissible region. This was achieved by founding a set of admissible rate points, Rx and 
Ry, to code the data such that, for every e > 0 there exists for some n = n (e) encoders 
Cx (n, s2, Mx), Cy (n, sx, My), and decoders Dx (n, s 4 , Mx, My), Dy (n, s 3 , Mx, My) w i th 
Mx = [ exp(ni? x )J , My = [exp(nRy)\, such that, Pr [{X* ^ X} U {Y*± Y}] < e 
[Slepian 73]. 

Where n is the number of realizations, s\, s2, S3, s 4 are the states of the switches in 
Figure 1.3, for this thesis it can be seen that the states of that switches are 0011 which 
is the reason that encoder Cx only depends of Mx and Cy depends of My and both 
decoders depend of Mx and My which are the probability functions of both sources X 
and Y. 

Figure 1.3: Configuration Options for the Codec 

Probability functions Mx and My are in function of the entropy of the random 
variables, this is because for n realizations it is expected npx (1) realizations for event 
1, npx (2) realizations for event 2, and so, where px (i) is the probability for event i to 
occur. 

It is well known that the total probability of a given sequence is the product of the 
individual probabilities for each realization in the sequence [Symes 04], then, for a long 
sequence for a random variable X it can be found that. 
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These equations can be found in [Slepian 73] they are presented here in order to 
understand Slepian and Wolf work and justify the thesis problem. 

Shannon Theorem says that the most optimal representation for a given data se­
quence, i.e., the minimum number of bits per symbol for the data to be interpreted 
without errors, is equal to the entropy of the sequence. Hence, if the entropy of a 
given random variable X is 3, then the optimal representation for X is 3 bits/symbol, 
therefore, R(X) = H (X) in bits/symbol. 

According to Slepian and Wolf work, the objective is to find an admissible region 
of values for R that, for a given random variable X, R (X) > H (X ) . 

Of course the last explanation only takes into account one source X, but Slepian 
and Wolf talk about two correlated sources X and Y coded independently but decoded 
conditionally, so the admissible region wil l be interpreted as a plane and an admissible 
rate point wil l be represented as a point in that plane. Slepian and Wolf found that, for 
a codec with switches values 0011 (Fig. 1.3) the admissible rate region R is presented 
in Fig . 1.4. 

Figure 1.4: Admissible Region for 0011 codec 

It is demonstrated that various correlated sources can be coded independently but 
decoded conditionally by selecting an admissible rate point (Rx, Ry) to represent each 
of the sources and so, a video signal can be represented as a group of frames that 
can be encoded in an intra-frame fashion (independently coded) and decoded in an 
inter-frame fashion (conditionally decoded). 
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1.4 Wyner-Ziv 
Slepian and Wolf had demonstrated that two statistically dependent source signals can 
be encoded being unaware from each other and still getting to reconstruct the data by 
jointly decoding them. They demonstrated it by finiding two admissible rate points 
for each signal inside an admissible rate region defined in Figure 1.4. Wyner and Ziv 
contributed by proposing a side information sequence to increment the rate distortion 
performance. In contrast with Slepian-Wolf codec, which is a lossless codec [Girod 05], 
Wyner-Ziv codec is implemented on a lossy model. 

As Wyner-Ziv introduced a lossy model in order to reduce the transmission rate, 
they introduced the side information sequence so the average distortion of the signal 
would be less than a d (error) value. 

Figure 1.5: Wyner-Ziv codec configuration options 

They consider a codec structure like in Figure 1.5 where switches A and B determine 
if the side information is known at the encoder, decoder, both or none of them, for the 
sake of simplicity and the fact that the video codec is based upon the characteristic 
that the side information is only known at the decoder, only the results for the case 
where only switch B is closed are presented here. 

Knowing that only switch B is closed then the block diagram from Figure 1.5 is 
reduced to the one in Figure 1.6. 

Figure 1.6: Wyner-Ziv configuration 

If Figure 1.6 is analyzed it can be seen that the encoder wi l l only use the source 
information X to generate Z but the decoder wil l need Z and the side information Y 
to generate the reconstructed data X, hence, X = FD (Y, FE (X)) [Wyner 76], where 
FE and FD are the functions for the encoder and decoder respectively. 

When d = 0 it is easy to note that it is referring to the case where no loss of 
information is conveyed, so the next statement is true according to Slepian and Wolf. 

(1.6) 
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(1.8) 

1.5 Turbocodec 
Compression is important because the amount of data that have to be sent is reduced. 
Sending the compressed data through a transmission media without any kind of pro­
tection would yield errors in the decoding process. A s data is compressed a single bit 
error would affect more than one coefficient. Then it is important to ensure that data 
wi l l be received with the minimum B E R (Bit Error Rate). 

Even if digital transmission is less likely to be affected by noise in the channel as 
the decoder does not have to estimate the value of the incoming data, it just have to 
select the best value in a fixed number of discrete values [Giacoman 09], error correction 
coding have to be employed to correct errors generated during transmission. 

There are two main error correction coding schemes, Automatic Repeat Request 
( A R Q ) , which is a technique that wi l l detect transmission errors at the decoder, it wi l l 
feedback the encoder and it w i l l request for the error bits to be retransmitted. This 
coding scheme is reliable as it wi l l keep asking for bits unti l the correct sequence is 
received. This method wi l l lose efficiency as distance between encoder and decoder 
increase and transmission speed increases [Giacoman 09]. 

The second scheme is the Forward Error Correction ( F E C ) , this scheme wi l l try to 
correct most of the errors at the decoder, this coding scheme wi l l not use a feedback 
from the decoder to the encoder. This method is clearly less efficient than the A R Q 
scheme as it wi l l correct most of the errors while A R Q corrects al l the transmission 
errors, but as distance and transmission speed increases A R Q wi l l lose performance 
and so F E C wi l l be preferred. 

It is worth to know that this coding schemes are known as channel coding schemes. 
This error correction techniques are popular among transmission systems because 
their implementation uses a little power and few additional hardware is required 
[Giacoman 09]. 

Where R* (0) in E q . 1.6 is the rate for the configuration in Figure 1.6. A n d so, 
they demonstrate that, for d > 0. 

(1.7) 

and that, 

where D (x, X^j is the distortion function. 
Hence, when d —> 0 the transmission rate wi l l be lower than when d = 0, therefore, 

adding side information at the decoder wi l l reduce the amount of data to be sent. Side 
information is normally a noisy version of the encoded data but different methods can 
be employed to generate this information such that, for better side information a better 
reconstruction wi l l be obtained. 
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From last discussion can be concluded that F E C schemes wi l l be preferred over A R Q 
schemes as they are l imited and does not suits real-time requirements [Giacoman 09]. 
Among the most common channel coding methodologies there can be found block 
codification, convolutional codification, data interleaving and concatenated codification 
[Giacoman 09]. 

Concatenated codification is popular as it has a really low error probability. A n 
example of a classical concatenated codec with F E C scheme is presented in Figure 1.7. 

Figure 1.7: Classic concatenation F E C codec [Giacoman 09] 

A common codec like the one in Figure 1.7 w i l l consist in an external codec and an 
internal codec, the external one wi l l normally be a Reed-Solomon coder/decoder, the 
internal coder wi l l normally be implemented as a Trellis coder and the internal decoder 
is implemented with a Vi terb i decoder [Giacoman 09]. 

Now that concepts about channel codification and its different implementations and 
schemes have been discussed, it has to be noted that the objective for channel coding 
is to achieve the shannon capacity. Shannon capacity is a channel capacity measure. 
Shannon have said that if the transmission rate is less than the channel capacity, it is 
possible to approach an error free communication considering a channel w i th additive 
white gaussian noise [Giacoman 09]. 

Turbocodes are channel codification techniques that are able to achieve the shannon 
capacity within 1 dB, they are normally implemented with an interleaved coder and 
an iterative decoder and they implement a F E C scheme for error correction. 

This characteristics make the turbocodec an eligible module for the transmission 
module in the codec. They are efficient, fast and almost error free. 

The codec implemented here has to be integrated with the turbocodec generated by 
M y r i a m Alanis Espinosa for her master thesis, "Implementation of 3 G P P - L T E Turbo 
Codes", for better understanding of the turbocodec more information can be found in 
either [Giacoman 09], or [Espinosa 10]. 

1.6 Methodology 
The codec block diagram is based in a block diagram proposed by Anne Aaron and 
Bernard Girod on [Aaron 04]. 

Implementation wi l l be written in V H D L , and modules wi l l be designed in a pipeline 
fashion in order to maintain the real-time operation of the codec, the codec must achieve 
a good compression rate such as a low bandwidth. 

Some blocks are briefly explained to understand their functionality in the codec. 
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Figure 1.8: Aaron and Girod Block Diagram [Aaron 04] 

D C T 

Chapter 2 explains the Discrete Cosine Transform which is the first step for lossy 
compression, it decor relates the 8 x 8 input matrices and stores most of the information 
in the first coefficients of the transformed matrix. The matrix generated by this module 
wi l l have 64 values, an 8 x 8 output matrix, the first coefficient is known as D C coefficient 
while the rest are known as A C coefficients. 

This knowledge is useful because each coefficient wi l l follow a different data path 
depending if it is a D C or A C coefficient. 

In Figure 1.8 this module is found at the beginning of the system, it is implemented 
with a recursive algorithm which is found to be optimal because the real-time constrain 
is met. A s images have two dimensions the transform has to be a two dimensional 
transformation but the separability property of the D C T wi l l let us use the recursive 
algorithm for the I D D C T to obtain the 2D D C T of the 8 x 8 block. 

2D I D C T module is also obtained wi th a recursive algorithm for the I D I D C T of 
the decoded data. 

Quantization 

The matrix generated by the D C T module wi l l group most of the coefficients in the 
upper left corner of the matrix, also, the first coefficient represents the average energy 
on that block. Also, the most important values are stored in the first coefficients and 
the contribution of the last coefficients wi l l not drastically affect the final result. 

Quantization wi l l convert to zero those coefficients that wi l l not be needed and this 
module is explained in Chapter 3. 

There are two quantizer modules in Figure 1.8, the low frequencies band quantizer 
is marked as a 2 M - l eve l quantizer while the high frequencies band is just marked as a 
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quantizer. 
In this thesis it is used the same quantizer structure for both quantizer block mod­

ules in Figure 1.8. The quantizer consists in a simple division and rounding algorithm 
using the quantization matrix for intrablocks in the M P E G - 2 standard. In this project 
the quantizer is implemented in one whole module but it has to be separated between 
the low frequencies band coefficients and the high frequencies band coefficients. 

The diagram in Figure 1.8 shows a block labeled as "Reconstruct" this block is 
inferred to have an inverse quantizer and an entropy decoder, which implementation 
wil l be discussed later in this chapter. The inverse quantizer is implemented taking ad­
vantage of the multipliers in the F P G A so the implementation wi l l have a quantization 
coefficients memory and a multiplier. 

Zig-zag reordering 

For a lossless compression method to be more effective, the runs of zeros have to be 
extended, one of D C T characteristics is that low spatial frequencies are concentrated 
in the upper left corner of the matrix while the high spatial frequencies coefficients 
wil l be concentrated in the lower right corner of the matrix, hence, zig-zag scanning 
of the matrix wi l l order the data from the lowest frequency coefficient to the highest 
frequency coefficient and so, runs of zeros wi l l be extended. 

In the block diagram in Figure 1.8 this scanning process is performed after the D C T 
and is the process that wi l l separate the low frequencies band from the high frequencies 
band. 

For this project, the zig-zag reordering is performed after the quantization process 
but it can be easily implemented after the D C T module, in order to accomplish this, the 
quantizer has to be modified so the data coming from the D C T process are quantized 
with the right quantization coefficients. 

This module is implemented with a Moore F S M (Finite State Machine) to calculate 
the next memory address to be read, this process wi l l save a memory reading as most 
implementations involve a look-up table that stores the order in which the quantized 
matrix is read, and also, the amount of hardware needed wi l l be less as no look-up 
table wil l be used. 

Zig-zag reordering wi l l be also explained in Chapter 3. 

Entropy Encoder 

The entropy encoder is a lossless compression method, it is explained in Chapter 5, 
it takes the quantized coefficients and generates pairs of data known as (Run, Level) 
pairs, for each pair, the fist value represents the run-length of zeros before a non-zero 
value which wi l l be the second value in the pair. 

(Run, Level) pairs are entropy encoded with a tree algorithm developed by Huffman. 
This algorithm wi l l generate variable length codes according wi th the probabil ity of 
success of each (Run, Leve) pair. 

Figure 1.8 shows one entropy encoder in the high frequencies band data path but 
one more entropy encoder is added to in the low frequencies band data path before the 
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turbocodec module as most of the non-zero coefficients wi l l be processed in the low 
frequencies band data path. 

From D C T properties it is known that high frequency coefficient wi l l be mostly 
zeros, hence, the entropy encoder in the high frequency data path wi l l be only a R L E 
(Run Length Encoder) while the entropy encoder that wi l l be added in the low fre­
quency band is a R L E and Huffman encoder combination. 

The Huffman encoder is implemented with a look-up table algorithm to find the 
coded word and a shift register to align the variable length codes into a single bitstream. 

Entropy Decoder 

The entropy decoder efficiency is the most important in the codec as it is the slowest 
module because it takes variable length codes as input and gives fixed length (Run, 
Level) pairs as output. The decoder, also known as V L D (Variable Length Decoder), 
has to align the variable length codes and match the bitstream with al l possible (Run, 
Level) pairs. Hence, an efficient algorithm has to be found to reduce the number of 
matches also as the symbol memory size. 

The entropy decoder is found in Figure 1.8 in the high frequencies band band data 
path and a decoder module w i l l be added in the reconstruct block module. Like in the 
entropy encoder, the V L D in the high frequencies band data path wi l l be a run length 
decoder but the V L D in the low frequencies band data path wi l l be a Huffman decoder 
followed by a run length decoder. 

The Huffman decoder is implemented with a M L B P (Maximum Likely B i t Pattern) 
algorithm that w i l l be discussed in Chapter 5. This algorithm wi l l decode a codeword 
per clock cycle so real-time constrain is maintained. 





Chapter 2 

D C T - Discrete Cosine Transform 

The Discrete Cosine Transform is an orthogonal transformation and is found to be 
compared to the Karhunen-Loeve Transform which is known to be optimal [Ahmed 74], 
for this reason the D C T is widely used for digital signal processing, data compression 
and filtering [Huang 09]. 

It is used in international standards such as J P E G , M P E G , H.261, H.263 
[Huang 09], the D C T is the first step in data compression as it stores most of the 
information in the first coefficients. 

First introduced by Ahmed et al . [Ahmed 74], the D C T has been object of interest 
for many researches in the area of digital signal processing because of its properties that 
maximize the compression rate for a given set of data. Because of this, research around 
fast algorithm implementations had been made in the last years and the motivation 
behind this research is that video can be represented as a sequence of frames and 
the D C T is the module that makes most of the computation during the compression 
stage, then fast algorithms have to be implemented in order to keep the real time 
implementation of the video codec. 

For this codec a recursive algorithm for both, the D C T and the I D C T , were imple­
mented but in order to be able to understand these algorithms the D C T itself has to 
be discussed. 

W h e n x (t) is only defined for t > 0 then the function y (t) can be defined as. 
[Rao 90]. 

2.1 One Dimensional D C T 
Let us consider the Fourier transform definition. 

(2.1) 

17 
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Then, the Fourier transform of y (t) can be found using E q . 2.1. 

(2.2) 

E q . 2.2 is known as the Fourier Cosine Transform ( F C T ) which was obtained by 
mirroring the function x (t) over the y axis, this generates an even function as this 
condition is found to be true for y (t). 

Then it is obvious that E q . 2.2 only applies for even functions. There are also some 
alterations for the discrete version of the F C T but they wi l l be defined later in this 
chapter. 

As the title of this chapter says, it is for the interest of this project that discrete 
version of the F C T is defined. If we analyze E q . 2.2 it is found that the kernel of the 
transformation wi l l be cos (cot). 

Let us consider the case where the kernel is defined for oum = 2nm5f and tn = ndt, 
then it is easy to find that the kernel wi l l be expressed as next. 

Then, if SfSt = 1/2N, the kernel wi l l depend on the discrete variables m and n 
which are samples in frequency and time respectively, also N represents the number of 
samples taken. B y knowing this, the kernel wi l l be declared as in E q . 2.4 [Rao 90]. 

The matrix generated by E q . 2.4 wi l l be known as a N x N transformation matrix . 
If this transformation matrix is multiplied with a vector, x = {x0,x-i, • • • ,XN}T the 
resulting vector wi l l be a transformed vector, X = {X0, Xi, X2, • • •, X^}. Then a 
discrete cosine transform can be defined as. 

(2.3) 

(2.4) 

(2.5) 

E q . 2.5 was first introduced by K i t a j i m a in 1980 with the name of Symmetric 
Cosine Transform [Rao 90] and it is, in fact, a D C T definition, but in 1984 Wang 
classified four types of D C T that are defined in the next discussion. 
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Let x (n) be a data sequence of N elements and X (k) be the transformed sequence 
of the original data. 

There exist 8 different versions of the D C T each used in different k ind of applica­
tions. Four of them are presented here wi th their respective inverse transformations 
[Rao 90]. 

D C T - I 
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D C T - I I and D C T - I I I are the most commonly used in digital signal processing areas 
and are known as D C T and I D C T respectively [Rao 90]. 

2.2 Two Dimensional D C T 
Images can be interpreted as a set of values arranged in a matr ix where each value 
represents a pixel, these set of values have to be transformed with a two dimensional 
version of the D C T . 

It was mentioned that the D C T is an orthogonal transform, among the character­
istics of orthogonal transformations, the most useful when working with mult idimen­
sional transformations is the one which says that for multidimensional sets of data, the 
D C T wil l be obtained by finding the transform of the first dimension, then, for the 
semi-transformed set of data, the transform for the second dimension is obtained, and 
so on until al l dimensions in the set of data are transformed. 

For two dimensional sets of data, the D C T would be obtained by finding the I D 
D C T for each row in the matrix and then finding the I D D C T of each column of the 
semi-transformed matrix [Rao 90]. 

Let x (m, n) be an N x N matrix and X (u, v) be its two dimensional D C T . Then 
2D D C T is defined as. 
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In E q . 2.14 is observed that, for an N x N matrix, one dimensional D C T of iV 
points is calculated for each row and column. For the sake of simplicity it wi l l be 
assumed that M = N, M is associated to the number of rows while N is associated 
with the number of columns, then, the two dimensional D C T definition wi l l yield M 
JV-point one dimensional D C T along the rows and N M - p o i n t one dimensional D C T 
along the columns [Rao 90]. 

Each I D D C T wi l l yield N multiplications and N - 1 additions. For a n i V x J V 
matrix the number of multiplications wi l l be 2N2 and the number of additions wi l l be 
2 (N — l ) 2 , for an 8 x 8 matrix there are necessary 128 multiplications and 98 additions. 

Knowing this, it is necessary to find a fast algorithm to calculate the 2D D C T 
for 8 x 8 blocks. Next discussion wi l l talk about a recursive algorithm for the two 
dimensional D C T and the last one wi l l talk about a recursive algorithm for the two 
dimensional I D C T . 

2.2.1 Recursive Algorithm for 2D - D C T 
A recursive algorithm is proposed by [Zhijin 96] and a V H D L implementation for one 
dimensional D C T is presented by [Mendoza 06]. It was said that a two dimensional 
D C T can be obtained by applying a one dimensional D C T to the rows and then to the 
columns of the semitransformed matrix. 

This algorithm let the D C T be obtained with half of the multiplications and with 
no data shifts [Zhijin 96] which represents a significant reduction in computation, also 
the hardware implementation is in a pipeline so when al l the stages in the pipeline are 
full a new coefficient wi l l be obtained per clock cycle. 

E q . 2.8 is recalled but for the sake of simplicity and km are omitted and then 
included at the end of the algorithm, then this new expression is obtained. 

Where C%N = cos ( f * ) 
Let us assume that N = 8, D C T coefficients wi l l be obtained using E q . 2.16. 

This same equation can be expressed as a matrix equation where the cosine function 
is represented as a transformation matr ix with N x N elements and x (n) is a column 
vector w i th the data to be transformed. 
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It can be seen from last analysis that even coefficients are related wi th E q . 2.19 
while odd coefficients are related with E q . 2.20, therefore the next equations can be 
obtained from E q . 2.16. 

The objective is to find another D C T related with E q . 2.22 and to achieve this 
objective a known trigonometric identity is used. 
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Then, for the case where k = 0, X (1) = B (0) / 2 . 
E q . 2.23 and E q . 2.28 show how an iV-point D C T can be split into two jV/2-point 

D C T s wi th this recursive algorithm. 

Hardware Implementation 

The algorithm is implemented in V H D L and it was designed in a pipeline architec­
ture. The block diagram used is presented in Figure 2.1. Only half of the architecture 
is shown as the other half is exactly the same as the one in the figure. 

The pipeline consists in 10 stages, each one activated each clock cycle, except for 
the second one which is activated each eight cycles. 
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Figure 2.1: Block Diagram for D C T Implementation 

A brief description of each stage is presented. 

First Stage. A shift register is implemented that wi l l take one input value per 
clock cycle 

Second Stage. This stage is activated each eight cycles, when the eighth cycle is 
reached, it takes the values in the shift register and store them for another eight cycles. 

Third Stage. Data is added or subtracted in order to calculate the expressions in 
Eq . 2.19 and E q . 2.20. 

Fourth Stage. A sign adjustment according the sign is done in this stage, this is 
because the module is designed with unsigned values. 

Fifth Stage. This stage takes the values g (n) and h (n) and multiplies them wi th 
the corresponding D C T coefficients. 

Sixth Stage. This is another sign adjustment, it takes the multiplier output and 
decides if its sign has to be changed. 

Seventh and Eighth Stages. This is where the final coefficient value wi l l be 
obtained, it wi l l add the multiplied values from the fifth stage. 

Ninth Stage. A register wi l l be added to avoid glitches. 
Tenth Stage. This stage stores the value in a R A M . There are two memories so 

one can be written while the other is being read. 

As it was said before, this block diagram wi l l calculate the semi-transformed matr ix 
by transforming the rows of the data matrix. The second part of the D C T has the 
same architecture but it wi l l transform the columns of the semi-transformed matr ix . 

It has to be noted that the pipeline wi l l not give valid values unti l the pipeline is 
full, hence, a delay wi l l be added and the first valid value wi l l be obtained after 96 
clock cycles, after that number of clock cycles the D C T wi l l give a new valid value each 
clock cycle and a valid 8 x 8 block each 64 clock cycles. 

The D C T operation is one of the most complex modules in the system because the 
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number of multiplication and additions that have to be performed in order to obtain 
the transformed data. 

It is important to know the mathematical complexity of the module because the 
amount of operations performed have direct impact in the amount of time required 
to obtain a valid output, even if the module is implemented with a pipeline and a 
new coefficient is obtained each clock cycle, the more optimum the algorithm the less 
operations required and the less number of pipeline stages. 

Also, as this module is one of the most complex in the system, it wi l l be used as a 
reference to determine how complex is the system itself. 

Table 2.1 and Table 2.2 compare the mathematical complexity of the algorithm 
proposed in this work with other algorithms already implemented. Table 2.1 shows 
the comparative table between the different I D D C T algorithms for input vectors of 
8 values as the recursive algorithm presented propose an algorithm for the I D D C T 
and uses the separability property of the D C T to obtain the 2D D C T . Table 2.2 wi l l 
compare the amount of operations performed between the algorithm used here and 
other algorithms using input matrices of 8 x 8 values. 

Table 2.1: Comparative table between I D D C T algorithms 

Table 2.2: Comparative table between 2D D C T algorithms 

From Table 2.1 and Table 2.2 it can be seen that the algorithm proposed is the 
most mathematical complex algorithm but the pipeline wi l l compute various D C T 
coefficients each clock cycle so real-time constrain is maintained. This module also 
represents a bottleneck because it is the first module in the system, it has to be fast 
enough to compute the transformed coefficients while it keeps getting data from the 
preprocessed video. 

2.2.2 Recursive Algorithm for 2D - I D C T 

A recursive algorithm is proposed by [Lee 84], the algorithm is similar to the recur­
sive D C T one so the hardware implementation is almost the same but with few more 
stages. The algorithm is explained below. 
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E q . 2.9 is taken as base equation but is omitted and then included at the end 
of the procedure, also, next equality wi l l be assumed. 

From [Zhijin 96] it can be found that g(n) is related with the even. coefficients 
while h (n) is related with the odd coefficients so the next two expressions can be easily 
found. 
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Substituting E q . 2.40 and E q . 2.32 in E q . 2.30 and E q . 2.31 the i V - p o i n t I D C T 
can be obtained wi th two iV/2-pomt I D C T s . 

Hardware Implementation 

Hardware implementation is similar to the D C T implementation one, the only differ­
ence is that a second multiplier stage is added as E q . 2.30 and E q . 2.31 require h(n) 
to be divided by another cosine fuction. This constant could be added to the kernel 
coefficient but that would mean that 8 I D C T coefficients could be obtained in 4 clock 
cycles, this is clearly more efficient than obtaining one coefficient per cycle but the 
second stage of the pipeline is activated each 8 cycles so the pipeline should have to 
wait for that cycles to finish. 
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Figure 2.2: Block Diagram for I D C T Implementation 

The block diagram and an explanation of each stage is presented in Figure 2.2. A s 
in D C T hardware implementation section, only half of the block diagram is presented 
because the second half is exactly the same but taking the column values of the semi-
transformed matrix in the R A M memory. 

First Stage. This is a shift register which inputs are the D C T coefficients. 
Second Stage. This stage is activated each 8 cycles and stores the coefficients 

in the shift register so it can keep taking new values while the rest of the pipeline is 
transforming the actual values. 

Third Stage. G (k) and H (k) are split. 
Fourth Stage. This is a sign adjustment for H (k) to obtain H (k). 
Fifth Stage. H (k) w i l l be multiplied by 1/C££ + 1 to obtain H (k) 
Sixth Stage. Another sign adjustment for the H (k) values and a store register 

for the G (k) values. 
Seventh Stage. This stage adds or subtracts values from G (k) and H (k) that 

wi l l be used to obtain the results of E q . 2.30 and E q . 2.31. 
Eighth Stage. This is a sign adjustment for the multipliers, it worths to re­

member that this architecture is designed with unsigned data so a sign adjustment is 
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needed for multiplications. 
Ninth Stage. Data is multiplied with the cosine coefficients. 
Tenth Stage. This is the last sign adjustment before resulting values are added 

to form the final value. 
Eleventh and Twelfth Stages. Adder for the resulting values to form the final 

semi-transformed value. 
Thirteenth Stage. This stage stores the semi-transformed matrix in a R A M 

memory so they can be used in the second half of the I D C T . 

The complete transformation wi l l be calculated wi th the same fashion as the D C T , 
first the row values wi l l be calculated to form a semi-transformed matrix, and then the 
column values wi l l be used to find the final transformed matrix. 

This implementation has a pipeline structure so there wi l l be also a number of 
not valid values before a valid value can be obtained, for this section each part of the 
implementation consume 20 clock cycles and the R A M memory section uses 64 clock 
cycles, then, for this module to give a valid value it is needed 104 clock cycles, after 
that number of cycles a new valid value wi l l be obtained per cycle. 

The I D C T is the most complex module in the system, it requires more operations 
to be completed than the D C T so this module wi l l be another reference for the amount 
of complexity of the whole system, hence, any optimization regarding the complexity 
of the system has to start wi th this module. 

Table 2.3: Mathematical complexity of the I D C T algorithm 

Table 2.3 shows the number of multiplications and additions to complete an 8 x 8 
block reconstruction. Results about the complexity of the I D C T algorithm is not com­
monly documented as it is directly related to the D C T so any optimization performed 
on the D C T algorithm wi l l optimize the I D C T . Hence, Table 2.3 only shows the com­
plexity of the algorithm presented in this thesis. 





Chapter 3 

Quantization and Zig-Zag 
Reordering 

It was said before that the Discrete Cosine Transformation decorrelates the 8 x 8 
data block and concentrates most of the energy of the original block in the upper 
left coefficients of the transformed matrix [Haskell 97], then most coefficients are not 
going to be needed to be sent as they do not really contribute while doing the inverse 
transformation process, and so, they can be considered with value of zero. 

Because of this a quantization process is necessary to reduce the number of coeffi­
cients that are coded. 

The next step is to scan the quantized matrix in a way that coefficients are arranged 
from the lowest spatial frequency value to the highest and this is done with a zig-zag 
scan that wi l l also increase the runs of zeros. 

3.1 Quantization 
Quantization is done the same fashion as J P E G and M P E G - 2 for Intra-frames stan­
dards, D C coefficient (the coefficient in the upper left corner) are difference quantized 
with the last D C coefficient [Haskell 97] and the rest of the coefficients are quantized 
with their actual value. 

The quantization process is normally done by taking the D C T coefficient value and 
dividing it by a constant value defined by a quantization matrix and rounding it to the 
nearest integer value [Haskell 97]. This wi l l led to the next expression. 

Where D[i] [j] is the D C T coefficient value located in the i ' t h row and the j ' t h 
column and Q [i] [j] is the quantization value in the quantization matrix in the same 
position. 

There exist different quantization matrixes for different applications, the one used 
for this codec is the M P E G - 2 quantization matrix for Intrablocks that is defined in 

(3.1) 

Table 3.1. 

31 
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Table 3.1 M P E G - 2 Quantization Table 

The problem with E q . 3.1 is that there exists no division module in the F P G A 
where the module is intended to be implemented, then a division module has to be 
designed and implemented to obtain a valid quantized value. 

3.1.1 Division Algorithm 

Computational division is a complex operation that requires multiple clock cycles to 
obtain a valid quotient, the algorithm that wi l l be used is known as "Restoration 
Division" and it calculates bit per bit using the algorithm in Figure 3.1(b) that is an 
algorithm similar to the one proposed by [Stallings 02]. 

The algorithm proposed by [Stallings 02] does the division using the divisor and 
reminder, each step it shifts the reminder and quotient, then it compares the reminder 
with the divisor and if the divisor is greater than the reminder then the less significant 
bit of the quotient wi l l be set as 0, if the reminder is greater than the divisor then 
the quotient wi l l be set as 1; the algorithm loops n times, where n is the number of 
bits wanted to represent the quotient, when that number of loops are completed the 
quotient and the reminder are obtained. The algorithm presented in [Stallings 02] is 
shown in Figure 3.1(a). 

The algorithm used in this project was almost the same but the dividend is shifted 
n spaces to the left at the beginning of the algorithm and each cycle the divisor is 
shifted one time to the left and then compared with the dividend, if the divided is 
greater than the divisor the less significant bit of the quotient is set to 0 and if the 
divisor is greater then it is set to 1 at the end the final value wi l l be rounded depending 
the last bit which is the first decimal value, if it is 1 then the result wi l l be rounded 
upwards and if it is 0 then it wi l l rounded downwards. 

This k ind of algorithms are known as slow division algorithms and they come from 
the expression in E q . 3.2 

Where D is the dividend, Q the quotient, V the divisor and R the reminder 
[Stallings 02]. 

(3.2) 
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Figure 3.1: Divisor algorithms 

Hardware Implementation 

There are two ways to implement the divider algorithm, one of them is by processing 
each coefficient individually using one shift register and one comparator and multiple 
cycles to obtain the quantized value, the other way is to implement a pipeline of dividers 
so multiple values can be calculated in a clock cycle. This last implementation needs 
more hardware but it satisfies the real time requirement for the codec. 

Then the pipeline implementation is done using 9 dividers where each divider is 
implemented using the implementation in Figure 3.2. 

The divider has 4 inputs, N which is the dividend, D which is the divisor, Q is the 
quotient and sign the original sign of the numerator. 

Following the algorithm in Figure 3.1(b), the dividend is shifted one time to the 
left, the divisor is shifted 8 times since it is the number of bits to be obtained at the 
end, the quotient is shifted one time to the left so last bit can be updated according 
to Figure 3.1(b) algoritm and the sign is passed as it is for future usage. Then the 
dividend and divisor w i l l be subtracted to know which one is greater, if the dividend 
is grater then the last bit of the quotient wi l l have the value of 1 and if the divisor is 
greater then it w i l l take the value of 0. The dividend wi l l have its original value shifted 
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Figure 3.2: Divider Architecture 

one time to the left if the divisor was grater and the subtracted value otherwise. 
When the nine stages are completed the final quotient is adjusted depending the 

original sign of the dividend and 9 bits, 8 integer bits and 1 decimal bit , are generated, 
the last step into quantization is to round this value to the nearest integer. 

The quantization process is the least complex module in the system, it only i m ­
plements two adder/subtracter modules in each diver, as the quantizer is i n a pipeline 
architecture there is going to be 18 adder/subtracter modules (9 dividers in the archi­
tecture) which wi l l be also the number of operations required to obtain the quantized 
value. 

3.2 Zig-Zag Reordering 
Once D C T values are quantized most of the coefficients wi l l have zero values and so 
they do not have to be sent, instead of that, a run-length of zeros value can be sent, 
in fact, this is how quantized values are sent, for each non-zero value, a run-length of 
zeros, that precedes the non-zero value, is sent. Zig-zag reordering increases the runs 
of zeros as this pattern makes the coefficients decrease in size [Lakhani 03]. 

The reordering pattern is presented in Table 3.2 
Grosse et al . [Grosse 97] had demonstrated that there is a way to implement the 

zig-zag reordering with a state machine with 4 inputs representing the l imits of the 
matrix. The method used for this section wi l l be a Moore F S M but with different 
parameters to control the next state. 

It can be seen from Table 3.2 that there are only four states, the one where only 
index i is incremented such as the transition from 0 to 1, the one where index i is 
decremented but index j is incremented such as the transition from 1 to 2, the state 
where only index j is incremented such like the step from 2 to 3 and the last one where 
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Table 3.2: Zigzag reordering [ C C I T T 93] 

index i is incremented and index j is decremented like the transition from 3 to 4. Also 
it has to be noted that increments and decrements have the value of one each time. 

Figure 3.3: Finite State Machine for Zig-zag reordering 

The F S M in Figure 3.3 represents the finite state machine for the zigzag reordering, 
the next state logic is controlled with a counter which determines the number of co­
efficients reordered. W h e n the reordering is complete the state machine wi l l continue 
with the next 8 x 8 quantized block. 

Table 3.3: State table for zig-zag reordering F S M 

Table 3.3 represents the logic used for the state machine, some spaces were left in 
blank as they are unreachable conditions. A counter is set to start in 0 and end in 63, 
for every count it is verified if any of the conditions are true, the information generated 
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by verifying for true conditions wi l l determine the next state. For an 8 x 8 block the 
counter values in which a condition is met are the ones in the contour of the matr ix in 
Table 3.2. 

The F S M implementation wi l l produce a more complex implementation than the 
common look-up table implementations. This complexity increment is worth because 
there are other modules far more complex than the zig-zag reordering and it is faster 
than the look-up table implementations. 

The complexity of this module resides in the output logic of the F S M . Each state 
in the F S M increments or decrements an index that is used as half of the address 
for the quantized matrix scanning. Most of the time the F S M does two operations, 
one addition and one subtraction, when the scanning process is in a coefficient in 
the boundaries of the matrix only one operation is performed, hence, the number of 
additions/subtractors needed to scan a whole quantized matr ix is 114. 



Chapter 4 

Entropy Encoder and Decoder 

So far, lossy compression methods were applied in order to be able to implement a 
lossless compression method. Discrete Cosine Transform were used to decor relate the 
data and concentrate most of the energy in the first coefficients, Quantization were 
used to eliminate the coefficients that wi l l not contribute in the reconstruction of the 
data and zig-zag scanning were made to reorganize the coefficients from the lowest 
spatial frequency value to the highest. The result is an array of coefficients with large 
chains of zeros in between. 

W h e n there are long chains of a certain value in a sequence it is easier to send how 
many times this value is repeated than sending the the same value several number of 
times, this compression method is known as R u n Length Encoding ( R L E ) . Quantized 
matrices consist mostly of zeros so R L E can be applied before coding the data. 

The entropy encoder wi l l consist in an R L E and a Huffman encoder. The module 
wi l l receive quantized values and the R L E wi l l verify if the value is zero or non-zero, 
the output of this module w i l l be a pair of values, one indicating the number of zeros 
before the second value which is a non-zero value. This output wi l l feed the Huffman 
encoder that wi l l assign variable length codes according the probability of occurrence 
of each pair of data. 

The information generated by the Huffman encoder wi l l be sent to the decoder 
using a turbocodec. A t the decoder there wi l l be a huffman decoder that wi l l receive 
the variable length codes and convert them into pairs of runs of zeros and non-zero 
level values. The pairs of data are translated to quantized coefficients and ordered in 
zig-zag so the same quantized matrix can be obtained at the decoder. 

4.1 Entropy 
Entropy is known to be the measure of the uncertainty of a random variable [Cover 06]. 
It is defined as the average amount of information conveyed by a each symbol generated 
by a D M S (Discrete Memoryless Source) [Symes 04] Let us consider the discrete random 
variable X w i th probability mass function p(x) = Pr[X = x] ,x E X, the entropy of 
the discrete random variable X is defined as. 

37 
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Let us consider two cases, the one where, for a known alphabet, only one symbol 
is send, and so, this symbol wi l l have a probability of 1 while the rest of the symbols 
wil l have a probability of zero. The second case is when every symbol have the same 
probability to occur, hence, the discrete random variable wi l l have an uniform pdf. 

The first one is directly obtained as. 

Last two demonstrations show that for probabilities 0 and 1, where resulting values 
are already known, entropy is equal to zero, then, the source is completely deterministic 
and so, the resulting value is already known, but for an uniform distribution, where 
all results have same probability to occur, the entropy of the information wi l l met its 
maximum value and so it is harder to predict the expected value. 

Figure 4.1 shows an example for a coin where one face changes its probability of 
occurrence from 0 to 1, it can be seen that for a fair coin, where heads and tails have 
a p(x) = 0.5, entropy is equal to 1, which according to Shannon, it is required 1 bit 
to represent each event and when the coin is completely unfair the result is already 
known and then no bits are required to represent each event. 

Shannon had said that, the information conveyed in an event 1(E), measured in 
bits, in terms of the probability of that event p(E) is denned as [Symes 04]. 

(4.2) 
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Events in a known alphabet of a D M S are not necessary to have the same probability 
and so, using E q . 4.2, it can be seen that for an event wi th higher probability less bits 
are necessary to represent that event. Also, E q . 4.3 represents the average amount of 
information conveyed in a D M S . 

E q . 4.2 and E q . 4.3 lead to the "Shannon's noiseless source encoding theorem" 
which says that, in order to code a source in the most efficient manner possible, and 
that the code is uniquely decodable, the average number of bits per symbol used must 
be at least equal to the entropy of the source [Symes 04], which basically says that, for 
a certain source, different codes can be assigned for each element in its alphabet. 

This method is known as variable length coding ( V L C ) and there are two main 
implementations, the arithmetic V L C and Huffman Coding, this thesis implements the 
V L C wi th Huffman codes. 

4.2 Run Length Coding 
It is already known that quantized matrix will consist mostly of zeros, also it is known 
that incoming data to the entropy encoder will have runs of zeros. If it is known at 
the decoder how many zeros there are before each non-zero value, it is not necessary to 
encode the each zero founded, it would be easier to only send a value which represents 
the number of zeros. 

This lossless compression method is known as R L C (Run Length Coding) which is 
a coding method used when long runs of a certain symbol are being send [Symes 04]. 
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This module wi l l precede the Huffman Encoder, it w i l l receive one quantized value 
at a time and it w i l l check if it is a zero value or a non-zero value, if it is a zero value 
it wi l l increment an internal counter and if it receives a non-zero value the counter is 
reseted and a (Run, Level) pair is sent to the Huffman encoder. 

This module wi l l also let the Huffman encoder know if it is a D C or A C coefficient, 
if the pair is valid and if the block is out of non-zero values (End of Block) . 

Hardware Implementation 

Figure 4.2: Block Diagram for R u n Length Encoder 

The block diagram presented in Figure 4.2 has 4 main modules. The first one is a 
sign adjustment which takes the quantized valued, if it is positive, the value is send as it 
is and the sign signal is 0, if it is negative, it is changed to positive and sign signal is set 
to 1. The second one is a comparer to zero, it checks if input value is zero, if it is zero 
the signal plusone is set to 1 so an internal counter in the R L C module is incremented, 
if the input value is not zero then the plusone signal value is 0 so the counter in the 
R L C module is reseted. The third one is the Acc which is an accumulator used to 
know if there are non-zero coefficients left in the matrix. The fourth module is the 
R L C which gives different values to its outputs to control the huffman encoder. 

The number of operations done by this module wi l l vary depending on the number 
of non-zero coefficients and the lengths of the codes. The module has one adder in the 
R L C block module, which is used to count zeros, and one subtractor, which is used to 
know when the block is out of non-zero values. For a codeword to be decoded it wi l l 
take a minimum of zero additions for (Run, Pairs) where R u n is zero, and a maximum 
of 31 additions for the (31,1) pair. 
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4.3 Huffman Coding 
It was said before that different codes can be assigned for each symbol in a known 
alphabet, also the data have been compressed to a few values per quantized matrix, 
now an opt imum code has to be found to encode this information. 

To achieve this objective a minimum redundancy code has to be found, this is a 
code that, for a message consisting of a finite number of numbers and a finite number 
of coding digits, the message wi l l yield the lowest possible average length [Huffman 52]. 

For a message wi th a finite alphabet which elements are organized from the most 
probable event to the least probable event with probability P (x) and code length L (x) 
for each symbol in the alphabet, if next statement is true. 

F ( 0 ) > P ( l ) > P ( 2 ) > ••• > P(N- 1) (4.4) 

Then the next statement is necessary to be true 

L ( 0 ) < L ( l ) < L ( 2 ) < ••• < L(N- 1) (4.5) 

In order to found an optimum code E q . 4.4 and E q . 4.5 have to be true. 
There is also a list of requirements mentioned in [Huffman 52] that are also needed 

to construct an optimum code, they are listed here. 

a. No two messages wi l l consist of identical arrangements of coding digits. 

b. The.message codes wi l l be constructed in such a way that no additional indication 
is necessary to specify where a message code begins and ends once the starting 
point of a sequence of messages is known. 

c. L ( 0 ) < L ( l ) < ••• < L(N-2) = L(N- 1) 

d. A t least two and not more than D of the messages with code length L (N) have 
codes which are alike except for their final digits. 

e. Each possible sequence of L (N) — 1 digits must be used either as a message code 
or must have one of its prefixes used as a message code. 

Huffman had proposed a tree structure where all the elements in the source alpha­
bet are ordered from the most probable event to the least probable event, the least 
two events are combined so their probability are the sum of their probabilities, if the 
elements have to be rearranged they are reordered from the most probable event to 
the least probable event, this procedure is followed until only two events are left in the 
list. 

W h e n there are only two elements in the list each one is assigned with a bit value, 
either the most probable element wi l l have the value of 1 or the least probable element 
wi l l have the value of 1. The two elements are unfolded one level each and elements in 
this level w i l l obtain a new bit value, the value assigned have to follow the same logic 
as the previous level assignment, i.e., if the most probable element obtained the value 



42 Chapter 4. Entropy Encoder and Decoder 

of one, in the present level the most probable element must have the value of one. This 
procedure is repeated unti l al l the events have been unfolded. 

When the last procedure is completed each element wi l l be associated wi th a string 
of bits each one with different length. The strings generated for each event w i l l be the 
code associated with that event. 

Table 4.1: Huffman Example 

A n example is presented based in Table 4.1. The alphabet consist i n four elements 
E (x) = {a, b, c, d}, second column is the probability associated with each event in the 
alphabet, it can be seen that the sum of all probabilities wi l l have the value of 1. The 
third column is the huffman code associated with each element. Huffman codes are 
obtained with the huffman tree in Figure 4.3 

Figure 4.3: Huffman tree for Table 4.1 

This method is known as a tree structure method and is categorized as an instanta­
neous code because when a codeword is identified no more information than the code 
itself is necessary to be decoded. 

This module combined with the R L C constitute the final stage in the lossless com­
pression for the video data. The idea is that the R L C wi l l eliminate runs of zeros 
and huffman encoder wi l l decrease the average code length and obtain a min imum 
redundancy code. 
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Hardware Implementation 

Figure 4.4 shows the block diagram for the huffman encoder, it wi l l receive two input 
values, first one is the D C coefficient value and the second one is the (Run, Level) pair 
value, both of them are encoded differently and the multiplexer wi l l choose which one 
is sent, the multiplexer is controlled with a counter that counts from 0 to 63. 

Figure 4.4: Huffman Encoder block diagram 

Once the value to be transmitted is selected, a shift register, which is controlled by 
the number of bits to be send for the corresponding symbol, shifts the V L C value and 
puts its output in a register that w i l l be send when full . 

For this modules the tables used to code each (Run, Level) pair were Table 7.1 for 
the A C coefficients and Table 7.2 for the D C coefficients. 

4.4 Huffman Decoder 
The algorithm proposed for the Huffman encoder uses fixed-length symbols and assign 
variable length codes to them with a look-up table. Decoding is harder because the 
decoder receives a continuous bitstream and in order to found the (Run, Level) pairs 
sequence the decoder must know where a new code begins. 

The tr iv ia l solution would be by following the tree from the root to the (Run, Level) 
pair it represents and repeat the same procedure for each incoming code. This solution 
is not efficient because different (Run, Level) pair would be decoded at different clock 
cycles which is not suitable for real-time applications [Yanmei 08]. 

Algorithms for variable length decoders ( V L D ) are divided into two categories, b it -
serial (tree-based methods) and bit-parallel (look-up table-based methods) [Yanmei 08]. 
Discussion before have already said that bit-serial methods are not suitable for real-time 
applications, then, a bit-parallel method has to be implemented. 

Bit -paral le l methods, similarly to the huffman encoder, use a look-up table to found 
which (Run, Level) pair is represented by which codeword. There are some issues, the 
most significant one is the nature of the codewords which lengths are not fixed, then 
it is hard to implement a pipeline structure as the module has to decide the codeword 
length to extract the code and align the following bitstream for the next codeword 
[Hsieh 96]. 

The second issue is the memory size, V L C codebook is constructed wi th only 114 
words, but V L D is mandatory to match al l codewords for the incoming bitstream, this 
requires a memory size of 65536 without pre-processing the input bitstream [Hsieh 96]. 
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These methods are also called fast decoders because they decode a codeword in a 
clock cycle by matching all possible codes [Hsieh 96], different from bit-serial methods 
which takes from 3 to 17 clock cycles to decode a codeword. Memory efficiency is 
important because the amount of data it has to be stored, R O M based memories lack 
of programmability while C A M (Content-addressable memory) based memories require 
more hardware. 

Figure 4.5: V L D Block Diagram 

Figure 4.5 shows a general V L D architecture. It can be seen that the incoming 
bitstream is stored in an alignment buffer, then it is matched with the codewords in 
the codebook and if a match is found the system wi l l search in the look-up table for 
the (Run, Level) pair. 

Algorithms for pre-processing of input bitstream consist in clustering the codewords 
in partitions that can be generated either by recognizing a bit pattern or wi th a fixed 
number of bits, the partition then is used as first reference for the memory searching 
[Hsieh 96]. 

Pre-processing the input bitstream wi l l reduce the codebook memory size as the 
codewords combinations are reduced, the amount of memory size that is reduced de­
pends of how efficient the pre-processing is. 

Memory selection is also important as each kind of memory has its own benefits, 
then, each memory is selected depending the application. The most common V L D s 
are P L A , R O M , C A M and R A M memory based [Yanmei 08]. 

Cheng-Teh Hisieh and Seung P. K i m have proposed two decoding methods in 
[Hsieh 96]. First one consists in a decoding based in a M a x i m u m Likely B i t Pat ­
tern Matching concurrent algorithm ( M L B P ) , this algorithm wi l l assign the codewords 
in the codebook into groups of same length and same precedence sequence of bits. The 
second method algorithm is a Concurrent Decoding Algor i thm, this algorithm wi l l t ry 
to decode more than one codeword so the alignment buffer is reduced in size. 

Yanmei Q u et al . proposed an optimized look-up table for M P E G - 2 and a block-
based buffer architecture between the V L D and the I D C T to store reconstructed trans­
form coefficients [Yanmei 08]. 

4.4.1 Maximum Likely Bit Pattern (MLBP) 

M L B P algorithm wil l consist in creating groups of codewords with the same length 
and then divide them in groups with a common bit pattern. The M L B P groups are 
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activated by matching bit patterns and the information obtained is used to decode the 
symbol the codeword represents. 

Each group in the M L B P algorithm wi l l consist in a M L B P sequence, which is the 
common sequence among the codewords that belong to the group, a maximum of three 
bits, normally the last three bits in the codeword, known as reminder that wi l l indicate 
which codeword is being decoded, and a priority check that wi l l mask the priority bits 
when more than one group is activated by a M L B P sequence. 

The algorithm wi l l try to match bit patterns with the M L B P groups, if there are 
any matches the group or groups that satisfy the match are activated and used as first 
reference to access the symbol memory. More than one group can be activated, this 
happens when a group is a subset from other group, when this happen the priority bits 
wi l l determine which group is used to decode the codeword. 

The M L B P is extracted from the bit pattern and the remaining bits are used as 
the second reference in the symbol memory. The group number combined with the 
reminder are used as the address for the symbol memory [Hsieh 96]. 

Table 4.2 is just a section of Table 1 in [Hsieh 96] which shows the intrablock 
Huffman table grouped in M L B P . The table presented here only contains the first 10 
groups which are the codes wi th lengths from 2 to 7 bits. Complete table is shown in 
Appendix B . 

4.4.2 Concurrent Decoding Algorithm 
This method is a combination between a bit-serial algorithm and a bit-parallel algo­
r i thm, it is based upon the assumption that for a 16-bit input bitstream and that the 
smallest code is 2-bit long, the worst case wi l l consist in a 16-bit bitstream with 8 2-bit 
codewords, then, 8 cycles are consumed to decode al l the codewords and then a big 
buffer has to be implemented because the amount of data that wi l l arrive in that 8 
clock cycles. 

The V L C is constructed so the most common events are coded with the shortest 
codes, then the last case is not as unusual as one would like it to be which implies 
that the buffer has to be big enough. The algorithm proposed by Chen-Teh Hsieh 
and Seung P. K i m tries to identify this cases and decode the symbols in a concurrent 
manner so less clock cycles are required and a smaller buffer can be implemented. 

The algorithm wi l l consist in constructing a codeword-length tree that represents 
the number of codewords that can be concurrently decoded from a given n-bit input 
bitstream. W h e n a bitstream is received, al l the possible bit patterns are matched 
with a l l the codeword lengths at each level, then, if it is detected that two or more 
codewords can be decoded concurrently they are decoded at the same time. The 
number of codewords that wi l l be able to be concurrently decoded wi l l depend in the 
number of levels in the tree. 

From last discussion it is obvious that the performance wi l l increase with more levels 
but it has to be considered that adding levels implies more complex hardware. Most of 
the implementations under this algorithm only use two levels since the probability is 
getting smaller for successfully decoding more number of codewords at the same time 
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Table 4.2: M L B P table for the first 10 groups [Hsieh 96 

[Hsieh 96]. 
A n example from [Hsieh 96] with a two level codeword-length tree and a 4-bit input 

bitstream and codelengths from 2 - 4 bits is presented for a better understanding of 
the algorithm. 

The possible combinations for a 4-bit input bitstream are, two 2-bit cod words, one 
3-bit codeword and one 4-bit codeword, the codeword-length tree for this example is 
provided in Figure 4.6. It can be seen from the figure that when the decoder receives 
either one 4-bit codeword or one 3-bit codeword, they are decoded with a conventional 
bit-parallel algorithm but when two 2-bit codewords are received then they can be 
decoded at the same time. 

4.4.3 Cost-effective V L D 
Yanmei Q u et al . in [Yanmei 08] have used a scheme similar to the M L B P algorithm 
in [Hsieh 96], they have contributed by optimizing the look-up table for M P E G - 2 and 
by adding the inverse quantization and inverse zig-zag reordering processes in order to 
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Figure 4.6: Example Codeword-length Tree 

save one memory read/write operation which not only saves hardware cost but also 
memory read/write operations are slow in comparison to other module operations. 

Other improvements were made like the addition of block-based buffers between the 
V L D and I D C T , also they have changed the RAM-based memory system for a R O M -
based memory system in order to reduce the implementation area and save hardware 
cost. Block-based buffers substitute the Macroblock-based buffers to reduce the mem­
ory size and to save decoding cycles when skip mode occurs [Yanmei 08]. 

Algorithms based in M L B P are known as group-based V L D s because the codewords 
are grouped in equal bit patterns which makes easier to found the symbol each code­
word represents and it reduces the memory size as each symbol is decoded by looking 
for bit patterns. Most V L D use this algorithm because its efficiency and high speed 
[Yanmei 08]. 

Hardware Implementation 

The approach for the hardware implementation is the M L B P with an 16-bit input 
bitstreams which are the way they are generated at the huffman encoder. As it was 
said before, a bit pattern that matches a M L B P group is searched, when a group 
is found a small memory with the (Run, Level) pairs associated with that group is 
activated. 

It is known that bitstream wi l l arrive as in Figure 4.7 where s is the sign of the 
codeword. 

Figure 4.7: Codewords organization in the bitstream 

Input bitstream is received as in Figure 4.7, the bitstream is matched with al l the 
M L B P prefix groups so a match is obtained, matching wi l l be done with an array of 
AND-gates . 
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Figure 4.8: Group Matching for the first 5 M L B P Groups 

Some bit patterns are subsets of another bit pattern, i.e., when the bigger bit pattern 
is activated the group which depends on the subset sequence, too, are activated. For 
this groups a priority is assigned, the bigger the sequence, the higher the priority. This 
is because the huffman coding rule which says that no codeword can be used as prefix 
for another codeword. 

When a group is activated the reminder bits are used as the address for the small 
memory of (Run, Level) pairs. W i t h the group memory activated and the reminder as 
memory address a (Run, Level) pair wi l l be decoded and the last step is to remove the 
used codeword and shift the input bitstream n positions to the right, where n is the 
length of the decoded codeword. 

Figure 4.8 shows the block diagram for the first 5 M L B P groups, the diagram only 
shows how the matches are evaluated but the memories wi l l have the remainder of each 
group as input address and some of them wi l l have a priority flag input which is used 
when two groups are activated by the same prefix. 

Priority enable is implemented as in Figure 4.9, higher-priority and lower .priority 
are the enable signals for each of the M L B P groups and enable.memO and enable.meml 
are the enable signals for the memories in Figure 4.8. 

A different data path is used for D C coefficients. The algorithm is slightly different 
from the A C coefficients data path as D C coefficients use a different representation 
method. Either way the architecture wi l l be the same as in Figure 4.5 and wi l l follow the 
same implementation strategy as Figure 4.8, the connections between the bit positions 
in the bitstream and the matching logic wi l l be different, basically, the matching logic 
wil l look for the first zero in the bitstream to determine the length of the code for the 
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Figure 4.9: Prior ity Enables Circuit Implementation 

D C coefficient. 
W h e n a V L C size is detected, the next n bits, where n is the number of bits in the 

V L C size, wi l l be the direct representation of the D C coefficient, only a sign adjustment 
and a sign extension are needed to obtain the real coefficient. According to Table 7.2, 
a code that starts with 0 indicates a negative value and a code that starts with 1 
indicates a positive value. 

Mathematical ly speaking, the variable length decoder is simple, the only operation 
performed is a multiplication which shifts the bitstream buffer n positions, where n 
is the length of the codeword decoded. The operations performed in this module are 
mostly logical but the number of matches, the memory access to the L U T s and the 
logic used to determine the number of bits to be shifted wi l l slow the module. 

It has to be noted that it is hard to pipeline the module as most of the logic is 
required to be done in the same clock cycle. Hence, optimizations of this module have 
to be done in the operation speed more than in the complexity of the algorithm. 





Chapter 5 

Results 

The results presented now are the hardware used by each module being synthesized on 
the F P G A Spartan 3A D S P (XC3SD3400A-4FG676) and the maximum frequency for 
each one, also a simulation of the matrix in Table 5.1. 

Table 5.1: Reference matrix for simulations 

D C T 

M a x i m u m frequency for D C T wi l l be 79.371 M H z 

Table 5.2: D C T Device Uti l izat ion 

The simulations results wi th the module implemented as described in the hardware 
implementation for the D C T in Chapter 2. 

Table 5.3 shows the simulation results for the D C T , it can be seen that almost al l the 
information is stored in the upper left corner while the lower right corner consists almost 
of zero values. This table wi l l serve as input table for the Quantization simulation. 
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Table 5.3: D C T Simulation Results 

I D C T 

Maximum frequency for I D C T wi l l be 62.496 M H z 

Table 5.4: I D C T Device Uti l izat ion 

I D C T is the last module in the simulation, it wi l l take Table 5.9 as input and wi l l 
generate Table 5.5. 

Table 5.5: I D C T Simulation Results 

This results are compared with the in i t ia l reference table, Table 5.1. The results 
basically show that there exist losses of information during the block processing but at 
the end the data is consistent. It is important to remember that as the human visual 
system acts as a very efficient filter, it is not necessary to obtain the original values 
exactly as they were obtained from the camera or any video source. 

Quantization and zig-zag reordering 

Maximum frequency for quantization and zig-zag reordering wi l l be 139.762 M H z 
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Table 5.6: Quantization and Zig-Zag reordering Device Uti l izat ion 

A s said before, this module wi l l take the data from the D C T and wi l l perform the 
quantization using the Table 3.1 as Quantization table, for the simulation the module 
wi l l take as sample matr ix the Table 5.3. 

Results are shown in Table 5.7 and they wi l l be the input for the entropy encoder 
and for the inverse quantization. As the entropy decoder is left for further work the 
resulting matr ix wi l l be used as input matrix for inverse quantization. 

Table 5.7: Quantization Simulation Results 

Inverse zig-zag reordering and inverse quantization 

M a x i m u m frequency for inverse zig-zag reordering and inverse quantization wi l l be 
67.866 M H z 

Table 5.8: Inverse Zig-Zag reordering and Inverse Quantization Device Uti l izat ion 

Table 5.9 shows the simulation results for the inverse quantization process, the input 
matrix used was the same as the one in the Table 5.7, this table is the reconstruction 



54 Chapter 5. Results 

of the Table 5.3, it can be seen that there are losses of information as both tables are 
not equal. 

Table 5.9: Inverse quantization simulation results 

Entropy Encoder 

Maximum frequency for Entropy Encoder wi l l be 67.376 M H z 

Table 5.10: Entropy Encoder Device Uti l izat ion 

This is the last compression module, it wi l l take the values in Table 5.7 and wi l l 
assign a variable length code for each coefficient. The simulation results are shown in 
the next array of bits. 

11110111001011000110 

The meaning of this string is described in Table 5.11 

Table 5.11: Huffman Representation for Simulation Results 
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Entropy Decoder 

M a x i m u m frequency for Entropy Decoder wi l l be 52.497MHz. 

Table 5.12: Entropy Encoder Device Uti l izat ion 

The algorithm proposed in the variable length decoder section wi l l generate the 
(Run, Level) pairs in Table 5.11 using as input the bitstream generated by the Huff­
man encoder module. It has to be noted that the module is the slowest in the system, 
this is because the module is poorly pipelined, in fact, it is almost a single cycle archi­
tecture, hence, a more efficient algorithm has to be implemented if higher resolutions 
are required. 
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Conclusions and further work 

A n encoder was developed using lossy and lossless techniques and the results showed 
that the compression ratio is fair enough so a low bandwidth can be achieved, also 
the slowest module, which is the I D C T , operates with a maximum frequency of 62.496 
M H z so this frequency determines the operation frequency of the codec system. In an 
10801 (1920 x 1080) wi th frame rate of 30 Hz video system, the number of pixels per 
second wi l l be 30 * 1920 * 1080 = 62,208,000 pixels/sec = 62.208 M H z , therefore, the 
codec as it is by now can process this amount of data. 

Even when pipeline implementation uses more hardware than a single cycle archi­
tecture the hardware uti l ization was low, the module that used most resources was the 
I D C T that used 19% of the D S P s and 10% of slices in the F P G A which is normal as 
it is the module with more pipeline stages. 

A s Figure 1.8 shows, the Mot ion Compensator module wil l generate the additional 
information for the decoder so is important to found an efficient implementation be­
cause as it was said before, the better the side information the better performance the 
Wyner -Z iv codec wi l l have. 

Also, more efficient V L D architectures have to be researched as this module is 
one of the slower modules in the codec, a bad implementation for this module would 
require a bigger (Run, Level) pair memory and a bigger alignment buffer before the 
symbol memory, also as a bigger clock cycle period would be required so a better 
implementation of this module wi l l yield a better performance of the system. 

The most critical elements in the system are the D C T , I D C T and the Huffman 
decoder. D C T and I D C T are the most computationally complex modules in the system 
as the D C T uses 8 multipliers and 14 adders while the I D C T uses 24 multipliers and 
14 adders, they are both implemented with recursive algorithms which are known to 
be optimal and their maximum operating frequency are 79.371 M H z and 62.496 M H z 
respectively. Hence, if the codec is needed to be reduced in complexity, then, this two 
modules have to be optimized. 

The Huffman decoder is the slowest module in the system, it has most of its logic 
implemented in one clock cycle as it is hard to pipeline the module because of the 
feedback which determine how many bits were used to decode the last (Run, Level) 
pair, its maximum operating frequency is about 52.497 M H z , hence, to increment the 
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speed of the system this module has to be optimized. It has to be noted that the 
Huffman decoder as it is right now, if it is added to the whole system, the performance 
described at in the first paragraph wi l l not be achieved so a more efficient algorithm is 
needed. 
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Appendix A 

This appendix wi l l list the Huffman Codewords corresponding for each pair of runs of 
zeros and non-zero levels. 

7.1 Huffman Table 
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Table 7.1: Huffman Code for M P E G - 2 Intra blocks 

Table. 7.1 is used to encode intra blocks for the M P E G - 2 standard, s means the 
sign of the encoded data and the nomenclature 8 * 0 means a run of 8 zeros. 
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Table 7.2: Variable Length Codes for M P E G - 2 D C coefficients 

Table 7.2 is used to assign variable length codes to the D C coefficients to be encoded. 





Chapter 8 

Appendix B 

The table presented here represents the M L B P groups and which codewords are related 
to them. Codewords are the same as in Table 7.1 which is the huffman table for 
intrablocks in the M P E G - 2 video standard. 

8.1 M L B P Group Table 
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Table 8.1: M L B P Group Table 

Table 8.1 is used as look-up table to decode V L C codewords. 8 * 0 is the same as 
saying that there are a string of eight zero values. Each group wi l l be interpreted as 
a small memory in the hardware implementation, the group number wi l l be used to 
identify from which memory the symbol is going to be decoded and the reminder w i l l 
be used as memory address. 
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