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Supervised Learning for Haptics Texture

Classification using Fourier Analysis

Gerardo Alberto Hidalgo Vazquez, M.Sc.
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Thesis advisor: Dr. Ernesto Rodriguez Leal

Human sense of touch is used to explore the environment that surrounds us, and
to identify and learn about objects through the surface properties. In the design of a
robotic system that is able to analyze and identify textures, it is essential to understand
the perceptual factors of the human sense of touch, which presents a significant chal-
lenge in control, sensing and learning. However, recent developments in haptic sensing

have made it possible to explore surface textures and classify them through a learning
algorithm.

This thesis investigates the use of Haptic feedback as an approach to improve and
classify surface textures by a robotic system. A review of haptic interactions indicated
that haptic information provided by the sense of touch, are used successfully to convey
important data of the surface texture properties.

Haptic feedback, expressed through the kinesthetic measurements of the surface
waveform that arises when prescribing a predefined motion over the surface texture, was
collected from four cardboard samples with different surface properties. The motion
trajectory traced by the spherical probe shows some intrinsic properties that facilitate
the data extraction and that reproduce the way humans identify the texture of a sur-
face. Features were extracted from this data through frequency spectrum by Fourier

analysis and used for training and classification by a supervised k-NN machine learning
algorithm.



The results from this work, obtained in a controlled environment test rig, shows
that the algorithm could correctly classify 100% of the surface texture samples and
confirm that the information provided by the haptic sense has the potential to improve
the performance of many activities that require surface texture classification.

viii



Contents

Acknowledgements
Abstract

List of Tables

List of Figures

Chapter 1 Introduction
1.1 Motivation . . . . . . . . e
1.2 Problem Definition
1.3 Hypothesis
1.4 Objectives . . . . . . . . . L
1.5 Methodology
1.6 . Organization

Chapter 2 Theoretical Background
2.1 Haptic perception

2.2 Hapticdevices . . . . . . . ...
2.2.1 Importance of Haptic devices on perception experiments

2.3 Perception of surface texture properties . . . . . . . . .. .. oL

2.4 Systems for Surface Texture Classification . . . . ... ... ... ...
2.4.1 Vision Systems for Surface Texture Classification
2.4.2 Haptic Systems for Surface Texture Classification
2.4.3 Fourier Analysis

2.5 Summary

Chapter 3 Haptic Texture Classification Methodology
3.1 Control sampling overview . . . . . . . . ... ... ...
3.1.1 Controlling Computer GUI
3.1.2 Haptic Sensing element
3.1.3 End-effector

ix

vi

vii

xi

xii

00 ~1 ~1 O A W

10
10
12
13
14
17
17
18
19
20



3.1.4 Kinesthetic position measurement cycle
3.1.5 Position Control overview
3.2 Experimental methodology

3.2.1 Experimental setup
3.3 Classification framework
3.3.1 Classification overview
3.3.2 Classification method
3.3.3 Feature Space
3.3.4 Summary

Chapter 4 Experiments/Results
4.1 Measurements cycles
4.2 Outlier detection
4.3 Experimental operational parameters selection
4.4 Texture Classification . . . . . . . . . . . ..

4.4.1 Surface Texture S1
4.4.2 Surface Texture S2
4.4.3 Surface Texture S3
4.4.4 Surface Texture S4
4.4.5 Discussion
45 Results. . . . . . s
4.6 Summary

Chapter 5 Conclusions and Future Work
5.1 General Conclusions
5.2 Contributions
5.3 Future Work

Appendix A Novint Falcon
Appendix B HDAL Layers Novint Falcon

Appendix C End-Effector Blueprints

C.1 Blueprint: Detail View
C.2 Blueprint: Section View
C.3 Blueprint: Exploded View
C.4 Blueprint: Bottom View

C.5 Blueprint: Views

Bibliography

Vita

40
40
41
43
44
45
46
48
49
50
50
ol

52
92
33
54

55

56

57
57
o8
59
60
61

62

66



List of Tables

3.1 Motion path parameterization

3.2 Surface Texture parameterization . . . . . . ... ... ... .. ....

4.1 Confusion Matrix of the surface texture classification . . . . . ... ..

x1



List of Figures

1.1

2.1

2.2

2.3
24
2.5

2.6

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

Klatzky and Lederman exploratory procedure to determine texture. Adapted

from [1). . . . .

[lustration for the interaction of movements between the finger pad and
a frictional surface.

Exploratory procedures described by Lederman and Klatzky [2] and the
object properties with which is associated. . . . . .. . .. ... .. ..
Active Haptic Devices (a). Passive Haptic Devices (b)
Novint Falcon Haptic Device and Pistol grip

Device for recording finger movements during the finger exploration of
various types of paper [3].

Stimulus grating with relevant physical parameters indicated [4]

Control sampling overview. Integration of the distinct components of
the system required for the y-axis data acquisition. . . . . ... .. ..
GUI screenshot with a measured S2 sample (a). Graphic display (b).

Novint Falcon Manual Initialization . . . . . . . .. .. ... ... ...
Motion path of the S2 sample measurement. . . . . .. . .. .. .. ..
Novint Falcon CAD model with its axis coordinated system(5]
End-effector . . . . . . ..o
Modification of the Falcon grip. (a) The original grip. (b) Mounting
plate after removing the lower hemisphere. (¢) Modified component
placed in the mounting plate.
Spherical Tactile Probe.
Plot of the S2 sample referring to the y-axis position mapping
Motion path perform by the EF
Mass-Spring-Damper Model

Filtering process plot. Before the filtering (a), and after the filtering (b).

Sampling area

Segmentation process plot (a) before the segmentation and (b) after the
segmentation. . . . . . ... e

xi11

5

11

11
13
13

15
16

22
23
24
25
26
27

28
28
29
30
31
32
33

34



3.15 Cardboard surfaces used for the experiment. (a) Sl-smooth cardboard,
(b) Corrugated cardboard trapezoidal waveform (b.1) S2-corrugated card-
board, (b.2) S3-corrugated cardboard, (b.3) S4-corrugated cardboard. .

3.16 Different surface textures samples could be mounted in this setup, which
is shown as an overview in (a). The detail of the EF placed on a texture
isshownin (b). . . ... . ...

3.17 S2-sample measurement, the y-axis mapping (a) and the corresponding

frequency domain representation used as a feature for the classification
process.

3.18 Overview of the surface texture classification process. . . . . . .. . ..

4.1 y-axis position control

4.2 Measured y-axis position segmented

4.3 Sample scattering data of 5 instances selected randomly from de training
classification data of S1 (a), S2 (b), S3 (¢c) and S4 (d). . . . . . . .. ..
4.4 EF spherical probe on the z-axis perpendicular to the surface texture .
4.5 Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S1

4.6 Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S2 . . . L L L

4.7 Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S3

4.8 Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S4

B.1 HDAL Layers [6]. . . . . . . . . . .

C.1 Detail View

C.2 Section View
C.3 Exploded View
C4 Bottom View . . . . . . ...
C.5 Top View, Frontal View and Righ Side View

xin

35

35

36
38

40
41

o6



Chapter 1

Introduction

In robotics, the sense of “touch” is not well understood by the majority of people,
including those who specialize in this area of research. According to Salisbury et al.
[7], in the early 20th century, the word Haptics (from the Greek haptesthai, meaning
to touch) was introduced to label the subfield of studies that addressed human touch-
based perception and manipulation.

Further research in the field of robotics focused on the manipulation and percep-
tion of touch (See section 2.4.2). At the beginning concerned with the development of
autonomous robots, researchers such as Okamura et al. [8], Johnsson et al. [9], Payeur
et al. [10], and Natale et al. [11] soon found out that the development of robots with a
sense of touch similar to that of humans, was more complex than their initial thoughts
suggested. This complexity is understood by the researcher and describes the haptic
sense.in terms of forces, friction and frequency. The Haptic sense, however, is much
more complicated and detailed than the aforementioned explanation.

Salisbury defines Haptics as the “touch interactions (physical contact) that occur
for the purpose of perception or manipulation of objects. These interactions can be be-
tween a human hand and a real object; a robot end-effector and a real object; a human
hand and a simulated object (via haptic interface devices); or a variety of combinations
of human and machine interactions with real, remote, or virtual objects” [7].

Citing Aristotle, “if touch is not a single perception, but many instead, its purposes
are also manifold” [12]. Hence it is noted that its versatility describes the functionality
and complexity of the structure contained in the sense of touch.



Thus, subsequent research was divided into a variety of disciplines that have been
focused on different aspects of the haptic sense, however for formal methods the inves-
tigation will be focused in two directions: (i) the development of robotic hands and (ii)
the creation of devices that enable users to be able to get the feeling of touch while
manipulating objects. Development in these areas led to the creation of another sub-
specialization of computer science called “computer haptics” [7].

Srinivasan and Basdogan [13] describe computer haptics as a science that displays
simulated objects to humans in an interactive manner. Computer haptics uses a display
technology through which objects can be touched and palpated. One of the major ad-
vantages in a user-haptic interaction is that the flow of information and energy is a two
way process between the user and the device. Incorporating the haptic component into

environments facilitates the tactile sensation and imparts a more realistic experience
to the user.

Although Knoll demonstrated haptic interaction with simple virtual objects in
the early 1960s [7], haptic interaction is nowadays possible due to the technological
developments with complex computer simulated objects. Furthermore, Salisbury [7],
and Srinivasan and Basdogan [13] stated that since 1990 there has been noteworthy

progress in the potential to simulate haptic interactions with 3D virtual objects in real
time.

Current research trends, in contrast with the construction of robotic hands and
the overall implementation of the sense of touch for autonomous robots, requires a
set of both cognitive and motor characteristics of human tactile perception. This work
considers the combination of high-performance force-controllable haptic interfaces, com-
putational techniques, cost-effective processing and memory, and an understanding of
the perceptual needs of the human haptic system, and proposes a computer haptic
system that can recognize and classify surface textures extracted not from the virtual
environment, but from the real world.

Within the thesis, the aim of this work is to gather the textural properties that
can be extracted from the tactile feedback through a simple exploration strategy per-
formed by a haptic device. Textural properties that will construct a representation
of the texture under study and classify it by analyzing differences on their patterns
through the spectral analysis given by the discrete Fourier transform.

It is also important to mention the importance of texture sensing in robotics, since
it provides physical properties such as surface roughness, hardness, softness and orien-
tation that cannot be acquired by other senses, e.g. sight.



According to Zhou [14], textures can be divided into two categories, tactile and
visual. While tactile textures refer to the immediate tangible feel of a surface, the

visual textures refer to the discernible impression that textures produce on the human
observer.

This thesis focuses only on tactile textures, henceforth the term “texture” is re-
ferred to tactile texture, i.e. those surfaces which can be extracted through the sense of
touch. Also, whereas the primary goal of the haptic system is recognition and texture
classification based on surface properties, it also seeks to provide a deeper insight into
human perception of textures.

1.1 Motivation

According to Grunwald [12], the sense of touch is sine qua non for thought, action,
and consciousness. In view of this fascinating thought, it is worth mentioning that no
other sense exhibits properties that allow awareness of the surrounding and ourselves
to the same degree as our ability to touch. Given the technological developments in
recent decades, it is possible to study this field of knowledge.

As said before, the haptic sense is gaining importance within the academic com-
munity, and this can be noted through the increasing number of publications in recent
years, and the development of new devices that allow a better understanding of haptic
research. At this point, it is obvious the reason about why the sense of touch is vital

and why the interest of this thesis to seek and study the human sense as a channel for
information acquisition.

In addition, the recent developments in force feedback devices that enable users to
touch and feel objects have given rise to not only see objects, but also to feel the tactile
sensation of those objects, and let one to obtain information like the sense of human
touch. In this context, it becomes necessary to understand how this technology could
be used to extract the textural information of a given surface to recognize and classify it.

Nevertheless, despite the wide variety of projects in industry and academics, few
have been focused on the development of a robotic system with the sense of touch that

is able to acquire information from its surrounding environment and generate a decision
based on the analyzed objects.



As described above, the particular interest of human haptic perception in robotic
systems results from the need to provide the robots with the sense of touch that al-
lows humans to perform many tasks in their natural environment when combined with
senses such as sight and hearing.

Current research on artificial perception has focused on texture analysis by vision
gystems. Considering the perspective of how human vision allows us to analyze the
textured world surrounding us, without emphasizing the natural way humans perceive
surfaces that leaves a detrimental void in the study of the human condition.

Within the context of this research work, we ask ourselves “Do we find similarity
between two textures using touch or vision?” It can be mentioned that the visual tex-
ture classification is a widely-researched topic in image analysis, however, little is known
of its counterpart, i.e. the haptic texture classification. Also, surface texture is among
the most important haptic characteristic of objects, which helps in object identification.

On the other hand, integration of haptic sensors appears to be a very promising
approach in the development of autonomous robotic systems because it reproduces the
multiplicity of sensing sources used by humans.

Also, it is indeed natural for humans to touch objects in order to get a more pre-
cise idea of their shape and texture when visual perception does not provide enough
information, like in dark environments.

Finally, this work is aimed to tackle the need for haptic perception in robotic
systems. Particularly on service robots, where careful and precise handling of objects
is required, in order to make-decisions similar to the way a person will do it.

1.2 Problem Definition

Despite the valuable work done in recent years by the research community in the
field of haptic-related technologies, many problems still prevent wide spreading of hap-
tic enabled applications and devices. Surprisingly enough, one of these problems is the
access to haptic devices for software developers [15]. In the same context, it would seem
that as the computing technology progresses, so would the number of haptic algorithms
examined and created.



Given these considerations, we must ask why there is so little research in a field
that can change the way a running computer system is able to provide a realistic sen-
sation of touch to a robot. There are many possible approaches to answering this
question, but the two main reasons are: (i) good and cheap quality haptic technology
is not widely available, and (ii) knowledge on the use of this technology is limited.

Further exploration into the sense of touch is imperative in order to maximize the

potential of humanoid robots ability that unlike all other senses is not directly con-
nected to any organ.

Note that the sense of touch specializes not only on the perceptions of the bound-
aries of the body, but on the analysis of surface properties as well. These properties

serve as a way to discriminate against all structures and provide a unique and unpar-
alleled ability to differentiate among the acquired information.

Consequently, the sense of touch allows the discrimination of surface properties
and structures, process in which humans have developed a very common but effective
way to interact with the surfaces, enabling the ability to draw conclusions based on
this mechanism. This method consists of moving the finger along the surface (Lateral
motion, See Fig. 1.1), allowing shear-forces to interact with the skin, and will be the
starting point for solving the problem proposed in the development of this thesis.

Lateral Motion
Texture

Figure 1.1: Klatzky and Lederman exploratory procedure to determine texture.
Adapted from [1].

To address these challenges, this document examines the haptic texture classifica-
tion in order to investigate how well it could be used to extract information that allow

us to generate a descriptor that recognizes and classifies a given texture, descriptor
that will be the discrete Fourier transform coefficients.



Finally, this research tackles the problem of texture recognition and classification
using a robotic haptic system, which will calculate the required information based on
the real world measured data.

1.3 Hypothesis

A haptic texture recognition system will provide the robots the ability to recognize
and classify textures. Feature extraction will play an important role in the recognition
and classification process. The effectiveness of such a process relies greatly on the choice
of this feature and the motion pattern that will simulate the way that humans use to

interact with the surface properties. In this case, a suitable extraction method will be
used to achieve the goal.

In order to guide the development of the theoretical framework for solving the
research problem and achieve the hypothesis described above, the following research
questions have been identified:

¢ Can force feedback and motion be created through implementation of force models
in the haptic device?

e What kind of haptic device will be used to implement the haptic system for
surface texture classification?

e What kind of end-effector will be implemented on the haptic system to gather
the surface texture properties?

e Will be suitable the use of the discrete Fourier transform as a feature for texture
recognition and classification?

e How to compare the efficiency of the implemented haptic system for surface tex-
ture classification?



1.4 Objectives

As part of the research work, the following of objectives are set to demonstrate
the veracity of the proposed hypothesis:

e Develop a prototype system for surface measurement and mapping. The devel-
opment of an automatic haptic system capable of surface measurement will be a
starting point to acquire the information necessary for the feature implementa-

tion. In order to achieve a full control of the system, its basic functionality has
to be tested.

e Determine the appropriate design of the haptic system end-effector to allow the
acquisition of the surface properties by mapping its waveform using the motion
pattern performed by the system.

¢ Provide an approach for texture classification using Fourier coefficients as a suit-
able feature of a given surface and obtain parameters for its classification, feature
that has to be able to differentiate between different surfaces textures.

Additionally, this methodology seeks to provide a first approach for texture clas-
sification by the sense of touch. Furthermore, this work proposes a robotic system

that reproduces the way humans identify and characterizes the textured world that
surrounds them.

1.5 Methodology

This section presents the required steps for the implementation of this proposal.
Steps that will be needed to achieve the proposed objectives and will provide founda-
tion for the next step.

1. Review the state of the art for texture classification to justify the proposed ap-
proach based on human tactile perception.

2. Select a proper haptic device that allows us to interact with the surface textures
for purposes of implementing the robotic haptic system for texture classification.

3. Test and implement motions in the haptic device to validate its properties. Ensure
that you can have precise control of the device.

4. Select the appropriate surface texture stimuli.

7



5. Test the end-effector interaction with the surfaces. Such test will be a starting
point for making adjustments to the end-effector and ensure its proper operation.

6. Decide a motion path that allows us to generate a data map of the surface.
7. Select a classification algorithm that allows us to validate our approach.

8. Select the appropriate feature from the haptic feedback device information to use
as input into the classification algorithm.

9. Test and implement the overall system automatically to prove that the results
are conclusive.

This methodology seeks to prove that it is possible to recognize and classify tex-
tures through the haptic sense generated by a haptic device and feature extraction
using a mathematical transform. Also, based on the experiment, it seeks to demon-
strate similarities in the analysis of the same texture and differences between different
textures.

1.6 Organization

The research thesis is divided into five chapters. Chapter one introduces the
problem. In order to solve the problem the hypothesis and the research questions are
presented and will become the foundations that support this thesis. Also, the objectives
proposed and the methodology for solving the problem is presented. In the organiza-
tion, a brief description of the following chapters is included.

Chapter two presents the state of the art related to this work. This chapter
presents the theory concerning haptics, haptic systems, some commercial haptic de-
vices, and describes the vision and haptic texture classification systems. Subsequently,
emphasis is placed on pattern recognition, learning and classifying systems.

Chapter three presents the proposed methodology for the generation of the system
that allows texture learning, detailing the use of the haptic device, sampling mecha-
nism and the feature extraction for pattern recognition, classification, and the learning
process.

Chapter four describes the tests and scenarios that were designed to evaluate the
performance of the system and will discuss the results of the examination performed on
the machinery. It is worth mentioning that the implementation of the proposed system
is performed in a controlled environment.



Finally, conclusions are presented in Chapter five which summarizes and discusses
the tests results. It also emphasizes the contributions made and determines the future
work aimed at complementing the proposed system.



Chapter 2

Theoretical Background

This section presents the fundamentals concepts of haptic perception, vision and
haptic systems for texture classification. These general concepts build a theoretical
perspective for the further development of the technical part of this investigation. In
the previous section a number of terminologies originating from the context of haptic
science were introduced. In this chapter a systematic introduction into the state of the
art will be presented.

2.1 Haptic perception

In the design of a robotic system that is able to analyze and identify textures, it
is essential to understand the perceptual factors of the human sense of touch. Human
tactile perception is used to explore the environment that surrounds us, and to identify
and manipulate objects (See Fig. 2.1).While humans depend on the sense of touch to
carry out many activities, the real potential of this interaction is undervalued. The
sense of touch perception allows the discrimination of surfaces that come in contact
with us, which is astounding considering that the properties of such surfaces range
from smooth to rough. Note that these categories lead to an infinite number of inter-
mediate ranges.

10



Figure 2.1: Tllustration for the interaction of movements between the finger pad and a
frictional surface.

Although the reader might believe that the sense of touch is only present in the
skin, this is not the only system in the body capable of haptic perception. Klatzky and
Lederman proposed three sensory systems within the sense of touch: (i) cutaneous, (ii)
kinesthetic and (iii) haptic systems, based on the underlying neural inputs [16]. The
cutaneous system receives inputs from the receptors embedded in the skin, the kines-
thetic system employs receptors located within the muscles, tendons and joints while
the haptic system is associated with active touch and uses combined inputs from both
cutaneous and kinesthetic systems (See Fig. 2.2).

" Lateral Motion" "Pressure” "Static Contact"

\ e
(texture) (hardness) (temperature)
“Unsupported "Enclosure” "Contour
Holding" Following"

-

4

BTy

-~ (S‘:\
(weight) (global shape) (global shape)
{volunic) {exaet shape)

Figure 2.2: Exploratory procedures described by Lederman and Klatzky [2] and the
object properties with which is associated.
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In order to identify the difference between passive and active touch, the author
proposes the example of the cutaneous tactile system. While the passive perception
occurs between the movements of the fingertip in a static state with a moving surface,
the active perception occurs between a static surface and the fingertip on motion. With
this in mind, the overall difference between active and passive touch will be considered
as the presence or absence of motor activity.

2.2 Haptic devices

At this point of the thesis, it has been insisted about the importance of the sense
of touch for understanding the environment around us. With the increase in human-
computer interactions, the use of force feedback haptic sensations to replicate a virtual
environment through a haptic interface has been studied intensively.

On the other hand, unlike the information acquired by the other senses that have
a well-located organ, reproducing the sense of touch through a mechanical device is a
task that involves many technical difficulties.

Hence, it becomes of interest to investigate the haptic perception and related
phenomena. Within this scope, the importance of haptic technology becomes the basis
for new applications not only within the area of scientific research, but also commercial.

Current advances in haptic technology, allow exerting considerable control over
important variables in haptic perception mechanical experiments. According to Grun-
wald [17], haptic devices can be classified as passive or active (See Fig. 2.3). Passive
devices include those where the user applies power to the device and the dissipation of
energy is generated in the device. On the other hand, active devices provide energy to
the user in the form of forces.

For purposes of this thesis, a haptic device will be defined as a system that can
transmit and/or acquire information through force feedback and position. Also, there
is a particular emphasis on the use of haptic devices for force feedback and its ability to
generate haptic signals that correspond to user actions. In all, the capacities of haptic
devices range from the ability to replicate virtual textures to reproducing motions that
generate haptic force feedback.

It is noteworthy to mention that in section 3.1.2 the Novint Falcon haptic device
is used as part of the interface for the development of the texture classifier system
corresponding to the active haptic devices that will be analyzed in this thesis.

12



(a)

(a.l) Phantom Omni 6-DOF (a.2) Omega 3-DOF (b.1) Mouse (b.2) Iphone

a

(a.3) Novint Falcon 3-DOF (b.3) Kevboard

Figure 2.3: Active Haptic Devices (a). Passive Haptic Devices (b)

2.2.1 Importance of Haptic devices on perception experiments

In the 1990s, commercial desktop haptic devices that cost thousands of dollars
emerged, bringing high-fidelity and three-dimensional force. Most recently, Novint
Technologies has introduced the Novint Falcon (See Fig. 2.4) which offers an invest-
cost alternative and enables realistic-force feedback for entertainment and training ap-
plications.

(a) Novint Falcon with Standard Grip (b) Optional Pistol Grip

Figure 2.4: Novint Falcon Haptic Device and Pistol grip
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Furthermore the haptic interaction with real world environment is complex and
wide in terms of information gained. As a result, a haptic device that can play all
aspects of real haptic interaction has not been affordable or possible until recently.

Therefore, the current haptic devices only generate certain signals or forces that rep-
resent the current interactions.

However, the fundamental limitation of haptic virtual reality devices consists that
the users cannot simply interact with virtual objects in the same manner as with their
real counterparts. This is explained by considering that the device used to relay the
haptic sensation to the user dictates the nature of the virtual object tactile sensation.

This tactile sensation equals to touch the object surface through a probe and not di-
rectly with our skin.

2.3 Perception of surface texture properties

The perception of surface texture properties is a task of the sense of touch; this
system refers to the identification and discrimination of surface features being analyzed.
A majority of the activities that humans perform requires the identification of objects
through its surface, with this in mind, Katz (3] identified the importance of deter-
mining the movements for optimal identification of surface properties through haptic
exploration. To accomplish this, Katz conducted an experiment where the purpose was
to identify the different surface properties of several types of paper (See Fig. 2.5).

Also, Klatzky and Lederman explained two methods of identification of textures
using features. In contour following [16], the contour of the surface is followed in lat-
eral motion producing shear forces that are informative about the pattern texture. On
the other hand, in haptic glance [18] the object identification is performed from initial
contact, this refers to a space of contact that involves little or no fingertip movement;
additionally it is worth mentioning how through this latter method of identification
great accuracy was achieved in small areas of contact that resulted in the recognition
of patterns textures. Besides, the use of contour following for shape determination was
not only optimal, but necessary in order to achieve high performance.

14



Figure 2.5: Device for recording finger movements during the finger exploration of
various types of paper [3].

The experiments conducted by Klatzky and Lederman show an interesting rela-
tionship between feature size and contact area during the perception of the surface.
Studies on the identification and detection of texture parameters are of particular in-
terest for the development of this thesis. However, for the purpose of designing the
recognition system proposed for this thesis, the kinesthetic perception for the interac-

tion of the haptic device end-effector and the texture surface will be of interest (See
Section 3.1.3).

Regarding the roughness texture perception, Lederman et al. [19], [20] have con-
ducted extensive research on real surface textures. In these experiments the stimuli
were metal plates with equally spaced grooves. The depth profile of these plates is a
periodic rectangular waveform. The textures provided by the grooves can be defined
by the groove depth, groove width and spacing between the grooves, where the groove
width was the most meaningful for the roughness perception (See Fig. 2.6).

Katz [21] suggested that the roughness is perceived by the combination of vibra-
tions directly through the skin. The evidence shows that the static pressure distribution
plays an important role in the textures with features larger than 1 mm [19], but in order

to perceive fine textures it is necessary to acknowledge the vibrations generated by the
movement.
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Figure 2.6: Stimulus grating with relevant physical parameters indicated [4].

On the other hand, the identification of textures using a robotic system involves
the interaction between two objects; in this regard it is worth mentioning the studies
related to the object-object perception of textures transmitted to the subject. These
studies consider the factors that affect the perception roughness through a rigid probe;
however, for the design of the robotic system for haptic texture classification, the focus
is centered in the factors related to the interaction between objects: object geometry,
applied force and speed [22].

Klatzky and Lederman (23] concluded that when a texture is perceived through
a rigid spherical probe, the roughness increases with higher width of the spaces in the
texture up to a maximum value which decreases again. Considering this finding, the
roughness of a surface can be considered in relation to the length of the spacing that
is in the texture.
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Furthermore, it was showed that the diameter of the spherical probe plays an im-
portant role in the perception of roughness as the latter increases with smaller spacing.
In relation to the applied force, it was concluded that the roughness of the texture
increases as the force is greater. Finally, it was determined that at higher speeds the
texture is perceived softer in small spaces and rougher at larger spacing [22]. In Section
3its described how these factors are addressed in the robotic system design for texture
identification and classification.

24 Systems for Surface Texture Classification

When a subject is in contact with an object, the sense of touch gives him the abil-
ity to extract information that allows the object identification, this information is based
on their shape, size, weight and temperature to name a few. However, to determine the
properties of smoothness or roughness, the human being recurs to texture identification.

According to the Oxford Dictionary, texture is defined as “the feel, appearance, or
consistency of a surface or a substance” [24]. However, this definition is quite general
and does not consider that different texture definitions appear in different contexts.
For the purpose of this thesis, the meaning of texture in vision and haptic systems will
be explored. The foregoing, in order to sustain the background that will differentiate
the way surface textures are classified. Both scenarios are discussed in Section 2.4.1
and 2.4.2 as part of the theoretical framework of this thesis.

2.4.1 Vision Systems for Surface Texture Classification

In vision systems, surface texture can be perceived at different resolution scales
and in many contexts is defined as the variation of pixel intensities. For example,
consider the texture represented on a brick wall. The texture is represented at low
resolution by the individual bricks, losing the interior details of the bricks, while higher
pixel intensity allows us to appreciate the details of them and this affects the smooth-
ness or roughness of the surface texture [25].
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Computer vision pattern recognition has evolved over the last decade and now
appears as standard approaches in robotic applications where objects or textures have
to be recognized. According to Zhou [14], a fundamental goal of research in computer
vision texture is the development of methods for the acquisition of visual information
and understanding of the image based on textural properties. The primary focus of
his research is the development of a generic structural identification of a Markov-Gibbs
random field model of textures. The idea behind the Markov-Gibbs random field is
to incorporate prior information about the image model for the Bayes decision theory,

which can be applied to the problem of image segmentation. Additional information
about this model can be found in [14].

Targhi has developed research in the area of classification of textures from one
image by taking this as a problem of statistical learning [26]. In general, the clas-
sification of textures from images has been extensively investigated theoretically and
experimentally by Caputo et al. [27], Cula et al. [28], and Varma et al. [29] resulting
in a large number of databases. However, in order to accomplish true recognition of the

texture, prior knowledge of the tactile sensation of the texture image being analyzed is
necessary to determine its roughness or smoothness.

2.4.2 Haptic Systems for Surface Texture Classification

Kern defines haptic texture as the properties of objects which can be exclusively
felt by touch [30]. With this statement as a starting point, it is important to mention
that haptic perception is characterized by its ability to feel textures through direct
stimulation of forces when the surface of an object comes into contact with the human
body. Considering the above, this section mainly focuses on texture classification via

tactile sensing of a robotic system, illustrating the working principles and giving an
insight into the current state of the art.

Before proceeding to detail in this section, it should be emphasized that the re-
search presented will be part of the state of the art corresponding to those methods of
haptic perception that has been done on real textures and not in virtual environment
like many other investigations characterized by using haptic devices for feel or analyze
virtual textures like the research works presented in [13], [31], and [32].
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A number of studies has addressed the problem of using robotic fingers in ex-
ploratory procedures. Okamuta and Cutkosky [17] analyzed the feature detection in
robotic exploration. The analysis consisted in detecting surface features of an object
such as ridges and bumps. They observed that during the process of haptic exploration,
the detection of some properties depends on the size of the fingertip, e.g. if the contact
area is very large, detail can be lost. It also showed that the path traced by the fingertip
has intrinsic properties that facilitate the detection of certain characteristics. Similar
research has been conducted in [33], [9], and [11].

In the context of surfaces classification, Hoepflinger et al. [34] present a method

for classifying natural terrain using haptic feedback, via the acquisition of properties
through contact forces and joint angles.

Payeur et al. [10] provide an approach for the refinement of information gained
through a vision system for the design of autonomous robots by integrating a tactile
sensor that plays the skin component, providing the geometry of the sensed object.
Under the same concept of using the sense of touch in conjunction with the sense
of vision, Natale et al. [11] explored the possibility of extracting the properties of an

object to understand the type of parameters that could be extracted through the tactile
perception.

2.4.3 Fourier Analysis

As a part of the classification process is worth mentioning the related work that

has used the frequency spectrum provided by Fourier analysis as a proper feature for
pattern recognition.

A number of studies in perception of surface textures have used Fourier analysis
as a reference point for simulation models in virtual environments and detectability
of surface textures in [35], [36], [37], and [38]. According to Cholewiak, the implicit
reasons behind this fact is that (i) the human sensory system might be able to perform
a spectral analysis of a stimulus derived from the interaction with the surface texture,
and (ii) the perception of individual spectral components can be combined linearly
from a overall approach [38]. Validation of these assumptions was first suggested in the
study of visual grating perception [39].

It is worth mentioning a similar work to the visual gratings used in the Campbell
and Robson study {39], but implemented as a tactile analog in surface height grat-
ings at the micro-scale (i.e., surface texture) proposed by Cholewiak [38]. In the given
study, Cholewiak et al. used virtual surfaces with sinusoidal and square-wave gratings
to analyze the detectability of the gratings in the frequency domain.
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Similarly, Wall et al. [36] proposed a method which employs Fourier analysis to
describe the surface profiles of several stimuli surfaces. The obtained results suggest
that a limited band of Fourier series can be used to provide a realistic approximation
to the amplitude of the profiles.

Considering the related works that have employed the use of Fourier analysis, its
worth to mention that to the best of our knowledge, the research developed in this
thesis differs not only in the acquisition of real environmental data instead of virtual

textures simulation, but also in the process of classifying them via the data provided
by Fourier analysis.

2.5 Summary

This chapter deals with the spectrum and influence that Haptics has on the human
begins beyond technological descriptions. It is also a hint for the development engineer,
to be responsible and conscious when considering the capabilities of the haptic sense.
Furthermore, this section shows how the sense of touch is specialized on the perception
of the physical boundaries of the body and also on the analysis of surface properties.

Based on the above statement, a number of studies related to the texture analysis
from the point of view of vision and haptics have been conducted, and the two streams
of analysis for the classification of textures have been presented.

Finally, although haptic feedback is often taken for granted in real life, it is still
not common when interacting with computers; this chapter discusses that by using a
haptic device, it is possible to feel and to acquire some characteristics of a material
such as smoothness, roughness, and viscosity, among others.
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Chapter 3

Haptic Texture Classification Methodology

This chapter covers the methodology developed for the robotic haptic system
design for texture classification. The system consists of the following subsystems: (i)
control sampling overview, (ii) the experimental methodology and (iii) the classification
process. The control sampling overview explains the main hardware components and
the task they perform as well as the GUI (Graphical Unit Interface). The experimental
setup covers the validation of the stimuli and the working interface for the research
development. Additionally, the classification process covers the feature selection and
the learning process.

Before proceeding with the subsystems description, it is important to note that
the software design is divided into two parts: C++ and Matlab. The communication
interface to the Novint Falcon via the SDK (Software Development Kit) of Novint
Falcon Technologies [6], the GUI, the learning algorithm, a simple signal filtering and
segmentation, and the kinesthetic position measurement cycle logger are implemented
in C++. On the other hand, Matlab is used for feature extraction (See Section 3.3.3).

3.1 Control sampling overview

The control sampling integrates four main components. Controlling computer GUI
(CCG), the haptic sensing element Novint Falcon (NF), the End-effector (EF) and the
Position Measurement Cycle (MC). The perpendicular motion across the surface and

logger of the surface map data is generated by their interconnection. In Fig. 3.1 the
components are illustrated.
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Figure 3.1: Control sampling overview. Integration of the distinct components of the
system required for the y-axis data acquisition.

First, the haptic sensing element NF receives a predefined motion trajectory from
the CCG; this is done in an update cycle of positions once per test. After the NF has
its configuration via the operational parameters, it proceeds to compute the servo po-
sitions to move the EF through a perpendicular path to the contact surface and record
the surface map data.

For more information about the update cycle of positions see Section 3.1.5. The
initial conditions are that the NF motors are at homed position (See Section 3.1.1,
Operational modes) at the start of the test cycle.

3.1.1 Controlling Computer GUI

The Controlling Computer GUI is used to provide visual feedback and control
over the texture classification system. This was made in order to have control over the
operational mode of the NF as a robotic system. In this case, users need to know the
mode in which they are currently operating in or switch between modes to perform the
different tests to identify textures.
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It also features the output fields of Actual position and Force that respectively
provide information about the EF current position and the force generated to bring
the EF to the desired position. These issues have been addressed by providing all nec-
essary information in an understandable GUL (See Fig. 3.1a). Additionally, it has a
graphic display developed with OpenGL and OpenGLUT in conjunction with the SDK
provided by Novint Technologies, which shows the current position of the EF by a blue
sphere in a 3-D space (See Fig. 3.1b).

Once the analysis to predict the texture is performed, Matlab plots the different
data. These plots can be used to get an overview of the measurement data of that
specific sample or just to see if the measurement delivers meaningful results.

(a) (b)

,,,,,,,,,

Predicted texture 52

Figure 3.2: GUI screenshot with a measured S2 sample (a). Graphic display (b).

Comprehensively, the GUI components can be divided into (i) Operational Modes,
(it) Output / Input Fields and (iii) Buttons; each of them will be explained in detail
as part of this section.

Operational modes

There are three principal operational modes represented in the Control Box, (i)
Manual/Initialization, (ii) Automatic/Target position and (iii) Test; each of one per-
forms the following functions:

¢ Manual/Initialization: Allows the EF motion to the desired position by ap-
plying an external force e.g. move the EF to the desired position via the hand
user force. This was done because it was necessary the initialization of the NF
once the system is started and each time the test is preformed (See Fig. 3.3).
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Figure 3.3: Novint Falcon Manual Initialization

The Novint Falcon has its own initialization functions which have been supplied
by the SDK."The main functions checked are the servos for each pair of motor
and encoder, and that the device is homed (meaning by this that the z, y and
z-axes are fully opened and then fully closed). If the device is not homed then
the LED lights at the center of the NF will be red and a dialogue appears asking
to move the grip in and out until the LED lights turn to blue.

Automatic/ Target position: This mode was designed in order to move the
NF' to an arbitrary position by indicating the desired position in cm in the three
coordinate axes as long as they do not exceed the limits of the work of the NF
area hovering around 10 c¢m in the z, y and z-axes. For more information about
how to specify input values for that field, see Output/Input Fields in this section.

Test: An extension of the automatic mode, developed in order to have a prede-
fined motion path that was perpendicular to the contact surface texture analyzed.
Figure 3.4 illustrates the motion path of the EF according to the indicated points
in the space and coordinated system. Note that all units are in cm.

Output/Input Fields

The output fields provide information about the current position and force ex-

erted, while the input fields provide a space to put the target position for the EF.

e The Actual position fields of the GUI provide visual feedback of the current
position on the EF| this position register and display any motion along the coor-
dinate axes in the output fields in an update rate of 1 kHz.
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Figure 3.4: Motion path of the S2 sample measurement.

e The Target position provides an input field for each one of the three coordinate
axes to indicate the position you want to set the EF. The Position value has to

be on cm.

e The Velocity input value provides an arbitrary factor to move the EF faster or
slower, however it was determined by experimentation that the motion with a
value of 6, which refers to the change of value between one position and another,
is similar to the velocity that humans use to feel a texture.

o The Force target position section offers output fields for the generate force
in each of the three coordinate axes, this force is necessary to set the EF in the
required position. Note that the value of this force is not expressed in Newton

but in some internal units used by the Novint.

¢ Predicted texture field conforms the texture class predicted by the classifi-
cation algorithm (See Section 3.3.1) and the image of the frontal view with its

parameters.

Buttons

There are three principal buttons modes in the GUI, each of one performs de fol-

lowing functions:

e Pressing the Start Measurement button (considering that the user is in the
Test mode) will start the automatic motion of the EF.



e Pressing the Store Data button is an alternate function that was built to save
the position data of y-axis to a text file which is then used, preprocessed, and
plotted (See Section 3.1.5).

e The Predict button is used in order to start the feature extraction, classification
process and, display the graphic results.

3.1.2 Haptic Sensing element

The haptic element used in this research is the Novint Falcon (See Fig. 3.5) and
a modified version of the gripper (See Section 3.1.3) provided by Novint Technologies
Company, Inc. [6] for the force measurement, in order to trace automatically various
real world surface textures. See Appendix A for the Novint Technical Specification and
the Recommended System Requirements.

Figure 3.5: Novint Falcon CAD model with its axis coordinated system[5].

The Novint Falcon is a haptic device of 3-DOF (Degrees of Freedom) relatively
inexpensive with a similar configuration to the delta robot proposed by Tsai [40], in
which the ball joints from the Clavel design [41] are replaced by rotational joints. Also,
the Novint Falcon design incorporates an end-effector that can be replaced with the
pistol grip or the default grip offered by the commercial version of the system.

The Falcon devices communicate via the USB interface with information and
commands to provide actuation commands sent from the computer. Furthermore, the
encoder information is transmitted to the computer from the Novint Falcon; such trans-
mission is done via the SDK provided by Novint Technologies, Inc.
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The interface uses an update rate of 1 kHz, however in accordance with Martin
et al. [5] the update rate varies between 800 Hz and 1 kHz. Furthermore, the authors
discuss that the variation in the update rate is due to the USB interface that is unable
to sustain the communication and is prone therefore to miss commands or data acquisi-
tion. Also, it was noted a delay between force commands and encoder measurement. To
the best of our knowledge, it is noted that these facts coupled with the significant non-
linearity of the system kinematics and dynamics can cause unexpected vibrations and
oscillations that affect the motion control of the device. Additional information about

the position control can be found in the Haptic Device Abstraction Layer (HDAL) on
Appendix B.

3.1.3 End-effector

The prototype of the EF haptic system consists of a spherical tactile probe mounted
on the default Falcon grip (See Fig. 3.6). The EF device will have a limited range of
motion of approximately 10 cm on the z, y and z-axes within the working area of
the Novint Falcon, which will make the kinesthetic measurements highly dependent on
the position and orientation of the system in relation to the surface texture analysis.
Moreover, direct measurements with the tactile probe imply that the orientation of the
EF will be perfectly perpendicular to the surface in lateral motion while the force and

position information are acquired. Additional information about the range of motion
of the NF can be found in [5].

‘\a.. i l

Figure 3.6: End-effector
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Considering that the Novint Falcon does not work without the default gripper

connected to the haptic device, it was necessary to modify the gripper through the
steps shown in Fig. 3.7.

(a)

Figure 3.7: Modification of the Falcon grip. (a) The original grip. (b) Mounting plate
after removing the lower hemisphere. (c¢) Modified component placed in the mounting
plate.

A fundamental part of the EF is the spherical tactile probe of 2 mm in diameter
and 12.53 mm length (See Fig. 3.8), which consists of a tungsten carbide ball for a
proper motion on the surface test and the application of force in an uniform manner
at a constant speed. Similar work in this field can be found in the work of Klatzky et
al. [23], where a spherical probe is used to test the textures.

Figure 3.8: Spherical Tactile Probe.

The blueprints of the additional component mounted on the Novint Falcon gripper
can be found in Appendix C.
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3.1.4 Kinesthetic position measurement cycle

To obtain meaningful data from the sensors and achieve the surface texture clas-
sification, the end-effector moves automatically perpendicular to the surface (motion
along the + z-axis) with a frequency of approximately 1 kHz. Fig. 3.9 shows the
end-effector position when the latter moves across the surface. This information was
stored and later used for the feature space generation (See Section 3.3.3).
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Figure 3.9: Plot of the S2 sample referring to the y-axis position mapping.

Ideally. the signal would be identical to the shape of the texture (trapezoidal wave-
form or planar form depending of the texture), but effects such as nonlinearities of the
Falcon, the frequency variation in sampling , surface deformation, and the error of 1
mm from the EF in Cartesian space [5] cause signal degradation.

On the other hand. Fig. 3.10 shows the motion path by the EF in order to perform
the surface mapping automatically. Similarly, Table 3.1 shows the distances achieved
in the three coordinate axes according to the limits of movement marked.
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Figure 3.10: Motion path perform by the EF.

Table 3.1: Motion path parameterization
Position label | (z,y,z) cm
(0,0,-6)
(-4.5,1,-6)
(-4.5,1,-2)
(-4.5,-0.48-2)
(4.47,-0.48,-2)

QY | 2N —

3.1.5 Position Control overview

To move the EF to an arbitrary position automatically, it is necessary to maintain
the EF position in a particular position while keeping the force through Hooke’s law
(See Eq. 3.1) that simulates the mass-spring-damper force model (See Fig. 3.11) and
is presented below:

F, = —K(pi = fz) 4 D(Pi — fz) —A(I;i—l = fi—l) (3.1)

where i is the update counter in the haptic process, p is grip position, f is the
keeping position and K is the spring constant, D is the constant of damper, At is
the update rate of the haptic process. It is possible to move the grip to an arbitrary
position by changing f.
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Figure 3.11: Mass-Spring-Damper Model

It is noteworthy that the force model used is a second order system (See Eq. 3.2),
whose transfer function is shown in the following equation:

kw?
A (3.2)
52 4+ 2Cwys + w?
where w, is the natural frequency of the system, ( is the damping ratio and k is
the steady-state gain.

In order to obtain an under-damped system behavior, it was necessary to modify
the value of D so that the  value was maintained between 0 < ¢ < 1. The relation
between D and ( is shown in Eq. 3.3.

D

2mws,

(= (3.3)

In order to perform a successful feature extraction necessary for the classification
process (See Section 3.3), and considering that the significant nonlinearity of the system
kinematics and dynamics can cause unexpected vibrations and oscillations that affect
the motion control of the device, a filtering and segmentation process has been applied
to the data.
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Filtering

Considering the update rate of 1000 Hz, it has been observed by experimentation
that the signal was too noisy compared with the known waveform of the original smooth
surface. To correct this situation the sampling process was decreased to a sampling
position interval of 0.3 mm on the stable area (See Fig.3.12).

Measured y-axis positions
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Figure 3.12: Filtering process plot. Before the filtering (a), and after the filtering (b).

Segmentation

Given the Delta configuration of the NF, it is well known that serial singularities
occur on the boundary of the workspace of a parallel manipulator (Simaan, 2009). Since
the under-damped system that controls the position is capable to produce a significant
velocity, it has been determined to reduce the analysis area of the surface texture map-
ping. As a result, the first 6 cm were removed from the area, remaining a stable and
effective dimension of 6-8.97 cm (See Fig. 3.13).
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Analysis Area (8.97 mm)

Figure 3.13: Sampling area

Furthermore, the segmentation process results of the data obtained by measuring
the position of EF while controlling it automatically are shown in Fig. 3.14.

3.2 Experimental methodology

The research includes one main experiment for the surface texture classification
performance by haptic perception. The experimental methodology is the following:

1. Set the surface texture on the workspace interface according to the proposed setup
that can be consulted in Section 3.2.1.

2. Place the end effector of the haptic device at home position (See Section 3.1.1,
Operational Modes / Initialization).

3. Perform the automatic motion of the EF to acquire the surface texture data
mapping.

4. Preprocess the collected y-axis position data to apply the spectral analysis using
the DFT.

5. Use the Discrete Fourier Coeflicients as the input feature for the classifier system.

6. Verify the analysis accuracy and determine whether the results are conclusive
according to the proposed hypothesis in this thesis.
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(a)
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Figure 3.14: Segmentation process plot (a) before the segmentation and (b) after the
segmentation.

3.2.1 Experimental setup

For the experiment, a set of surfaces has been selected. The full set of texture
surfaces is listed in Table 3.2 and Fig. 3.15. In these experiments the surfaces were
corrugated cardboard plates with different spaced grooves (See Fig. 3.15b.1-3). The
depth profile of these plates is roughly a periodic trapezoidal waveform with some de-
gree of deformation by exerting a force on the material because is not completely rigid

(See Fig. 3.15b). Furthermore, it is included a flat cardboard surface texture as a part
of the stimuli (See Fig. 3.15a).

Table 3.2: Surface Texture parameterization

Surface Texture Class A B C
S1 NA NA NA
S2 1.9mm | 0.9 mm | 1.3 mm
S3 1.7mm | 1.9 mm | 1.8 mm
S4 2.1 mm | 2.2 mm | 3.5 mm
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Figure 3.15: Cardboard surfaces used for the experiment. (a) Sl-smooth cardboard,
(b) Corrugated cardboard trapezoidal waveform (b.1) S2-corrugated cardboard, (b.2)
S3-corrugated cardboard, (b.3) S4-corrugated cardboard.

In order to get repeatable results and to easily mount the stimuli on the test bed,

the surface textures were placed on the working interface properly equipped for research
development (See Fig. 3.16).

(b)

Figure 3.16: Different surface textures samples could be mounted in this setup, which
is shown as an overview in (a). The detail of the EF placed on a texture is shown in

(b).
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3.3 Classification framework

The objective is that the implemented haptic robotic system can distinguish be-
tween different surface textures. For this task, the haptic system automatically draws
a path of 8.97 cm perpendicular to the contact surface. The measurement of the po-
sition in the y-axis will allow the acquisition and observation of the surface map. Fig.

3.17 shows a plot example of the surface map generation and a representation in the
frequency domain.

(a) (b)
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Figure 3.17: S2-sample measurement, the y-axis mapping (a) and the corresponding
frequency domain representation used as a feature for the classification process.

3.3.1 Classification overview

Fig. 3.18 shows the classification process schematic. A C++ program performs
the execution of the measurement cycle and records the position information provided
by the sensors. These files are used afterwards by Matlab for preprocessed the data
using a segmentation and filtering process (See section 3.1.5.1-2) to reduce noise and
generate the feature extraction using the Discrete Fourier Transform (See section 3.3.3).

In further steps, the feature extracted information was then used either to train
the classifier or to evaluate the performance of a set of different tests. The difference

between training and prediction files can be changed easily because both files contain
the same structure.
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Considering the above, a C+4 program reads the data from all the previously
generated logs files and use this data for the training. At the end, once trained the
system, a classification algorithm (See section 3.3.2) is used to evaluate the output of
the classification. Additionally, Matlab plots different data from the test that has been
performed. These plots can be used to get an overview of the measured data of that
specific sample or just to see if the measurements deliver meaningful results.

For the learning algorithm, the texture classification samples consisted of 20 train-
ing samples and 10 test samples for each of the 4 classes (120 samples in total.). The
number of training samples used was defined based on the number of samples that are
considered necessary to actually get good results with the least amount of files by just
removing training samples, even with the consideration of knowing that the learning
algorithms tend to perform better with a higher the number of training samples, how-
ever, experimentally the number of training samples used led us to positive results (see
Section 4.5).

In addition, 10 test samples were used, consider this number as a representative
function of the number of samples needed to test the classification process taking into
account the specified number of training samples.

3.3.2 Classification method

To confirm the validity of the thesis proposal, it was employed the k-Nearest
Neighbor (k-NN) classifier, provided by OPENCV, to identify the surfaces textures
samples. k-NN is a supervised classification algorithm based on training examples in
feature space. This is the one of the simplest classifier, but it is used in many applica-
tions.

The k-NN predicts the response to a new sample by analyzing a number of nearest
neighbors (k) and the voting by its majority class. In pattern recognition, it is needed
to train the system before the input element can be classified. The algorithm input is
a set of labeled training data (f;, ¢,), ¢ = 1,...,20 and n = 1, ...,4 where each f; is an
example and ¢, indicates the training data class.

An appropriate value of & = 10 is assigned to classify a surface texture sample
among multiple classes. Therefore, a multiclass classification problem is faced for which
the prediction looks for the feature vector within the training data with a known re-
sponse that is closest to the given vector.
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Figure 3.18: Overview of the surface texture classification process.

A feature space is proposed consisting on the spectral analysis by identifying com-
ponent frequencies in the sampled data. For discrete data, the basis of the spectral
analysis is the Discrete Fourier Transform (DFT) which was performed by the Fast
Fourier Transform (FFT) which has computational complexity O(nlogn) instead of
O(n?) on the preprocessed sample vector x (consisting of the y-axis position measure-

According to Matlab documentation [42], the DFT of vector z of length n is
another vector y of length n:

n—1

g apIP
Yp+1 = E W j+1

h

j=0

root of the expression:

w = ()27.'1/71
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This notation uses ¢ for the imaginary part, and p and j for vector y parameter
that run from 0 to n — 1.

In total, 49 features were collected per sample of the 50 corresponding to the cc
efficients extracted by the DFT, this number of features results considering that th
DC component was removed from y (See Eq. 3.4) so that it does not obscure/interfer
the positive frequency content of the data.

3.3.4 Summary

This chapter describes the series of steps followed for the development of th
robotic haptic system for texture classification. In the first section of this chapter th
hardware used and the GUI developed for the sampling process and control is describec
It also justifies the measurement cycle and the data preprocessing for later use in th
classification process.

Subsequently, the methodology section describes the stimuli validation and tk
working interface so that research preform can be successfully developed under a cor
trolled environment. Note that the surfaces stimulus used are parameterized in orde
to have a comparison between them.

The last section of this chapter refers to the classification process, feature extra
tion method, training and the type of classifier used. Finally, the following chapte
describes the preformed experiments for surface texture classification and the perfo
mance achieved by the classifier considering the selected feature.
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Chapter 4

Experiments/Results

Several preliminary experiments were required to ensure the quality of the results
of this work. This section explains the nature of these experiments and the results
obtained from them.

4.1 Measurements cycles

One measurement consists of one cycle placing the EF perpendicular to the surface
of analysis. During the measurement, the y-axis position data is recorded and saved
for later processing, feature extraction, and classification.

To achieve the perpendicular motion, it was sought to chart a course as straight
as possible on the y-axis, achieved by controlling the position as explained previously
in section 3.1.5, obtaining the results shown in Fig. 4.1. Note that the data generation
presented in this figure was not in contact with any surface, but is the result of the
motion of the EF avoiding any perturbations.

y-position [c

Figure 4.1: y-axis position control
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It is noteworthy that the EF must have reached a position of -4 mm in the y-axis
according to the position indicated previously as pre-set parameters for the develop-
ment of the test. The establishment period occurs in -0.48 mm as a result from the
extra weight that involve the modifications made to the EF. These positions are taken
considering the Novint Falcon Cartesian plane shown in Fig. 3.10.

From Figure 4.1, we see that in the first 6 cm a period of oscillation occurs because
the position control is carried out as a mass-spring-damper system with a damping ra-
tio. 0 < ¢ < 1, leading to an under-damped system that reaches its desired position
with a significant velocity.

Result of this under-damping period, to improve the success rate it was necessary
to segment the analysis area from 6 to 8.97 cm which recorded 100 position measure-
ments on the y-axis (See Fig. 4.2).

Measured y-axis positions

y-position [cm]

x-distance [cm

Figure 4.2: Measured y-axis position segmented

4.2 OQOutlier detection

Since the outlier detection in the training stage of the algorithm is an important
factor for increasing the success rate of the surface texture classification, the variance
of each of the features is determined in the experiment. The results obtained are con-
siderable low, indicating by this that the dispersion of data is very low.
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In conclusion, the main result of the outlier detection was that there are not severe
outliers in the measurements. The reason for the low number of outliers is because the
test rig allowed repeatable tests. It is worth mentioning that in the experiments for
obtaining the training values, non-repeatable measurements result of the incorrect use
of the test configuration were omitted in further experiments.

Fig. 4.3 shows the scattering data from a sample of five elements of the total train-
ing instances for each of the textures to graphically display the low variance involved
that give as a result the demonstration of the desirability of the frequency spectrum as
a learning feature.

(a) (b)
Scattering data S1 Scattering data S2
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Figure 4.3: Sample scattering data of 5 instances selected randomly from de training

classification data of S1 (a), S2 (b), S3 (c¢) and S4 (d).
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4.3 Experimental operational parameters selection

By conducting preliminary tests in the experimental phase, it was determined
that if a very high K(K, > 10) is maintained in Eq. 3.1 to keep the position of
EF on the y-axis at -4 mm, it was difficult to move the EF spherical probe on the
z-axis perpendicular to the surface texture analysis. This was because the force ex-
erted to reach the desired position had prevented a displacement of EF y-axis in the
positive sense (See Fig. 4.4). Similarly, the values of the constant K to generate the
motion of the EF on z and z-axis were defined experimentally as K, = 80 and K, = 80.

Figure 4.4: EF spherical probe on the z-axis perpendicular to the surface texture

An additional consideration that must be present on this last point, is that due
to the extra weight provided by the modifications made to EF and the accuracy of +1
specified by the manufacturer of the Novint Falcon haptic device, is that although the
reaching position of 4 mm is indicated, actually it reaches -4.8 mm.

Considering the above, the use of a value of K, = 9 was considered and even
though it does not offer the same precision, it allows the necessary elasticity on the
y-axis to achieve the correct mapping of the surface.
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In addition, a 6-speed value is chosen since higher speeds caused a poor mapping of
the surface by missing details of the grooves and ridges, a similar situation is presented
in the work of Klatzky and Lederman [23]. It is worth mentioning, as with speeds less
than the value of 6 allowed to obtain good mapping of the surface, but took longer
tests, a condition that led to the selection as the optimal value.

Another point to be considered in the selection of the parameters was that for
each surface a depth penetration of 1 mm is exerted on the surface in order to map
it as accurately as possible, considering all its features. A higher force exerted by F,
blocked the perpendicular displacement of the probe on the surface and a lower value
prevent the correct surface features mapping.

As part of the automatic motion made by the EF, it is important to address that
the values indicated in Table 3.1 from section 3.1.4 also has been experimentally defined
in order to achieve the greatest possible area of texture analysis.

Finally, with the objective of achieving greater success rate in the texture clas-
sification it was necessary to optimize the value of k(nearest neighbors number) for
the k-NN classification algorithm, given a predefined number of £ = 10 and letting
the majority vote will nearest neighbors decide the class to which belongs the texture
analysis. The reason why it was chosen a high value of k is that the classification is
less sensitive to the location of the sample.

4.4 Texture Classification

This section summarizes the results obtained by evaluating the texture classifica-
tion performance using the haptic system designed in this thesis. At first instance, it
provides a description of the mapping of each of the analyzed surfaces and its corre-
sponding frequency spectrum for its classification.

It is important to note, within the frequency spectrum, that the amplitude at each
frequency is the factor that is used for the surface texture analysis.
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4.4.1 Surface Texture S1

According to the results of the frequency spectrum from the DFT, one can observe

that the surface S1 (See Fig. 4.5) has a higher frequency range in the first 5 Hz, being
this a characteristic feature of this surface.
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Figure 4.5: Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S1.

However, the most interesting factor that occurs in the spectral analysis of S1
is that it is practically being performed the DC component Fourier transformed, more
commonly known as the average of the input series. Considering the above, it is observ-
able that frequency values present are practically null as they only reflect the minimal
irregularities present in the waveform of a constant function which in the spectral anal-
ysis would be reflected only as the value of the DC (Freq = 0) or Dirac delta function.

Note that for this study the DC component was removed so that it could be appreciate
the extent of the other frequencies.
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4.4.2 Surface Texture S2

The sample S2 has a trapezoidal waveform whose surface mapping and frequency
spectrum can be seen in Fig. 4.6.

It is worth mentioning that the resulting waveform is not completely similar to the
trapezoidal surface geometry, this situation arises due to the deformation that occurs
in the cardboard at the moment of exerting a force on it with the spherical probe.
However, since the training and the surface sampling was done in similar conditions,
this type of wave parameters and their frequency spectrum are presented in each test.

(a)

Measured y-axis positions

y-position [cm]

x-distance [cm
(b) temy

Measured frequency spectrum

Amplitude
T

Freq [H2]

Figure 4.6: Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S2
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From the spectral analysis of this particular case is noticeable that the frequency
with larger amplitude is the frequency presented in 7 Hz, in fact, this reflects that if
a signal is periodic with frequency f, the only frequencies composing the signal are
integer multiples of f, frequencies that are called harmonics. However, result of the
distortion considering that is not a perfect sine wave, the frequency domain is com-

posed of the peak in 7 Hz corresponding to the seven harmonic plus other harmonics
of smaller amplitude.
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4.4.3 Surface Texture S3

In the case of sample S3, although the waveform (See Fig. 4.7a) is very similar
to the S2 is important to note how the shape parameters corresponding to the period

and amplitude are different, which subsequently generated a frequency spectrum char-
acteristic for this surface.

In Fig. 4.7b one can observe that the higher amplitude of frequencies is located
in the first five frequencies, the highest being 4 Hz, however, a characteristic part of
this wave is also how the amplitude of the other frequencies behave.

(a) Measured y-axis positions

y-position [cm)

x-distance [cm]

Measured frequency spectrum

Amplitude

Freq [Hz2]

Figure 4.7: Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S3

The particular spectral analysis of this surface (S3), as well as the one of S2,
shows that the Fourier analysis for periodic waveforms, according to the parameters
of the function, has a very particular pattern composed of the fundamental harmonic
(highest value) an the others which are result of the present distortion on the waveform.
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4.4.4 Surface Texture S4

The S4 sample analysis resulted in the waveform and frequency spectrum shown in
Figure 4.8. Characteristic feature of this type of surface was the deformation produced
under the pressure exerted by the EF, as well as the greatest amplitude and period
compared with the other samples.

This sample like the S3 has its highest frequency in the 4 Hz, but by supplement-
ing their classification with the other frequencies contrast with it.

Measured y-axis positions

(a)

y-position [cm)

x-distance [cm]

Measured frequency spectrum

(b)

Amplitude

Freq [Hz2]

Figure 4.8: Measured y-axis position (a) and Measured frequency spectrum (b) for
sample S4

Considering that S4 was the one with the less similitude to a sine wave, it is
valid to think that the value of its fundamental frequency will not be as pronounced
when compared with the others harmonics. The previous can be verified consider-
ing that the fundamental frequency located at 4 Hz in this sample does not differ from
the other frequencies so markedly as the spectral analysis of the S1, S2, and S3 samples.
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4.4.5 Discussion

For the application of this mathematical transform in haptic pattern recognition,
the overall spectral analysis performed for each of the surfaces is consistent according
to how behaves the DFT to periodic waveforms.

Considering the above, the fact that the resulting waveforms (S2-S4) of the sur-
face mapping are similar to that of a perfect sine wave with some degree of distortion,
consequence of the surface mapping by the spherical probe, makes possible to observe
and demonstrate the behavior of the DFT and the relationship between the harmonics
obtained by the DFT and the periodic component in the space domain.

Additionally, the behavior of S1, that resembles a constant function, shows that
the amplitude of the resulting frequencies is negligible because the fundamental fre-
quency is located at zero frequency corresponding to the DC component.

Finally, it is worth mentioning that the samples waveforms are the result of the
dimensions of the spherical probe used to map the surface texture. The dimension of
2 mm in diameter was selected taking into account the surface with smaller ridges and
grooves, (S2) so that it could be mapped correctly.

4.5 Results

The final results of the main experiment with the optimized parameters can be
seen in Table 4.1 that shows the confusion matrix of the surface texture classification
and that reflects the performance of the classifier for 10 test samples for each of the
four types of surfaces. Shown in each column and row are the results for the different
surface classes addressed throughout this chapter. The diagonal elements in this matrix
represent the correctly classified samples while the other elements located in a different
position represent the incorrectly classified.

The parameters of Success Rate (SR) and Error Rate (ER) are used to evaluate
the performance of the classification. The SR is the ratio of the number of elements in
a given class that are correctly classified with respect to the total number of elements
of the class. On the other hand, the ER is the percentage of the class elements that
have not been classified correctly with respect to the total elements of the class.
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In the experiment, high success rates were achieved for the classification of the
surfaces textures tested (100% for all the samples). This shows that the prediction of
surface textures with small geometries is possible, especially bearing in mind the small
variation among their parameters.

Table 4.1: Confusion Matrix of the surface texture classification
Classified as Sl S2 S3 S4

S1 10 0 0 0
S2 0 10 0 0
S3 0 0 10 0
Sq 0 0 0 10
SR(%) 100% 100% 100% 100%
ER(%) 0% 0% 0% 0%

4.6 Summary

This chapter analyzed the haptic system texture classification that use the fre-
quency spectrum obtained by the DFT for texture recognition. At first instance, a
series of preliminary experiments for the measurement cycle are presented, detection
of outliers and parameter optimization. Consequently, a description of the waveform
and the corresponding haptic frequency spectrum from the data acquisition system is
performed, showing their distinct features.

In addition, the performance analysis of the proposed system is performed. Anal-
ysis, which was proved in four different surface textures and found that its possible
to obtain optimal performance of the proposed classification of surfaces in this exper-
iment. It is concluded from the results that the approach used for the detection and
classification of textured surfaces shows the potential of this technique which can be
implemented in different autonomous robotic systems.
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Chapter 5

Conclusions and Future Work

This chapter summarizes the work described in this thesis and the achieved results
by stating the main contributions in the area of haptic surface texture classification.
In addition, it also includes the further work that can be done in the thesis research
and discuss how its limitations can be overcome.

5.1 General Conclusions

In this thesis, a novel approach for surface texture classification for haptic systems
was presented. A custom low-cost haptic sensing device (Novint Falcon) was integrated

with a modified EF to obtain haptic feedback that resulted from the waveform surface
pattern of a texture.

A sﬁpervised learning classifier has been trained with real-world data samples of
textures, which included features computed from the frequency spectrum of the wave-
form of the surface texture measurements. The classifier could reliably distinguish four
different surfaces types of texture even with the limitations of the haptic device used
as a base for the haptic surface waveform extraction and subsequent feature generation.

According to the research questions posed, and the results obtained in the devel-
opment of this thesis, it can be concluded that it is possible to design a robotic haptic
system for classifying surface textures by extracting the frequency spectrum from the
surface waveform via the DFT. Furthermore, these results, as shown in Chapter 4,

prove the efficiency of the implemented system and the way that emulates the behavior
by which humans identify textures.
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In addition, while the results were obtained in a simplified test setup under a
controlled environment, they point the way for the application of methods to identify
and estimate the properties of the surface textures in unknown environments. This will
be helpful in performing tasks using robotic systems that require precise control of the
action being done by identifying the haptic properties of objects and hence improve
the overall performance, as in the case of the activities performed by service robots.

Furthermore, the obtained haptic information can be included and combined with
data from other sensors as are the vision systems. This will allow the implementation

of more complex activities that require multisensory information as the identification
of objects both in form and texture.

Finally, at the highest level of description this thesis is concerned with finding
ways of improving the haptic interaction in robotic systems and provides further moti-
vation for the study of haptic information. With this in mind, the research provides a
conceptual framework of how haptic data can be used to provide information to robotic

systems and based on that, achieve learning and improve performance on the activities
developed.

5.2 Contributions

At the highest level of description, the main contribution of this thesis to the state
of art is the validation of the methodology used for surface texture classification with
a robotic haptic system that emulates the kinesthetic system by which humans gather
and identify the properties of the surface textures. This methodology defines a con-

ceptual framework and characterizes haptics from the perspective of both the haptic
device and the human haptic system.

An aim of this thesis was the development of a prototype system for measuring
and mapping automatically a surface using the Novint Falcon as a haptic interface. A
major contribution of this thesis was the implementation of the mass-spring-damper
force model for the automatic motion of the end-effector as a force choice paradigm to
use the Novint Falcon as a robotic system.

This thesis has shown a modified version of the Novint Falcon end-effector to al-
low the acquisition of the surface properties by mapping its waveform using the motion
pattern performed by the system. Another contribution of this thesis was the design
and implementation of the end-effector on the Novint Falcon in order to accurately
achieve the waveform mapping.
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An objective of this thesis was to provide an approach for texture classification
using Fourier coeflicients as a suitable feature. Despite previous research using Fourier
coeflicients as a feature for classification, this research has shown that its implementa-
tion is feasible not only for virtual textures but also for physical textures.

5.3 Future Work

The research examined in this thesis was the haptic surface texture classification
using the frequency spectrum as a feature. Future work could adopt a similar approach
to that used in this thesis to explore other haptic information. On this context, further
investigation on human kinesthetic perception will be undoubtedly beneficial for the
overall research in haptic texture classification as well as the cutaneous perception.

Given the complexity of the sample surface textures used in this research, it is also
reasonable to assume that the work done could be replicate for other haptic properties

of the objects. This might include features as the hardness or viscosity of an object,
among others.

In addition, the limitations of this thesis research are partly consequence to as-
sumptions of a controlled environment where the experiment was performed. In spite
of this, it will be reasonable to seek the surfaces texture identification in unknown en-
vironments where other forms of haptic exploration need to be implemented.

Another area of research, that could complement the work done, is the implemen-
tation of multisensory information by combining the obtained haptic information with

data from other sensors as are the vision systems, in order to perform more complex
tasks.

However, based on the obtained results in this simplified research, it is believed
that the application of haptic surface texture classification in more complex robotic
systems and under no controlled environment is a challenge worth to tackle.
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Appendix A

Novint Falcon

Technical Specifications for Novint Falcon [6]

e 3D Touch Workspace 4 in x 4 in x 4in

e Force Capabilities > 2 Ibs

e Position Resolution > 400 dpi

e Quick Disconnect Handle < 1 second change time
e Communication Interface USB 2.0

e Size 9inx9in x 9 in

e Weight 6 lbs

e Power 30 watts, 100V-240V ,50Hz-60Hz

Recommended System Requirements [6]

e Processor: 2.4 GHz Processor

e OS: Windows XP Service Pack 2, Windows Vista,

e Graphic card: 256Mb 3D hardware accelerated graphics card
e DirectX Version: DirectX 9.0c

e Hard Drive: 1.5 GB free disk space

e Memory: 1 GB RAM

e Other: Broadband Internet Connection, USB 2.0 connection
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Appendix B

HDAL Layers Novint Falcon
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Figure B.1: HDAL Layers [6].
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C.4 Blueprint: Bottom View
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Figure C.4: Bottom View
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C.5 Blueprint: Views
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Figure C.5: Top View, Frontal View and Righ Side View
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