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Abstract 

Diabetes Mellitus disease is the principle cause of death in Mexico since year 2000, especially for the 
different complications that arise from this illness, such as heart, kidney, and hepatic failure. The 
principal risk factors that highly alter glucose concentration level in diabetic patients are carbohydrates 
consumption and prolonged exercise. This is due to a null insulin production in the Langerhans cells or to 
an increase of insulin resistance in the biochemical receptors of the body. 

Today's treatments for controlling blood glucose level, which are the injection of insulin boluses and 
the following of a special nutritional regimen, are very susceptible to human errors, so there is a latent 
possibility that damage can be done to the patients health. Therefore, it is indispensable to regulate 
glucose concentration level in an automatic form. 

In this research area, the scientist have mainly developed control strategies that impede glucose 
level to increase when the patients has a meal; successful results have been reported. However, no 
investigation was found concerned with the regulation of glucose level when physical activity is done, 
and which is an important factor, since prolonged exercise can cause hypoglycemic episodes that can 
lead to severe injuries in the person, even death. 

In this thesis research, two major innovations were achieved: a nonlinear statistical mathematical 
model that represents the effects of exercise on blood glucose concentration and the design of a 
feedforward predictive compensator that impedes glucose decrement. 

Successful simulations were obtained, since the proposed advanced control strategy regulated the 
blood glucose level when physical activity, limited to a duration of 120 minutes and from low to mid-
high intensity, was performed. Also, it was demonstrated that this algorithm can be applied along with 
control strategies that react to an increase of glucose level due to postprandial conditions. 
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Chapter 1 

Introduction 

Nowadays, long term healthcare treatment of several diseases requires special and careful attention. 
Diabetes Mellitus disease is one of the multiple examples that can be cited. According to stats from 
INEGI (Mexican Government agency in charge of demographic statistics), diabetes has been the principle 
cause of death in Mexico since year 2000, especially for the different complications that arise from this 
disease, such as heart, kidney, and hepatic failure. 

The care of this illness generally consists of applying a subcutaneous or intravenous injection of 
insulin, in an open loop way, meaning that the patient has to do it according to his previous experience 
or by measuring his actual glucose level in a manual form (Doyle, Jovanic, & Seborg, 2007). 
Nevertheless, there are several complications that can occur due to a mal-practice of the insulin shot, 
like hyper-hypo glycemic levels, causing from body ache to serious organ damage that could have 
decease as an outcome. 

There are other risk factors that can modify plasma glucose level, these being carbohydrates intake 
and prolonged exercise the major ones; these, respectively, increase and decrease the level. This is the 
main reason, why human physiology during exercise will be taken into account, as well the effects that it 
produces on insulin and glucose metabolism. 

Based on these reasons, as well as for patient comfort and safety, it is highly important to continue 
the pertinent research in automated systems that deliver an exact and precise quantity of insulin at the 
time the patient needs it. Insulin infusion pumps and glucose sensors have been the major technology 
issue for the last twenty year, a great number of control strategies that could be implemented for the 
regulation of the insulin-glucose physiologic system via negative feedback have been developed since 
1960, such as PID, Run to Run, One step ahead and other feedback techniques (Doyle, Jovanic, & Seborg, 
2007). However, because of the inherent integral action of these methods, an overdose of insulin might 
happen, resulting in a hypoglycemic episode for the user. 

As control strategies for this system improved, mathematical models representing insulin and 
glucose dynamics were needed, so the regulation of blood glucose levels could be assured. Several 
analytical models were developed, such as the models by Sorensen (Parker, 2000), Bergman (Khoo, 
1999) and Havorka (Doyle, Jovanic, & Seborg, 2007) that quantify the glycemic and insulin levels as a 
function of external and initial conditions, like carbohydrates intake, external insulin bolus, basal glucose 



and insulin level, etc. This is a priority when dealing with the automation of any system, knowing the 
response of the process depending on some conditions. 

According to Doyle et al. (2007) diabetic people can control their glucose level by following a special 
low carbohydrate diet and exercising in a moderate way for a brief period of time. The main reason why 
they can only exercise for a short time is because after 30 to 40 minutes, their glucose level tends to 
decrease at a high rate, and given the condition that they use insulin shots, hypoglycemic state will 
appear. In the next chapters, more information about physiology during exercise will be discussed. 

1.1. Justification 

The principle motivations for this research are: 

• Prolonged exercise can cause serious problems to the patient's safety if it is not regulated. 
• There is not a control strategy that impedes glucose level changes caused by exercise. 
• In the literature, a statistical physiological model was not found that suited glucose response due 

to exercise changes because of its nonlinear and unstable nature. 
• Controlling glucose levels caused by different perturbations can help in the creation of an 

artificial pancreas, improving people's quality of life. 

1.2. Problem Statement 

Eventual or unintended increase in physical activity for relatively short periods of time, below 2 hours 
in a continuous form, makes glucose plasma level decrease, causing undesired symptoms that can put 
the patient's life in danger, especially the ones with Diabetes Mellitus. So it is necessary to compensate 
the negative effects of exercising at a high intensity-

1.3. Objectives 

According to the needs stated in the justification section, the objectives of this thesis are 

• Analysis of the response of glucose level when exercise is done. 
• Combination of different analytical models, with the purpose of generating useful data that 

represent the system's behavior. 
• Development of a statistical model that relates exercise intensity and glucose level. 
• Design of a control strategy that compensates the effect of exercise on glucose level, without 

producing a hypo-hyper glycemic state. 
• Analysis of the combination of an exercise compensator and a PID control scheme. 



1.4. Contents description 

The organization of the contents of this dissertation are explained in the following paragraphs: 

Chapter 2 is divided in two parts. The first section deals with biological aspects, like the explanation 
of glucose, insulin and glucagon physiology and their role and effects on the body, description of 
Diabetes Mellitus (its symptoms and its consequences) and finally, human physiology during exercise. In 
the second part, systems identification and control theory are explained. 

In Chapter 3, the state-of-the-art of modeling and control of the glucose-insulin process is discussed. 
Chapter 4 deals with fitting of clinical reported data with the mathematical models that are used in 

this thesis. Also a comparison between the models by Sorensen and Bergman models is shown, as well 
as how they can be combined. 

Chapter 5 outlines the experiment design with the purpose of obtaining a statistical model that 
relates glucose rate of change with exercise, insulin and glucagon. It its explained why firstly Box-
Behnken Design (BBD) experiment is chosen; also the reasons for the selected inputs and output ranges, 
and finally the decision of using glucose rate of change and not glucose itself will be discussed. 

Chapter 6 presents the statistical model that fits the data generated by the simulated experiment. 
First the Hammerstein-Wiener modeling technique and its advantages are described; afterwards, the 
application of this method to the modeling of glucose rate of change is analyzed; and in the end, the 
methods of minimum square error for nonlinear systems and multiple regression used for obtaining the 
value of the parameters are mentioned. 

Chapter 7 explains the compensation algorithm to prevent glucose level from decreasing, via 
glucagon application, this is done using the inputs of the model and the measurement of glucose itself. 

Finally, Chapter 8 shows the results obtained using the exercise compensator and a PID controller in 
a dose loop way and what can be done in order to improve the efficiency of the compensator; and the 
conclusions of this thesis. 



Chapter 2 

Background 

This chapter is divided into two major parts: biological and control basics. The first part is an 
introduction to biological sciences, focused on the endocrinology of insulin and glucagon hormones, the 
definition of Diabetes Mellitus and its consequences, and the physiology during exercise. The second 
part summarizes modeling principles and presents the definitions of elements, variables, operation 
modes and types of control systems. 

2.1. Biological sciences 

2.1.1. Endocrinology basis 

For an optimal performance of the human body, cardiovascular, neurological, nephrological and 
endocrinological systems, among others, must work in a perfect form. Because this investigation 
involves the usage of several hormones, it is important to remark that the Endocrinological system has 
the responsibility of keeping them in a level so life can be sustained. 

According to Kronenberg (2002), an endocrinological hormone is a substance that is released by a 
glandule into the blood stream and has the capability of making the target organ to react, even if there 
is a long distance between them. The principal elements that form this structure are: hypothalamus, 
which is located in the front part of the brain; hypophysis, located underneath the hypothalamus; and 
glandules, like thyroid, testicles, ovaries, suprarenal, etc. The path how this system regulates the 
hormone levels is: 

• The hypothalamus (functioning as a sensor) detects a low concentration of the hormone to be 
regulated and sends a signal, another hormone, to the hyphofisis (acting as a controller), which in 
turn releases a secondary hormone to an specific glandule (working as an actuator), and this one 
discharges a last hormone to the target organ (that happens to be the plant). 



As it can be seen, this path has a huge importance since it allows feedback (negative or positive) of 
the current hormone level. In medical terms, a positive feedback means incrementing the release of a 
hormone, and a negative feedback, decreasing it. This control mechanism impedes an unbalance of 
hormones in the body, due to a large or a low concentrations of them, that can provoke diseases like the 
Cushing Syndrome. The main reason of failure in this path is when a tumor arises in any of its elements. 

It is important to remark the action mechanism and effects of the hormone released by a glandule in 
the target organ. The hormone anchors in specific receptors located in the cell membrane or in the 
nucleus and produces a desired reaction. If the receptors that detect the hormone are in the membrane, 
they generate a series of events, called second messengers, inside the cell, but if they are in the nucleus, 
their action consists on a modification of the DNA. 

2.1.2. Glucose and its metabolism 

2.1.2.1. Glucose structure 

Glucose, also known as Dextrose, is the molecule that gives most of the energy that human body 
o 
ii 

need. It is a monosaccharide classified as an aldohexose because it has an aldehyde group, - C - H , with 
six carbon atoms, and it enter most of the cells via passive transport, but when dealing with digestive 
organs, it needs an active transport, meaning that it uses an hormone to allow its entrance. 

According to McKee (2003), the roles of glucose in the organism are 

• Principal source of energy in the body. 
• Only source of energy of the brain and red cells. 

Glucose can be obtained by two ways: 

• Glycogenesis: deployment of complex carbohydrates, like lactose, maltose, etc., into glucose, 
and synthesis of glycogen from the excess of glucose. 

• Gluconeogenesis: transformation of proteins and lipids into glucose. 

Basically, there are two glucose isomers: D-glucose and L-glucose. The first enantiomer is the only 
one that can be used as a source of energy in cells. D-glucose can be found in two different structures, in 
a linear form and as a hemiacetal ring, the difference between them relies in their stability properties. 
Nevertheless, when glucose reacts with body fluids it does it in its open structure, but there can also be 
found hemiacetal ring structures (Ritter, 1996). 



Figure 1. Linear and Hemiacetal ring D-Glucose structures. 

2.1.2.2. Glycolysis 

Metabolism is defined as the chemical reactions that occur in the body in order to obtain energy 
(Guyton & Hall, 2001). It can be divided in two major parts: catabolism and anabolism. The first one is 
the process of converting complex macromolecules into simple molecules; anabolism designates the 
reactions that make a macromolecule from simple elements. 

Glycolysis is the metabolism of glucose. Depending on the organism and the cells specialization, there 
can be two types of glycolysis, which are aerobic and anaerobic. The usage of depends on the 
cardiovascular system's capacity of satisfying the oxygen and glucose uptake demands by the muscles 
(Alberts, 2002). 

Pasteur classified the cells in charge of oxidizing glucose in three categories: strict aerobe cells that 
form C02 and H20; anaerobe strict cells that form lactic acid and facultative anaerobe cells that behaves 
as either of the other two types of cells (Murray, 1993). 

Table I. Comparison between aerobic and anaerobic glycolysis. 

The conversion of glucose into energy has several biochemical steps that occur in the cells 
mitochondria, and takes different paths depending on the type of glycolysis. 

The first step is transforming glucose into pyruvate, in medical terms this is known as glycolysis. It is 
important to acknowledge that aerobic and anaerobic glycolysis follow these same reactions and the 
total gain of this phase is 4 adenosine triphosphate (ATP) and 2 nicotinamide adenine dinucleotide 
(NADH) molecules; the second step is called Kreb's cycle or Citric acid cycle, which has the function of 
capturing H* from the different reactions that happen inside the mitochondria; the third step has the 
main goal of generating ATPs from the hydrogen obtained in the NADH and FADH2 molecules via the two 
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previous steps; Oxidative phosphorylation is the third step and is in charge, literately, of energy 
generation. This process occurs in the intermembrane space of the mitochondria. 



Following, the principle reactions in glycolysis are described: 

1) Glucose-6-phospate synthesis. When glucose enters to the cell, a phosphate group coming from 
an ATP molecule is added via the hexokinase enzyme. This is known as phosphorylation 
reaction. The purpose of this reaction is to keep the glucose molecule inside the cell. 

2) Conversion from glucose-6-phosphate into fructose-6-phosphate. The glucose-6-phosphate 
aldose is changed into a fructose-6-phosphate ketose via an isomerization. 

3) Fructose-6-phospate phosphorylation. A phosphate from another ATP molecule is added. Until 
now, there has been only one investment of energy, and the resulting molecule is 6C-2P. 

4) Rupture of fructose-l,6-biphosphate. In this step fructose-l,6-biphosphate is split into 
glyceraldehide-3-phosphate and dihydroxyacetone phosphate. 

5) Interconversion of dihydroxyacetone into glyceraldehide-3-phosphate. Triosephosphate 
isomerase is the enzyme that is in charge of the conversion. This step allows the body to have 
two glyceraldehide-3-phosphates, which are the molecules that continue that next steps. 

6) Glyceraldehide-3-phosphate oxidation. In this step the gtyceraldehide-3-phosphate is oxidized 
and afterwards a phosphorylation reaction occurs giving a new molecule, 1,3-
bisphosphoglycerate. 

7) Transfer of the phosphate group. An ATP molecule is synthesized from the transfer of a 
phosphoryl group of 1,3-bisphosphoglycerate to an ADP molecule. The product is 3-
phosphoglycerate. 

8) Interconversion from 3-phosphoglycerate to phosphoenolpyruvate. Phosphoglycerate mutase 
enzyme converts the first mentioned molecule into 2-phosphoglycerate and afterwards into 
phosphoenolpyruvate. 

9) Pyruvate synthesis. A phosphoryl group is transfer to an ADP molecule via pyruvate kinase 
enzyme, in order to have the desired final molecule, pyruvate. 

If there is an anaerobic situation, pyruvate will transform into lactate, in order to give the energy 
needed by the muscles. On the other hand, if an aerobic process is being done, pyruvate will be 
transformed into Acetyl CoA. 



Figure 3. Glycolysis reactions. Taken from Alberts (202). 

After glycolysis process ends, the next biochemical reactions that occur in the organism are known as 
the Krebs cycle. 

This energy generation process occurs inside the mitochondria, and it has a net gain of 3 NADH, 1 
FADH2 and 1 ATP. Its main purpose is not the production of ATP but the attainment of hydrogen atoms. 
Citric acid cycle is divided in eight principal reactions (Alberts, 2002): 

1) Conversion of acetyl CoA to citrate. The acetyl CoA combines with an oxaloacetate molecule and 
via the citrate synthase enzyme to form citrate. 

2) Conversion of citrate into isocitrate and cis-aconitate. 



3) Oxidation of isocitrate. In this reaction the first NADH is generated by the oxidation of isoscitrate 
to ot-ketoglutarate. 

4) Conversion of a-ketoglutarate to succinyl-CoA. The first decarboxylation occurs and another 
NADH is obtained. 

5) Transformation of succinyl-CoA to succinate. The only ATP gain occurs. 
6) Oxidation of succinate. Succinate-dehydrogenase enzyme oxidizes succinate molecule, in order 

to obtain Fumarate and FADH2 

7) Transformation of fumarate to L-malate. Fumarate is hydrated and generates L-malate. 
8) Oxidation of L-malate to oxaloacetate. This final step generates the final NADH molecule. 

The reaction in this cycle can be summarized as: 

Acetyl CoA + 3 NAD + FAD + ADP + Pi +2 H20 -» 2 C0 2 + 3 NADH + 3 H + FADH2 +ATP + CoA 

Figure 4. Krebs Cycle. Taken from http://en.wikipedia.Org/wiki/File:Citriccycle.svg 

Finally, the last group of reactions is known as oxidative phosphorylation, which is the most 
important step. 

This process synthesizes ATP when electrons from NADH and FADH2 are transferred to 0 2 in the 
mitochondria's matrix. The total energy generation is in the order of 3 ATP / 1 NADH and 2 ATP / 1 
FADH2. 

The summary of this process is (Alberts, 2002): 

1) NADH and FADH2 are reduced by three enzyme electron complexes. 
2) The electron transport chain pumps H+ into the intermembrane space with the purpose of 

generating a H+ gradient. 
3) Due to a H+ gradient increase in the intermembrane space, H+ are returned to the mitochondria's 

matrix using an H+ pump, also known as ATP pump. 

http://en.wikipedia.Org/wiki/File:Citriccycle.svg


4) For an ATP bomb can be used, the complex ADP + Pi (phosphate) must link to it. After the 
process is done, H+ returns to the mitochondria's matrix and a new product is formed, ATP. 

Figure 5. Oxidative phosporylation process. Taken from Alberts (2002). 

As it has been seen, conversion from food to energy is a very complex process, which involves a lot of 
reactions, but all of them can be regulated depending on the body's needs using enzymes. 

2.1.3. Glucose regulation via insulin and glucagon hormones 

According to Guyton (2001), the normal glycemic range in the plasma is 60 - 110 mg/dL. When the 
level drops or is increases beyond these values, the patient starts to feel illness, presenting symptoms, 
like lack of energy, paleness, headache, among others. It is in this situation when the endocrinology 
system starts its control with the goal of keeping glucose in the desired range. The two hormones 
involved in glycemic regulation are insulin and glucagon. 

2.1.3.1. Insulin effects 

Insulin is an essential life hormone secreted by the Langerhans cells in the pancreas. This hormone 
has hypoglycemic and protein anabolic effects (Dvorkin & Cardinali, 2003). Insulin secretion is associated 



with energy abundance, that is, in presence of a meal bolus (especially carbohydrates) this hormone will 
be in charge of lowering glucose level. 

Another aspect of insulin is its capability of inducing reserves from excess energy; it causes excess 
glucose to be stored in the liver and muscles in form of glycogen (via glycogenesis) and in adipocyte cells 
as fat (Guyton & Hall, 2001). 

The goal of the insulin action mechanism is to increase the membrane permeability of cells to 
glucose, so this molecule can enter the mitochondria's matrix and its metabolism can start. 

2.1.3.2. Glucagon effects 

Like insulin, this hormone is produced in the Langerhans cells, but its functions are the opposite of 
those of insulin, meaning that it is secreted when the glycaemic level drops and with hyperglycaemic 
and catabolic effects. It can be defined as a stress hormone, designed to mobilize energy reservoir 
(glycogen, triglycerides) upon an increased glucose uptake demand (Dvorkin & Cardinali, 2003). 

As it was explained in section 2.1.1, glucagon has to anchor to special receptors in the desired cells, 
so its effects can accomplish its goal of stimulating glycogenolysis, gluconeogenesis, ketogenesis and 
protein catabolism (Dvorkin & Cardinali, 2003). 

2.1.4. Diabetes Mellitus 

When there is a problem with insulin receptors or insulin hormone production, usually absence of 
Langerhans cells, glucose plasma level will increase because it won't be able to enter the target cells, 
causing diseases in the organism. This complication is called diabetes mellitus and also includes 
alteration of protein and fat metabolism. 

Diabetes mellitus can be divided in two types, which are 

• Type I, also known as insulin dependent diabetes. 
This class of diabetes arises when there is a failure in insulin production in the Langerhans B-cells 
due to a genetic problem, virus infections or immune system disorders. According to Guyton (2001), 
its symptoms usually start in the age of 14 with three essential sequels: hyperglycemic level, 
increased fat metabolism and protein reduction. With this kind of diabetes, the glucose level 
increments to 300 -1200 mg/dL. 

Type I diabetes effects: 

o Loss of glucose via the urine. When the glycemic level arises, more glucose is filtered to the renal 
tube than the quantity that can be absorbed, so part of the plasma glucose will end up in the 
urine. 



o Dehydration. It occurs due to an increase of the osmotic pressure in the extracellular 
compartment, provoking water to flow outside the cell. 

o Tissue lesion. A chronic hyperglycemic level will have a negative impact in the blood vessels, 
causing a morphological change in them and poor irrigation of several organs. This syndrome will 
increment the possibility of myocardial infarction, ictus, lethal renal diseases, retina injure, 
blindness and limbs gangrene. 

o Usage of fat and protein as energy. The alteration of the carbohydrate metabolism will induced 
the usage of fat to satisfy the energy uptake demand. Nevertheless, the production of keto acids 
is greater than its consumption, this will provoke a metabolism acidosis that can take the patient 
to a diabetic coma. Also protein will be used for energy considerations, causing dystrophy in the 
organism tissues. 

• Type II, also known as non-insulin dependence diabetes or insulin resistance. 
In this kind of diabetes, there is insulin production but the cells sensitivity to this hormone is very 
low. As in type I, metabolism of carbohydrates, fats and proteins metabolism is altered, and 
symptoms are almost the same except for the high production of keto acids. 
This is the most common type of Diabetes mellitus, since it includes 90% of this disease cases and it 
usually starts at the age of 50 (Guyton & Hall, 2001). 

Type II Diabetes effects (Guyton & Hall, 2001): 

o Increase of plasmatic insulin. Due to a lack of sensitivity in the insulin receptors, glycaemic level 
increments, this situation makes the 3-Langerhans cells produce more of this hormone in order 
to lower the glucose level, but the response will not be the desired one because of receptors 
resistance to insulin. 

o Obesity. There are two theories of how obesity and diabetes are related. One indicates that 
obese people have less insulin receptors in the muscles, liver and adipose tissue. The other 
expresses that there is an alteration in the activation signals on the insulin receptors. 

Table II. Comparison between Diabetes Type I and Type II. 



Depending on the type of diabetes the patient has, there are several treatments to follow. If it is type 
I, the only remedy is the external insulin shot, which is classified in two forms: the regular injection, for a 
basal one-day-long effect, and the supplementary injection, that is taken before a meal. 

For type II, exercise and diet are the first treatment. According to Kronenberg (2002), exercise will 
increment insulin sensitivity in the cells, and glycemic level will decrease as consequence. If this fails, 
insulin shots have to be taken (Guyton & Hall, 2001) 

2.1.5. Homeostasis changes during exercise 

During exercise, the body's physiology suffers increased heart rate (HR), blood flow (Q), oxygen 
uptake (V02) and insulin sensitivity. Also plasma glucose and insulin levels decrease (Guyton & Hall, 
2001; Firman 2005). Although these changes are beneficial to the organism because it improves the 
quality of life of people, if a patient has an illness, like Diabetes Mellitus, exercising at a high intensity or 
for a long time can provoke serious issues to his health. 

2.1.5.1. Effects on Heart Rate 

According to Firman (2005), the heart rate in an adult person is approximately 78 heart beats/min, 
but if a person is exercising, it will raise up to 200 heart beats / min, depending on the duration and 
intensity of the exercise. 

Firman showed evidence that HR has a direct relation with oxygen uptake, that depends on the 
active muscles demand. Firstly there is not enough quantity to satisfy the needs, so a chemical 
stimulation is induced in order to increase the HR; as a second stage, the increment of the HR will also 
increase the heart and blood flow, allowing faster oxygen transportation to the active muscles. 

2.1.5.2. Effects on Oxygen Uptake 

In an adult person, the normal oxygen uptake is 250 mL/min, but it can rise up to 5100 mL/min, 
depending on the physical resistance. Additionally, this measure can vary due to the person's gender 
and age. Therefore, it is preferable to handle a percentage of maximum oxygen uptake ratio (PV02

max or 
V02

msx), in order to make comparisons among people. 

Fehlig and Wahren (1975) reported that PV02

max has a basal value of is 8% and takes approximately 
from 4 to 5 minutes to reach its maximum. 

2.1.5.3. Effects on Blood Flow 



In basal conditions, the skeletal muscle only receives 15% of the total heart flow; also the arterioles that 
irrigate those muscles are closed. However, when exercise begins, the following reactions occur (Firman, 
2005): 

1. At the beginning of the exercise, as it was explained, heart rate and heart flow increase; this 
situation induces a reaction in the sympathetic nervous system that will open the arterioles in 
the skeletal muscles and close the ones in the abdominal region and skin, this is done with the 
purpose of pumping more blood to the active muscles. 

2. The increase of metabolism waste products of skeletal muscles acts as a direct signal in the 
nervous system, so arteries nearby can dilate, allowing active muscles to receive the blood flow 
from other zones of the organism; the arterioles from those regions will be closed due to a 
signal sent by the sympathetic nervous system. 

With the knowledge of these effects. Chapman & Mitchell (1965) realized a research pointing out the 
variations of blood flow in the organs during exercise. It is indispensable to remark that all of these 
changes are consequences of the active muscular mass, and this one is linked directly to an increase in 
PV02

max; according to Andersen et al. (1985), this means that blood flow in active muscles is a linear 
function of exercise intensity. 

Table III. Relationship between blood flow (dL/min) in organs and exercise intensity (%). 

2.1.5.4. Effects on glucose and insulin plasma levels 

Firman (2005) indicates that during the first 15 minutes of exercise, glycogen stored in the muscles 
and plasma glucose is used to satisfy the energy needs; in a second phase, after 30 minutes of exercise 
had passed, liver glycogen is consumed; and after 40 to 90 minutes, fat metabolism is used in order to 
obtain energy. All this mechanism has the goal of giving the maximum energy to the active muscles so 
their demand is fulfill. 

The risk that diabetic patients have when they exercise in a moderate or high intensity form is that 
their plasma glucose level will decrease in such a way that they will suffer of hypoglycemia, causing 
them several uncomfortable symptoms. 



2.2. Systems Identification and Control Theory 

2.2.1. Systems Identification and Modeling 

According to Ogata (2002), a system is defined as a combination of components that act together 
and perform a certain objective. In order to fully comprehend any system found in nature, it is necessary 
to understand and represent how it responds to a known input variable or several inputs. This concept is 
known as system modeling. 

The process of modeling a system can be done in an analytical form, this means that the 
mathematical model of the system is achieved through the use of laws of physics. Nevertheless, since 
most of the processes are nonlinear and complex this method is usually very difficult to follow. Hence, 
another technique is the statistical one, which basically is the adjustment of parameters in a firstly 
proposed model structure, using the inputs that excited the system and the consequently responses. 

The major advantage of the last explained method is that it can be applied with successful results, 
even if the engineering does not know its internal elements, the only set back is that several times the 
adjustment techniques are so difficult that the identification can fail. 

Figure 6. Statistical identification of a system. 

Basically, the algorithm to identify a system via the statistical scheme is (Ljung, 1999): 

1. Experiment design. This is an essential step because it has to be developed in such a way that it 
gathers all the system's dynamics. If the experiment is dysfunctional the data generated will not 
be reliable, causing lack of veracity of the identified model. There are several methods of 
designing an experiment, for further information look in (Montgomery, 1985). 

2. Obtained data. All the inputs and outputs that resulted in the experiment must be recorded, 
because they will be needed in the adjustment of the model structure. Input and output variables 
were determined in the experiment design. 

3. Model structure proposal. This is the most difficult stage in the algorithm and a special attention 
must be considered, because if the model structure selection is incorrect, it will not behave as 
the real plant and possibly the adjustment technique will fail. 



4. Parameters adjustment criterion. In this section, a mathematical algorithm must optimize the 
parameters of the proposed model, in order that the response of the model would be the same 
as the system. Usually minimum square error method is used. 

5. Model validation. After applying the same inputs to the system and the model, the responses will 
be compared, and if they are the same, the model is said to be reliable. 

Figure 7. Block diagram of statistical modeling. 



2.2.2. Control Theory 

A model is a tool for the analysis of a process and a means to explore its interaction with other 
elements by simulation instead of experimentation (with the real process). So, a mathematical model 
must aim to give reliable information about the process dynamics and help to improve or deepen the 
understanding of the process as well. 

Control theory can be used to modify the dynamics of the process response in order to get a specific 
behavior. 

A control system consists of the following four basic elements: 

1. Process. It is the physical element to be controlled. 
2. Sensor - Transmitter. It is in charge of measuring the response of the system and traducing it to 

a signal the can be compared with the reference, commonly to an electric signal. 
3. Controller. It is the brain of the system, because it is in charge of changing the systems dynamics 

to accomplish a desired behavior (Smith & Corripio, 2006). 
4. Final control element. It is also known as the actuator, since it is the responsible of the physical 

action over the system, depending on the signal sent by the controller, 

The main information flows among the above components constitute the variables of the system 
which are listed below: 

1. Process variable. It is the response of the system. 
2. Set point. It is the trajectory to follow by the response of the system, also known as the 

reference. 
3. Error. The result of comparing the reference with the actual output of the system is known as 

error. 
4. Manipulated variable. It Is the signal sent by the controller to the actuator. 

5. Disturbances. External signals that affect the control system, they usually can be found after and 

before the plant. 
6. Noise. Alterations of the measurement of the process variable due to electromagnetical 

interferences with the sensor. 

A control system can be operated in manual and automatic modes, which correspond to the open 
and closed loop configurations, respectively: 

• Open loop system. In this system, the process variable has no influence on the control action. 
This means that the process variable is neither measured nor fedback for comparison with the 
set point. 

• Closed loop system. In this system, the process variable and the reference are compared and 
using the difference is used by the controller to determine a corrective action. 



Figure 8. Control system block diagram. R(t) is the reference signal, 
eft) is the error, m(t) the manipulated variable, u(t) the input to 
the system, y(t) the output, b(t) the measured output. D(t) is the 

disturbance at the output, and N(t) noise added to the sensor. 

As mentioned above, the purpose of applying a control action is to force the output of the system to 
a desired reference, even if disturbances are being applied to the system. Nevertheless, according to 
Smith & Corripio (2006), there are two control objectives: 

1. Regulatory control. When the controlled variable deviates from the set point because of 
disturbances, this control scheme will compensate the undesired effects in order to return the 
variable to a specific reference. 

2. Servo control. This control scheme is used when it is desired that the output of the system 
follows a change in the reference. 

Knowing the two basic schemes of control theory, several strategies have been developed in order to 
design the controller; those methods mostly depend on the complexity of the system. In the next 
chapter, some advanced control strategies will be explained. 



Chapter 3 

State of the art 

This chapter contains the principal models that have been used to represent the plasma glucose level 
behavior, as well the control strategies that have been applied to the glucose-insulin system, and finally 
it will be pointed out the areas of opportunity that could increase the performance in this complex and 
nonlinear system. 

3.1. Glucose model development 

As stated in chapter 2, the plasma glucose level depends on several factors, such as insulin and 
glucagon hormones, exercise, meals, among other. So, in order to develop a model that quantifies the 
glucose in the blood, it is necessary to take in count most of those aspects or, if possible, all of them. 

Since the human body could be harmed if experiments were done in an unpractical form, the 
analytical approach is often used to obtain a physiological model, in the next sections, these models are 
explained. 

3.1.1. Ackerman's model 

In 1965, Ackerman and colleagues developed one of the first known mathematical analysis of insulin 
-glucose interactions (Parker, 2000). Basically, it considers only one global compartment that represents 
the plasma glucose and insulin in the body (Sanchez, 2008). This model was developed, via an 
experiment that is known as glucose tolerance test. This test is used to observe how the blood glucose 
concentration behaves after a patient intake a high carbohydrates meal (Guyton & Hall, 2001). 

The Ackerman model can be described by the next nonlinear equations: 



(3.1) 

(3.2) 

The initial conditions are specified as: G(t = 0) = G0, H(t = 0) = H0, p(t = 0) = 0 and u(t = 
0) = 0. The variable G(t) is the glucose level in plasma, H(t) is the hormone level (in this case, insulin 
concentration), p(t) is the external intake of glucose and u(t) is the insulin infusion rate (Sanchez, 2008). 

Equations 3.1 and 3.2 are mass balances that represent the inputs and outputs of the compartment 
described by Ackerman. The factors involved are self-removal of glucose, reduction of glucose in 
response to insulin, self-removal of insulin, increase of insulin due to glucose increment, external 
glucose and insulin uptake. So this model can be converted into a linear one for a specific narrow range 
as 

(3.3) 

(3.4) 

Using the constants obtained by Yipintsol et al. (1975) for the Ackerman model in terms of deviation 

variables g(t)= G(t)-G0 and h(t)= H(t)-H0, the final equations are 

(3.5) 

(3.6) 

It can be seen in equation 3.6, that insulin increment due to glucose increase is neglected since 
diabetic type I patients cannot produce this hormone (Sanchez, 2008). The constants are in min"1. 
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3.1.2. Sorensen's model 

3.1.2.1. Sorensen's base model 

In 1985, Sorensen developed a nonlinear 19th order glucose-insulin model, based in the differential 
concentration balances in the main organs, such as, brain, heart, liver, kidney and periphery, which are 
involved in the glucose -insulin interaction. In figure 9, a schematic of the different compartments in the 
model is presented. 

Figure 9. Compartments in Sorensen's model 

The parameters of the Sorensen model were obtained using clinical data (Sorensen, 1985). The 
model considers metabolic sink and source rates, and convection and diffusion transport mechanisms 
for glucose and insulin. Later improvements have been proposed by different researches to include the 
effects of meal and exercise disturbances (Parker, 2000; Lenart & Parker, 2002). 

It is important to state that this model includes the two hormones involved in arterial glucose 
regulation, insulin and glucagon and how they interact with the main organs. More detailed information 
can be found in Appendix 1 and in Sorensen (1985). 



As an example of the balances of the model, the differential concentration balance of the brain is 
shown in equations 3.7, 3.8 and 3.9. 

Where, VB is the volume of the capillary space, GB is the glucose concentration in the brain (mg/dL), 
GH the total arterial blood glucose concentration, qB vascular flow rate (dL/min), VB is the volume in the 
interstitial space, TB is the diffusion time constant (min), GB is the glucose concentration in the 
interstitial space, r B U is the metabolic sink rake in the brain, and the terms in equation 3.9 mean the 
same but with insulin hormone. 

3.1.2.2. Sorensen's model with the addition of exercise as a disturbance 

In chapter 2, glycolysis route and exercise effects in homeostasis were explained, and it could be 
inferred that exercise will produce several changes, like an increase of glycogenolisis and 
gluconeogenesis and oxygen consumption rate, and a decrease of glucose concentration along with 
other effects. 

Knowing the clinical consequences is not enough, so it is necessary to compute them in a model, in 
order to represent their interaction with the plasma glucose and insulin dynamics. Lenart & Parker 
(2002) modified Sorensen's model with the intention of adding the exercise disturbance and the 
alterations that it produces in glucose and insulin levels. 

The modified variables and new variables are 

1. FAMM (active muscular mass fraction) [dimensionless] 
2. PAMM (active muscular mass percentage) [%] 
3. P V 0 2

m a x (percentage of maximum oxygen consumption rate) [%] 
4. Blood flows. [dL/min for glucose compartments and L/min for insulin compartments] 
5. PGU (glucose uptake by the periphery) [mg/min] 
6. PGUA (glucose uptake by the periphery due to exercise) [mg/min/kg] 
7. HGP (hepatic glucose production) [mg/min] 
8. HGPA (hepatic glucose production due to exercise) [mg/min/kg] 

(3.7) 

(3.8) 

(3.9) 



9. KIU (insulin uptake by the kidneys) [mU/min] 
10. PIU (insulin uptake by the periphery) [mU/min] 

Firstly, PV02

max is quantified, using the clinical data reported in section 2.1.52., via the following 
equation: 

where, PVO™ax is the target exercise level of the patient at steady state. 
In second place, PAMM was calculated as: 

According to Snyder (1975), the total volume of muscle mass in a 70 kg patient is 28 kg. X is the actual 
active muscle mass. 

Equations 3.10 and 3.11 quantify the exercise done by a person. Equation 3.10 is necessary, since 
measuring PAMM is unlikely due to its difficulty (Lenart & Parker, 2002). 

The next step is to introduce the glucose and insulin uptakes due to exercise, being the first one a 
direct function of PVO™"* dynamics. Clinical data have been reproduced using Pick's law (Ahlborg & 
Felig, 1986). In figure 10, the reported clinical data are shown. 

(3.10) 

(3.11) 

(3.12) 



Figure 10. Peripheral glucose uptake by exercising muscle. Solid line is the prediction 

by the model proposed by Lenart and dash-dot is the clinical data. The upper figure 

corresponds to 30% PVOfax
 and the lower figure is for 60% PVOf1*. Taken 

from Lenart & Parker, 2002. 

From figure 8, the steady state value of PGUA is 28 mg/(min kg muscle) for 30% of PVO^ and 75 
mg/(min kg muscle) for 60% of of PV0™ax. Lenart and Parker (2002) developed the following equation 
for PGUA dynamics: 

(3.13) 

After getting the peripheral glucose uptake due to exercise, it is necessary consider it on the total 
peripheral glucose uptake, remarking that this is sensible to contributions from insulin and glucose, the 
new equation is 

(3.14) 



In the equation, M is a dimensionless factor representing the effect of the corresponding hormone or 
disturbance, which are indicated by the superscript letters /, G and E for insulin, glucose and exercise, 
respectively. The constant 35 [mg/min] is the basal peripheral glucose uptake. 

Clearly, the factor the ME must be altered by PGUA. Lenart & Parker (2002) propose 

(3.15) 

Equation 3.15 is multiplied by the factor 28 kg and dived by the basal PGU value in order to obtain a 
dimensionless variable. The constant 1 is used because if no exercise is done, the peripheral glucose 
uptake must not be altered by this modification. Equations 3.14 and 3.15 were defined, so the 
peripheral glucose uptake increases up to 20 times the basal level, according to the clinical data 
reported. 

Concerning to hepatic glucose production due to exercise, Lernat & Parker (2002) assumed that it is 
the same as its uptake. So the total hepatic glucose production was described as 

(3.16) 

In the equation, N stands for glucagon and the constant 155 [mg/min] is the basal hepatic glucose 

production. Once again, the factor ME must be altered by HGPA. Lenart & Parker(2022) propose 

As glucose decreases, according to section 2.1.5.4., insulin must do it too. Lenart & Parker (2002) 
represented the uptakes in the Kidney and Peripheral with the following functions: 

(3.18) 

(3.19) 

(3.17) 



In equation 3.15, F is a fractional extraction term representing a portion of insulin removal from the 
blood stream upon entering the kidney compartment, Ql

K is the kidney blood flow rate (L/min), lH is the 
Insulin blood concentration (Lenart & Parker, 2002). Also, the author considered that PIU has a direct 
relationship with the exercise done where it is affirmed that maximum PIU due to exercise, is 3.4 times 
the basal level. In equation 3.19, r, is a diffusion time constant from vascular to tissue space in the 
muscles, IP is the insulin concentration in the muscle, Q'P is the peripheral blood flow rate through the 
capillary space in the muscles. The values of the parameters can be found on Appendix 1. 

The outcomes of the authors' simulation can be seen in figures 11 and 12. 

Figure 12. Glucose response to a 60% PVO™"* step. Dotted line represents 

the output of the model. Taken from Lenart & Parker (2002). 



As it was stated by the authors, this model is only valid for periods of exercise shorter than 90 
minutes. 

A diagram of the resulting model is expressed in figure 13. 

3.1.3. Bergman's model 

3.1.3.1. Bergman's base model 

In 1981, a glucose-insulin minimal model was developed by Bergman. It quantified the pancreatic 
responsiveness and the insulin sensitivity in a diabetic patient using a three-compartmental 
mathematical model (Roy & Parker, 2007). The compartments of plasma insulin (/, uU/mL), remote 
insulin (X, pU/mL) and glucose (G, mg/dL) are represented using differential concentration balances. 
Figure 14 depicts a schematic of the model. 

The interaction among the compartments is the following: external insulin is infused into the 
body, so some of this exogenous hormone enters the remote insulin compartment in order to promote 
glucose uptake by the liver and the periphery. Glucose compartment can be altered if external glucose 
enters the system via u2. The initial plasma insulin concentration is represented as lb and is achieved by 
a basal insulin supply ulB. 



Figure 14. Bergman's minimal order model of glucose-insulin interaction. 

The model is described by the following equations: 

(3.20) 

(3.21) 

(3.22) 

The values of the parameters in equation 3.20-3.22 are shown in Table IV. 

Table IV. Parameters values of Bergman's minimal order model. 



3.1.3.2. Bergman's base model with the addition of exercise as a disturbance 

As in section 3.1.3.1., the first step is the quantification of exercise intensity. Roy & Parker (2007) 
used the following equation: 

(3.23) 

Remembering that PVO™*1* at a basal level is 8%, u3(t), representing the ultimate exercise intensity 
above the basal level, can only be in the range from 0 to 92%. The value of T= 1.25 (min), was chosen so 
the ultimate exercise intensity could be achieved at 5 minutes. 

Roy added the principal effects of exercise, which Lenart also considered, but he also represented 
the effect of glycogenolysis, that is not figured in Sorensen's model, as well the result of insulin drop in 
the plasma. The new modified Bergman's minimal order model was adjusted to fit the data reported by 
Wolfe and colleagues (1986): 

(3.24) 

(3.25) 



(3.26) 

(3.27) 

(3.28) 

(3.29) 

where, Ie(t) (u.U/mL/min) represents the rate of insulin removal from plasma due to exercise, 

^ - ( G P r o d ( 0 — Ggiy(t)) is the total glucose production, GProd(t) (mg/kg/min) is glucose production 

due to exercise and Ggly(t) (mg/kg/min) is the decline rate of glycogenolysis during exercise. GUp(t) 
(mg/kg/min) is the uptake of glucose by the muscles, W (kg) is the total weight of the patient and 
VolG is the volume of the glucose compartment (capillary space). The values of the parameters are 
shown in Table V. 

Table V. Parameters values of modified Bergman's minimal order model 



In order to obtain the dynamics of how glycogenolysis rate decreases depending in exercise intensity 
and duration, Roy fitted a sub-model of it using clinical data reported by Pruett (1970). The submodel 
explains that glycogenolysis rate starts to decrease when the energy required for satisfying the demands 
due to exercise reaches a threshold, which is a function of exercise duration and intensity: 

(3.30) 

(3.31) 

(3.32) 

where ATH (%) is the threshold value, it3(t) (%) the exercise intensity, tgly (min) is the duration of 
exercise that can be done at the desired intensity, before the glycogenolysis rate starts to decrease. 
Figure 15 shows how equation 3.32 was obtained. 

figure 15. Dependence of glycogen depletion commencement time, t9/yon exercise intensity u3(t). 

Taken from Roy & Parker (2007). 

It is important to calculate the threshold value, ATH as direct function of exercise intensity, so 
equation 3.32 is substituted in 3.31, to get 



(3.33) 

With ATH already computed, it is required to obtain the value of the total intensity of the exercise 
done A(t), which is calculated as 

(3.34) 

The final step is to represent the glycogenolisis dynamics as a function of exercise intensity and the 
threshold value, which can be seen in equation 3.35: 

(3.35) 

where k and 7̂  are constant parameters that stand for glycogenolisis decline rate due to exercise 
and the time needed so glycogenolysis rate level returns to its basal value, respectively. 
The effects modeled by equations 3.30 - 3.35 can be summarized as: when exercise at a desired 

intensity is done, the glucose demands are met until a threshold value is reached, at this point the 
glucose production will start to decrease because all glycogen stored in the liver and muscles will start to 
deplete, causing glucose level to decrease until exercise is stopped. Finally, in the recovery time, 
glycogenolysis rate starts to increase. Table VI, shows the value of k and T^. Figures 16 and 17 show the 
results obtained with this model. 

Table VI. Parameters values of glycogenolysis depletion rate 



Figure 16. Glucose (Top) dynamics due to exercise at intensity of 30% PVO™ax, 
lasting from t=0 to 120 minutes. Published data (circles) from Ahlborg. 

Model fit (solid line), and 95% confidence interval of fit (dotted lines). 

Glucose uptake (middle) and Glucose net liver production (Bottom) 

Taken from Roy & Parker (2007). 

Figure 17. Glucose dynamics due to exercise at intensity of 60% PVO™0*, 
lasting from t=0 to 210 minutes. Published data (circles) from Ahlborg. 

Model fit (solid line), and 95% confidence interval of fit (dotted lines). 

Glucose uptake (middle) and Glucose net liver production (Bottom). 

Taken from Roy & Parker (2007). 



3.2. Glucose control strategies 

Since 1960, scientists were encouraged to develop control strategies to regulate plasma glucose level 

by automation of insulin delivery devices (Doyle, Jovanic, & Seborg, 2007). It is important to notice the 

basic variables involved in this system: 

1. System: glucose - Insulin interaction. 
2. Actuator: insulin infusion pump or Insulin injection. 
3. Sensor: glucose detector 
4. Manipulated variable: external insulin or glucagon 
5. Process variable: plasma glucose level 
6. Disturbances: high carbohydrate meals, exercise, etc. 
7. Noise: electromagnetical interferences with the sensor signal. 

Figure 18. Block diagram of glucose - insulin control system. 

Several control techniques have been applied in the last 30 years to this physiological system, from 
feedback to advanced strategies. The usage of more sophisticated techniques arose because simple 
methods lack of accuracy in glucose level regulation and often present hypoglycemic episodes due to an 
excess of insulin infusion. Some of the techniques that have been proposed in this issue are: 

• Feedback control 

• Adaptive control 

• Robust control 

• Optimal control 



3.2.1. Feedback strategy 

3.2.1.1. Definition 

This strategy is based in the generation of an error signal, which is the subtraction of the desired 
reference and the response value. The manipulation signal that is calculated as a function of the error is 
sent to the system, in order to take the response variable to the reference point. There are several 
algorithms that can be implemented using this technique, such as on - off, PID control, etc. 

3.2.1.2. Application to glucose-insulin system 

According to Doyle (2007), the first feedback strategy applied to glucose-insulin system was on - off 
control. Basically its function is sending the top value of the calibrated manipulation (insulin supply), if 
the error is negative (glucose above normal level), and sending the lowest value if the error is positive. 
The PID and PD controller have also been used; detailed information of these algorithms can be found in 
Ogata (2002). Nevertheless, these strategies have some disadvantages such as the offset error in the 
case of the PD and hypoglycemic levels due to an excess of insulin infusion caused by the integral action, 
in the case of a PID (Doyle, Jovanic, & Seborg, 2007). 

3.2.2. Feedforward strategy 

3.2.2.1. Definition 

The main goal of a feedforward strategy is the compensation of disturbances that affect the output 
variable in the closed loop system (Rollins et al., 2008). For designing a disturbance compensator, it is 
necessary to measure and model the disturbance that is impacting the system (Smith & Corripio, 2006). 
Figure 19 depicts a schematic of this technique. The major advantage of this strategy is that it maintains 
the output variable at a desired value, by rejecting the disturbance effect in the system. 

3.2.2.2. Disturbance modeling applied to the glucose - insulin system 

The most common perturbations in the glucose-insulin system model are meals and exercise, among 
other body variables (Rollins et al, 2008). In a study reported by Rollins and colleagues, a model of the 
response of glucose levels to different disturbances is approximated. The modeling technique employed 
was the Hammerstein - Wiener (H-W) strategy, which is explaiend in chapter 4 of this thesis. According 
to the authors, the strength of this method relies in that the response of glucose can be predicted with 
the use of different inputs, based on the dynamics of each of these inputs. The results presented by 
Rollins can be seen in figures 20. Rolins and conworkers have suggested the use of H-W modeling for 



feedforward control, but they have not reported such application. This thesis designs a feedforward 

control based on H-W modeling. 

Figure 20. Glucose response prediction due to different inputs using H-W 
method in a five days trial. Taken from Rollins et al. (2008). 



al. 
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Figure 21. Glucose response prediction due to different inputs. Using H-W method on a five days tri

Scale on the right is for glucose(mg/dL) and left for the dynamic response of the input. Black line

represents the output of the HW model. Gray line corresponds to experimental data.Taken from Rollins

(2008). 

10/12/06 10/13/06 10/14/06 10/15/06 10/16/06 10/17/06 
7:12 7:12 7:12 7:12 7:12 7:12 

Figure 22. Glucose response prediction due to different inputs. Using H-W method on 

a five days trial. Scale on the left is for glucose (mg/dL) and right for the dynamic 

response of the input. Taken from from Rollins et a I. (2008). 



3.2.3. Adaptive control strategy 

3.2.3.1. Definition 

Adaptive control is a strategy that has the advantage of estimating the system's parameters online, 
using only its outputs and inputs. The updated parameters are used to adjust the controller continuously 
based on a reference model and a performance criterion (Slotine & Li, 1991). 

This technique has the objective to reduce the parameter uncertainty in the model, as the operating 
point is changed. Figure 23 shows a scheme of the adaptive control strategy. 

Figure 23. Block diagram of adaptive control strategy. 

3.2.3.2. Application to glucose-insulin system 

Variations of adaptive control, such as model-based predictive control (MPC) and run to run (R2R) 
techniques have had success in regulating glucose level (Doyle, Jovanic, & Seborg, 2007). MPC uses a 
reference model that is updated at a certain moment, depending on the outputs and inputs of the 
system. This strategy has the advantage that it does not need an error signal to control the plant and 
that it predicts the behavior of the output value before it happens. 

On the other hand, the R2R strategy divides the day in five segments, and after the day ends, 
performance measurements of each segment are done in order to adjust the parameter values of the 
controller for the next day (Palerm, Zisser, Jovanovic, & Doyle, 2008). In the glucose-insulin system, the 
five segments are: before breakfast, sixty minutes after breakfast, sixty minutes after lunch, before 
dinner and finally sixty minutes after dinner (Campos-Delgado, 2008). With the glucose level 
measurements at each segment, the controller adjusts the insulin quantity that must be released in the 
next day at a specific segment. This technique has the advantage that the parameters do not have to be 
updated in a continuous form. 



According to Palerm (2008), in order to have a successful regulation of glucose, the algorithm must 
iterate at least five times, this means that 40 measurements must be done before a fine result can be 
obtained with the strategy. Nevertheless, the disadvantage of this technique is that it considers that 
carbohydrates intake and insulin bolus are the same for a specific segment in all the days; in other 
words, the disturbances in the segments of one day can be different, but the following days must be the 
same as the first one. So this limits the application of the R2R strategy. 

Figure 24 shows the results obtained by Palerm, 2008. As it can be seen, after five days of running 
this strategy, the regulation accuracy improves. 

Figure 24. Results of glucose regulation using R2R strategy. 

The test was done for 14 days in a row. Taken from Palerm (2008). 

3.2.4. Robust control strategy 

3.2.4.1. Definition 

Robust control theory considers that a controller can be synthesized in order to regulate a system, 
even if its parameters are not the exact ones that correspond to the real plant. It also allows the 
representation of the uncertainty of the parameters. This means, that the designed controller will be 
able to regulate different plant dynamics, near the desired operation point, in a satisfactory way. More 
information can be searched in Skogestad's book work (2005). 



3.2.4.2. Application to glucose-insulin system 

In 1993, Heinz Kienitz synthesized a //<„ controller to regulate the plasma glucose level. He used a 
state space representation of the system and counted the effect of insulin, glucagon inputs and meal 
disturbances. The main goal of the author was to minimize the disturbance impact in the system and 
model parameter variations. 

Figure 25. Schematic of a system's model, G1(s), with parameters uncertainty addition 

(AGi) and a pre-compensator(s+a)/s for "shaping of the plant". Also a disturbance 

Entry (wj is included with its transfer function, G2(s), to the system's output, (wl). C(s) is 

the controller.Taken from Heinz Keinitz (1993). 

The results obtained from varying the parameters up to ±50% of their nominal value and adding a 
meal disturbance can be found in Keinitz, 1993.. 

3.2.5. Optimal control strategy 

3.2.5.1. Definition 

This strategy focus in determining a control law that minimizes a cost function given by: 



(3.36) 

Where u(t) indicates the control law entering the state space model, e(t) the error signal, S is a 
constant matrix; Q and R are time varying matrixes, S and Q must be positive semidefinite, and R is 
positive definite (Sanchez, et al., 2008). 

3.2.5.2. Application to glucose-insulin system 

Sanchez implemented in 2009, a glucose level regulator based on an optimal control strategy. The 
model used by the author was the one of Sorensen. A Kalman filter to estimate the insulin blood level 
and adaptive mechanisms to update the controller parameters were used. 

The results, in figure 27, show a good meal disturbance rejection, with minimal insulin supply. This is 
an advantage because this technique impedes hypoglycemic levels, that carry negative symptoms to the 
patient. 



T i m » <min) 

Figure 27. Glucose regulation using an optimal control strategy, with 

the block diagram shown in figure 25. Taken from Sanchez et al., 2009 

3.2.6. Intelligent materials applied to glucose-insulin system 

In 2008, Sanchez reported a glucose regulation system based on intelligent materials, specifically, an 
ionic hydrogel. The special characteristic of this material is that it swells to an extent that depends on 
the glucose concentration of the blood releasing a certain amount of preloaded insulin into the body. 

Glucose responsiveness is achieved through pH changes in the microenvironment of the hydrogel 
system. The pH is altered by the transformation of glucose into gluconic acid catalyzed by the glucose 
oxidase enzyme contained in the hydrogel. This chemical response leads to a viscoelastic behavior 
described by 

where Q is the ratio of the hydrated volume of the material with respect to its dry volume, the time 
constant t is the relaxation time and the gain K is the mechanochemical compliance of the hydrogel 
material. Volume variations subsequently change insulin diffusivity and delivery. The results obtained 
are shown in figure 28. Insulin delivery rate has a constant decay, reaching its final value in the third day 
of operation. Nevertheless, during its active live cycle, the outcomes are even better than the ones 
obtained by using a controller. Nonetheless, undesired glucose concentration peaks in the post-prandial 
time are observed. 

(3.37) 



3.3. Areas of opportunity 

The major challenge in the analytical model is the addition of external glucagon infusion as an input 
in order to impede the decrement on insulin level. 

As it was explained, there are many control strategies that have been applied toregulate the plasma 
glucose level. Some of them have had successful results in rejecting meal disturbances, but there has 
not been a technique used for controlling the glucose level when exercise is done, and it has been 
shown that this disturbance has a major impact on the glucose-insulin interaction, since it makes the 
system unstable; this means that glucose level will tend to decrease until exercise is stopped and will 
cause a hypoglycaemic episode in the diabetic patient. 

Another challenge is the application of the feedforward control strategy to the glucose - insulin 
system, given that up to these days its implementation has not been reported in any investigation. 



Chapter 4 

Analytical modeling 

According to the objective of this thesis, the metabolic process of glucose and insulin must be 
represented by a physiological model that considers exercise and glucagon input for counteracting the 
decrement of glucose levels, due to such disturbance. 

Based on the reviewed literature (section 3.1), the Sorensen model has been augmented by exercise 
effects of increasing hepatic glucose production and peripheral insulin uptake, however the decay of 
glucogenolysis has only been incorporated in the Bergman model. Both models, by Sorensen and 
Bergman, only consider one drug input for exogenous insulin, when the compensation of exercise 
effects requires exogenous glucagon. 

This chapter explains the changes made to the Sorensen and Bergman models in order to include the 
effects of exercise and external glucagon infusion. Another aspect that is covered is the combination of 
both analytical models. 

4.1. Modeling exercise effects 

4.1.1. Modification in Sorensen's model 

The initial step is to quantify the exercise that is done by the patient. According to section 2.1.5. the 
relation of PAMM with PV02

ma* is essential because this function is the pioneer in all the effects of 
exercise in the glucose and insulin system. Equation 3.23 is modified using data reported by Lenart & 
Parker (2002). The resulting equation is 

(4.1) 



where the gain is calculated knowing that PV02

max is 8% in basal conditions (PAMM = 0) and that at 25% 
PAMM, PV02

max reaches a final steady state will of 30%. The time constant, x, remains as in equation 
3.23. PAMM and PV02

mox are dimensionless. 
After quantifying the exercise, it is important to obtain the new dynamics of PGUa and HGPa. With 

the use of figure 8 and information from Lenart & Parker (2002), a new equation is obtained 

(4.2) 

Because gains from graphs 8 are different, the step test from the basal state to 60% PV02

maxis chosen 
to approximate a linear gain for PGUA over a broader range. The time constant remains as reported in 
Lenart (2002), r=30 min. HGP„ dynamics is going to be the same as PGUa, in order to be coherent with 
the information compiled by Lenart & Parker(2002). At a basal level PGU„(0)= HGPa(0)=0. Nevertheless, 
the final equations used are the ones developed by Roy (2008), 3.27 and 3.28, because their dynamics 
represent a more real interaction, where glucose uptake is greater than its production. While Lenart & 
Parker (2002) suppose that they are equal. 

The equations 3.27 and 3.28 and the factors W (weight of the subject), PAMM, and a constant 28 
(maximum kg of muscle involved in exercise) are used to calculatef PGUa , HGP„ (mg/min/kg active 
muscle) in Sorensen's model, since in Bergman's model the units are mg/min per kg of weight of the 
subject (mg/min/kg): 

(4.3) 

(4.4) 

(4.5) 

After certain time of exercising, hepatic glucose production decreases due to the depletion of 

glycogen reserves. This decrease in glycogenolisis, , has been modeled by Roy and Parker with 

equations 3.30 through 3.35 These equations can be used to quantify the net rate of change in hepatic 
glucose production due to physical activity. 



With the calculation of net HGP0, equation 3.17, the one that quantifies the glucose production due 
o exercise is modified as 

As new dynamic equations are formulated, it is necessary to introduce how blood flow rates change 
due to an increase in PVOT"" demand. Using Table III, that indicates that blood flow depends on 
PV02

mox, and knowing from Andersen (1985) that the relation is linear, two sets of equations are 
obtained; one set for blood flow for glucose concentration compartments or mass balances and a 
second set for blood flow for insulin concentration compartments. For glucose transport in the liver (I), 
brain (b), kidney (k), periphery (p) and hepatic artery (la), the blood flows (in dL/min) as functions of 
P1/cVoxare 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

For insulin transport, the blood flows (in L/min) change with PV02
maxare 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.6) 



4.1.2. Simulation of modified Sorensen model 

After obtaining the new equations, the whole Sorensen model was implemented and simulated in 
Simulink®, in order to verify the response of each new variable. Figure 29 depicts the main model with 
external insulin and glucose (meal, and PAMM as inputs, and arterial blood glucose and insulin 
concentrations as outputs. The different compartments of the body used in this model, as well the 
effect of exercise are represented in figure 30. In figure 31, a more detailed schematic of exercise 
influence in the model is shown. The next step was is to experiment with the model implemented, in 
order to recognize if the responses are the same as in the clinical data. 

The first test used the values shown in table VII. 

Table VII. Values used in test I with Sorensen's model. 



Figure 29. Schematic of the implementation of the global Sorensen's model. 

Figure 30. Schematic of the compartments in Sorensen's model. Red lines limit glucose compartments; 
blue lines limit insulin compartments; green lines limit compartments for the calculation of exercise 

effects on variables that affect glucose and insulin levels. 



Figure 31. Schematic of exercise effects in Sorensen model: pancreatic glucose uptake and 
hepatic glucose production, insulin removal from the circulatory system, blood flows and 

glycogenloysis decay ratio. 

The following figures (32 through 37) show the responses of PV02

max, PGUa, net HGPa, blood flows, 

glucose and insulin levels when a physical activity of 25% is maintained for two hours (time scale of 

horizontal axis is in minutes). 

Figure 32. Dynamic response of%PV02

max (blue) and 25% PAMM input (red). 





Figure 35. Dynamic responses of blood flows (L/min)for insulin transport in the 
periphery (red), liver (blue), kidneys (green) and hepatic artery (cyan) 

with 25% PAMM or 30% PV02

max. 

Figure 36. Dynamic responses of blood flows (dL/min) for glucose transport in the 
periphery (red), liver (blue), kidneys (green) and hepatic artery (cyan) 

with 25% PAMM or 30% PVOi™". 



The conditions for the second test are shown in table VIII. 

Table VIM. Values used in test II with Sorensen model. 

Figures 38-43 show the results of test II, consisting of 2 hours of exercise with 59.1% of active 
muscular mass (time scale in minutes). 





Figure 40. Dynamic response of net HGPa (blue) with 59.1% PAMM or 60% PV02' 

Figure 41. Dynamic responses of blood flows (L/min) for insulin convective transport. 
Periphery (red), Liver (blue). Kidneys (green). Hepatic artery (cyan) 

with 59.1% PAMM or 60% PV02

max. 



Figure 42. Dynamic responses of blood flows (dL/min) for glucose convective transport. 
Periphery (red), liver (blue), kidneys (green), hepatic artery (cyan) 

with 59.1% PAMM or 60% PV02

mm. 

Figure 43. Dynamic responses of glucose (green (mg/dL)) and insulin (red) (mU/L) 
level with 59.1% PAMM or 60% PV02

max (cyan). 



The proposed specifications for both simulations tests allow the comparison of the outcomes with 
clinical data and responses in Lenart & Parker, 2002 and Roy & Parker, 2007 

As it can be seen above, the implementation of the new equations in the Sorensen model produce 
almost an excellent result, since the dynamics and steady state values of key variables, are similar to the 
reported medical data, and the responses in Lenart & Parker, 2002 and Roy & Parker, 2007. 
Nevertheless, insulin arterial concentration does not behave as expected, because a raising instead of a 
decaying trend is obtained. This flaw in the behavior indicates that insulin uptake due to exercise is not 
properly modeled in the equations established in Lenart & Parker, 2002, since they do not consider the 
effect of blood flow variations and diffusion time in periphery insulin uptake is held constant. 

4.1.3. Simulation of the Bergman minimal order model 

The Bergman model was also implemented in Simulink®. Once again, the purpose of simulating 
Bergman's model with the addition of exercise effects is to compare its outcome with clinical data and 
responses of the Sorensen model modified in Lenart & Parker, 2002 and Roy & Parker, 2007. In figure 
44, the global Bergman model is depicted, where its inputs and output are the ones in equations 3.24 -
3.29. 

Figure 44. Global schematic of the implementation of Bergman 

model with addition of exercise effects. 

The compartments considered in equations 3.24 - 3.26 can be seen in figure 45. 



Figure 45. Compartments X (remote insulin), I (arterial insulin) and 

G (arterial glucose) of Bergman model. 

The next figure illustrates the compartments where PV02
max, PGUg, and net HGPa are calculated, in 

order to quantify the effects provoked by exercise. 

Figure 46. Schematic of the compartments where PV02

max, PGUa, and net HGP„ are calculated. 



The same simulation conditions listed in tables VII and VIII are introduced in this model in order to 
make a consistent comparison. Because the equations used to calculate PV02

max, PGUg, and net HGPa are 
the same as in the modified Sorensen model, the responses of those variables are identical. However, 
because insulin removal due to exercise is computed with a different equation (3.29) than in the 
Sorensen model (that used equations 3.18 and 3.19), insulin arterial concentration behaves in a 
different and more realistic form. Figure 47 shows glucose and insulin concentrations dynamics for an 
input of 25% PAMM, and figure 48, for an input of 59.1% PAMM. 

The responses in figures 47 and 48, show that the Bergman model behaves as the clinical data 
suggest (Wolfe, 1986) (figures 16 and 17), with a decrease in glucose and insulin concentration. Also the 
decline of glucose occurs according to physiological records, for more information check section 2.1.5.4. 
This is the reason why Bergman's model is selected for the rest of the work in this thesis, even though 
an external glucagon infusion input must be added to it. 

Figure 47. Response of glucose (blue)(mg/dL) and insulin (uU/mL) arterial concentrations with an 
input of 25% PAMM or 30% PV02

max. 



Figure 48. Response of glucose (blue)(mg/dL) and insulin (uU/mL) arterial concentrations with an 
input of 59.1% PAMM or 60%.PVO2

max. 

4.1.4. Combination of Bergman's and Sorensen's model 

Up to this section, the principle advantages and disadvantages of the Bergman model and the 
Sorensen model have been established. Since the purpose of this thesis is the compensation of exercise 
in the glucose-insulin system in an automatic form with the use of glucagon, the mathematical model 
must have an input for this hormone. However, the model that quantifies the glucagon effects is the one 
of Sorensen one but the response of the insulin level does not react as expected. On the other hand, the 
Bergman model behaves according to clinical data, but does not have an input of external glucagon 
infusion. 

The proposed solution to this issue is the combination of the major advantages of both models. This 
means that the Sorensen model's capability of quantifying glucagon effects is added to the Bergman's 
glucose -insulin interaction equations. 

According to Sorensen's thesis (1985), the glucagon mass balance can be modeled by the following 
equation: 

(4.17) 



where N means arterial glucagon concentration (pg/mL); Vs, glucagon distribution volume (mL); rPNR, 
pancreatic glucagon release, and rPNC ,pancreatic glucagon clearance. The last two variables are 
dimensionless because they are normalized respect to glucagon basal concentration: 102 pg/mL. 

In order to add the glucagon effect in hepatic glucose production, it is necessary to aggregate the 
term representing external glucagon infusion in the mass balance of equation 4.17, and to modify some 
of the equations developed by Sorensen: 

With rMArc=0.0091 L/min and VN=9.1 L, where rMNC is the glucagon metabolic sink rate and is 
dimensionless, NB is the glucagon basal level, rEXT is the external glucagon infusion rate (pg/min). After 
deriving equations 4.18 -4.21, N must be normalized with respect to its basal value. 

(4.22) 

The next step is to include the normalized glucagon in the Sorensen's equation for hepatic glucose 
production: 

(4.23) 

where MlNSUUN,MGLUC0SE,MGLUCAG0N (dimensionless) Indicate the contribution of glucose, insulin 
and glucagon in hepatic glucose production [rHGP in mg/min), respectively. 

(4.18) 

(4.19) 

(4.20) 

(4.21) 



Nevertheless, this quantity cannot be introduced in this form to Bergman's model equation 3.27, it is 
necessary to divide it by the patient's weight in order to have consistent units (mg/min/kg): 

(4.24) 

Figures 49 and 50, illustrate the schematics of this implementation. 

Figure 49. Schematic of the implementation of hepatic glucose production 

rate due to external glucagon infusion in Sorensen's model. 

Figure 50 is described as follow: TThe hepatic glucose production due to glucagon administration is 
calculated by the subtraction of the production without exogenous glucagon from the production with 
glucagon infusion. This procedure is necessary since a direct estimation of glucose production from 
glucagon input is not possible due to the multiplicative effects of insulin, glucose and glucagon 
concentrations. 

The response of glucose level of the two models due to an external infusion of glucagon is in the data 
range reported by Sorensen. Figure 51 shows the resulting dynamics of glucose. 



Figure 50. Schematic of the combination of Sorensen's and 
Bergman's models. 



As a concluding remark, the results obtained in test I and II show that glucose concentration 
response have a similar dynamic response, which agrees with the clinical data reported. Nevertheless, 
the major difference between Sorensen and Bergman models rises in the insulin behavior when physical 
activity is done. The Bergman's model is the one that behaves as it is stated in medical literature. 

Although Bergman model performs as it is expected, it has the disadvantage that it does not consider 
exogenous glucagon as an input. To overcome this problem, both analytical models are combined in 
order to obtain their advantages. So, this combination is the chosen one for the experimentations to be 
done in this thesis. 



Chapter 5 

Experiment design for statistical modeling 

The previous chapter presents the development of a descriptive model of the glucose - insulin 
metabolism considering exercise effects. A statistical model is commonly used to design feedback and 
feedforward controllers because of practicality: eliminated analytical complexity; simple structures; 
discrete form. 

The derivation of a statistical model is based on input - output data of the real process. In this case, 
the process is represented by the physiological model and the experimentation to produce input -
output data refers to the simulation of the model before specific conditions. 

This chapter describes the experiment design criterion followed to obtain a reliable statistical model 
that relates PAMM, glucagon and insulin administration with glucose level and its rate of change. 

5.1. Criterion of the statistical experiment design 

According to Rollins et. al. (2008), successful results for identifying the dynamics of several 
perturbations in glucose -insulin system had been obtained using Hammerstein - Wiener modeling 
technique. This method will be explained more detailed in the next chapter, but it basically consists in 
the representation of multiple inputs - outputs process by a combination of linear and nonlinear 
equations, whose coefficients must be determined. 

An experiment design that fulfills Hammerstein-Wiener requirements is the Box-Behnken design 
(BBD), which has the following advantages (Rollins, 2004): 

• Reduced experimentation time 

• Production of accurate data for adjustment of the parameters in Hammerstein -Wiener model. 

• Restriction less on static behavior of the system. 

• Successful estimation when identifying quadratic behavior. 

• Restriction less on the number of inputs and outputs. 

— -



• A priori assumptions can be used. 

Montgomery establishes that when dealing with a BBD experiment with three inputs, the next norm 
must be followed: 

Table IX. BBD experiment design input values. 

Where -1, 0, 1 indicate minimum, mean and maximum value of each input. All inputs must be in 
deviation value form. 

It can be inferred from Table IX that in the sequence followed in the experiment one input is hold at 
its mean value and the other inputs are changed. 



5.2. Data used in glucose system experiment 

As stated in chapter 4, the input to be managed to increase the blood glucose level is the infusion of 
external glucagon, so definitely this variable must be considered in the experiment. 

The statistical model should only include the variables necessary for the purpose of controlling 
glucose levels under variations of physical activity. The model is defined as a system of three inputs and 
one output, meaning that a MI-SO (multiple inputs and single output) system is going to be identified. 
The output of the model is the glucose rate of change (mg/dL/min) and the inputs are 

1. PAMM(%) 
2. External glucagon infusion (pg/min) 
3. External insulin infusion (mU/min) 

Glucose rate of change is chosen as the output variable, because in order to use Hammerstein -
Wiener technique, a steady state has to be achieved when the system is excited by the inputs. As it is 
seen in figure 48 and from physiological information, glucose level would tend to cero if exercise is not 
stopped, which means that no steady state can be reached. Therefore, the glucose level cannot be 
considered as an output. However, the first time derivative of glucose can reach a constant value after 
certain exercise duration. Figure 52 illustrates the response of glucose rate of change when exercise is 
done. 



The range of the inputs for the experiment is chosen in such a form that the glucose levels stay 

around the desired or target value, to be maintained by a control system. Table X shows the ranges of 

the inputs and Table XI, the initial conditions considered in the experiment: 

Table X. Range of the inputs in the experiment design. (Deviation values). 

Table XI. Initial conditions of the system prior to the experiment. 

The data obtained in this experiment had an undesired outcome: glucose level dropping below 0 

mg/dL. So a new experiment was designed using the BBD's principle, holding one input constant and 

changing the other two. But keeping in mind that glucose level would not drop to an unacceptable 

hypoglycemic value. Even though, the number of runs is increased, this is not a drawback since the 

experiment is done in a simulator and not in a physical process. In table XII, the new experiment design 

is shown: 
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Table XII. New experiment design input values. 
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A time interval between runs or changes in input conditions is set in 200 minutes, because that is the 
time the glucose rate takes to get to its steady state. 

With this new experiment design glucose level is kept above 40 mg/dL. 

5.3. Data obtained in the experiment 

The new experiment design produced the necessary transitory and steady state values. Moreover, 
the glucose level stayed in an acceptable range. Figures 53 and 54 show the output and inputs of the 
experiment. 



The data obtained in the experiment can be found in Appendix 2. 

2000 3000 4000 5000 6000 7000 8000 

Figure 54. Data obtained in the experiment: Glucose rate of change (blue) (mg/dL/min). 



Chapter 6 

Statistical modeling 

A statistical model is necessary for the characterization of glucose level response before exercise 

disturbance from physiological data; in this case, the data are generated from the physiological model 

proposed in chapter four. 

This chapter focuses on statistical modeling and is divided in two parts: an introduction to 

Hammerstein - Wiener modeling and its application to the problem of this thesis. Also a brief 

explanation of the mathematical optimization methods used to adjust the parameters to the model is 

discussed. 

6.1. Hammerstein - Wiener modeling technique 

6.1.1. Definition 

Dynamic predictive models that address nonlinear behavior are essential for optimal operation and 

control of many processes (Eskinat, 1991). A black - box modeling technique discussed in recent 

publications for non-linear processes is the Hammerstein - Wiener modeling (Rollins, Constrained 

MIMO dynamic discrete-time modeling exploiting optimal experimenatl design, 2004). 

The Hammerstein and Wiener systems divide the plant to be identified in two parts: a group of linear 

dynamic blocks and a second group of blocks of nonlinear static gain, if Wiener technique is applied, but 

if Hammerstein method is used the order of the blocks is reversed. Figure 55 illustrates the Wiener 

system representation. 

The major advantages of a Wiener system over a Hammerstein one rely on the fact that the former 

allows the inputs to have different dynamics and is able to treat nonlinear systems through non-

differential equations (polynomials) in terms of outputs of the linear dynamics (Rollins, Bhandari, & Kotz, 

Critical modeling issues for succesful feedforward control of blood glucose in insulin dependent 

diabetics, 2008). 
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As it can be seen in figure 51, this modeling technique permits the development of a model with 

multiple inputs for the prediction of multiple outputs. 

Basically, the functioning of a Wiener system is 

• Each input (u,) enters a linear block (Gj,), which represents a model of the input's dynamic impact 

over an output rjj of the nonlinear system. 

• The output of each linear block will be called auxiliary variable, denoted as vt. 

• Afterwards, the auxiliary variables (v{s) are joint in a final block, which represents the static 

nonlinear gain (fj(t?())of the output j]t of the system. 

• The output of a nonlinear block is an output of the system. 

Figure 55. Block diagram of Wiener system for one output t\,. 

For the purpose of this thesis, a multiple input - single output (MI-SO) system is considered. Another 

restriction, not imposed by a particular application but for the Wiener modeling technique itself, is that 

the process response must be stable. Moreover, a priori knowledge of the settling time of the process 

response is necessary. 

6.1.2. System identification via Wiener technique 

For modeling a system with the Wiener technique, there are several steps to follow, being the 

principal ones: 

1. Selection of the experimental design. The following parameters and information must be specified: 

• Sample time 
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• Operating range for each input ( u 1 , u 2 , . . . / U n ) 

• Stabilization times of the process outputs 

• M o d e l structure of the steady state behavior 

• Experimental test (BBD). BBD has advantages over PRBS (Bhandari, 2003) 

• Randomization of the trials 

2. Obtaining a fitted model for the ultimate response function (the nonlinear model) 

In this step, the modeler uses the data obtained at the end of each trial, the corresponding inputs 

and a multiple regression technique to get a model (Rollins, Constrained M I M O dynamic discrete-

time modeling exploiting optimal experimenatl design, 2004). 

An example of this nonlinear model is: 

where fj is the estimated output of the system, vlf v 2 , v n are the dynamic auxiliary variables of 

the system and plt /?2, —, Pn

 a r e t n e parameters to be estimated. 

To obtain the /? parameters, the modeler can use the inputs ( U j ) instead of auxiliary variables (vt), 

with the steady output (77) because in the steady state response the values of U ; and vt are the 

same. This is only valid at the final of each trial: 

Where the supraindex 00 indicates a stable operation point. 

If the modeler identifies that a parameter is very small compared with the other /?/s, the whole 

term that includes fa can be eliminated. 

3. Finding the dynamic models 

After obtaining the nonlinear model parameters, it is necessary to adjust discrete time models that 

represent the dynamics of the n-inputs (u,) with the n-auxiliary variables (Vi). It is seen in figure 51 

that the number of linear discrete models depends on the number of inputs. 

The models, due to its discrete nature, must be of an autoregressive with exogenous inputs kind 

(ARX). The number of autoregressive terms and exogenous terms can be initially set to two and 

one, respectively (Rollins, 2004). Later on, this assumption could be modified depending on the 

minimization criteria used for the difference between the estimated output of the model and the 

output of the real system. 

The structure of the model can be seen in equation 6.3. 
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6.3. 

where j refers to the input with y=l..n; /c denotes the current sampling time; S and o> are the 

parameters of the autoregressive and exogenous terms, respectively; rj is the order of 

autoregression and m is the number of exogenous inputs terms. The last term of the equation 

calculates the last coefficient as a sum of the other parameters. 

For obtaining the parameters S's and co's of each model, the approach of constraining the 

parameters p of the nonlinear model to the values calculated by equation 6.2 is fol lowed. 

In this way the dynamic parameters of each linear model are calculated with the criteria of finding 

the minimum difference between the estimated output and the real output. Because the nonlinear 

parameters are constrained, generalized reduced gradient technique (GRG) is used. This method is a 

mathematical algorithm that adjusts the parameters so that the active constrains continue to be 

satisfied as the optimization moves from one point to another, until the optimal solution is found. 

Information about the mathematical background of this technique can be found in reference (LSU). 

6.1.3. Wiener modeling advantages over other modeling methods 

When dealing with nonlinear systems, models like nonlinear autoregressive moving average models 

with exogenous variables (NARMAX) and artificial neural networks (ANN) can be used for representing 

cause - effect relations in a system. Nevertheless, these two modeling options have significant 

drawbacks. 

NARMAX drawbacks (Rollins, 2008): 

1. Because the model form is linear in parameters, the values of the fitted model coefficients are 

tied to the correlation structure of the model. Thus any change in the input correlation structure 

can produce large prediction errors. The model can produce highly incorrect results for 

independent changes in the inputs. 

2. The strong natural correlation of common lag input variables causes ill conditioning and inflates 

estimation errors. 

ANN drawbacks (Rollins, 2008): 

1. The major disadvantage is the lack of phenomenological structure which is crucial when fitting 

nonlinear behavior. 
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2. When the inputs combinations that were used in the training phase are change, extremely large 

prediction errors can occur due to the highly nonlinear transfer functions of the A N N . 

After reviewing the disadvantages of the NARMAX and ANN techniques, it is important to specify 

what makes the Wiener method more efficient: the parameters in the nonlinear functions are 

independent from the ones of the linear dynamic functions and the terms in the static nonlinear 

functions depend on the variables from the dynamic blocks which are not strongly correlated (an 

auxiliary variable does not depend on other auxiliary variables) (Rollins, 2004). So it does not matter if 

the inputs are correlated or not, the predicted output will not be affected due to the Wiener modeling 

nature. In figure 56, the performances of the three proposed methods are illustrated in a graph, where it 

can be seen that Wiener modeling has the best accuracy in the testing phase. 

6.1.4. Wiener modeling applied to glucose regulation 

In chapter five, the output and inputs to use in Wiener modeling were declared, being P A M M (%), 

external insulin infusion (mU/min) and external glucagon infusion (pg/min) the inputs and glucose rate 

of change (mg/dL/min) as the output. 

Following the algorithm depicted in the last section, the proposed nonlinear model is: 
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Figure 56. Performance of the system in the training and testing phases 

for different modeling techniques (Wiener, NARMAX and ANN).Inputs 

in testing phase are uncorrelated. Taken from Rollins (2008). 



6.4. 

where is the auxiliary variable for P A M M , v2 is the auxiliary variable for external insulin infusion, v3 is 

the auxiliary variable for external glucagon infusion and rj is the glucose rate of change. It can be seen 

that there is not a constant term in equation 6.4, this is done because the method indicates that 

deviation values must be used and in order to get a null response of the system when there is not a 

change in the inputs, the constant parameter must be eliminated. 

The adjustment of the parameters of equation 6.4 is achieved using the data obtained at the end of 

each trial of the experiment described in chapter five. This procedure is done using MS-Office Excel's 

Regression T o o l b o x ® , through introducing the inputs and the output of the trials and applying the 

multiple nonlinear least squares regression. 

After adjusting the nonlinear model, the next goal is to select the order of the linear ARX models and 

find the parameters that will make an accurate prediction of the estimated output. Because the 

objective in this step is finding the dynamic response of each input, this procedure uses all the data from 

the experiment, not only the data at the end of each trial. 

Three linear ARX models are developed, using the structure in equation 6.3, because three inputs are 

taken into consideration. Firstly, a model with 2 autoregressive terms and one exogenous term is 

specified for each input, if the estimated output is not accurate, the order of the model has to be 

increased. 

With the usage of MS-Office Excel's Solver Toolbox®, which inherently applies the GRG optimization 

method, the linear ARX models parameters were obtained. 

Previous data conditioning may be considered, due to a significant difference between the 

magnitudes of the inputs. The data was normalized with the following criteria and different models 

were developed: 

• Row deviation data 

• Normalization of the data in the theoretical form, using the mean and standard deviation, so that 

the data could have mean 0 and variance 1 

• Scaling of each input data respect to (dividing by) its maximum deviation value, using different 

sample times (5 and 10 minutes) 

6.1.4.1. Development of the Wiener model without normalization of data 

The first model developed was without normalizing the data. Table XIII shows the best calculated 

nonlinear parameters in a Wiener model. The comparison between the predicted ultimate nonlinear 

gains and the ones obtained in the experiment is illustrated in figure 57. 
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Table XIII. Parameters of the nonlinear model. 

Figure 57. Comparison between the predicted nonlinear steady state glucose concentration 

rates and the obtained in the experiment without normalizing the data. 



As it is shown, the obtained nonlinear model has an excellent accuracy in the prediction of nonlinear 

gains; this was verified with the coefficient of determination R2, which gave a value of 0.9972 and its 

multiple correlation coefficient was 0.9990. Both performance indexes describe the correlation between 

the constructed predictor and the response variable. Also, from the values of the parameters it appears 

that external glucagon infusion is the input with less impact in the nonlinear gain; however, this 

misunderstanding happens because the data is not normalized. 

Respect to the linear ARX models, the best obtained models were of second order with two 

exogenous input terms, equations 6.5 - 6.7 show them: 

6.5. 

6.6. 

6.7. 

where ux denotes P A M M , u2 refers to external insulin infusion and u3 is external glucagon infusion. 

The parameters for each model can be seen in table XIV. 

Table XIV. Parameters obtained for the linear ARX models without normalizing the data. 

Figure 58 shows the predicted and the real glucose rate of change, where it can be inferred that the 

developed model can be improved. Nonetheless, comparing the prediction performance with the ones 

obtained by Rollins, a significant enhancement has been achieved. Another aspect that can be noticed is 

that the model obtained has a drawback in representing the effect of external insulin infusion; this can 

be seen when the predicted glucose rate does not follow the same pattern as the real data in the time 

interval between 2940 and 3580 min; which corresponds to an input combination of P A M M and 

external insulin infusion at their mean value and without external glucagon infusion, according to the 

experiment design reported in table XII. 
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It is important to remark that the sample time was 10 min. The sample time was selected to be 
greater or equal than 5 minutes, because nowadays this is the fastest time interval that glucose sensors 
can make measurements. 

Nevertheless, the quadratic sum of errors was 15.3712. 

6.1.4.2. Development of the Wiener model with normalized data (N(u=0,o2=l)) 

Due to a major difference in the inputs magnitudes, especially with external glucagon infusion, it was 
decided to normalize the data, so the numerical range of the inputs would not hide or distort the 
functional relation with the glucose rate of change. This data conditioning uses the basic principle of 
normalization, which is subtracting the mean and dividing by the standard deviation of the variable. This 
normalization criterion was done to the steady state inputs and output data. 

The parameters for the nonlinear model that were obtained after normalizing the data are shown in 
table XV. 

Table XV. Parameters of the nonlinear model with N(u=0,a2=l). 



Figure 59 illustrates a comparison between the predicted and real steady state glucose rate 

normalized values. As it is shown, the new obtained nonlinear model has also an excellent accuracy in 

the prediction of glucose rate; this was verified with the coefficient of determination R2, which gave a 

value of 0.9972 and its multiple correlation coefficient was 0.9990. These values were the same as in the 

previous section, however the parameters have are similar in magnitude. 

The best obtained linear ARX models were of 14 t h order with 15 exogenous inputs terms, equations 

6.8-6.10 show them: 
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6.9. 
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The parameters for each model are shown in table XVI. 



Figure 59. Comparison between the predicted nonlinear steady state glucose 

concentration rates and the obtained in the experiment with N(u=0,a=l). 

Table XVI. Parameters obtained for the linear ARX models with N(u=0,q2=l). 



After obtaining the linear parameters a comparison of the predicted and real glucose rate was made. 

The result can be seen in figure 60. The reported quadratic sum of errors was 32.2949; nonetheless this 

indicator is bigger than in the other criterion, it can be seen that the predicted output follows in a closer 

way the real data, even for drastic changes and when external insulin is infused. So, it can be inferred 

that the goal of giving the inputs a same weight has been achieved. The reason why the quadratic sum 

of errors is greater, is due to the normalization of the data. The maximum magnitude with this 
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normalization is 5.25 while without normalization is 1.5; hence, any difference between the model and 
the real output will have a greater error. 

The sample time for developing this model was 10 min. 

6.1.4.3. Development of the Wiener model with scaling of each input with respect to its 

maximum value and a sample time of 10 minutes 

The scaling of data by dividing by the maximum was used, because the purpose of developing an 
accurate predictive model is for the realization of an online controller. Therefore, if the theoretical 
normalization criterion were chosen it would take a minimum of a hundred samples before getting a 
reliable result. This drawback can be overcome by "normalizing" each input data respect to its maximum 
value, which is known. The output was not "normalized" by this criterion. 

The nonlinear parameters that were obtained are shown in table XVII. 

Table XVII. Parameters of the nonlinear model dividing each input by to its maximum value. 



Figure 61 illustrates a comparison between the predicted and real steady state glucose concentration 

rates with the inputs scaled by its maximum value. The results were the same as in the other two cases, 

and as it was expected the values of the parameters have a similar order of magnitude. 

The best obtained linear ARX models were of 1 5 t h order with 16 exogenous inputs terms, equations 

6.11-6.13 show them: 

The parameters for each model are shown in table XVIII. 

A comparison between the predicted and real glucose rate with data conditioning procedure is 

illustrated in figure 62. It can be seen, that so far, this is the best predictive model calculated with a 

quadratic sum of errors is 3.6098. 
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Table XVIII. Parameters obtained for the linear ARX models normalizing each input respect to its 
maximum value. 



The sample time used for the development of this model was 10 min. 
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Figure 62. Predicted glucose rate of change and its real value obtained in the experiment, 
scaling each input respect to its maximum value with a sample time of 10 minutes. 

6.1.4.4. Development of the Wiener model with scaling of each input by dividing by its 

maximum value and a sample time of 5 minutes 

Basically, this data conditioning method was the same as in the previous section, but with the 
difference of using a smaller sample time. 

The nonlinear parameters that were obtained are shown in table XIX. 

Table XIX. Parameters of the nonlinear model dividing each input by its maximum value 



Figure 63 illustrates a comparison between the predicted and real steady state glucose 

concentrations rates with the inputs scaled or "normalized" with respect to its maximum value. The 

performances indicators had a small change, R2 was 0.9432 and its multiple correlation coefficient, 

0.9995. 

The most efficient obtained linear ARX models were of 5 t h order with 5 exogenous inputs terms, 

equations 6.14 - 6.16 show them. It is important to remark that when the model was increased up to a 

10 t h order with 10 exogenous inputs terms the sum of quadratic errors did not change in a significant 

form. 

6.14. 

6.15. 

6.16. 

The linear ARX models parameters are shown in table XX. 

A comparison between the predicted and real glucose rate with this criterion is illustrated in figure 

64. The quadratic sum of errors was 13.3455, which results in the second best obtained model. 

The sample time used for the development of this model was 5 min. 
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Table XX. Parameters obtained for the linear ARX models dividing each input by its maximum value with 
a sample time of 5 minutes. 



Figure 64. Predicted glucose concentration rate of change and its real value obtained in the experiment, 
scaling each input with respect to its maximum value with a sample time of 5 minutes. 

All the data used in the adjustment of the models parameters are found on appendix 2. 

6.1.4.5. Modifications in the chosen predictive model 

The selected model for glucose rate prediction is the one that uses a sample time of 10 minutes and 
having each of its inputs data scaled by its maximum value. However, there is a noteworthy drawback; 
the linear ARX model for external glucagon infusion has a one iteration delay. In the next chapter, this 
disadvantage will be explained in detail. In order to have an immediate impact of external glucagon 
infusion on glucose rate, the structure of equation 6.13 had a small modification, deriving in the next 
equation: 

6.17. 



Since the linear ARX parameters are calculated with the constraint of the nonlinear model 
coefficients, the second ones will not suffer any changes. However, the new linear ARX models 
parameters are shown in table XXI and its response in figure 65. The reported minimum square error 
was 3.1. 

Figure 65. Predicted glucose concentration rate of change and its real value obtained in the experiment, 
scaling each input with respect to its maximum value with a sample time of 10 minutes and 

with equation 6.17. 

Table XXI. Parameters obtained for the linear ARX models scaling each input with respect to its 
maximum value and using equation 6.17. 
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6.1.4.6. Testing phase of the predictive model 

According to Rollins, after the training stage is completed, it is necessary to test the models with 

different combinations of inputs to see if they predict the output in an accurate form. 

Even thought external insulin infusion was considered as an input in the system's model, it was 

discarded in the testing phase because when a person is doing exercise, the less desired situation is that 

glucose concentration drops below a healthy level, therefore automatic insulin supply would be cut off. 

The testing trials are shown in table XXII, which represent possible situations for the patient. In each 

trial, a physical activity level (of up to 4 5 % P A M M ) is maintained for about 3.5 hours (200 min) with a 

recovery of normoglycaemia in approximately 1.5 hours, with a possible constant glucagon supply 

during the exercise period. 

The results of the tests can be seen in figures 66 to 71, the time axis is in minutes. 

Table XXII. Testing trials of the selected models. 

From the shown graphs, it can be observed that the results of the trials 2,4,6 give the worst 

approximation to the real response. From this information, the proposed statistical models is valid in the 

range of P A M M from 0 to 40 %. 

Since the quadratic sum of errors was a bit high, the model fails in its predictions above 40% P A M M , 

so for getting a precise response the model was limited to function up to this quantity. Nevertheless, 

due to the complexity and highly nonlinear behavior of the system, in the range of operation from 0 to 

40% the model is considered to produce a good approach, remarking that 60% P A M M represents high 

exercise intensity (Lenart, 2002). 
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Figure 66. Comparison between the predicted and real glucose concentration rate in trial #1. 



Figure 68. Comparison between the predicted and real glucose concentration rate rate in trial #3 

Figure 69. Comparison between the predicted and real glucose concentration rate in trial #4. 



Figure 70. Comparison between the predicted and real glucose concentration rate in trial #5. 

Figure 71. Comparison between the predicted and real glucose concentration rate in trial #6. 



Chapter 7 

Predictive controller design 

After obtaining the statistical discrete model that suits the best behavior of the physiological system, 

the next step is to develop a model based predictive controller that will impede the decreasing of 

glucose. 

This chapter explains the method applied for the issue described above, as well as the different tests 

that were involved, in order to evaluate its performance. 

7.1. Model based predictive control strategy applied to glucose 
level regulation 

As stated above, one of the goals of this thesis is to design a regulation strategy that will compensate 

the effects of exercise in the blood glucose level. Basically, the major problem is that exercise makes the 

system unstable and that its dynamics when it its started and when it is ended is different. 

Another important aspect to take into consideration is that exercise is considered as an output 

disturbance, because it is not related with the manipulation of the feedback controller. 

Before developing a predictive control strategy, a discrete PID with conservative parameters was 

tested, but its performance lacked in accuracy. The three reasons why it failed to prevent hypoglycemic 

episodes before exercise are 

• It was synthesized based on a servocontrol or set point tracking specified performance, assuming a 

stable glucose level response, which becomes unstable during exercise. 
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• Its manipulated variable is external insulin infusion, which does not have the ability of increasing the 
blood glucose level. 

• Its tuning parameters and structure are linear, while the process dynamics is nonlinear specially due 
to the exercise effects. 

Its response to a 40 %PAMM pulse change is seen in figure 72, where the reasons stated above can 
be corroborated. Table XXIII shows the initial conditions in the test. 

Table XXIII. Initial conditions for PID controller test with exercise as output disturbance 

Figure 72. Response of glucose level (mg/dL) (blue) in close loop, with 
a discrete PID controller in the presence of a 40 XPAMM (red) pulse change. 

External insulin infusion (mU/min)(cyan), arterial insulin level (mU/min) (green), 
Basal glucose level (mg/dL)(black); time scale in minutes. 
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Equation 7.1 shows the discrete implementation of the PID controller used to close the glucose 

control loops and the tuning parameters and sample time are presented in table XXIV: 

Table XXIV. Parameters values of the discrete PID controller. 

Since the PID-based feedback control strategy did not function for the exercise issue, a 

complementary model based predictive controller is proposed, using the model obtained that is 

represented by equations 6.11, 6.12, 6.17 and tables XVII and XXI. Even thought it has many 

autoregressive and exogenous input terms, all of them are fitted and therefore the implementation of 

the regulator can be done. 

The basic principle of how the proposed predictive regulator works is: 

After obtaining the measured glucose concentration, its rate of change is calculated with th

knowledge of the sample time interval. Afterwards, knowing the exercise intensity (PAMM), the a

variable (v2) that depends on external glucagon infusion is calculated, and finally the external glu

input (u2) to produce the same glucose concentration rate but with opposite sign is predicted

Since the solution of equation 6.4 involves quadratic terms, there are two possible solutions. By trial 

and error in the simulations, it was stated that for values of time below 45 minutes the smallest value 

(V|) was used in the calculation for exogenous glucagon infusion; for values of time greater than 45 

minutes, the biggest value of (v,) was used. 

In figure 73, a f low chart of the predictive algorithm is depicted. It can be seen that the variables 

mentionted above are used; figure 74 illustrates the block diagram of complete automatic system 

including the predictive control strategy. The implementation of this strategy was done using S imul ink®; 

figure 75 shows the resulting schematic of this software. 
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Even thought the model to use in this strategy had some errors, these are compensated in the 

program file by making a fine readjustment in the parameters. 

After implementing the predictor, several tests were executed whit the system in a close loop mode, 

in order to see its performance. Table XXV indicates the value of the variables involved in these tests. 

Figure 73. Flow chart of the predictive control algorithm 
for exercise effects compensation. 
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Figure 74. Block diagram of complete glucose level control system with compensation of 
exercise effects 
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or 
Figure 75. Implementation schematic of complete automatic system with predictive control strategy f
compensation of exercise effects. 

Table XXV. Test done in with the designed predictive regulator. 
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In graphs 76 to 90, with a time scale in minutes, the performance of the predictive control is shown. 

Where, it can be stated that for any intensity of exercise from 0 to 40% P A M M , exercise duration from 0 

to 120 minutes and any initial glucose level, the predictive controller will regulate in an excellent form, 

compensating the negative effect of exercise in glucose level. In these tests, the predictive compensator 

and the PID controller act on the system; like it is explained in chapter 2, the body's nature allows it 

because when blood glucose level rises only insulin is secreted and not glucagon and vice versa when 

blood glucose drops. This means that both control actions will not interfere with each other. 

The final test done was combining both control strategies, feedback PID and feedforward predictive 

controller, with the purpose to react to meal disturbances and anticipate exercise disturbance, 

respectively. 

To quantify the carbohydrate intake, information form Sanchez was taken, where the meals are 

represented by pulse functions for the carbohydrate consumption rate. The pulse durations is fixed in 30 

min. and the pulse area represents the ingestion of 66 g of carbohydrates. The carbohydrates total in 

three meals accounts for 53% of the energy from a 1,500 kcal diet, close to the minimum daily 

recommended energy percentage from carbohydrates (Sanchez-Chavez, 2008). 
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Figure 76. Performance of predictive control strategy, with 10% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 77. Performance of predictive control strategy, with 15% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mi)/L) is represented by the green graph. 



Figure 78. Performance of predictive control strategy, with 20% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 79. Performance of predictive control strategy, with 25% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 



Figure 80. Performance of predictive control strategy, with 30% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 81. Performance of predictive control strategy, with 35% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mil/L) is represented by the green graph. 



Figure 82. Performance of predictive control strategy, with 40% PAMM (blue) and 
a duration of 120 minutes. Glucose steady state level at 80 mg/dl(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 83. Performance of predictive control strategy, with 40% PAMM (blue) and 
a duration of 45 minutes. Glucose steady state level at 90 mg/dL(cyan), its response is 

the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 



Figure 84. Performance of predictive control strategy, with 10% PAMM (blue) and 
a duration of 45 minutes. Glucose steady state level at 90 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 85. Performance of predictive control strategy, with 30% PAMM (blue) and 
a duration of 45 minutes. Glucose steady state level at 90 mg/dL(cyan), its response is 

the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 



Figure 86. Performance of predictive control strategy, with 40% PAMM (blue) and 
a duration of 60 minutes. Glucose steady state level at 100 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 87. Performance of predictive control strategy, with 10% PAMM (blue) and 
a duration of 60 minutes. Glucose steady state level at 100 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mi)/L) is represented by the green graph. 



Figure 89. Performance of predictive control strategy, with 40% PAMM (blue) and 
a duration of 30 minutes. Glucose steady state level at 70 mg/dL(cyan), its response is 

the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

Figure 88. Performance of predictive control strategy, with 30% PAMM (blue) and 
a duration of 60 minutes. Glucose steady state level at 100 mg/dL(cyan), its response is 
the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 



Figure 90. Performance of predictive control strategy, with 10% PAMM (blue) and 
a duration of 30 minutes. Glucose steady state level at 70 mg/dL(cyan), its response is 

the red graph and blood Insulin concentration(mU/L) is represented by the green graph. 

The final test was done as follows: 

Table XXVI. Final test done, combining meal and exercise disturbances. 

It can be seen from the table above, that in the first run the closed system was tested when exercise 
is first done and afterwards the patient has a meal. In the second run the person eats before he starts 
any physical activity, and finally, a run to explore the system response when exercise and eating are 
done in the same time interval. The latter test is proposed to experiment a third possibility in the timing 
of different disturbances, even though such timing may be less common in a person's routine. The set of 
the 3 tests do not represent a one-day routine, but only independent and isolated combinations of 



disturbances. The sample time used in these tests was of 10 minutes. These trails are illustrated in figure 
91; external insulin and glucagon infusion, which are the manipulated variables, are depicted in figure 
92. 

Figure 91. Performance of glucose level when meal and exercise disturbance excite the system 
And PID and predictive strategies are applied. 



Figure 92. Manipulated variables of the feedback PID controller (external insulin in mU/min)(green) and 
feedforward predictive compensator (external glucagon in pg/min)((blue). 

From the previous graphs, it can be inferred that even if the meal disturbance is affecting the system, 
the predictive controller impedes glucose level to decrease due to exercise. Conversely, the response of 
the glucose levels in the same is the three cases since the 3 meals are identical and the exercise 
disturbances have a null net effect thanks to the action of the predictive compensator. Nevertheless, the 
PID controller performance is not satisfactory because hypoglycemic levels can be observed in the 
response. As it was stated in chapter 3, this is one of the disadvantages of applying the integral action in 
glucose - insulin PID based control system. 

It is important to remark, that since the implementation of the predictive control strategy was done 
in a discrete time form some restrictions were easily considered. Prior to the external glucagon infusion 
prediction, if the glucose level is above its steady state, the manipulation of external glucagon 
administration was set to zero; on the other hand, if it was under its normal value, external glucagon 
infusion was held constant between sample times as it is done with discrete controllers. 

A manual mode test was done, which considers a constant insulin bolus administration and no 
external glucagon infusion, so the advantages of the feedback PID controller and feedforward predictive 
compensator can be observed; figure 93 illustrates open loop response. 



For comparison issues, the glucose postprandial time due to meal disturbances and the deviation 
glucose level due to exercise were considered. Table XXVII shows these comparison indices. The 
hypoglycemic episode due to the integral action was omitted. 



Table XXVII. Comparison in the system's behavior when it is operated in manual and automatic mode. 

From the information in table XXVII, it can be concluded that the control strategy with feedback PID 
and feedforward predictive compensation makes a great performance improvement in blood glucose 
regulation. The postprandial time is shortened approximately 3.5 times than in manual mode and the 
deviation of glucose level decreased from 7.4 to 11.1 times, depending on exercise intensity and 
duration, than operating in manual mode. 

7.2. Physical implementation of the feedforward predictive 
compensator 

An important aspect when designing control strategies is the feasibility of their physical 
implementation. In addition to the instruments required for feedback control, the proposed automated 
system must have a sensor that measures the disturbance of interest, an actuador to produce a 
compensation of its effects and a reservoir of the drug to use. 

In the next sections a description of the required elements, in order to operate in a close loop mode, 
is done. An explanation of how exercise intensity can be measured is also covered. 



7.2.1. Disturbance measurement and sensor technology 

As stated in chapter 3, an essential step for applying the feedforward strategy is that the disturbance 
that affects the system must be measured and quantified. In this thesis, the disturbance is the exercise 
done {PAMM) by the patient. 

Nowadays, there is not a sensor that can directly measure PAMM. The only available method is by 
measuring the arterial blood gasses while the person is doing physical activity. This is done with a very 
sophisticated and non-portable device. 

Nevertheless, it was found in the literature, an equation that relates the heart rate with PV02

nax-This 
discovery combined with the developed equation (4.1) will allow an indirect measurement of PAMM. 

Swain (1994) established two equations that relate the heart rate with PV02

nax, one is for men and the 
other for women. The difference relies on the basis that the cardio vascular system does not behaves in 
the same form in men and women; this is due to a variation in the heart's size. (Guyton & Hall, 2001). 

(7.1) 

(7.2) 

It is important to remark, that equations 7.1 and 7.2 are only valid for steady state values. This 
cannot be seen as a drawback, since the minimum sample time of today's glucose sensors is of 5 
minutes and the settling of the PVO™"* and PAMM system is faster. This means that when glucose is 
measured, PVO™*1* will already be at its steady state and therefore equations 7.1, 7.2 and 4.1 can be 
used to quantify PAMM. In other words, the procedure in order to quantify PAMM is 

Measure heart rate variations due to physical activity only, then equations 7.1 and 7.2 are used to 
calculate the corresponding PVO™"*, the resulting value is introduced in equation 4.1 and PAMM is 

quantified. 

For measuring heart rate variations due to physical activity only, an odometer has to be used. It was 
found that there is a commercial odometer (Omron HJ-720ITC Pocket Pedometer with Advanced Omron 



Health Management Software) that differentiates heart rate variations due to physical activity from 
other factors. 

The characteristics of the chosen odometer are 

• It has an integrated accelerometer to detect motion 

• Measures steps, aerobic steps and minutes, calories and distance 

• Separately displays aerobic steps and minutes walked more than 10 minutes continuously 

• 7 day history allows a review of a full week of exercise 

• Measures blood pressure 

• Measures heart rate 

7.2.2. Actuator and reservoir 

The actuation principle to follow for glucagon infusion is the same as for exogenous insulin infusion, 
which typically corresponds to the use of an external pump that doses a specified drug amount to the 
patient. 

Since glucagon is not used when glucose level rises and only insulin must be secreted when it drops; 
both exogenous hormones could be administrated through the same infusion site. Therefore glucagon 
and insulin could be placed in two different reservoirs inside one pumping device engineered to 
administer both substances by a single catheter. 



Chapter 8 

Conclusions 

This chapter summarizes the results obtained from chapter 4 through chapter 7, as well the final 
conclusions that can be inferred from this thesis work and the challenges for future investigations in 
order to improve what has been obtained. 

8.1. Discussion of results 

The results from analytical and statistical modeling and from the simulations of the predictive 
controller of exercise effects are summarized in this section, although a more detailed presentation can 
be found in the previous chapters. 

8.1.1. Results from analytical modeling 

In the analytical modeling issue the principal contribution is the inclusion of all exercise effects in the 
Sorensen's model. This implies the quantification of exercise, blood flow rate in the main organs, 
glucose and insulin consumption and the addition of the input of external glucagon infusion. 

Regarding to exercise quantification, several differential equations that represent the dynamics 
involved in the system were develop, such as peripheral glucose uptake (PGUA), hepatic glucose 
production ( HGPA), percentage of maximum oxygen volume consumption rate (PKO™0*), percentage 

of active muscular mass (PAMM), rate of glycogenolysis depletion (d^'y),kidney insulin uptake (KIU) 
and peripheral insulin uptake (PIU). 

From the simulations done with the modified Sorensens system, it was concluded that even the 
glucose level had an accurate performance; insulin concentration did not behave as it is reported in the 
literature. This was the main reason why it was discarded for its use in the predictive control strategy. So 



 

another model was implemented, this was the modified Bergman's minimal order model. Unlike 
Sorensen's model, this had a response that matched the reported clinical data. 

Nevertheless, Bergman's model had a major drawback, it did not have an external glucagon infusion 
input, which is fundamental in impeding glucose level to decrease in the presence of exercise 
disturbance. In order to solve this problem, another innovation was implemented, which was the 
combination of Sorensen's and Bergman's models. The glucagon compartment of the Sorensen model 
modified with an input of exogenous glucagon was combined with the Bergman model with exercise 
caused PVO\nax input. A more detailed explanation is described in chapter 4. 

When the combined Sorensen - Bergman systems was simulated, the response obtained was in the 
range that the medical literature predicts. 

8.1.2. Results from statistical modeling 

In this section, the followed statistical procedure to obtain a Wiener model representing glucose 
behavior to exercise, glucagon and insulin inputs is described. 

After getting sufficient data, near 5000 points from the experimental design the analytical system was 
modeled in a statistical form using the Wiener modeling technique, in order to develop a predictive 
regulator. 

There were four data conditioning criterions involved in the statistical modeling, which were 
normalization of the data in a theoretical form, scaling of data with respect to its maximum value and 
without normalization. These criterions rose because the inputs were of very different order of 
magnitude. 

As it is stated in chapter six, the first objective when using Wiener modeling is to find the multiple 
nonlinear regression parameters that describe the static nonlinear gain of the system; in this case these 
parameters were obtained via least squares algorithm. 

Afterwards, the linear parameters of each of the dynamic ARX models are obtained using the 
generalized reduced gradient algorithm, which optimizes the parameters that will make a minimum 
error between the predicted and real output. This mathematical tool was used because the nonlinear 
parameters must constrain, according to the algorithm described by Rollins. 

From the obtained models, it was concluded that the one with the minimum square error (mse) 
results when the inputs are normalized with respect to its maximum value, which gave an acceptable 
magnitude of 3.6098 with a sample time of 10 minutes. Nevertheless, this model was modified in order 
to have the external glucagon infusion regression starting from the first iteration. This adjustment 
lowered the mse to 3.1. 

Also, it was observed that the sample time had a significant impact in the system. Although the 
control literature reports that using a smaller sample time will lead to a better identification, in this case 
a bigger one gave the best response. The model with a sample time of 10 minutes had a better response
that the one with a sample time of 5 minutes. 

Even thought, there was an error between the system and the obtained model; this error was 
compensated in the predictive control development by making a small adjustment in the parameters. 



8.1.3. Results from the predictive control implementation 

The final goal of this thesis was the development of a regulator that could compensate the nonlinear 
and unstable effect of exercise over glucose level. This achievement was accomplished by designing a 
model based predictor controller, which has glucose concentration level and PAMM as inputs and a 
predicted external glucagon infusion as the output. The exogenous insulin input was ignored in the 
compensator because this hormone will not interfere for raising the blood glucose level that is the goal 
of the feedforward predictive compensator. Another reason is that exogenous insulin infusion will be 
considered as the manipulated variable in the feedback PID controller. 

From the previous chapter, it was concluded that for a limited range of 0 - 40% PAMM and exercise 
duration from 0 to 120 minutes the performance of this strategy is excellent. The maximum glucose 
level deviation value from its steady state was +2 mg/dL, and this magnitude occurs at extreme 
conditions, meaning that the patient is exercising at the highest intensity and duration level. 

In chapter 6, it was established that the intensity range was limited to 40% PAMM due to the results 
thrown by the testing phase. Also, from trials done to the controller, it was obtained that for values 
beyond 120 minutes, its performance failed. Figures 92 to 94, illustrates the behavior of the closed loop 
system when the limited range is exceeded. 



 

Figure 96. Performance of predictive control strategy. With 40% PAMM (blue) and a duration of200 minutes. 
Glucose steady state level at 90 mg/dl(cyan).Glucose concentration response in red. Insulin concentration level in 

green. 

Figure 95. Performance of predictive control strategy. With 45% PAMM (blue) and a duration of 100 minutes. 
Glucose steady state level at 90 mg/dL(cyan).Glucose concentration response in red. Insulin concentration level in

green. 



After observing the previous graphs, it can be concluded that if exercise lasts beyond the duration 
constraint, there will be a serious drawback in the predictive controller. This performance is due to the 
sample time used and the magnitude of glucose rate of change. It is important to remember, that the 
selected model in the predictive algorithm uses the glucose rate to estimate the external glucagon 
infusion, which also depends on the sample time. Therefore, as the patient keeps exercising, his 
decreasing glucose concentration rate of change tends to augment, causing an increase in the difficulty 
to regulate its glucose level. The sample time used has a major impact in this issue. Since in this thesis it 
was consider a 10 minutes interval, exercise duration above 120 minutes will not be regulated as it is 
desired, because above this limit, glucose rate has its largest magnitude. So, even if the predicted 
external glucagon infusion is right, there is going to be a drawback in the interval between one sample 
time and the next one, because the external glucagon predicted at time k will not be sufficient to keep 
regulating the glucose level until time k+1, due to the increase of decreasing glucose rate of change. 
Graph 95 illustrates the above description. 

Figure 97. Glucose rate of change (mg/dL/min)(blue) with 40% PAMM 
and lasting 200 minutes. Red block indicates the time interval where 

glucose rate has its biggest magnitude. This is done in an open loop mode. 

This disadvantage could be surpassed if the sample time was made smaller. Unfortunately, today 
glucose sensors generally measure this molecule every 5 minutes and it was demonstrated in chapter 6, 
that a model with this sample time does not work as well as with a sample time of 10 minutes. 



Nevertheless, before this work, there was no report of a controller that compensated this disturbance, 
the results obtained are very promising in order to develop a fully integrated glucose regulator. 

8.2. Conclusions and future challenges 

8.2.1. Conclusions 

The study of physiological systems is a hard issue due to their nonlinear behavior, as well as the lack of 
mathematical models that represent their dynamics. A more difficult problem arises when it is desired 
to regulate these systems, because advanced control strategies must be applied and sometimes, there is 
no technology to accomplish this. 

Nonetheless, in this thesis research, potential outcomes have been obtained, from a modification of 
two analytical models, an identification of a statistical nonlinear model, which is crucial in order to apply 
control theory, and finally the development of a predictive controller that has the ability of impeding the 
glucose system to become unstable by compensating the effect of exercise and achieving an excellent 
regulation accuracy. 

Another promising result is that this predictive control strategy can be used in parallel with feedback 
control, meaning that a fully integrated controller can be achieved with the following characteristics: 

• Regulation of glucose level by reacting to disturbances, in general, that cause the rising of 
glucose levels through insulin administration 

• Regulation of glucose level by compensating exercise disturbance effect of decaying glucose 
levels by exogenous glucagon infusion. 

The application of both control schemes has the potential of improving the quality of life of diabetic 
patients, bringing their lifestyle to resemble that of a healthy person. 

Finally, it can be concluded that all the objectives proposed in this thesis, which involve the areas of 
modeling, systems identification and advanced control strategies were achieved with a satisfactory 
performance. 

8.2.2. Future challenges 

As stated in the previous sections, the major drawbacks in the system identification and control 
implementation were the limitation of the exercise intensity and duration, which are consequences of 
the sample time used. 

For surpassing these problems, two approaches can be done, which are 



• Decreasing the sample time approximately to 1 minute or less. 
• Applying other modeling technique. 

Decreasing the sample time has several advantages, such as obtaining more information of the 
system dynamics from the experimental design which will make a better adjustment of the parameters, 
causing that the PAMM range could be broaden. However, its major improvement will be in the 
predictive controller implementation. A smaller sample time will allow an increment in the exercise 
duration range. When a sample time of 10 minutes was used and exercise lasted more than 120, even 
when the predicted external glucagon infusion was right at time k, glucose level tended to drop because 
the manipulated variable was not enough for compensating the effect of the disturbance, since the 
system needed to react faster and this was not possible within one long sampling period of 10 minutes 
(the next sample time k+1 lags 10 minutes from the previous one). So, by shortening the sample time 
this drawback can be surpassed. 

Nevertheless, as it was stated before, up to these days there has not been a commercial sensor for 
obtaining quick measurements of arterial glucose concentration. However, promising results were 
obtained by Carvajal (2009), who successfully began to study a blood glucose sensing method based on 
Yamakoshi's work. Carvajal's work shows it is possible to obtain a reliable measure within the required 
parameters for this thesis research, without interferences from other analytes and tissues. 

Nonetheless, if sensor technology does not improve in the next few years, other modeling 
techniques can be used for compensating exercise effect on glucose level. Artificial neural networks 
(ANN) could compete in performance with Wiener modeling. Their disadvantages are that they must be 
trained for all possible inputs combinations, and this may be a difficult issue; also, they will not provide a 
system structure, as it is done with Wiener modeling. So, basically the modeler would not know its 
internal behavior. However, if the ARN is well trained, its performance can be as good as Wiener 
modeling method. 



Appendix 1. Sorensen's equations and parameter's values 
The following nomenclature and equations describe the compartmental model by Sorensen for the 
glucose-insulin metabolism for either a healthy person or a diabetic patient. Taken from Sanchez. 

Model variables 

A: auxiliary equation state (dimensionless) 
B: fractional clearance (I, dimensionless; N, L/min) 

G: glucose concentration (mg/dL) 
I: insulin concentration (mU/L) 
N: glucagons concentration (normalized, dimensionless) 
Q: vascular plasma flow rate (L/min) 
q: vascular blood flow rate (dL/min) 
T: transcapillary diffusion time constant (min) 

V: volume (L) 
v: volume (dL) 
0 : metabolic source or sink rate (mg/min or mU/min) 
Variables in pancreatic insulin release model in healthy body: 

W: potentiator (dimensionless) 
Y: inhibitor (dimensionless) 

R: labile insulin (U) 
Z: secretion rate (U/min) 
X, W«: intermediate variables (dimensionless) 

Model sub and superscripts 
A: hepatic artery 
B: brain / basal value in insulin pancreatic release model 
BU: brain uptake 
G: glucose 
H: heart and lungs 
HGP: hepatic glucose production 
HGU: hepatic glucose uptake 
I: insulin 
IHGP: insulin effect on HGP 
IHGU: insulin effect on HGU 
IVI: intravenous insulin infusion 
K: kidney 
KC: kidney clearance 
KE: kidney excretion 
L: liver 
LC: liver clearance 



N: glucagon 
NHGP: glucagons effect on HGP 
P: periphery (muscle/adipose tissue) 
PC: peripheral clearance 
PGU: peripheral glucose uptake 
PIR: pancreatic insulin release 
PNC: pancreatic glucagon clearance 
PNR: pancreatic glucagon release (normalized) 
RBCU: red blood cell uptake 
S: gut (stomach/intestine) 
SIA: insulin absorption into blood stream from subcutaneous depot 
SU: gut uptake 
T: tissue or interstitial space 

Glucose mass balance equations 

(al.l) 

(al.2) 

(al.4) 

(al.5) 

(al.6) 



Glucose metabolic sinks and sources (mg/min): 

(al.9) 

(al.10) 

(al.ll) 

(al.12) 

(al.13) 

(al.14) 

(al.15) 

(al.16) 

(al.17) 

(al.7) 

(al.8) 



(al.18) 

Insulin mass balance equations 

(al.19) 

(al.21) 

(al.22) 

(al.23) 

(al.24) 

(al.25) 

Insulin metabolic sources and sinks (mU/min) 

T|Vi and rS I A are the terms for insulin administration in medical treatments using the intravenous 

and the subcutaneous routes, respectively. 

(al.26) 

(al.20) 



Glucagon mass balance 

(al.27) 

(al.28) 

(al.29) 

(al.30a) 

(al.30b) 

(al.30c) 

(al.30d) 

(a8.1.30e) 

(al.30f) 

(al.30g) 

(al.31) 



Glucagon metabolic source (dimensionless) 

(al.32) 

Parameter values 



Constants for insulin release model in healthy body: 
a=0.0482 min 1 

(3=0.931 min 1 

k=0.00794 min"1 

Ma=0.00747 min1 

M2=0.0958 min"1 

7=0.575 U/min 
R0=6.33 U 



Appendix 2. Data results of the experiment 
The following appendix includes the data obtained from the experimental designed that is described in 
chapter 5. 
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