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Abstract

Diabetes Mellitus disease is the principle cause of death in Mexico since year 2000, especially for the
different complications that arise from this illness, such as heart, kidney, and hepatic failure. The
principal risk factors that highly alter glucose concentration level in diabetic patients are carbohydrates
consumption and prolonged exercise. This is due to a null insulin production in the Langerhans cells or to
an increase of insulin resistance in the biochemical receptors of the body.

Today's treatments for controlling blood glucose level, which are the injection of insulin boluses and
the following of a special nutritional regimen, are very susceptible to human errors, so there is a latent
possibility that damage can be done to the patients health. Therefore, it is indispensable to regulate
glucose concentration level in an automatic form.

In this research area, the scientist have mainly developed control strategies that impede glucose
level to increase when the patients has a meal; successful results have been reported. However, no
investigation was found concerned with the regulation of glucose level when physical activity is done,
and which is an important factor, since prolonged exercise can cause hypoglycemic episodes that can
lead to severe injuries in the person, even death.

In this thesis research, two major innovations were achieved: a nonlinear statistical mathematical
model that represents the effects of exercise on blood glucose concentration and the design of a
feedforward predictive compensator that impedes glucose decrement.

Successful simulations were obtained, since the proposed advanced control strategy regulated the
blood glucose level when physical activity, limited to a duration of 120 minutes and from low to mid-
high intensity, was performed. Also, it was demonstrated that this algorithm can be applied along with
control strategies that react to an increase of glucose level due to postprandial conditions.
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Chapter 1

Introduction

Nowadays, long term healthcare treatment of several diseases requires special and careful attention.
Diabetes Mellitus disease is one of the multiple examples that can be cited. According to stats from
INEGI (Mexican Government agency in charge of demographic statistics), diabetes has been the principle
cause of death in Mexico since year 2000, especially for the different complications that arise from this
disease, such as heart, kidney, and hepatic failure.

The care of this iliness generally consists of applying a subcutaneous or intravenous injection of
insulin, in an open loop way, meaning that the patient has to do it according to his previous experience
or by measuring his actual glucose level in a manual form (Doyle, Jovanic, & Seborg, 2007).
Nevertheless, there are several complications that can occur due to a mal-practice of the insulin shot,
like hyper-hypo glycemic levels, causing from body ache to serious organ damage that could have
decease as an outcome.

There are other risk factors that can modify plasma glucose level, these being carbohydrates intake
and prolonged exercise the major ones; these, respectively, increase and decrease the level. This is the
main reason, why human physiology during exercise will be taken into account, as well the effects that it
produces on insulin and glucose metabolism.

Based on these reasons, as well as for patient comfort and safety, it is highly important to continue
the pertinent research in automated systems that deliver an exact and precise quantity of insulin at the
time the patient needs it. Insulin infusion pumps and glucose sensors have been the major technology
issue for the last twenty year, a great number of control strategies that could be implemented for the
regulation of the insulin-glucose physiologic system via negative feedback have been developed since
1960, such as PID, Run to Run, One step ahead and other feedback techniques (Doyle, Jovanic, & Seborg,
2007). However, because of the inherent integral action of these methods, an overdose of insulin might
happen, resulting in a hypoglycemic episode for the user.

As control strategies for this system improved, mathematical models representing insulin and

‘glucose dynamics were needed, so the regulation of blood glucose levels could be assured. Several
analytical models were developed, such as the models by Sorensen (Parker, 2000), Bergman (Khoo,
1999) and Havorka (Doyle, Jovanic, & Seborg, 2007) that quantify the glycemic and insulin levels as a
function of external and initial conditions, like carbohydrates intake, external insulin bolus, basal glucose
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and insulin level, etc. This is a priority when dealing with the automation of any system, knowing the
response of the process depending on some conditions.

According to Doyle et al. (2007) diabetic people can control their glucose level by following a special
low carbohydrate diet and exercising in @ moderate way for a brief period of time. The main reason why
they can only exercise for a short time is because after 30 to 40 minutes, their glucose level tends to
decrease at a high rate, and given the condition that they use insulin shots, hypoglycemic state will
appear. in the next chapters, more information about physiology during exercise will be discussed.

1.1. Justification

The principle motivations for this research are:

= Prolonged exercise can cause serious problems to the patient’s safety if it is not regulated.

= There is not a control strategy that impedes glucose level changes caused by exercise.

= In the literature, a statistical physiological model was not found that suited glucose response due
to exercise changes because of its nonlinear and unstable nature.

= Controlling glucose levels caused by different perturbations can help in the creation of an
artificial pancreas, improving people’s quality of life.

1.2. Problem Statement

Eventual or unintended increase in physical activity for relatively short periods of time, below 2 hours
in a continuous fonh, makes glucose plasma level decrease, causing undesired symptoms that can put
. the patient’s life in danger, especially the ones with Diabetes Mellitus. So it is necessary to compensate
the negative effects of exercising at a high intensity.

1.3. Objectives

According to the needs stated in the justification section, the objectives of this thesis are

= Analysis of the response of glucose level when exercise is done.

= Combination of different analytical models, with the purpose of generating useful data that
represent the system’s behavior.

= Development of a statistical model that relates exercise intensity and glucose level.

= Design of a control strategy that compensates the effect of exercise on glucose level, without
producing a hypo-hyper glycemic state.

= Analysis of the combination of an exercise compensator and a PiD control scheme.




1.4. Contents description

The organization of the contents of this dissertation are explained in the following paragraphs:

Chapter 2 is divided in two parts. The first section deals with biological aspects, like the explanation
of glucose, insulin and glucagon physiology and their role and effects on the body, description of
Diabetes Mellitus (its symptoms and its consequences) and finally, human physiology during exercise. In
the second part, systems identification and control theory are explained.

In Chapter 3, the state-of-the-art of modeling and control of the glucose-insulin process is discussed.

Chapter 4 deals with fitting of clinical reported data with the mathematical models that are used in
this thesis. Also a comparison between the models by Sorensen and Bergman models is shown, as well
as how they can be combined.

Chapter 5 outlines the experiment design with the purpose of obtaining a statistical model that
relates glucose rate of change with exercise, insulin and glucagon. It its explained why firstly Box-
Behnken Design (BBD) experiment is chosen; also the reasons for the selected inputs and output ranges,
and finally the decision of using glucose rate of change and not glucose itself will be discussed.

Chapter 6 presents the statistical model that fits the data generated by the simulated experiment.
First the Hammerstein-Wiener modeling technique and its advantages are described; afterwards, the
application of this method to the modeling of glucose rate of change is analyzed; and in the end, the
methods of minimum square error for nonlinear systems and multiple regression used for obtaining the
value of the parameters are mentioned.

Chapter 7 explains the compensation algorithm to prevent glucose level from decreasing, via
glucagon application, this is done using the inputs of the model and the measurement of glucose itseif.

Finally, Chapter 8 shows the results obtained using the exercise compensator and a PID controller in
a dose loop way and what can be done in order to improve the efficiency of the compensator; and the
conclusions of this thesis.




Chapter 2

Background

This chapter is divided into two major parts: biological and control basics. The first part is an
introduction to biological sciences, focused on the endocrinology of insulin and glucagon hormones, the
definition of Diabetes Mellitus and its consequences, and the physiology during exercise. The second
part summarizes modeling principles and presents the definitions of elements, variables, operation
modes and types of control systems.

2.1. Biological sciences

2.1.1. Endocrinology basis

For an optimal performance of the human body, cardiovascular, neurological, nephrological and
endocrinological systems, among others, must work in a perfect form. Because this investigation
involves the usage of several hormones, it is important to remark that the Endocrinological system has
the responsibility of keeping them in a level so life can be sustained.

According to Kronenberg (2002), an endocrinological hormone is a substance that is released by a
glandule into the blood stream and has the capability of making the target organ to react, even if there
is a long distance between them. The principal elements that form this structure are: hypothalamus,
which is located in the front part of the brain; hypophysis, located underneath the hypothalamus; and
glandules, like thyroid, testicles, ovaries, suprarenal, etc. The path how this system regulates the
hormone levels is:

e The hypothalamus (functioning as a sensor) detects a low concentration of the hormone to be
regulated and sends a signal, another hormone, to the hyphofisis (acting as a controller), which in
turn releases a secondary hormone to an specific glandule (working as an actuator), and this one
discharges a last hormone to the target organ (that happens to be the plant).




As it can be seen, this path has a huge importance since it allows feedback (negative or positive) of
the current hormone level. In medical terms, a positive feedback means incrementing the release of a
hormone, and a negative feedback, decreasing it. This control mechanism impedes an unbalance of
hormones in the body, due to a large or a low concentrations of them, that can provoke diseases like the
Cushing Syndrome. The main reason of failure in this path is when a tumor arises in any of its elements.

It is important to remark the action mechanism and effects of the hormone released by a glandule in
the target organ. The hormone anchors in specific receptors located in the cell membrane or in the
nucleus and produces a desired reaction. If the receptors that detect the hormone are in the membrane,
they generate a series of events, called second messengers, inside the cell, but if they are in the nucleus,
their action consists on a modification of the DNA.

2.1.2. Glucose and its metabolism

2.1.2.1. Glucose structure

Glucose, also known as Dextrose, is the molecule that gives most of the energy that human body
o

need. It is a monosaccharide classified as an aldohexose because it has an aldehyde group, B , with
six carbon atoms, and it enter most of the cells via passive transport, but when dealing with digestive
organs, it needs an active transport, meaning that it uses an hormone to allow its entrance.

According to McKee (2003), the roles of glucose in the organism are

e Principal source of energy in the body.
e Only.source of energy of the brain and red celis.

Glucose can be obtained by two ways:

e Glycogenesis: deployment of complex carbohydrates, like lactose, maltose, etc., into glucose,
and synthesis of glycogen from the excess of glucose.
¢ Gluconeogenesis: transformation of proteins and lipids into glucose.

Basically, there are two glucose isomers: D-glucose and L-glucose. The first enantiomer is the only
one that can be used as a source of energy in cells. D-glucose can be found in two different structures, in
a linear form and as a hemiacetal ring, the difference between them relies in their stability properties.
Nevertheless, when glucose reacts with body fluids it does it in its open structure, but there can also be
found hemiacetal ring structures (Ritter, 1996).
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Figure 1. Linear and Hemiacetal ring D-Glucose structures.

2.1.2.2. Glycolysis

Metabolism is defined as the chemical reactions that occur in the body in order to obtain energy
(Guyton & Hall, 2001). It can be divided in two major parts: catabolism and anabolism. The first one is
the process of converting complex macromolecules into simple molecules; anabolism designates the
reactions that make a macromolecule from simple elements.

Glycolysis is the metabolism of glucose. Depending on the organism and the cells specialization, there
can be two types of glycolysis, which are aerobic and anaerobic. The usage of depends on the
cardiovascular system’s capacity of satisfying the oxygen and glucose uptake demands by the muscles
(Alberts, 2002).

Pasteur classified the cells in charge of oxidizing glucose in three categories: strict aerobe cells that
form CO, and H,0; anaerobe strict cells that form lactic acid and facultative anaerobe cells that behaves
as either of the other two types of celis (Murray, 1993).

Table {. Comparison between aerobic and anaerobic glycolysis.

B Glucose uptake " Lactic acid production " CO2 production
Aerobic Low None High
Anaerobic High High jl None

The conversion of glucose into energy has several biochemical steps that occur in the cells
mitochondria, and takes different paths depending on the type of glycolysis.

The first step is transforming glucose into pyruvate, in medical terms this is known as glycolysis. It is
important to acknowledge that aerobic and anaerobic glycolysis follow these same reactions and the
total gain of this phase is 4 adenosine triphosphate (ATP) and 2 nicotinamide adenine dinucleotide
(NADH) molecules; the second step is called Kreb’s cycle or Citric acid cycle, which has the function of
capturing H' from the different reactions that happen inside the mitochondria; the third step has the
main goal of generating ATPs from the hydrogen obtained in the NADH and FADH, molecules via the two
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previous steps; Oxidative phosphorylation is the third step and is in charge, literately, of energy
generation. This process occurs in the intermembrane space of the mitochondria.
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Following, the principle reactions in glycolysis are described:

1)

2)
3)
4)

5)

6)

7)

8)

9)

Glucose-6-phospate synthesis. When glucose enters to the cell, a phosphate group coming from
an ATP molecule is added via the hexokinase enzyme. This is known as phosphorylation
reaction. The purpose of this reaction is to keep the glucose molecule inside the cell.

Conversion from glucose-6-phosphate into fructose-6-phosphate. The glucose-6-phosphate
aldose is changed into a fructose-6-phosphate ketose via an isomerization.

Fructose-6-phospate phosphorylation. A phosphate from another ATP molecule is added. Until
now, there has been only one investment of energy, and the resulting molecule is 6C-2P.
Rupture of fructose-1,6-biphosphate. In this step fructose-1,6-biphosphate is split into
glyceraldehide-3-phosphate and dihydroxyacetone phosphate.

Interconversion of dihydroxyacetone into glyceraldehide-3-phosphate. Triosephosphate
isomerase is the enzyme that is in charge of the conversion. This step aliows the body to have
two glyceraldehide-3-phosphates, which are the molecules that continue that next steps.
Glyceraldehide-3-phosphate oxidation. In this step the glyceraldehide-3-phosphate is oxidized
and afterwards a phosphorylation reaction occurs giving a new molecule, 1,3-
bisphosphoglycerate. .

Transfer of the phosphate group. An ATP molecule is synthesized from the transfer of a
phosphoryl group of 1,3-bisphosphoglycerate to an ADP molecule. The product is 3-
phosphoglycerate.

Interconversion from 3-phosphoglycerate to phosphoenolpyruvate. Phosphoglycerate mutase
enzyme converts the first mentioned molecule into 2-phosphoglycerate and afterwards into
phosphoenolpyruvate.

Pyruvate synthesis. A phosphoryl group is transfer to an ADP molecule via pyruvate kinase
enzyme, in order to have the desired final molecule, pyruvate.

If there is an anaerobic situation, pyruvate will transform into lactate, in order to give the energy
needed by the muscles. On the other hand, if an aerobic process is being done, pyruvate will be
transformed into Acetyl CoA.
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Figure 3. Glycolysis reactions. Taken from Alberts (202).

After glycolysis process ends, the next biochemical reactions that occur in the organism are known as
the Krebs cycle.

This energy generation process occurs inside the mitochondria, and it has a net gain of 3 NADH, 1
FADH, and 1 ATP. Its main purpose is not the production of ATP but the attainment of hydrogen atoms.
Citric acid cycle is divided in eight principal reactions (Alberts, 2002):

1) Conversion of acetyl CoA to citrate. The acetyl CoA combines with an oxaloacetate molecule and
via the citrate synthase enzyme to form citrate.

2) Conversion of citrate into isocitrate and cis-aconitate.



3) Oxidation of isocitrate. In this reaction the first NADH is generated by the oxidation of isoscitrate
to a-ketoglutarate.

4) Conversion of a-ketoglutarate to succinyl-CoA. The first decarboxylation occurs and another
NADH is obtained.

5) Transformation of succinyl-CoA to succinate. The only ATP gain occurs.

6) Oxidation of succinate. Succinate-dehydrogenase enzyme oxidizes succinate molecule, in order
to obtain Fumarate and FADH,

7) Transformation of fumarate to L-malate. Fumarate is hydrated and generates L-malate.

8) Oxidation of L-malate to oxaloacetate. This final step generates the final NADH moiecule.

The reaction in this cycle can be summarized as:

Acetyl CoA + 3 NAD + FAD + ADP + Pi +2 H,0 2 2 CO, + 3 NADH + 3 H + FADH, +ATP + CoA

Legend %

Water" ( o-ketoglutarae

[‘ l‘l’uu-«ir-:»-_ S -
- ( Succiny -2 oA
u.u..,t.—g/‘/\/ L Co |

Figure 4. Krebs Cycle. Taken from http://en.wikipedia.org/wiki/File:Citriccycle.svg

Finally, the last group of reactions is known as oxidative phosphorylation, which is the most
important step.

This process synthesizes ATP when electrons from NADH and FADH, are transferred to O, in the
mitochondria’s matrix. The total energy generation is in the order of 3 ATP / 1 NADH and 2 ATP / 1
FADH,.

The summary of this process is (Alberts, 2002):

1) NADH and FADH,; are reduced by three enzyme electron complexes.

2) The electron transport chain pumps H' into the intermembrane space with the purpose of
generating a H' gradient.

3) Due to a H' gradient increase in the intermembrane space, H' are returned to the mitochondria’s
matrix using an H' pump, also known as ATP pump.
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4} For an ATP bomb can be used, the compiex ADP + Pi (phosphate) must link to it. After the
process is done, H returns to the mitochondria’s matrix and a new product is formed, ATP.
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Figure 5. Oxidative phosporylation process. Taken from Alberts (2002).

As it has been seen, conversion from food to energy is a very complex process, which involves a lot of
reactions, but all of them can be regulated depending on the body’s needs using enzymes.

2.1.3.  Glucose regulation via insulin and glucagon hormones

According to Guyton (2001), the normal glycemic range in the plasma is 60 — 110 mg/dL. When the
level drops or is increases beyond these values, the patient starts to feel illness, presenting symptoms,
like lack of energy, paleness, headache, among others. It is in this situation when the endocrinology
system starts its control with the goal of keeping glucose in the desired range. The two hormones
involved in glycemic regulation are insulin and glucagon.

2.1.3.1. Insulin effects

Insulin is an essential life hormone secreted by the Langerhans cells in the pancreas. This hormone
has hypoglycemic and protein anabolic effects {Dvorkin & Cardinali, 2003). Insulin secretion is associated
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with energy abundance, that is, in presence of a meal bolus {especially carbohydrates) this hormone will
be in charge of lowering glucose level.

Another aspect of insulin is its capability of inducing reserves from excess energy; it causes excess
glucose to be stored in the liver and muscles in form of glycogen (via glycogenesis) and in adipocyte cells
as fat (Guyton & Hall, 2001). ’

The goal of the insulin action mechanism is to increase the membrane permeability of cells to
glucose, so this molecule can enter the mitochondria’s matrix and its metabolism can start.

2.1.3.2. Glucagon effects

Like insulin, this hormone is produced in the Langerhans cells, but its functions are the opposite of
those of insulin, meaning that it is secreted when the glycaemic level drops and with hyperglycaemic
and catabolic effects. It can be defined as a stress hormone, designed to mobilize energy reservoir
(glycogen, triglycerides) upon an increased glucose uptake demand (Dvorkin & Cardinali, 2003).

As it was explained in section 2.1.1, glucagon has to anchor to special receptors in the desired cells,
so its effects can accomplish its goal of stimulating glycogenolysis, gluconeogenesis, ketogenesis and
protein catabolism (Dvorkin & Cardinali, 2003).

2.1.4. Diabetes Mellitus

When there is a problem with insulin receptors or insulin hormone production, usually absence of
Langerhans celis, glucose plasma level will increase because it won’t be able to enter the target cells,
causing diseases in the organism. This complication is called diabetes mellitus and also includes
alteration of protein and fat metabolism.

Diabetes mellitus can be divided in two types, which are

o Type |, also known as insulin dependent diabetes.
This class of diabetes arises when there is a failure in insulin production in the Langerhans B-cells
due to a genetic problem, virus infections or immune system disorders. According to Guyton (2001),
its symptoms usually start in the age of 14 with three essential sequels: hyperglycemic level,
increased fat metabolism and protein reduction. With this kind of diabetes, the glucose level
increments to 300 — 1200 mg/dL.

Type | diabetes effects:
o Loss of glucose via the urine. When the glycemic level arises, more glucose is filtered to the renal

tube than the quantity that can be absorbed, so part of the plasma glucose will end up in the
urine.
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o Dehydration. It occurs due to an increase of the osmotic pressure in the extracellular
compartment, provoking water to flow outside the cell.

o Tissue lesion. A chronic hyperglycemic level will have a negative impact in the blood vessels,
causing a morphological change in them and poor irrigation of several organs. This syndrome will
increment the possibility of myocardial infarction, ictus, lethal renal diseases, retina injure,
blindness and limbs gangrene.

o Usage of fat and protein as energy. The alteration of the carbohydrate metabolism will induced
the usage of fat to satisfy the energy uptake demand. Nevertheless, the production of keto acids
is greater than its consumption, this will provoke a metabolism acidosis that can take the patient
to a diabetic coma. Also protein will be used for energy considerations, causing dystrophy in the
organism tissues.

Type I, also known as non-insulin dependence diabetes or insulin resistance.

In this kind of diabetes, there is insulin production but the cells sensitivity to this hormone is very
low. As in type 1, metabolism of carbohydrates, fats and proteins metabolism is altered, and
symptoms are almost the same except for the high production of keto acids.

This is the most common type of Diabetes mellitus, since it includes 90% of this disease cases and it
usually starts at the age of 50 (Guyton & Hall, 2001).

Type |l Diabetes effects (Guyton & Hall, 2001):

o Increase of plasmatic insulin. Due to a lack of sensitivity in the insulin receptors, glycaemic level
increments, this situation makes the B-Langerhans cells produce more of this hormone in order
to lower the glucose level, but the response will not be the desired one because of receptors
resistance to insulin.

o Obesity. There are two theories of how obesity and diabetes are related. One indicates that
obese people have less insulin receptors in the muscles, liver and adipose tissue. The other
expresses that there is an alteration in the activation signals on the insulin receptors.

Table Il. Comparison between Diabetes Type | and Type II.

Data Typel Type 11
Appearance age <20 years >40 years
Body mass Reduced Obesity
Plasmatic insulin Reduced or absent Raised
Plasmatic glucagon Raised Raised
Plasmatic glucose Raised Raised
Insulin sensitivity Normal Reduced
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Treatment External insulin Diet, insulin, exercise

Depending on the type of diabetes the patient has, there are several treatments to follow. If it is type
|, the only remedy is the external insulin shot, which is classified in two forms: the regular injection, for a
basal one-day-long effect, and the supplementary injection, that is taken before a meal.

For type Ii, exercise and diet are the first treatment. According to Kronenberg (2002), exercise will
increment insulin sensitivity in the cells, and glycemic level will decrease as consequence. If this fails,
insulin shots have to be taken (Guyton & Hall, 2001)

2.1.5. Homeostasis changes during exercise

During exercise, the body’s physiology suffers increased heart rate (HR), blood flow (Q), oxygen
uptake (VO,) and insulin sensitivity. Also plasma glucose and insulin levels decrease (Guyton & Hall,
2001; Firman 2005). Although these changes are beneficial to the organism because it improves the
quality of life of people, if a patient has an illness, like Diabetes Mellitus, exercising at a high intensity or
for a long time can provoke serious issues to his heaith.

2.1.5.1. Effects on Heart Rate

According to Firman (2005}, the heart rate in an adult person is approximately 78 heart beats/min,
but if a person is exercising, it will raise up to 200 heart beats / min, depending on the duration and
intensity of the exercise.

Firman showed evidence that HR has a direct relation with oxygen uptake, that depends on the
active muscles demand. Firstly there is not enough quantity to satisfy the needs, so a chemical
stimulation is induced in order to increase the HR; as a second stage, the increment of the HR will also
increase the heart and blood flow, allowing faster oxygen transportation to the active muscles.

2.1.5.2. Effects on Oxygen Uptake

In an adult person, the normal oxygen uptake is 250 mL/min, but it can rise up to 5100 mL/min,
depending on the physical resistance. Additionally, this measure can vary due to the person’s gender
and age. Therefore, it is preferable to handie a percentage of maximum oxygen uptake ratio (PVO,™ or
V0,™), in order to make comparisons among people.

Fehlig and Wahren (1975) reported that PVO,™ has a basal value of is 8% and takes approximately
from 4 to 5 minutes to reach its maximum.

2.15.3. Effects on Blood Flow
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In basal conditions, the skeletal muscle only receives 15% of the total heart flow; also the arterioles that
irrigate those muscles are closed. However, when exercise begins, the following reactions occur (Firman,
2005):

1. At the beginning of the exercise, as it was explained, heart rate and heart flow increase; this
situation induces a reaction in the sympathetic nervous system that wiil open the arterioles in
the skeletal muscles and close the ones in the abdominal region and skin, this is done with the
purpose of pumping more blood to the active muscles.

2. The increase of metabolism waste products of skeletal muscles acts as a direct signal in the
nervous system, so arteries nearby can dilate, allowing active muscles to receive the blood flow
from other zones of the organism; the arterioles from those regions will be ciosed due to a
signal sent by the sympathetic nervous system.

With the knowledge of these effects, Chapman & Mitchell (1965) realized a research pointing out the
variations of blood flow in the organs during exercise. It is indispensable to remark that all of these
changes are consequences of the active muscular mass, and this one is linked directly to an increase in
PVO,™"; according to Andersen et al. (1985), this means that blood flow in active muscles is a linear
function of exercise intensity.

Table Il1. Relationship between blood flow {dL/min) in organs and exercise intensity (%).

Organ PVO,™
8% 30% 60% 90%
Brain 59 5.9 5.9 5.9
Liver | 12.6 9.8 6.1 23
Kidneys 10.1 8.1 5.3 2.5
Periphery 15.1 50.6 99.1 147.5

2.1.5.4. Effects on glucose and insulin plasma levels

Firman (2005) indicates that during the first 15 minutes of exercise, glycogen stored in the muscles
and plasma glucose is used to satisfy the energy needs; in a second phase, after 30 minutes of exercise
had passed, liver glycogen is consumed; and after 40 to 90 minutes, fat metabolism is used in order to
obtain energy. All this mechanism has the goal of giving the maximum energy to the active muscles so
their demand is fulfill.

The risk that diabetic patients have when they exercise in a moderate or high intensity form is that
their plasma glucose level will decrease in such a way that they will suffer of hypoglycemia, causing
them several uncomfortable symptoms.
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2.2. Systems Identification and Control Theory

2.2.1. Systems Identification and Modeling

According to Ogata (2002), a system is defined as a combination of components that act together
and perform a certain objective. In order to fully comprehend any system found in nature, it is necessary
to understand and represent how it responds to a known input variable or several inputs. This concept is
known as system modeling.

The process of modeling a system can be done in an analytical form, this means that the
mathematical model of the system is achieved through the use of laws of physics. Nevertheless, since
most of the processes are nonlinear and complex this method is usually very difficuit to follow. Hence,
another technique is the statistical one, which basically is the adjustment of parameters in a firstly
proposed model structure, using the inputs that excited the system and the consequently responses.

The major advantage of the last explained method is that it can be applied with successful results,
even if the engineering does not know its internal elements, the only set back is that several times the
adjustment techniques are so difficult that the identification can fail.

inputs Outputs
pu System to identify pu

\{

(Black box)

Figure 6. Statistical identification of a system.

Basically, the algorithm to identify a system via the statistical scheme is (Ljung, 1999):

1. Experiment design. This is an essential step because it has to be developed in such a way that it
gathers all the system’s dynamics. If the experiment is dysfunctional the data generated will not
be reliable, causing lack of veracity of the identified model. There are several methods of
designing an experiment, for further information look in {(Montgomery, 1985).

2. Obtained data. All the inputs and outputs that resulted in the experiment must be recorded,
because they will be needed in the adjustment of the model structure. input and output variables
were determined in the experiment design.

3. Model structure proposal. This is the most difficult stage in the algorithm and a special attention
must be considered, because if the model structure selection is incorrect, it will not behave as
the real plant and possibly the adjustment technique will fail.
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4. Parameters adjustment criterion. In this section, a mathematical algorithm must optimize the
parameters of the proposed model, in order that the response of the model would be the same
as the system. Usually minimum square error method is used.

5. Model validation. After applying the same inputs to the system and the model, the responses will
be compared, and if they are the same, the model is said to be reliable.

Experiment
Design

Yes

>

No

System to
identify

Data

No Adjustment |

Reliable? criterion

Yes

Proposed model structure

Model System

Model validation

No

Same response?

Succesful modeling

Figure 7. Block diagram of statistical modeling.
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2.2.2. Control Theory

A model is a tool for the analysis of a process and a means to explore its interaction with other
elements by simulation instead of experimentation (with the real process). So, a mathematical model
must aim to give reliable information about the process dynamics and help to improve or deepen the
understanding of the process as well.

Control theory can be used to modify the dynamics of the process response in order to get a specific
behavior.

A control system consists of the following four basic elements:

Process. It is the physical element to be controlled.
Sensor — Transmitter. It is in charge of measuring the response of the system and traducing it to
a signal the can be compared with the reference, commonly to an electric signal.

3. Controller. It is the brain of the system, because it is in charge of changing the systems dynamics
to accomplish a desired behavior (Smith & Corripio, 2006).

4. Final control element. It is also known as the actuator, since it is the responsible of the physical
action over the system, depending on the signal sent by the controller,

The main information flows among the above components constitute the variables of the system
which are listed below:

1. Process variable. it is the response of the system.
Set point. It is the trajectory to follow by the response of the system, also known as the
reference.

3. Error. The result of comparing the reference with the actual output of the system is known as
error.
Manipulated variable. it Is the signal sent by the controller to the actuator.

5. Disturbances. External signals that affect the control system, they usually can be found after and
before the plant.

6. Noise. Alterations of the measurement of the process variable due to electromagnetical
interferences with the sensor.

A control system can be operated in manual and automatic modes, which correspond to the open
and closed loop configurations, respectively:

¢ Open loop system. In this system, the process variable has no influence on the control action.
This means that the process variable is neither measured nor fedback for comparison with the
set point.

¢ Closed loop system. In this system, the process variable and the reference are compared and
using the difference is used by the controller to determine a corrective action.
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D(t)

R(t) e(t) m(t) u(t) + ()
Controller Actuator System

< Sensor |«
N(t) -+ b(t)

Figure 8. Control system block diagram. R(t) is the reference signal,
e(t) is the error, m(t) the manipulated variable, u(t) the input to
the system, y(t) the output, b(t) the measured output. D(t) is the
disturbance at the output, and N(t) noise added to the sensor.

As mentioned above, the purpose of applying a control action is to force the output of the system to
a desired reference, even if disturbances are being applied to the system. Nevertheless, according to
Smith & Corripio (2006), there are two control objectives:

1. Regulatory control. When the controlled variable deviates from the set point because of
disturbances, this control scheme will compensate the undesired effects in order to return the
variable to a specific reference.

2. Servo control. This control scheme is used when it is desired that the output of the system
follows a change in the reference.

Knowing the two basic schemes of control theory, several strategies have been developed in order to
design the controller; those methods mostly depend on the complexity of the system. In the next
chapter, some advanced control strategies will be explained.
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Chapter 3
State of the art

This chapter contains the principal models that have been used to represent the plasma glucose ievel
behavior, as well the control strategies that have been applied to the glucose-insulin system, and finally
it will be pointed out the areas of opportunity that could increase the performance in this complex and
nonlinear system.

3.1. Glucose model development

As stated in chapter 2, the plasma glucose level depends on several factors, such as insulin and
glucagon hormones, exercise, meals, among other. So, in order to develop a model that quantifies the
glucose in the blood, it is necessary to take in count most of those aspects or, if possible, all of them.

Since the human body could be harmed if experiments were done in an unpractical form, the
analytical approach is often used to obtain a physiological model. In the next sections, these models are
explained.

3.1.1. Ackerman’s model

In 1965, Ackerman and colleagues developed one of the first known mathematical analysis of insulin
-glucose interactions (Parker, 2000). Basically, it considers only one global compartment that represents
the plasma glucose and insulin in the body (Sanchez, 2008). This model was developed, via an
experiment that is known as glucose tolerance test. This test is used to observe how the blood glucose
concentration behaves after a patient intake a high carbohydrates meal (Guyton & Hall, 2001).

The Ackerman model can be described by the next nonlinear equations:
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aG

i fi(G, H) + p(t) (3.1)
Z—I: = f5,(G,H) + u(t) (3.2)

The initial conditions are specified as: G(t =0) = Gy, H(t =0) = Hy, p(t =0) = 0and u(t =
0) = 0. The variable G(t) is the glucose level in plasma, H(t) is the hormone level (in this case, insulin
concentration), p(t) is the external intake of glucose and u(t) is the insulin infusion rate (Sanchez, 2008).

Equations 3.1 and 3.2 are mass balances that represent the inputs and outputs of the compartment
described by Ackerman. The factors involved are self-removal of glucose, reduction of glucose in
response to insulin, self-removal of insulin, increase of insulin due to glucose increment, external
glucose and insulin uptake. So this model can be converted into a linear one for a specific narrow range
as

G

i —glucose self removal — glucose reduction due to insulin + glucose uptake (33)
aH . . .

i —insulin self removal + insulin production due to glucose increase (3.4)

+ insulin uptake

Using the constants obtained by Yipintsol et al. (1975) for the Ackerman model in terms of deviation
variables g(t)= G(t)-G, and h{t)= H(t)-H,, the final equations are

_£ = —0.0009g(t) — 0.0031h(t) + p(t) e
%Iti = —0.0415h(¢t) + u(t) -

it can be seen in equation 3.6, that insulin increment due to glucose increase is neglected since
diabetic type | patients cannot produce this hormone (Sanchez, 2008). The constants are in min™.
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3.1.2. Sorensen’s model

3.1.2.1. Sorensen’s base model

in 1985, Sorensen developed a nonlinear 19" order glucose-insulin model, based in the differential
concentration balances in the main organs, such as, brain, heart, liver, kidney and periphery, which are
involved in the glucose —insulin interaction. In figure 9, a schematic of the different compartments in the
model is presented.

P Brain <

Arterial glucose level

measurment
Venous blood . ?
T Heart/Lungs
Insulin infusion

Hepatic artery

T.-_— Liver Gut
Portal vein T
Meal disturbance

* Kidney <+
L Periphery P

Figure 9. Compartments in Sorensen’s model

The parameters of the Sorensen model were obtained using clinical data (Sorensen, 1985). The
model considers metabolic sink and source rates, and convection and diffusion transport mechanisms
for glucose and insulin. Later improvements have been proposed by different researches to include the
effects of meal and exercise disturbances {Parker, 2000; Lenart & Parker, 2002).

It is important to state that this model includes the two hormones involved in arterial glucose
regulation, insulin and glucagon and how they interact with the main organs. More detailed information
tan be found in Appendix 1 and in Sorensen (1985).
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As an example of the balances of the model, the differential concentration balance of the brain is
shown in equations 3.7, 3.8 and 3.9.

d6 Vi
Vs ;t(t) = (Gu(®) — G3(0))as ~ (G5 (®) -~ GEEN 7~ (3.7)
T
25O _ (6,0 -~ 63 @) 2~ 38)
i
Vo—— ;(t) = (I4(t) — 13(1))Qp (3.9)

. Where, V} is the volume of the capillary space, G is the glucose concentration in the brain {mg/dL),
Gy the total arterial blood glucose concentration, qp vascular flow rate (dL/min), Vg is the volume in the
interstitial space, Ty is the diffusion time constant (min), G} is the glucose concentration in the

-interstitial space, I'gy is the metabolic sink rake in the brain, and the terms in equation 3.9 mean the
same but with insulin hormone.

3.1.2.2. Sorensen’s model with the addition of exercise as a disturbance

In chapter 2, glycolysis route and exercise effects in homeostasis were explained, and it could be
inferred that -exercise will produce several changes, like an increase of glycogenolisis and
gluconeogenesis and oxygen consumption rate, and a decrease of glucose concentration along with
other effects.

Knowing the clinical consequences is not enough, so it is necessary to compute them in a model, in
order to represent their interaction with the plasma glucose and insulin dynamics. Lenart & Parker
(2002) modified Sorensen’s model with the intention of adding the exercise disturbance and the
. alterations that it produces in glucose and insulin levels.

The modified variables and new variables are

FAMM (active muscular mass fraction) {dimensionless]

PAMM (active muscular mass percentage) [%]

PVO,™ (percentage of maximum oxygen consumption rate) [%]

Blood flows. [dL/min for glucose compartments and L/min for insulin compartments)
PGU (glucose uptake by the periphery) [mg/min]

PGU, (glucose uptake by the periphery due to exercise) [mg/min/kg]

HGP (hepatic glucose production) [mg/min]

HGP, (hepatic glucose production due to exercise) [mg/min/kg]

®NO AW R
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9, KIU (insulin uptake by the kidneys) [mU/min]
10. PIU (insulin uptake by the periphery) [mU/min]

Firstly, PVO,™ is quantified, using the clinical data reported in section 2.1.52., via the following
equation:

dPVOP™ 5 5
— =~ PVOP** + S PVOT™ (3.10)

where, PV 0;"%* is the target exercise level of the patient at steady state.
In second place, PAMM was calculated as:

x kg active muscle mass
FAMM =

28 kg total muscle mass (3.11)

PAMM = FAMM x 100 (3.12)

According to Snyder (1975), the total volume of muscle mass in a 70 kg patient is 28 kg. X is the actual
active muscle mass.

Equations 3.10 and 3.11 quantify the exercise done by a person. Equation 3.10 is necessary, since
measuring PAMM is unlikely due to its difficulty {Lenart & Parker, 2002).

The next step is to introduce the glucose and insulin uptakes due to exercise, being the first one a
direct function of PVO*** dynamics. Clinical data have been reproduced using Fick’s law {(Ahlborg &
Felig, 1986). In figure 10, the reported clinical data are shown.
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Figure 10. Peripheral glucose uptake by exercising muscle. Solid line is the prediction
by the model proposed by Lenart and dash-dot is the clinical data. The upper figure
corresponds to 30% PV 03*** and the lower figure is for 60% PVO3***. Taken
from Lenart & Parker, 2002,

From figure 8, the steady state value of PGU, is 28 mg/(min kg muscle) for 30% of PVOJ*** and 75
mg/(min kg muscle) for 60% of of PVO]***. Lenart and Parker (2002) developed the following equation
for PGU, dynamics:

dPGU, 1 1
- — 3.13
5 307 GUa+3 5 PGU, (3.13)

After getting the peripheral glucose uptake due to exercise, it is necessary consider it on the total
peripheral glucose uptake, remarking that this is sensible to contributions from insulin and glucose, the
new equation is

PGU = M'MSME x 35 (3.14)
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In the equation, M is a dimensionless factor representing the effect of the corresponding hormone or
disturbance, which are indicated by the superscript letters /, G and E for insulin, glucose and exercise,
respectively. The constant 35 [mg/min] is the basal peripheral glucose uptake.

Clearly, the factor the MZ must be altered by PGU,. Lenart & Parker (2002) propose

, PGULFAMM x 28

E _
M =1 35

(3.15)

Equation 3.15 is multiplied by the factor 28 kg and dived by the basal PGU value in order to obtain a
dimensionless variable. The constant 1 is used because if no exercise is done, the peripheral glucose
uptake must not be altered by this modification. Equations 3.14 and 3.15 were defined, so the
peripheral glucose uptake increases up to 20 times the basal level, according to the clinical data
reported.

Concerning to hepatic glucose production due to exercise, Lernat & Parker (2002) assumed that it is
the same as its uptake. So the total hepatic glucose production was described as

HGP = M'M°ME MM x 155 (3.16)

In the equation, N stands for glucagon and the constant 155 [mg/min] is the basal hepatic glucose
production. Once again, the factor M must be altered by HGP,. Lenart & Parker(2022) propose

+ HGP,FAMM x 28

E _
M =1 155

(3.17)

As glucose decreases, according to section 2.1.5.4., insulin must do it too. Lenart & Parker (2002)
represented the uptakes in the Kidney and Peripheral with the following functions:

KIU = FQLI, (3.18)
Io(1+ 2.4FAMM)
PIU = (1—-17__@) (3.19)
FxQL 63
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in equation 3.15, F is a fractional extraction term representing a portion of insulin removal from the
blood stream upon entering the kidney compartment, Qf is the kidney blood flow rate (L/min), I is the
insulin blood concentration (Lenart & Parker, 2002). Also, the author considered that PIU has a direct
relationship with the exercise done where it is affirmed that maximum PIU due to exercise, is 3.4 times
the basal level. In equation 3.19, 1; is a diffusion time constant from vascular to tissue space in the
muscles, I is the insulin concentration in the muscle, Q} is the peripheral blood flow rate through the
capillary space in the muscles. The values of the parameters can be found on Appendix 1.

The outcomes of the authors’ simulation can be seen in figures 11 and 12.
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Figure 11. Glucose response to a 30% PV O7*** step. Dotted line represents

the output of the model. Taken from Lenart & Parker {2002).
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Figure 12. Glucose response to a 60% PV 03*** step. Dotted line represents

the output of the model. Taken from Lenart & Parker (2002).
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As it was stated by the authors, this model is only valid for periods of exercise shorter than 90

minutes.
A diagram of the resulting model is expressed in figure 13.

* Brain
Arterial glucose level
measurment
Venous biood f
T Heart/Lungs >
Insulin infusion
Hepatic artery
—] Liver Gut P
Liver glucose | Portal vein T
production Meal disturbance
A
" Kidney <
Periphery |
«
Exercise » Periphery glucose

and insulin uptake

Figure 13. Sorensen’s model adding the effect of exercise.

3.1.3. Bergman’s model

3.1.3.1. Bergman’s base model

In 1981, a glucose-insulin minimal model was developed by Bergman. It quantified the pancreatic
responsiveness and the insulin sensitivity in a diabetic patient using a three-compartmental
mathematical model (Roy & Parker, 2007). The compartments of plasma insulin {/, pU/mL), remote
insulin (X, pU/mL) and glucose (G, mg/dL) are represented using differential concentration balances.
Figure 14 depicts a schematic of the model.

The interaction among the compartments is the following: external insulin u; is infused into the
body, so some of this exogenous hormone enters the remote insulin compartment in order to promote
glucose uptake by the liver and the periphery. Glucose compartment can be altered if external glucose
enters the system via u,. The initial plasma insulin concentration is represented as I, and is achieved by
a basal insulin supply 1, 5.
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Figure 14. Bergman’s minimal order model of glucose-insulin interaction.

The model is described by the following equations:

dl p

7 = ~nl(®) +pan () 10)=1I= fum
ax =

T = P2 X@ +pa((®) ) HO=0

aG t

T = P60 ~XOG) + PiGo(@) + 5

G(0) = Gp

The values of the parameters in equation 3.20-3.22 are shown in Table IV.

Table IV. Parameters values of Bergman’s minimal order model.

Parameter Value Unit
P, 0.035 1
min

(3.20)

(3.21)

(3.22)

29



P, 0.05 1
min
Ps 0.000028 mL

uU min?

A 0.098 1
mL

n 0.142 1
min

Vol 117.0 dL
Gg 80 mg
dL

3.1.3.2. Bergman’s base model with the addition of exercise as a disturbance

As in section 3.1.3.1., the first step is the quantification of exercise intensity. Roy & Parker (2007)
used the following equation:

dpyomax

= = —08PVOI™ + 08u(t) (3.23)

Remembering that PVOZJ'®* at a basal level is 8%, u3(t), representing the ultimate exercise intensity
above the basal level, can only be in the range from 0 to 92%. The value of 1= 1.25 {min), was chosen so
the ultimate exercise intensity could be achieved at 5 minutes.

Roy added the principal effects of exercise, which Lenart also considered, but he also represented
the effect of glycogenolysis, that is not figured in Sorensen’s model, as well the result of insulin drop in
the plasma. The new modified Bergman’s minimal order model was adjusted to fit the data reported by
Wolfe and colleagues (1986):

%= —ni(t) + pary (t) — L (t) 1) =1y = usg (3.24)

X(0)=0

ax
e —p2X(t) + p3(I(t) — Ip) (3.25)
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G o p (GO - Gp) - X(OG()

dt
W G(0) = Gy
w
+ m (GProd (t) - Ggly(t)) - m GUp(t) (3-26)
uy(t)
VOlG
dG =
;;o‘i = alpvognax(t) - aZGProd GPmd(O) 0 (3'27)
aG =
._d;”’ = azPVOT*(t) — asGyp Gup(0) =0 (3.28)
dal =
d—: = asPVOT**(t) — agl, l(0)=0 (3.29)

where, I.(t) (pU/mL/min) represents the rate of insulin removal from plasma due to exercise,
%V%;(Gpmd () — Gy (t)) is the total glucose production, Gpreq(t) (mg/kg/min) is glucose production
due to exercise and Gg;,,(t) (mg/kg/min) is the decline rate of glycogenolysis during exercise. Gy, (t)
(mg/kg/min) is the uptake of glucose by the muscles, W (kg) is the total weight of the patient and

Vol is the volume of the glucose compartment (capitlary space). The values of the parameters are
shown in Table V.

Table V. Parameters values of modified Bergman’s minimal order model

Parameter Value Unit
a; 0.00158 mg
kg min?
a; 0.055 1
min
as 0.00195 mg
kg min?
a, 0.0485 1
min
as 0.00125 uu
mL min
ag 0.075 1
min
w 70 Kg
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Vol; 117.0 dL

In order to obtain the dynamics of how glycogenolysis rate decreases depending in exercise intensity
and duration, Roy fitted a sub-model of it using clinical data reported by Pruett (1970). The submodel
explains that glycogenolysis rate starts to decrease when the energy required for satisfying the demands
due to exercise reaches a threshold, which is a function of exercise duration and intensity:

u3(t) = PVOT***(t) — PVOT**basal (3.30)
Ary = uz()tgy, (us(t)) (3.31)
gy = —1.1521u5(t) + 87.471 (3.32)

where Ary (%) is the threshold value, u3(t) (%) the exercise intensity, tg,, (min) is the duration of
exercise that can be done at the desired intensity, before the glycogenolysis rate starts to decrease.
Figure 15 shows how equation 3.32 was obtained.

80

ty (Min)

% 20 3 4 s e 70
uy(®) (% de’”" above basal)

Figure 15. Dependence of glycogen depletion commencement time, t,, on exercise intensity us(t).
Taken from Roy & Parker (2007).

It is important to calculate the threshold value, Ay as direct function of exercise intensity, so
equation 3.32 is substituted in 3.31, to get
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Apg = —1.1521u3(t)? + 87.471u,(%) (3.33)

With Ay already computed, it is required to obtain the value of the total intensity of the exercise
done A(t), which is calculated as

—=] A(®) _ 3.34
~0.001 us(t) =0

The final step is to represent the glycogenolisis dynamics as a function of exercise intensity and the
threshold value, which can be seen in equation 3.35:

0 A(Y) < Apg
iy | k A(t) > Ary 535
gy |k |
©ORe wo=o
1

where k and T; are constant parameters that stand for glycogenolisis decline rate due to exercise
and the time needed so glycogenolysis rate level returns to its basal value, respectively.

The effects modeled by equations 3.30 — 3.35 can be summarized as: when exercise at a desired
intensity is done, the glucose demands are met until a threshold value is reached, at this point the
glucose production will start to decrease because all glycogen stored in the liver and muscles will start to
deplete, causing glucose level to decrease until exercise is stopped. Finally, in the recovery time,
glycogenolysis rate starts to increase. Table VI, shows the value of k and T;. Figures 16 and 17 show the
results obtained with this model.

Table V1. Parameters values of glycogenolysis depletion rate.

Parameter Value _” Unit
k 0.0108 mg

kg min?
Tl 6.0 min
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Figure 16. Glucose (Top) dynamics due to exercise at intensity of 30% PV OJ***,
lasting from t=0 to 120 minutes. Published data (circles} from Ahlborg.
Model fit (solid line}, and 95% confidence interval of fit (dotted lines).
Glucose uptake (middle) and Glucose net liver production (Bottom)
Taken from Roy & Parker (2007).
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Figure 17. Glucose dynamics due to exercise at intensity of 60% PVOJ'**,
lasting from t=0 to 210 minutes. Published data (circles) from Ahlborg.
Model fit (solid line), and 95% confidence interval of fit (dotted lines).

Glucose uptake (middle) and Glucose net liver production (Bottom).
Taken from Roy & Parker (2007).
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3.2. Glucose control strategies

Since 1960, scientists were encouraged to develop control strategies to regulate plasma glucose level
by automation of insulin delivery devices (Doyle, Jovanic, & Seborg, 2007). It is important to notice the

basic variables involved in this system:

Meals, exercise

Body

Plasma
glucose

-+ level
+

1. System: glucose — Insulin interaction.
2. Actuator: insulin infusion pump or Insulin injection.
3. Sensor: glucose detector
4. Manipulated variable: external insulin or glucagon
5. Process variable: plasma glucose level
6. Disturbances: high carbohydrate meals, exercise, etc.
7. Noise: electromagnetical interferences with the sensor signal.
Desired
plasma External
glucose level elt) m(t) insulin
Controller Infusion
pump
Sensor
Measured plasma

glucose level

Figure 18. Block diagram of glucose — insulin control system.

Several control techniques have been applied in the last 30 years to this physiological system, from
feedback to advanced strategies. The usage of more sophisticated techniques arose because simple
methods lack of accuracy in glucose level regulation and often present hypoglycemic episodes due to an
excess of insulin infusion. Some of the techniques that have been proposed in this issue are:

e Feedback control
e Adaptive control
® Robust control

e Optimal control
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3.2.1. Feedback strategy

3.2.1.1. Definition

This strategy is based in the generation of an error signal, which is the subtraction of the desired
reference and the response value. The manipulation signal that is calculated as a function of the error is
sent to the system, in order to take the response variable to the reference point. There are several
algorithms that can be implemented using this technique, such as on — off, PID control, etc.

3.2.1.2. Application to glucose-insulin system

According to Doyle (2007), the first feedback strategy applied to glucose-insulin system was on — off
control. Basically its function is sending the top value of the calibrated manipulation (insulin supply), if
the error is negative (glucose above normal level), and sending the lowest value if the error is positive.
The PID and PD controller have also been used; detailed information of these algorithms can be found in
Ogata (2002). Nevertheless, these strategies have some disadvantages such as the offset error in the
case of the PD and hypoglycemic levels due to an excess of insulin infusion caused by the integral action,
in the case of a PID (Doyle, Jovanic, & Seborg, 2007).

3.2.2. Feedforward strategy

3.2.2.1. Definition

The main goal of a feedforward strategy is the compensation of disturbances that affect the output
variable in the closed loop system (Rollins et al., 2008). For designing a disturbance compensator, it is
necessary to measure and model the disturbance that is impacting the system (Smith & Corripio, 2006).
Figure 19 depicts a schematic of this technique. The major advantage of this strategy is that it maintains
the output variable at a desired value, by rejecting the disturbance effect in the system.

3.2.2.2. Disturbance modeling applied to the glucose - insulin system

The most common perturbations in the glucose-insulin system model are meals and exercise, among
other body variables (Rollins et al, 2008). In a study reported by Rollins and colleagues, a model of the
response of glucose levels to different disturbances is approximated. The modeling technique employed
was the Hammerstein — Wiener (H-W) strategy, which is explaiend in chapter 4 of this thesis. According
to the authors, the strength of this method relies in that the response of glucose can be predicted with
the use of different inputs, based on the dynamics of each of these inputs. The resuits presented by
Rollins can be seen in figures 20. Rolins and conworkers have suggested the use of H-W modeling for
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feedforward control, but they have not reported such application. This thesis designs a feedforward
control based on H-W modeling.

R(t)

D(t)
Disturbance Process:
< disturbance
compensator
effect
e(t)
Controller + Actuator u Process: +
manipulation —+ Yiy)
m(t) effect
Sensor of process |4
variable
Figure 19. Block diagram of Feedforward strategy.
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Figure 20. Glucose response prediction due to different inputs using H-W

method in a five days trial. Taken from Rollins et al. (2008).
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Figure 21. Glucose response prediction due to different inputs. Using H-W method on a five days trial.
Scale on the right is for glucose{mg/dL) and left for the dynamic response of the input. Black line
represents the output of the HW model. Gray line corresponds to experimental data.Taken from Rollins et al.
(2008).
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Figure 22. Glucose response prediction due to different inputs. Using H-W method on
a five days trial. Scale on the left is for glucose (mg/dL) and right for the dynamic
response of the input. Taken from from Rollins et al. (2008).
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3.2.3. Adaptive control strategy

3.2.3.1. Definition

Adaptive control is a strategy that has the advantage of estimating the system’s parameters online,
using only its outputs and inputs. The updated parameters are used to adjust the controller continuously
based on a reference model and a performance criterion (Slotine & Li, 1991).

This technigue has the objective to reduce the parameter uncertainty in the model, as the operating
point is changed. Figure 23 shows a scheme of the adaptive control strategy.

Reference Y.
model
R / Y Y 4+ e
»> Controller > Plant R .
Estimated Adaptation
parameters law

Figure 23. Block diagram of adaptive control strategy.

3.2.3.2. Application to glucose-insulin system

Variations of adaptive control, such as modei-based predictive control (MPC) and run to run (R2R)
techniques have had success in regulating glucose level (Doyle, Jovanic, & Seborg, 2007). MPC uses a
reference model that is updated at a certain moment, depending on the outputs and inputs of the
system. This strategy has the advantage that it does not need an error signal to control the plant and
that it predicts the behavior of the output value before it happens.

On the other hand, the R2R strategy divides the day in five segments, and after the day ends,
performance measurements of each segment are done in order to adjust the parameter values of the
controller for the next day (Palerm, Zisser, Jovanovic, & Doyle, 2008). in the glucose-insulin system, the
five segments are: before breakfast, sixty minutes after breakfast, sixty minutes after lunch, before
dinner and finally sixty minutes after dinner (Campos-Delgado, 2008). With the glucose level
measurements at each segment, the controller adjusts the insulin quantity that must be released in the

next day at a specific segment. This technique has the advantage that the parameters do not have to be
updated in a continuous form.
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According to Palerm (2008), in order to have a successful regulation of glucose, the algorithm must
iterate at least five times, this means that 40 measurements must be done before a fine result can be
obtained with the strategy. Nevertheless, the disadvantage of this technique is that it considers that
carbohydrates intake and insulin bolus are the same for a specific segment in ail the days; in other
words, the disturbances in the segments of one day can be different, but the following days must be the
same as the first one. So this limits the application of the R2R strategy.

Figure 24 shows the results obtained by Palerm, 2008. As it can be seen, after five days of running
this strategy, the regulation accuracy improves.
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Figure 24. Results of glucose regulation using R2R strategy.
The test was done for 14 days in a row. Taken from Palerm (2008).

3.2.4. Robust control strategy

3.2.4.1. Definition

Robust control theory considers that a controller can be synthesized in order to regulate a system,
even if its parameters are not the exact ones that correspond to the real plant. It also allows the
representation of the uncertainty of the parameters. This means, that the designed controller will be
able to regulate different plant dynamics, near the desired operation point, in a satisfactory way. More
information can be searched in Skogestad’s book work (2005).
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3.2.4.2. Application to glucose-insulin system

In 1993, Heinz Kienitz synthesized a H,, controller to regulate the plasma glucose level. He used a
state space representation of the system and counted the effect of insulin, glucagon inputs and meal

disturbances. The main goal of the author was to minimize the disturbance impact in the system and
model parameter variations.
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Figure 25. Schematic of a system’s model, G,(s), with parameters uncertainty addition
(AG;) and a pre-compensator{(s+a)/s for “shaping of the plant”. Also a disturbance
Entry (w3) is included with its transfer function, G,(s), to the system’s output. (wl). C(s} is
the H.. controller.Taken from Heinz Keinitz (1993).

The results obtained from varying the parameters up to +50% of their nominal value and adding a
meal disturbance can be found in Keinitz, 1993..

3.2.5. Optimal control strategy
3.2.5.1. Definition

- This strategy focus in determining a control law that minimizes a cost function given by:

a1 |



tf
Jw) = %eT(tf)Se(tf) +% f (e7Q(®)e(t) + uTR(tu(t)) dt (3.36)
to

Where u(t) indicates the control law entering the state space model, e(t) the error signal, S is a
constant matrix; Q and R are time varying matrixes, S and Q must be positive semidefinite, and R is
positive definite (Sdnchez, et al., 2008).

3.2.5.2. Application to glucose-insulin system

Sanchez implemented in 2009, a glucose level regulator based on an optimal control strategy. The
model used by the author was the one of Sorensen. A Kalman filter to estimate the insulin blood level
and adaptive mechanisms to update the controller parameters were used.

Blood glucose concentration

. . Insulin delive measurement
r; Optimal v Sorensen’s
controller nonlinear "
[ (Lac) model
Kalman filter Linear model

1 fitting
Blood insulin
concentration Ackerman linear
estimation model parameters

Figure 26. Block diagram of closed loop system for the regulation of
Sorensen’s glucose-insulin nonlinear model. Taken from Sénchez et al., 2009

The results, in figure 27, show a good meal disturbance rejection, with minimal insulin supply. This is

an advantage because this technique impedes hypoglycemic levels, that carry negative symptoms to the
patient.
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3.2.6. Intelligent materials applied to glucose-insulin system

In 2008, Sanchez reported a glucose regulation system based on intelligent materials, specifically, an
ionic hydrogel. The special characteristic of this material is that it swells to an extent that depends on
the glucose concentration of the blood releasing a certain amount of preloaded insulin into the body.

Glucose responsiveness is achieved through pH changes in the microenvironment of the hydrogel
system. The pH is altered by the transformation of glucose into gluconic acid catalyzed by the glucose
oxidase enzyme contained in the hydrogel. This chemical response leads to a viscoelastic behavior

described by

dQ(t)
dt

(3.37)

r =24 Q(t) = KpH(t)

where Q is the ratio of the hydrated volume of the material with respect to its dry volume, the time
constant 7 is the relaxation time and the gain K is the mechanochemicai compliance of the hydrogel
material. Volume variations subsequently change insulin diffusivity and delivery. The results obtained
are shown in figure 28. Insulin delivery rate has a constant decay, reaching its final value in the third day
of operation. Nevertheless, during its active live cycle, the outcomes are even better than the ones
obtained by using a controller. Nonetheless, undesired glucose concentration peaks in the post-prandial

time are observed.
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Figure 28. Plasma glucose and insulin responses, using an intelligent
hydrogel, a controller and an open loop. Taken from Sanchez et al., 2008

3.3. Areas of opportunity

The major challenge in the analytical model is the addition of external glucagon infusion as an input
in order to impede the decrement on insulin level.

As it was explained, there are many control strategies that have been applied toregulate the plasma
glucose level. Some of them have had successful results in rejecting meal disturbances, but there has
not been a technique used for controlling the glucose level when exercise is done, and it has been
shown that this disturbance has a major impact on the glucose-insulin interaction, since it makes the
system unstable; this means that giucose level will tend to decrease until exercise is stopped and will
cause a hypoglycaemic episode in the diabetic patient.

Another challenge is the application of the feedforward control strategy to the glucose — insulin
system, given that up to these days its implementation has not been reported in any investigation.
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Chapter 4

Analytical modeling

According to the objective of this thesis, the metabolic process of glucose and insulin must be
represented by a physiological model that considers exercise and glucagon input for counteracting the
decrement of glucose levels, due to such disturbance.

Based on the reviewed literature (section 3.1), the Sorensen model has been augmented by exercise
effects of increasing hepatic glucose production and peripheral insulin uptake, however the decay of
glucogenolysis has only been incorporated in the Bergman model. Both models, by Sorensen and
Bergman, only consider one drug input for exogenous insulin, when the compensation of exercise
effects requires exogenous glucagon.

This chapter explains the changes made to the Sorensen and Bergman models in order to include the
effects of exercise and external glucagon infusion. Another aspect that is covered is the combination of
both analytical models.

4.1. Modeling exercise effects

4.1.1. Modification in Sorensen’s model

The initial step is to quantify the exercise that is done by the patient. According to section 2.1.5. the
relation of PAMM with PVO,"™ is essential because this function is the pioneer in all the effects of
exercise in the glucose and insulin system. Equation 3.23 is modified using data reported by Lenart &
Parker {2002). The resulting equation is

dPyOpax

e —0.8(PVOT*®* — PVOI4X) + 704 PAMM(t) (4.1)
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where the gain is calculated knowing that PVO,™™ is 8% in basal conditions (PAMM = 0) and that at 25%
PAMM, PVO,"™ reaches a final steady state will of 30%. The time constant, T, remains as in equation
3.23. PAMM and PVO,™ are dimensionless.

After quantifying the exercise, it is important to obtain the new dynamics of PGU, and HGP,. With
the use of figure 8 and information from Lenart & Parker (2002), a new equation is obtained

dPGU, 1 1442 _
- A ~30 (PGU, — PGU,) + =0 (Pvomex — pyoirex) (4.2)

Because gains from graphs 8 are different, the step test from the basal state to 60% PVO,"*is chosen
to approximate a linear gain for PGU, over a broader range. The time constant remains as reported in
Lenart (2002), v=30 min. HGP, dynamics is going to be the same as PGU,, in order to be coherent with
the information compiled by Lenart & Parker(2002). At a basal level PGU,(0)= HGP,(0)=0. Nevertheless,
the final equations used are the ones developed by Roy (2008), 3.27 and 3.28, because their dynamics
represent a more real interaction, where glucose uptake is greater than its production. While Lenart &
Parker (2002) suppose that they are equal.

The equations 3.27 and 3.28 and the factors W (weight of the subject), PAMM, and a constant 28
{maximum kg of muscle involved in exercise} are used to calculatef PGU, , HGP, (mg/min/kg active
muscle) in Sorensen’s model, since in Bergman’s model the units are mg/min per kg of weight of the
subject (mg/min/kg):

dHGPa w derod w (4.3)
it FAMMx28| dt ] = TAMM < 28 9PV 07 (€) — a2Gprod]

dPGU, W [dGy, w (4.4)
dt  FAMMx28| dt ] = FARM X 28 193 FV 07 (1) ~ a4 Gup]

dnetHGPa_dHGPa__dGGly w (45)

dt dt dt FAMM x 28

After certain time of exercising, hepatic glucose production decreases due to the depletion of
dGGly

glycogen reserves. This decrease in glycogenolisis, , has been modeled by Roy and Parker with

equations 3.30 through 3.35 These equations can be used to quantify the net rate of change in hepatic
glucose production due to physical activity.
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With the calculation of net HGP,, equation 3.17, the one that quantifies the glucose production due
0 exercise is modified as

net HGP,FAMM x 28
ME=1+ s (4.6)

As new dynamic equations are formulated, it is necessary to introduce how blood flow rates change
due to an increase in PVO,"™ demand. Using Table Ill, that indicates that blood flow depends on
PVO,"™, and knowing from Andersen (1985) that the relation is linear, two sets of equations are
obtained; one set for blood flow for glucose concentration compartments or mass balances and a
second set for blood flow for insulin concentration compartments. For glucose transport in the liver (1),
brain (b), kidney (k), periphery (p) and hepatic artery (la), the blood flows (in dL/min) as functions of
PVO,"™ are

q(PVOI**) = —0.1253 PVOI** + 13.6024 (4.7)
4, (PVOI**) = 5.9 (4.8)
q(PVOI®) = —0.09252 PV O™ + 10.8402 (4.9)
4p(PVOF™) = 1.6145 PVOJ'™* + 2.184 (4.10)
1 (PVOT9%) = 0.198 g, (4.11)

For insulin transport, the blood flows (in L/min) change with PVO,"are

Q(PVOI®*) = —0.00895 PVOI** + 0.9716 (4.12)
Qy(PVOI"™*) = 0.45 (4.13)
0 (PVOI"®X) = —0.006595 PVOI®* 4+ 0.77276 (4.14)
Q,(PVO?%) = 0.112267 PVO™* + 0.15186 (4.15)
Qi (PVOT**) = 0.2 Q, (4.16)
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4.1.2. Simulation of modified Sorensen model

After obtaining the new equations, the whole Sorensen model was implemented and simulated in
Simulink®, in order to verify the response of each new variable. Figure 29 depicts the main model with
external insulin and glucose (meal, and PAMM as inputs, and arterial blood glucose and insulin
concentrations as outputs. The different compartments of the body used in this model, as well the
effect of exercise are represented in figure 30. In figure 31, a more detailed schematic of exercise
influence in the model is shown. The next step was is to experiment with the model implemented, in
order to recognize if the responses are the same as in the clinical data.

The first test used the values shown in table VII.

Table VII. Values used in test | with Sorensen’s model.

Parameter Value Unit

External insulin 9.3 || mU/min

Basal metabolic source of glucose || 155 mg/min

PAMM 25 %
Basal glucose level 120 || mg/dL
Exercise duration 120 min
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Figure 29. Schematic of the implementation of the global Sorensen’s model.
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Figure 30. Schematic of the compartments in Sorensen’s model. Red lines limit glucose compartments;
blue lines limit insulin compartments; green lines limit compartments for the calculation of exercise

effects on variables that affect glucose and insulin levels.
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Figure 31. Schematic of exercise effects in Sorensen model: pancreatic glucose uptake and
hepatic glucose production, insulin removal from the circulatory system, blood flows and
glycogenloysis decay ratio.

The following figures (32 through 37) show the responses of PVO,™™, PGU,, net HGP,, blood flows,
glucose and insulin levels when a physical activity of 25% is maintained for two hours (time scale of
horizontal axis is in minutes).
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Figure 32. Dynamic response of %PVO," (blue) and 25% PAMM input (red).
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Figure 33. Dynamic response of PGU, (blue) with 25% PAMM or 30% PVO,™.

Figure 34. Dynamic response of net HGP, (blue) with 25% PAMM or 30% PVO,"™™.
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Figure 35. Dynamic responses of blood flows (L/min) for insulin transport in the
periphery (red), liver (blue), kidneys (green) and hepatic artery (cyan)
with 25% PAMM or 30% PVO,™™,

Figure 36. Dynamic responses of blood flows (dL/min) for glucose transport in the
periphery (red), liver (blue), kidneys (green) and hepatic artery (cyan)
with 25% PAMM or 30% PVO,™™.
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Figure 37. Dynamic responses of glucose (green) (mg/dL) and insulin (red) (mU/L)
arterial concentrations with 25% PAMM or 30% PVO,™™ (cyan).

The conditions for the second test are shown in table VIil.

‘Table VIHI. Values used in test Il with Sorensen model.

Parameter Value || Unit
External insulin 9.3 mU
/min

Basal metabolic source of glucose || 156 || mg

/min
PAMM 59.1 %
Basal glucose level 120 || mg/dL
Exercise duration 120 min

Figures 38-43 show the results of test Hl, consisting of 2 hours of exercise with 59.1% of active

muscular mass (time scale in minutes).
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Figure 38. Dynamic response of %PVO," (blue) and 59.1% PAMM input (red).

Figure 39. Dynamic response of PGU, (blue) with 59.1% PAMM or 60% PVO,™™.
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Figure 40. Dynamic response of net HGP, (blue} with 59.1% PAMM or 60% PVO, =

Figure 41. Dynamic responses of blood flows (L/min) for insulin convective transport.
Periphery (red), Liver (blue), Kidneys (green), Hepatic artery (cyan)
with 59.1% PAMM or 60% PVO, ™.
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Figure 42. Dynamic responses of blood flows (dL/min) for glucose convective transport.
Periphery (red), liver (blue), kidneys (green), hepatic artery (cyan)
with 59.1% PAMM or 60% PVO,™™.

Figure 43. Dynamic responses of glucose (green (mg/dL)) and insulin (red} (mU/L)
level with 59.1% PAMM or 60% PVO,™ (cyan).
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The proposed specifications for both simulations tests allow the comparison of the outcomes with
clinical data and responses in Lenart & Parker, 2002 and Roy & Parker, 2007

As it can be seen above, the implementation of the new equations in the Sorensen model produce
almost an excellent result, since the dynamics and steady state values of key variables, are similar to the
reported medical data, and the responses in Lenart & Parker, 2002 and Roy & Parker, 2007.
Nevertheless, insulin arterial concentration does not behave as expected, because a raising instead of a
decaying trend is obtained. This flaw in the behavior indicates that insulin uptake due to exercise is not
properly modeled in the equations established in Lenart & Parker, 2002, since they do not consider the
effect of blood flow variations and diffusion time in periphery insulin uptake is held constant.

4.1.3. Simulation of the Bergman minimal order model

The Bergman model was also implemented in Simulihk“’. Once again, the purpose of simulating
Bergman’s model with the addition of exercise effects is to compare its outcome with clinical data and
respanses of the Sorensen model modified in Lenart & Parker, 2002 and Roy & Parker, 2007. In figure
44, the global Bergman model is depicted, where its inputs and output are the ones in equations 3.24 -

3.29.
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Figure 44. Global schematic of the implementation of Bergman
model with addition of exercise effects.

The compartments considered in equations 3.24 — 3.26 can be seen in figure 45.
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Figure 45. Compartments X (remote insulin), I (arterial insulin) and
G (arterial glucose) of Bergman model.

The next figure illustrates the compartments where PVO,", PGU,, and net HGP, are calculated, in
order to quantify the effects provoked by exercise.
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Figure 46. Schematic of the compartments where PVO," ", PGU,, and net HGP, are calculated.
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The same simulation conditions listed in tables Vil and VIl are introduced in this model in order to
make a consistent comparison. Because the equations used to calculate PVO,"™, PGU,, and net HGP,are
the same as in the modified Sorensen model, the responses of those variables are identical. However,
because insulin removal due to exercise is computed with a different equation (3.29) than in the
Sorensen model (that used equations 3.18 and 3.19), insulin arterial concentration behaves in a
different and more realistic form. Figure 47 shows glucose and insulin concentrations dynamics for an
input of 25% PAMM, and figure 48, for an input of 59.1% PAMM.

The responses in figures 47 and 48, show that the Bergman model behaves as the clinical data
suggest (Wolfe, 1986) (figures 16 and 17), with a decrease in glucose and insulin concentration. Also the
decline of glucose occurs according to physiological records, for more information check section 2.1.5.4.
This is the reason why Bergman’s model is selected for the rest of the work in this thesis, even though
an external glucagon infusion input must be added to it.
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Figure 47. Response of glucose (blue)(mg/dL) and insulin (uU/mL) arterial concentrations with an
input of 25% PAMM or 30% PVO,™,
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Figure 48. Response of glucose (blue)(mg/dL) and insulin (uU/mL} arterial concentrations with an
input of 59.1% PAMM or 60%.PVO,™ ™.

4.1.4. Combination of Bergman’s and Sorensen’s model

Up to this section, the principle advantages and disadvantages of the Bergman model and the
Sorensen model have been established. Since the purpose of this thesis is the compensation of exercise
in the glucose-insulin system in an automatic form with the use of glucagon, the mathematical model
must have an input for this hormone. However, the model that quantifies the glucagon effects is the one
of Sorensen one but the response of the insulin level does not react as expected. On the other hand, the
Bergman model behaves according to clinical data, but does not have an input of external glucagon
infusion.

The proposed solution to this issue is the combination of the major advantages of both models. This
means that the Sorensen model’s capability of quantifying glucagon effects is added to the Bergman’s
glucose —insulin interaction equations.

According to Sorensen’s thesis (1985), the glucagon mass balance can be modeled by the following
equation:

dN : 4.17
VNE = Ipnr — Ipne ( )
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where N means arterial glucagon concentration (pg/mL); V¥, glucagon distribution volume (mL); Ipyg,
pancreatic glucagon release, and Ipy. ,pancreatic glucagon clearance. The last two variables are
dimensionless because they are normalized respect to glucagon basal concentration: 102 pg/mL.

In order to add the glucagon effect in hepatic glucose production, it is necessary to aggregate the
term representing external glucagon infusion in the mass balance of equation 4.17, and to modify some
of the equations developed by Sorensen:

dN 4.18
VNE=FPNR"FPNC+FEXT (4.18)
15(t) (4.19)

Ipyr =11.3102 - 0.6101tanh | 1.0571 15.15 - 0.46981

+ (2.9285 — 2.095tanh(4.18(Gy (£) - 0.6191)) ) * [
g = TuncN® (4.20)

Ione = TuncN (4.21)

With I,nc=0.0091 L/min and VV¥=9.1 L, where I},yc is the glucagon metabolic sink rate and is
dimensionless, N is the glucagon basal level, Izyr is the external glucagon infusion rate (pg/min). After
deriving equations 4.18 — 4.21, N must be normalized with respect to its basal value.

_ N
F=a (4.22)

The next step is to include the normalized glucagon in the Sorensen’s equation for hepatic glucose
production:

Lygp = 155Mnsyin * MeLucose * MgrLucacon (4.23)

where M;nsurivs Mgrucoses McLucagon (dimensionless) Indicate the contribution of glucose, insulin
and glucagon in hepatic glucose production (Iy;p in mg/min), respectively.
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Nevertheless, this quantity cannot be introduced in this form to Bergman’s model equation 3.27, it is
necessary to divide it by the patient’s weight in order to have consistent units (mg/min/kg):

dG I
_Z_Od =aq,P Voénax () — ayGproaq + _li“(;_P Gproa(0) =0 (4.24)

Figures 49 and 50, illustrate the schematics of this implementation.
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Figure 49. Schematic of the implementation of hepatic glucose production
rate due to external glucagon infusion in Sorensen’s model.

Figure 50 is described as follow: TThe hepatic glucose production due to glucagon administration is
calculated by the subtraction of the production without exogenous glucagon from the production with
glucagon infusion. This procedure is necessary since a direct estimation of glucose production from
glucagon input is not possible due to the multiplicative effects of insulin, glucose and glucagon
concentrations.

The response of glucose level of the two models due to an external infusion of glucagon is in the data
range reported by Sorensen. Figure 51 shows the resulting dynamics of glucose.
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Figure 51. Response of glucose level (blue) (mg/dL) to external glucagon infusion rate step (green) (10° pg/min).
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As a conciuding remark, the results obtained in test | and Il show that glucose concentration
response have a similar dynamic response, which agrees with the clinical data reported. Nevertheless,
the major difference between Sorensen and Bergman models rises in the insulin behavior when physical
activity is done. The Bergman’s model is the one that behaves as it is stated in medical literature.

Although Bergman model performs as it is expected, it has the disadvantage that it does not consider
exogenous glucagon as an input. To overcome this problem, both analytical models are combined in
order to obtain their advantages. So, this combination is the chosen one for the experimentations to be
done in this thesis.
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Chapter 5

Experiment design for statistical modeling

The previous chapter presents the development of a descriptive model of the glucose — insulin
metabolism considering exercise effects. A statistical model is commonly used to design feedback and
feedforward controllers because of practicality: eliminated analytical complexity; simple structures;
discrete form.

The derivation of a statistical model is based on input — output data of the real process. In this case,
the process is represented by the physiological model and the experimentation to produce input —
output data refers to the simulation of the model before specific conditions.

This chapter describes the experiment design criterion foliowed to obtain a reliable statistical model
that relates PAMM, glucagon and insulin administration with glucose level and its rate of change.

5.1. Criterion of the statistical experiment design

According to Rollins et. al. {2008), successful results for identifying the dynamics of several
perturbations in glucose —insulin system had been obtained using Hammerstein — Wiener modeling
technique. This method will be explained more detailed in the next chapter, but it basically consists in
the representation of multiple inputs — outputs process by a combination of linear and nonlinear
equations, whose coefficients must be determined.

An experiment design that fulfills Hammerstein-Wiener requirements is the Box-Behnken design
(BBD), which has the following advantages (Rollins, 2004):

¢ Reduced experimentation time

¢ Production of accurate data for adjustment of the parameters in Hammerstein —~Wiener model.
» Restriction less on static behavior of the system.

¢ Successful estimation when identifying quadratic behavior.

o Restriction less on the number of inputs and outputs.
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e A priori assumptions can be used.

Montgomery establishes that when dealing with a BBD experiment with three inputs, the next norm
must be followed:

Table IX. BBD experiment design input values.

Run input 1 input 2 Input 3
1 -1 -1 0
2 -1 1 0
3 1 -1 0
4 1 1 0
5 -1 0 -1
6 -1 0 1
7 1 0 -1
8 1 0 1
9 0 -1 -1
10 0] -1 1
11 0 1 -1
12 0 1 1
13 0 0 0
14 0 0] 0
15 0 0 0]

Where -1, 0, 1 indicate minimum, mean and maximum value of each input. All inputs must be in
deviation value form.

It can be inferred from Table IX that in the sequence followed in the experiment one input is hold at
its mean value and the other inputs are changed.
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5.2. Data used in glucose system experiment

As stated in chapter 4, the input to be managed to increase the blood glucose level is the infusion of
external giucagon, so definitely this variable must be considered in the experiment.

The statistical model should only include the variables necessary for the purpose of controlling
glucose levels under variations of physical activity. The model is defined as a system of three inputs and
one output, meaning that a MI-SO {multiple inputs and single output) system is going to be identified.
The output of the model is the glucose rate of change (mg/dL/min) and the inputs are

1. PAMM (%)
2. External glucagon infusion (pg/min)
3. External insulin infusion {mU/min)

Glucose rate of change is chosen as the output variable, because in order to use Hammerstein —
Wiener technique, a steady state has to be achieved when the system is excited by the inputs. As it is
seen in figure 48 and from physiological information, giucose level would tend to cero if exercise is not
stopped, which means that no steady state can be reached. Therefore, the glucose level cannot be
considered as an output. However, the first time derivative of glucose can reach a constant value after
certain exercise duration. Figure 52 illustrates the response of glucose rate of change when exercise is
done.
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Figure 52. Glucose rate of change (mg/dL/min) response to a pulse input of 30 PAMM(%) from
time 1500 to time 1700 min.
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The range of the inputs for the experiment is chosen in such a form that the glucose levels stay
around the desired or target value, to be maintained by a control system. Table X shows the ranges of
the inputs and Table XI, the initial conditions considered in the experiment:

Table X. Range of the inputs in the experiment design. (Deviation values).

Input Minimum value Mean value Maximum value
PAMM (%) 0 30 60
Glucagon (pg/min) 0 10000 20000
Insulin (mU/min) 0 10.45 20.9

Table XI. Initial conditions of the system prior to the experiment.

Variable Initial condition
Glucose (mg/dL) 105
Glucose rate (mg/dL/min) 0
External Insulin (mU/min) 15.1
Glucagon (pg/min) 0
PAMM (%) 0
Sample time (min) 5

The data obtained in this experiment had an undesired outcome: glucose level dropping below 0
mg/dL. So a new experiment was designed using the BBD’s principle, holding one input constant and
changing the other two. But keeping in mind that glucose level would not drop to an unacceptable
hypoglycemic value. Even though, the number of runs is increased, this is not a drawback since the
experiment is done in a simulator and not in a physical process. In table Xil, the new experiment design
is shown:
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Table Xll. New experiment design input values.

Run Time Input 1 Input 2 input 3
1 1500 0 -1 -1
2 1700 0 -1 0
3 1900 -1 -1 -1
4 2100 1 -1 -1
5 2300 1 -1 0
6 2500 -1 -1 0
7 2700 0 -1 1
8 2900 0 0 -1
9 3100 -1 -1 1
10 3300 1 -1 1
11 3500 1 0 -1
12 3700 -1 0 -1
13 3900 0 0 0
14 4100 0 0 1
15 4300 -1 0 0
16 4500 1 0 0
17 4700 1 0 1
18 4900 -1 0 1
19 5100 0 1 -1
20 5300 0 1 0

21 5500 -1 1 1
22 5700 1 1 0
23 5900 -1 1 0
24 6100 1 1 -1
25 6300 -1 1 -1
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26 6500 0 1 1

27 6700 1 1 1

A time interval between runs or changes in input conditions is set in 200 minutes, because that is the

time the glucose rate takes to get to its steady state.
With this new experiment design glucose level is kept above 40 mg/dL.

5.3. Data obtained in the experiment

The new experiment design produced the necessary transitory and steady state values. Moreover,
the glucose level stayed in an acceptable range. Figures 53 and 54 show the output and inputs of the

experiment.
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Figure 53. Data obtained in the experiment: Glucose concentration (blue) (mg/dL) response to
PAMM (%) (green), External glucagon (cyan) (pg/min) (10°) and External Insulin
(red) (mU/min).
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The data obtained in the experiment can be found in Appendix 2.

Figure 54. Data obtained in the experiment: Glucose rate of change (blue) (mg/dL/min).
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Chapter 6

Statistical modeling

A statistical model is necessary for the characterization of glucose level response before exercise
disturbance from physiological data; in this case, the data are generated from the physiological model
proposed in chapter four.

This chapter focuses on statistical modeling and is divided in two parts: an introduction to
Hammerstein — Wiener modeling and its application to the problem of this thesis. Also a brief
explanation of the mathematical optimization methods used to adjust the parameters to the model is
discussed.

6.1. Hammerstein — Wiener modeling technique

6.1.1. Definition

Dynamic predictive models that address nonlinear behavior are essential for optimal operation and
control of many processes (Eskinat, 1991). A black — box modeling technique discussed in recent
publications for non-linear processes is the Hammerstein — Wiener modeling (Rollins, Constrained
MIMO dynamic discrete-time modeling exploiting optimal experimenat! design, 2004).

The Hammerstein and Wiener systems divide the plant to be identified in two parts: a group of linear
dynamic blocks and a second group of blocks of nonlinear static gain, if Wiener technique is applied, but
if Hommerstein method is used the order of the blocks is reversed. Figure 55 illustrates the Wiener
system representation.

The major advantages of a Wiener system over a Hammerstein one rely on the fact that the former
allows the inputs to have different dynamics and is able to treat nonlinear systems through non-
differential equations (polynomials) in terms of outputs of the linear dynamics (Rollins, Bhandari, & Kotz,
Critical modeling issues for succesful feedforward control of blood glucose in insulin dependent
diabetics, 2008).
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As it can be seen in figure 51, this modeling technique permits the development of a model with
multiple inputs for the prediction of multiple outputs.
Basically, the functioning of a Wiener system is

e Each input (u;) enters a linear block (G;), which represents a model of the input’s dynamic impact
over an output 77; of the nonlinear system.

¢ The output of each linear block will be called auxiliary variable, denoted as v;.

o Afterwards, the auxiliary variables (v;’s) are joint in a final block, which represents the static
nonlinear gain (fj(v;))of the output 7; of the system.

* The output of a nonlinear block is an output of the system.

ul vl
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Figure 55. Block diagram of Wiener system for one output 1},.

For the purpose of this thesis, a multiple input — single output (MI-SO) system is considered. Another
restriction, not imposed by a particular application but for the Wiener modeling technique itself, is that
the process response must be stable. Moreover, a priori knowledge of the settling time of the process
response is necessary.

6.1.2.  System identification via Wiener technique

For modeling a system with the Wiener technique, there are several steps to follow, being the
principal ones:

1. Selection of the experimental design. The following parameters and information must be specified:

¢ Sample time
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e Operating range for each input {ug,uj,...,up)

e Stabilization times of the process outputs

e Model structure of the steady state behavior

¢ Experimental test (BBD). BBD has advantages over PRBS (Bhandari, 2003)
e Randomization of the trials

2. Obtaining a fitted model for the ultimate response function (the nonlinear model)
In this step, the modeler uses the data obtained at the end of each trial, the corresponding inputs
and a multiple regression technique to get a model (Rollins, Constrained MIMO dynamic discrete-
time modeling exploiting optimal experimenat! design, 2004).
An example of this nonlinear modeli is:

() = Bv1 () + Bov2 (1) + -+ + (Bavn(t))? 6.1.
where 7] is the estimated output of the system, v;, v,, ..., v, are the dynamic auxiliary variables of
the system and f3;, ,, ..., fBn are the parameters to be estimated.

To obtain the 8 parameters, the modeler can use the inputs (u;) instead of auxiliary variables (v;),
with the steady output (1) because in the steady state response the values of u; and v; are the
same. This is only valid at the final of each trial:

1% = B1us® + Bou™ + - + (Brun®)? 6.2.
Where the supraindex o indicates a stable operation point.

If the modeler identifies that a B; parameter is very small compared with the other §;’s, the whole
term that includes f3; can be eliminated.
3. Finding the dynamic models

After obtaining the nonlinear model parameters, it is necessary to adjust discrete time models that
represent the dynamics of the n-inputs (u;) with the n-auxiliary variables (v;). It is seen in figure 51
that the number of linear discrete models depends on the number of inputs.

The models, due to its discrete nature, must be of an autoregressive with exogenous inputs kind
(ARX). The number of autoregressive terms and exogenous terms can be initially set to two and
one, respectively (Rollins, 2004). Later on, this assumption could be modified depending on the
minimization criteria used for the difference between the estimated output of the model and the
output of the real system.

The structure of the model can be seen in equation 6.3.
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3

n m mn
Vjy = Z 8j kVjt—k + z Wi Ui + (1 - Z Gk — Z wj,z) Uj t—(m+1) 6.3.
k=1 =1 =1

=1

where j refers to the input with j=1..n; k denotes the current sampling time; 6 and w are the
parameters of the autoregressive and exogenous terms, respectively; n is the order of
autoregression and m is the number of exogenous inputs terms. The last term of the equation
calculates the last coefficient as a sum of the other parameters.

For obtaining the parameters 6’s and w’s of each model, the approach of constraining the
parameters f§ of the nonlinear model to the values calculated by equation 6.2 is followed.

In this way the dynamic parameters of each linear model are calculated with the criteria of finding
the minimum difference between the estimated output and the real output. Because the nonlinear
parameters are constrained, generalized reduced gradient technique (GRG) is used. This method is a
mathematical algorithm that adjusts the parameters so that the active constrains continue to be
satisfied as the optimization moves from one point to another, until the optimal solution is found.
Information about the mathematical background of this technique can be found in reference (LSU).

6.1.3. Wiener modeling advantages over other modeling methods

When dealing with nonlinear systems, models like nonlinear autoregressive moving average models
with exogenous variables (NARMAX) and artificial neural networks (ANN) can be used for representing
cause - effect relations in a system. Nevertheless, these two modeling options have significant
drawbacks.

NARMAX drawbacks (Rollins, 2008} :

1. Because the model form is linear in parameters, the values of the fitted model coefficients are
tied to the correlation structure of the model. Thus any change in the input correlation structure
can produce large prediction errors. The model can produce highly incorrect results for
independent changes in the inputs.

2. The strong natural correlation of common lag input variables causes ill conditioning and inflates
estimation errors.

ANN drawbacks (Rollins, 2008):

1. The major disadvantage is the lack of phenomenological structure which is crucial when fitting
nonlinear behavior.
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2. When the inputs combinations that were used in the training phase are change, extremely large
prediction errors can occur due to the highly nonlinear transfer functions of the ANN.

After reviewing the disadvantages of the NARMAX and ANN techniques, it is important to specify
what makes the Wiener method more efficient: the parameters in the nonlinear functions are
independent from the ones of the linear dynamic functions and the terms in the static nonlinear
functions depend on the variables from the dynamic blocks which are not strongly correlated (an
auxiliary variable does not depend on other auxiliary variables) (Rollins, 2004). So it does not matter if
the inputs are correlated or not, the predicted output will not be affected due to the Wiener modeling
nature. In figure 56, the performances of the three proposed methods are illustrated in a graph, where it
can be seen that Wiener modeling has the best accuracy in the testing phase.
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Figure 56. Performance of the system in the training and testing phases
for different modeling techniques (Wiener, NARMAX and ANN).Inputs
in testing phase are uncorrelated. Taken from Rollins (2008).

6.1.4. Wiener modeling applied to glucose regulation

In chapter five, the output and inputs to use in Wiener modeling were declared, being PAMM (%),

external insulin infusion (mU/min) and external glucagon infusion (pg/min) the inputs and glucose rate
of change (mg/dL/min) as the output.

Following the algorithm depicted in the last section, the proposed nonlinear model is:
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n=Prvy + Bavy + Bavs + Bavy Vs + BsvyVs + Beavs + BrvE + Pavi + Pov3 6.4.

where vy is the auxiliary variable for PAMM, v, is the auxiliary variable for external insulin infusion, v; is
the auxiliary variable for external glucagon infusion and 7 is the glucose rate of change. It can be seen
that there is not a constant term in equation 6.4, this is done because the method indicates that
deviation values must be used and in order to get a null response of the system when there is not a
change in the inputs, the constant parameter must be eliminated.

The adjustment of the parameters of equation 6.4 is achieved using the data obtained at the end of
each trial of the experiment described in chapter five. This procedure is done using MS-Office Excel’s
Regression Toolbox®, through introducing the inputs and the output of the trials and applying the
multiple nonlinear least squares regression.

After adjusting the nonlinear model, the next goal is to select the order of the linear ARX models and
find the parameters that will make an accurate prediction of the estimated output. Because the
objective in this step is finding the dynamic response of each input, this procedure uses all the data from
the experiment, not only the data at the end of each trial.

Three linear ARX models are developed, using the structure in equation 6.3, because three inputs are
taken into consideration. Firstly, a model with 2 autoregressive terms and one exogenous term is
specified for each input, if the estimated output is not accurate, the order of the model has to be
increased.

With the usage of MS-Office Excel’s Solver Toolbox®, which inherently applies the GRG optimization
method, the linear ARX models parameters were gbtained.

Previous data conditioning may be considered, due to a significant difference between the
magnitudes of the inputs. The data was normalized with the following criteria and different models
were developéd:

¢  Row deviation data

* Normalization of the data in the theoretical form, using the mean and standard deviation, so that
the data could have mean 0 and variance 1

¢ Scaling of each input data respect to (dividing by) its maximum deviation value, using different
sample times (5 and 10 minutes)

6.1.4.1. Development of the Wiener model without normalization of data
The first model developed was without normalizing the data. Table Xlll shows the best calculated

nonlinear parameters in a Wiener model. The comparison between the predicted uitimate nonlinear
gains and the ones obtained in the experiment is illustrated in figure 57.
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Table Xlil. Parameters of the nonlinear model.

Parameter Value Input variables affected by the
parameter
B1 -0.00774435 PAMM
B2 0.00039288 Insulin infusion
B3 -1.7083 x 10”7 Glucagon infusion
Ba 2.488x 10° PAMM x Insulin infusion
Bs -2.9722 x 10” PAMM x Glucagon infusion
-8.7719x 10° Glucagon infusion x Insulin infusion
6
B, 8.1296 x 10” PAMM?
Bg -6.1049 x 10°° Insulin infusion’
Boy 45x10" Glucagon infusion’
0.05
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Figure 57. Comparison between the predicted nonlinear steady state glucose concentration
rates and the obtained in the experiment without normalizing the data.
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As it is shown, the obtained nonlinear model has an excellent accuracy in the prediction of nonlinear
gains; this was verified with the coefficient of determination R?, which gave a value of 0.9972 and its
multiple correlation coefficient was 0.9990. Both performance indexes describe the correlation between
the constructed predictor and the response variable. Also, from the values of the parameters it appears
that external glucagon infusion is the input with less impact in the nonlinear gain; however, this
misunderstanding happens because the data is not normalized.

Respect to the linear ARX models, the best obtained models were of second order with two
exogenous input terms, equations 6.5 — 6.7 show them:

Vi = 011V k-1 + O12V1k—2 + @118y g1 + W12Ug g 6.5.
Vo = 021V -1 + 022Va k-2 + Woqlp g1 + WaaUz k2 6.6.
V3 = O31V3 41 + 032V3 k2 + W3qU3 1 + WUz k2 6.7.

where u; denotes PAMM, u, refers to external insulin infusion and u; is external glucagon infusion.
The parameters for each model can be seen in table XIV.

Table XIV. Parameters obtained for the linear ARX models without normalizing the data.

Auxiliary variable (i) || Model 6; 6z Wi Wiz
1 ! 0.81077399 9.9678 x 10° 2.32248331 -2.13326727
2 V2 0.99874311 0.00380755 0.00506445 -0.0076151
3 Vs 0.00019595 1.1448 x 10 11.1466346 -10.1468306

Figure 58 shows the predicted and the real glucose rate of change, where it can be inferred that the
developed model can be improved. Nonetheless, comparing the prediction performance with the ones
obtained by Rollins, a significant enhancement has been achieved. Another aspect that can be noticed is
that the model obtained has a drawback in representing the effect of external insulin infusion; this can
be seen when the predicted glucose rate does not follow the same pattern as the real data in the time
interval between 2940 and 3580 min; which corresponds to an input combination of PAMM and
external insulin infusion at their mean value and without external glucagon infusion, according to the
experiment design reported in table XII.
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It is important to remark that the sample time was 10 min. The sample time was selected to be

greater or equal than 5 minutes, because nowadays this is the fastest time interval that glucose sensors
tan make measurements.
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Figure 58. Predicted glucose rate of change and its real value obtained in the experiment,
without normalizing the data.

Nevertheless, the quadratic sum of errors was 15.3712.

6.1.4.2. Development of the Wiener model with normalized data (N(u=0,02=1))

Due to a major difference in the inputs magnitudes, especially with external glucagon infusion, it was
decided to normalize the data, so the numerical range of the inputs would not hide or distort the
functional relation with the glucose rate of change. This data conditioning uses the basic principle of
normalization, which is subtracting the mean and dividing by the standard deviation of the variable. This
normalization criterion was done to the steady state inputs and output data.

The parameters for the nonlinear model that were obtained after normalizing the data are shown in
table XV.

Table XV. Parameters of the nonlinear model with N(u=0,02=1).

Parameter Value

Bo 2.2481 x 107

80



B -2.56624899
B, 0.04534865
B3 -0.0188697
By 0.14069266
Bs -0.01608346
Bs -0.01653439
B, 1.68235165
Bg -0.01532894
Bo 0.01034704

Figure 59 illustrates a comparison between the predicted and real steady state glucose rate
normalized values. As it is shown, the new obtained nonlinear model has also an excellent accuracy in

the prediction of glucose rate; this was verified with the coefficient of determination R’, which gave a

value of 0.9972 and its multiple correlation coefficient was 0.9990. These values were the same as in the
previous section, however the parameters have are similar in magnitude.
The best obtained linear ARX models were of 14" order with 15 exogenous inputs terms, equations

6.8 — 6.10 show them:

Vig = 011V k-1 -+ 6114V k14 T W1U k-1 + -+ W115U; k15
Vo = 021V -1t -+ 8214V 14 + W1 Up gy + -+ Wa 15Uz f-15

Vag = 031V3-1 + .+ 0314V3 514 + W3 Uz 1 + ... + W3 15U k15

The parameters for each model are shown in table XVI.

6.8.

6.9.

6.10.
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concentration rates and the obtained in the experiment with N(u=0,c =1).

Figure 59. Comparison between the predicted nonlinear steady state glucose

Table XVI. Parameters obtained for the linear ARX models with N(u=0,5°=1).

—
Auxiliary variable (i) || Model bi1 biz bi3 Oia
—
L i 12 2.23779676 0.39839314 -4.06639412 1.61775119
2 VU, 1.14124487 1.93935156 -2.74771556 -0.84663718
_—
; 3 VU3 -0.15276258 2.55284005 0.33385339 -2.18270553
Auxiliary variable (i) || Model dis Sis 8i7 Oig
| —
1 12 1.94932475 -0.35869673 -0.6835537 -1.02529882
=
2 Uy 2.31201442 -0.51476923 -0.64443705 0.43464338
F;
3 V3 -0.2331662 0.63916385 -0.01975735 -0.03200659
=
Auxiliary variable (i) [| Model Sig Si10 bi11 bi12
| —
1 12 0.86906773 0.49159962 -0.51222695 -0.04383545
2 vy -0.12614824 0.15495844 -0.13748321 -0.09862844
—_—
3 VU3 0.12027379 -0.09913646 -0.12508818 0.14680067
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Auxiliary variable (i) || Model bi13 bi14 wi1 Wiy

1 v 0.21387603 -0.0898321 1.47655307 -3.38814936

2 Uy 0.20857552 -0.07821921 -19.829199 28.4940679

3 VU3 0.07068713 -0.03831418 -9.60510083 24.7371935
Auxiliary variable (i) || Model W;3 Wiy Wisg Wi

1 Uy -0.57182711 6.19445156 -2.26848334 -3.21222792

2 Uy 27.4118984 -54.1368556 2.0098094 24.4575906

3 VU3 4.06848532 -47.0696161 18.8450326 21.7081983
Auxiliary variable (/) || Model W;7 Wig Wig Wi1o

1 12 0.3276319 1.27901309 1.6677651 -1.3553616

2 vy -8.74670334 -0.05448204 0.23832341 0.2253957

3 VU3 -13.5370976 0.64292432 0.4692566 0.89190582
Auxiliary variable (i) || Model Wi11 Wi12 W13 Wi14

1 7 -0.63702854 0.48889382 0.05064537 -0.06352662

2. Uy 0.20004774 -0.26908198 0 0

3 V3 -0.67229433 -0.49127327 0 0
Auxiliary variable (i) || Model Wi1s

1 vy 0.01367924

2 v, 0.00243882

3 V3 0.03170381

After obtaining the linear parameters a comparison of the predicted and real glucose rate was made.
The result can be seen in figure 60. The reported quadratic sum of errors was 32.2949; nonetheless this
indicator is bigger than in the other criterion, it can be seen that the predicted output follows in a closer
way the real data, even for drastic changes and when external insulin is infused. So, it can be inferred
that the goal of giving the inputs a same weight has been achieved. The reason why the quadratic sum
of errors is greater, is due to the normalization of the data. The maximum magnitude with this
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normalization is 5.25 while without normalization is 1.5; hence, any difference between the model! and
the real output will have a greater error.
The sample time for developing this model was 10 min.

dGlucose estimated [mg/dL/min]

dGlucose [mg/dL/min]

.,t.
6140

40,
6620
6700

S0

$22
6300
4

BY BN R- T ARSI S I R T

Figure 60. Predicted glucose concentration rate of change and its real value obtained in the experiment,
with N(u=0, (r“:l).

6.1.4.3. Development of the Wiener model with scaling of each input with respect to its
maximum value and a sample time of 10 minutes

The scaling of data by dividing by the maximum was used, because the purpose of developing an
accurate predictive model is for the realization of an online controller. Therefore, if the theoretical
normalization criterion were chosen it would take a minimum of a hundred samples before getting a
reliable result. This drawback can be overcome by “normalizing” each input data respect to its maximum
value, which is known. The output was not “normalized” by this criterion.

The nonlinear parameters that were obtained are shown in table XVII.

Table XVIIi. Parameters of the nonlinear model dividing each input by to its maximum vaiue.

Parameter Value
Bo -0.00130833
B1 -0.46466111
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B, 0.00821111
Bs -0.00341667
Bs 0.0312

Bs -0.00356667
Be -0.00366667
B, 0.29266667
Bg -0.00266667
Bs 0.0018

Figure 61 illustrates a comparison between the predicted and real steady state glucose concentration
rates with the inputs scaled by its maximum value. The results were the same as in the other two cases,
and as it was expected the values of the parameters have a similar order of magnitude.

The best obtained linear ARX models were of 15" order with 16 exogenous inputs terms, equations
6.11 - 6.13 show them:

Vig = 01,1V k-1 + -+ 81,15V k15 + @1 1Ug -1 + o+ W1,16U k-16 6.11.
Vo = 021V k-1 + -+ 8215V k15 + WaUp g + o+ W 16Uz k16 6.12.
V3 = 031V30-1 + .+ 0315V3 415 + W3 U3 1 + ... + W316U3 k16 6.13.

The parameters for each model are shown in table XVIII.

A comparison between the predicted and real glucose rate with data conditioning procedure is
illustrated in figure 62. It can be seen, that so far, this is the best predictive model calculated with a
quadratic sum of errors is 3.6098.
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Figure 61. Comparison between the predicted nonlinear steady state glucose concentration rates
and the obtained in the experiment with the inputs divided by its maximum value with a sample

time of 10 minutes.

Table XVIill. Parameters obtained for the linear ARX models normalizing each input respect to its
maximum value.

—
Auxiliary variable (i) || Model Oi1 Oz di3 Ois
=
1 12 2.19597365 -1.57084583 -0.34381103 0.87622164
- 2 v, 1.95435617 -1.72308085 0.56874273 -0.13683583
=
3 VU3 0.81271076 0.88768425 -0.71424498 -0.04459945
F_T ili iable (i del ) )
Fun iary variable (i) || Mode Ois i6 i7 Oig
1 12 0.4802319 -1.41400914 1.27600785 -1.29635569
% Uy 0.13032491 -0.0776995 0.14135655 0.06440516
3 V3 0.08135725 0.12817232 -0.4145987 -0.02885872
Auxiliary variable (/) || Model Sig Sir0 6i11 Si12
il 12 1.3971722 -0.32488428 -0.95752056 0.21217765
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2 vy 0.09118942 -0.20689813 0.18392105 0.07897269

3 U3 0.16421721 -0.02614071 -0.19696253 -0.01755639
Auxiliary variable (i) || Model 8i13 8i14 8i1s Wi

1 12 1.67219572 -2.12148196 0.85352123 2.01081431

2 Uy -0.01185795 0.00603049 -0.06328246 -50.3896566

3 VU3 0.41446875 0.09435009 -0.29744658 -16.4521489
Auxiliary variable (i) || Model Wiy ATH Wiy Wis

1 Uy -4.38335621 2.92559372 0.92569752 -1.65154672

2 vy 98.5577036 -80.5098868 26.5589322 -2.94020932

3 U3 13.8057239 15.675809 -10.6717858 -0.83464296
Auxiliary variable (i) || Model Wi W7 Wig Wig

1 121 -1.33822487 2.92632482 -2.2107883 2.16637054

2 Uy 1.32842655 4.88963797 6.89715417 4.6742625

3 U3 -0.61062278 1.03772485 -6.47427813 -0.59260142
Auxiliary variable (/) || Model Wi10 Wi1q Wi12 W13

1 Uy -2.89742113 1.15553586 1.81454262 -1.01144765

2 12 -0.97448276 -3.70129127 -0.03908991 3.50730037

3 VU3 1.49761885 5.21153998 -0.40592774 -3.40919145
Auxiliary variable (i) || Model Wi14 W15 Wi1g

1 172 -2.30643474 3.52236857 -1.58262171

2 vy 1.86648352 -1.06485899 -8.6600297

3 VU3 2.60201512 0.34101412 -0.56279919

The sample time used for the development of this model was 10 min.
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Figure 62. Predicted glucose rate of change and its real value obtained in the experiment,
scaling each input respect to its maximum value with a sample time of 10 minutes.

6.1.4.4. Development of the Wiener model with scaling of each input by dividing by its
maximum value and a sample time of 5 minutes

Basically, this data conditioning method was the same as in the previous section, but with the
difference of using a smaller sample time.

The nonlinear parameters that were obtained are shown in table XIX.

Table XIX. Parameters of the nonlinear model dividing each input by its maximum value

Parameter Value

Bo 0

B1 -0.54261364
B2 0.00741414
Bz -0.00399141
Ba 0.04341515

Bs -0.00461818
Be -0.00451818
B, 0.33778788
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Bg -0.00201212

By 0.00225455

Figure 63 illustrates a comparison between the predicted and real steady state glucose
concentrations rates with the inputs scaled or “normalized” with respect to its maximum value. The
performances indicators had a small change, R* was 0.9432 and its multiple correlation coefficient,
0.9995.

The most efficient obtained linear ARX models were of 5 order with 5 exogenous inputs terms,
equations 6.14 — 6.16 show them. It is important to remark that when the model was increased up to a
10" order with 10 exogenous inputs terms the sum of quadratic errors did not change in a significant
form.

Vg = 01,1V k-1 + -+ 81 5Vik—5 + Wy U g1 + 0+ O15U 5 6.14.
Vor = 021V -1 + "+ 025V k-5 + Wy Uz k-1 + 0+ WosU k5 6.15.
173,]( = 53,1173’](_1 + ...+ 63‘5173’](_5 + 0)311113'](_1 + ...+ (1)3’5u3,k_5 6.16.

The linear ARX models parameters are shown in table XX.

A comparison between the predicted and real glucose rate with this criterion is illustrated in figure
64. The quadratic sum of errors was 13.3455, which results in the second best obtained model.

The sample time used for the development of this model was 5 min.

89



0.05

-0.05

-0.1

-0.2 * -

-0.25

X J

15

20

25 30

# dGlucose [mg/dL/min]

+ dGlucose estimated [mg/dL/min]

e

Figure 63. Comparison between the predicted nonlinear steady state glucose concentration rates
and the obtained in the experiment with the inputs divided by its maximum value with a sample
time of 5 minutes.

Table XX. Parameters obtained for the linear ARX models dividing each input by its maximum value with

a sample time of 5 minutes.

_
Auxiliary variable (/) || Model b1 Oiz Oi3 Ois
F
1 12 2.43539719 -1.33194562 -0.76278787 0.76003929
—
2 2 1.78868561 -0.35080926 -0.74946231 0.28509997
:
3 V3 2.49698677 -1.73083123 -0.26530096 0.71645415
| —
Auxiliary variable (i) || Model Ois Wiy Wiz Wi3
—
1 121 -0.10155083 1.92158433 -4.45804033 2.02235454
fi—
2 (2 0.02649845 -33.1754844 57.0461805 -19.6443092
=
g VU3 -0.2179112 -9.25356113 20.9469872 -12.2029933
Ji=—
Auxiliary variable (i) || Model Wig Wis
1 (72 1.6766308 -1.16168151
2 v, 0.73260928 -4.95900863

90




L 3 V3 -1.3304141 1.84058376

15 { { 1 !
I —+—dGlucose [mg/dL/min]
dGlucose estimated [mg/dL/min]

0.5

0% > R Y ¥ N ¥ ¥ v 1 C
A WAL N2 e, WAL NN e

0.5 v

Figure 64. Predicted glucose concentration rate of change and its real value obtained in the experiment,
scaling each input with respect to its maximum value with a sample time of 5 minutes.

All the data used in the adjustment of the models parameters are found on appendix 2.

6.1.4.5. Maodifications in the chosen predictive model

The selected model for glucose rate prediction is the one that uses a sample time of 10 minutes and
having each of its inputs data scaled by its maximum value. However, there is a noteworthy drawback;
the linear ARX model for external glucagon infusion has a one iteration delay. In the next chapter, this
disadvantage will be explained in detail. In order to have an immediate impact of external glucagon
infusion on glucose rate, the structure of equation 6.13 had a small modification, deriving in the next
equation:

V3’k = 63,1173”(_1 + ...+ 63'15173‘1(_15 + (J.)3,1u3'k + ...+ w3'16u3,k_15 6.17.
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Since the linear ARX parameters are calculated with the constraint of the nonlinear model
coefficients, the second ones will not suffer any changes. However, the new linear ARX models
parameters are shown in table XXI and its response in figure 65. The reported minimum square error
was 3.1.
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Figure 65. Predicted glucose concentration rate of change and its real value obtained in the experiment,
scaling each input with respect to its maximum value with a sample time of 10 minutes and
with equation 6.17.
Table XXI. Parameters obtained for the linear ARX models scaling each input with respect to its
maximum value and using equation 6.17.
= 5
Auxiliary variable (i) || Model bi1 biz Oi3 Oia
E 1 (2] 2.12216226 -1.45141476 -0.33851334 0.79242162
2 VU, 2.28288382 -2.5373466 1.57808859 -0.90934023
E 3 VU3 1.68933604 -0.09229609 -1.19489255 0.6835463
Auxiliary variable (i) || Model dis di¢ Oi7 Oig
=
L 1 Uy 0.42283155 -1.29140525 1.27727133 -1.28739329
2 Uy 0.52342501 -0.10839356 -0.03072891 0.23134826
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3 72 -0.026635 0.22846514 -0.67989825 0.44738501
Auxiliary variable (/) || Model 89 Si10 8i11 Oi12

1 124 1.28301637 -0.30629255 -0.85354712 0.20758478

2 Uy -0.17253125 0.10484072 -0.05470616 0.16179867

3 U3 -0.02698684 0.34097845 -1.34648417 0.75246141
Auxiliary variable (i) || Model di13 bi1a Oi1s Wi

1 12 1.55845562 -2.05213891 0.8446799 1.90982253

2 1Z) 0.04494333 -0.1512706 0.03694595 -43.8399912

3 U3 1.21616755 -1.32070544 0.32155674 -4.24610847
Auxiliary variable (i) || Model Wiz W3 Wiy Wis

1 2 -3.96954878 2.5654936 0.65478079 -1.31578261

2 Uy 92.4780388 -81.6353866 27.7415146 -1.01179887

3 U3 -1.82608994 13.0334502 -1.09433009 -8.64154646
Auxiliary variable (i) || Model Wi Wiz Wig Wio

1. L2 -0.88913562 2.27235293 -2.08205223 1.98869884

2 Uy 1.6334355 3.34771023 457377878 3.07761047

3 VU3 2.24629062 4.29948877 -3.62515142 -4.76157529
Auxiliary variable (i) || Model Wi10 Wi11 Witz Wi13

1 12 -2.55922401 1.43356379 1.33123207 -1.39502802

2 vy -0.95026533 -1.91709341 1.22926685 2.48663453

3 U3 5.09875716 0.52734603 2.16581087 -13.9652491
Auxiliary variable (i) || Model Wi14 Wi1s Wi1e

1 2 -1.35846898 2.97054107 -1.48496359

2 Uy 0.05749465 -1.197899 -6.07300711
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3 V3 8.01160594 13.9035949 -11.1182921

6.1.4.6. Testing phase of the predictive model

According to Rollins, after the training stage is completed, it is necessary to test the models with
different combinations of inputs to see if they predict the output in an accurate form.

Even thought external insulin infusion was considered as an input in the system’s model, it was
discarded in the testing phase because when a person is doing exercise, the less desired situation is that
glucose concentration drops below a healthy level, therefore automatic insulin supply would be cut off.

The testing trials are shown in table XXIl, which represent possible situations for the patient. In each
trial, a physical activity level (of up to 45% PAMM) is maintained for about 3.5 hours (200 min) with a
recovery of normoglycaemia in approximately 1.5 hours, with a possible constant glucagon supply
during the exercise period.

The results of the tests can be seen in figures 66 to 71, the time axis is in minutes.

Table XX!I. Testing trials of the selected models.

Trial % PAMM Glucagon (pg/min)
1 40 10,000
2 45 20,000
3 30 10,000
4 10 7,500
5 45 0
6 20 0

From the shown graphs, it can be observed that the results of the trials 2,4,6 give the worst
approximation to the real response. From this information, the proposed statistical models is valid in the
range of PAMM from O to 40 %.

Since the quadratic sum of errors was a bit high, the model fails in its predictions above 40% PAMM,
so for getting a precise response the model was limited to function up to this quantity. Nevertheless,
due to the complexity and highly nonlinear behavior of the system, in the range of operation from 0 to
40% the model is considered to produce a good approach, remarking that 60% PAMM represents high
exercise intensity (Lenart, 2002).
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Figure 66. Comparison between the predicted and real glucose concentration rate in trial #1.
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Figure 69. Comparison between the predicted and real glucose concentration rate in trial #4.
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Figure 70. Comparison between the predicted and real glucose concentration rate in trial #5.

dGlucose [mg/dL]

dGlucose normalization with respect
to its maximum level, sample time=10
min [mg/dL/min]

) ocaooocoooocoooooogeooocooooooooooccoooooooo
- AN R A A MR D@ AR =M~ AR B EEEEEEEEE EEEEEEE R EE
R R R R B B R A A B B R S e S S I R =
aaaaaaa BRSSP e R it S i =2 (et I I i i i R e e e - - i - i R R U S R I

Figure 71. Comparison between the predicted and real glucose concentration rate in trial #6.
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Chapter 7

Predictive controller design

After obtaining the statistical discrete model that suits the best behavior of the physiological system,
the next step is to develop a model based predictive controller that will impede the decreasing of
glucose.

This chapter explains the method applied for the issue described above, as well as the different tests
that were involved, in order to evaluate its performance.

7.1. Model based predictive control strategy applied to glucose
level regulation

As stated above, one of the goals of this thesis is to design a regulation strategy that will compensate
the effects of exercise in the blood glucose level. Basically, the major problem is that exercise makes the
system unstable and that its dynamics when it its started and when it is ended is different.

Another important aspect to take into consideration is that exercise is considered as an output
disturbance, because it is not related with the manipulation of the feedback controller.

Before developing a predictive control strategy, a discrete PID with conservative parameters was
tested, but its performance lacked in accuracy. The three reasons why it failed to prevent hypoglycemic
episodes before exercise are

¢ [t was synthesized based on a servocontrol or set point tracking specified performance, assuming a
stable glucose level response, which becomes unstable during exercise.
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¢ Its manipulated variabie is external insulin infusion, which does not have the ability of increasing the
blood glucose level.

» Its tuning parameters and structure are linear, while the process dynamics is nonlinear specially due
to the exercise effects.

Its response to a 40 %PAMM pulse change is seen in figure 72, where the reasons stated above can
be corroborated. Table XXill shows the initial conditions in the test.

Table XXIIl. Initial conditions for PID controller test with exercise as output disturbance

Parameter Value || Unit
Basal insulin level 15.1 mU
/min
PAMM 40 %
Basal glucose level 80 || mg/dL
Exercise duration 120 min
I ! | I ] | I ] | |
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Figure 72. Response of glucose level (mg/dL) (blue) in close loop, with
a discrete PID controller in the presence of a 40 %PAMM (red) pulse change.
External insulin infusion (mU/min)(cyan), arterial insulin level (mU/min) (green),
Basal glucose level (mg/dL)(black); time scale in minutes.
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Equation 7.1 shows the discrete implementation of the PID controller used to close the glucose
control loops and the tuning parameters and sample time are presented in table XXIV:

- (7.1)
=t 4 e (o = o)+ (5) (S582) = 20 23ia + 90

Table XXIV. Parameters values of the discrete PID controller.

Parameter Value Units
K. -0.7754 || (mU/min)/(mg/dL)
Tp 0 min
T; 60 min
T 10 min

Since the PID-based feedback control strategy did not function for the exercise issue, a
complementary model based predictive controller is proposed, using the model obtained that is
represented by equations 6.11, 6.12, 6.17 and tables XVII and XXI. Even thought it has many
autoregressive and exogenous input terms, all of them are fitted and therefore the implementation of
the regulator can be done.

The basic principle of how the proposed predictive regulator works is:

After obtaining the measured glucose concentration, its rate of change is calculated with the
knowledge of the sample time interval. Afterwards, knowing the exercise intensity ( PAMM), the auxiliary
variable (v,) that depends on external glucagon infusion is calculated, and finally the external glucagon
input (u;) to produce the same glucose concentration rate but with opposite sign is predicted

Since the solution of equation 6.4 involves quadratic terms, there are two possible solutions. By trial
and error in the simulations, it was stated that for values of time below 45 minutes the smallest value
(v) was used in the calculation for exogenous glucagon infusion; for values of time greater than 45
minutes, the biggest value of (v;) was used.

In figure 73, a flow chart of the predictive algorithm is depicted. It can be seen that the variables
mentionted above are used; figure 74 illustrates the block diagram of complete automatic system
including the predictive control strategy. The implementation of this strategy was done using Simulink®;
figure 75 shows the resulting schematic of this software.
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Even thought the model to use in this strategy had some errors, these are compensated in the
program file by making a fine readjustment in the parameters.

After implementing the predictor, several tests were executed whit the system in a close loop mode,
in order to see its performance. Table XXV indicates the value of the variables involved in these tests.

Glucose
concentration
Sample time
measurement
A
Insulin infusion PAMM (1) Glucose
(uzk) concentration rate of
$ ¢ change calculation
Calculation of Calculation of (%)
insulin infusion PAMM auxiliary
auxiliary variable (vyy)
variable (vy)
v y

Calculation of
external glucagon
infusion auxiliary

variable (v3)

A
External glucagon

infusion prediction

(uzg)

Figure 73. Flow chart of the predictive control algorithm
for exercise effects compensation.
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Figure 74. Block diagram of complete glucose level control system with compensation of

exercise effects
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compensation of exercise effects.

Table XXV. Test done in with the designed predictive regulator.

Test Exercise PAMM Basal Maximum
duration (%) Glucose glucose level
(min) level deviation
(mg/dL) (mg/dL)
1 120 10 80 +0.5
2 120 15 80 -0.4
3 120 20 80 -2
4 120 25 80 +0.6
5 120 30 80 +0.8
6 120 35 80 -0.7
7 120 40 80 -0.8
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8 45 40 90 +0.4
9 45 10 90 +0.5
10 45 30 90 +0.4
11 60 40 100 +1.5
12 60 10 100 +0.6
13 60 30 100 +0.8
14 30 40 70 +0.5
15 30 10 70 +0.5

In graphs 76 to 90, with a time scale in minutes, the performance of the predictive control is shown.
Where, it can be stated that for any intensity of exercise from 0 to 40% PAMM, exercise duration from 0
to 120 minutes and any initial glucose level, the predictive controller will regulate in an excellent form,
compensating the negative effect of exercise in glucose level. In these tests, the predictive compensator
and the PID controller act on the system; like it is explained in chapter 2, the body’s nature allows it
because when blood glucose level rises only insulin is secreted and not glucagon and vice versa when
blood glucose drops. This means that both control actions will not interfere with each other.

The final test done was combining both control strategies, feedback PID and feedforward predictive
controller, with the purpose to react to meal disturbances and anticipate exercise disturbance,
respectively.

To quantify the carbohydrate intake, information form Sanchez was taken, where the meals are
represented by pulse functions for the carbohydrate consumption rate. The pulse durations is fixed in 30
min. and the pulse area represents the ingestion of 66 g of carbohydrates. The carbohydrates total in
three meals accounts for 53% of the energy from a 1,500 kcal diet, close to the minimum daily -
recommended energy percentage from carbohydrates (Sanchez-Chavez, 2008).
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Figure 76. Performance of predictive control strategy, with 10% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is
the red graph and blood Insulin concentration{(mU/L) is represented by the green graph.
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Figure 77. Performance of predictive control strategy, with 15% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mUy/L) is represented by the green graph.
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Figure 78. Performance of predictive control strategy, with 20% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 79. Performance of predictive control strategy, with 25% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL{cyan), its response is
the red graph and blood Insulin concentration(mUy/L) is represented by the green graph.
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Figure 80. Performance of predictive control strategy, with 30% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 81. Performance of predictive control strategy, with 35% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL{cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 82. Performance of predictive control strategy, with 40% PAMM (blue) and
a duration of 120 minutes. Glucose steady state level at 80 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L} is represented by the green graph.

Figure 83. Performance of predictive control strategy, with 40% PAMM (blue) and
a duration of 45 minutes. Glucose steady state level at 90 mg/dL{cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 84. Performance of predictive control strategy, with 10% PAMM (blue) and
a duration of 45 minutes. Glucose steady state level at 90 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 85. Performance of predictive control strategy, with 30% PAMM (blue) and
a duration of 45 minutes. Glucose steady state level at 90 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 86. Performance of predictive control strategy, with 40% PAMM (blue) and
a duration of 60 minutes. Glucose steady state level at 100 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 87. Performance of predictive control strategy, with 10% PAMM (blue) and
a duration of 60 minutes. Glucose steady state level at 100 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 88. Performance of predictive control strategy, with 30% PAMM (blue) and
a duration of 60 minutes. Glucose steady state level at 100 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 89. Performance of predictive control strategy, with 40% PAMM (blue) and
a duration of 30 minutes. Glucose steady state level at 70 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.
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Figure 90. Performance of predictive control strategy, with 10% PAMM (blue) and
a duration of 30 minutes. Glucose steady state level at 70 mg/dL(cyan), its response is
the red graph and blood Insulin concentration(mU/L) is represented by the green graph.

The final test was done as foliows:

Table XXVI. Final test done, combining meal and exercise disturbances.

Test Basal || % PAMM || Exercise || Exercise || Meal
Glucose initial end time
level time time (min.)
(mg/dL) (min) (min.)
1 90 40 1500 1620 1620
2 90 30 2200 2245 2000
3 90 20 2700 2820 2800

It can be seen from the table above, that in the first run the closed system was tested when exercise
is first done and afterwards the patient has a meal. In the second run the person eats before he starts
any physical activity, and finally, a run to explore the system response when exercise and eating are
tone in the same time interval. The latter test is proposed to experiment a third possibility in the timing
of different disturbances, even though such timing may be less common in a person’s routine. The set of
the 3 tests do not represent a one-day routine, but only independent and isolated combinations of
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disturbances. The sample time used in these tests was of 10 minutes. These trails are illustrated in figure
91; external insulin and glucagon infusion, which are the manipulated variables, are depicted in figure
92.

] I l I 1 1
1] ,,,,,,,,,,,,, 1 [ TR NS I R g ............. e o R a
A Meal :
300 R A SO S R TR R /disturbance ................................................................... =
v.1] R SO ............. JPORMENIUES| ') (R G s L SUUUUSURURRY 1Y SRS 4
200} .....: vevrensenns 1.1 Glucose . 0 1 . S R IR . S A
: concentration . :
) : Insulin -
Exercise : levels it :
50 crurbance 1L ||+ concentration ...l |
/ : levels :
.| , | A |
0 | | == | - [ 1 | | | il B
1400 1600 1800 2000 2200 2400 2600 2800

Figure 91. Performance of glucose level when meal and exercise disturbance excite the system
And PID and predictive strategies are applied.
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Figure 92. Manipulated variables of the feedback PID controller (external insulin in mU/min)(green) and
feedforward predictive compensator (external glucagon in pg/min)((blue).

From the previous graphs, it can be inferred that even if the meal disturbance is affecting the system,
the predictive controller impedes glucose level to decrease due to exercise. Conversely, the response of
the glucose levels in the same is the three cases since the 3 meals are identical and the exercise
disturbances have a null net effect thanks to the action of the predictive compensator. Nevertheless, the
PID controller performance is not satisfactory because hypoglycemic levels can be observed in the
response. As it was stated in chapter 3, this is one of the disadvantages of applying the integral action in
glucose - insulin PID based control system.

It is important to remark, that since the implementation of the predictive control strategy was done
in a discrete time form some restrictions were easily considered. Prior to the external glucagon infusion
prediction, if the glucose level is above its steady state, the manipulation of external glucagon
administration was set to zero; on the other hand, if it was under its normal value, external glucagon
infusion was held constant between sample times as it is done with discrete controliers.

A manual mode test was done, which considers a constant insulin bolus administration and no
external glucagon infusion, so the advantages of the feedback PID controller and feedforward predictive
compensator can be observed; figure 93 illustrates open loop response.
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Figure 93. Response of blood glucose level when meal and exercise disturbance excite the system in manual mode.

For comparison issues, the glucose postprandial time due to meal disturbances and the deviation
glucose level due to exercise were considered. Table XXVII shows these comparison indices. The
hypoglycemic episode due to the integral action was omitted.
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Table XXVII. Comparison in the system’s behavior when it is operated in manual and automatic mode.

Test System | Postprandial time Deviation
mode due to meal glucose value
disturbances (min) || due to exercise
disturbances
Manual 84 10
1
Automatic 25.86 -0.9
Manual 82 1.9
2
Automatic 25.86 -
Manual 82 -3
3
Automatic 26.85 -0.4

From the information in table XXVI|, it can be concluded that the control strategy with feedback PID
and feedforward predictive compensation makes a great performance improvement in blood glucose
regulation. The postprandial time is shortened approximately 3.5 times than in manual mode and the
deviation of glucose level decreased from 7.4 to 11.1 times, depending on exercise intensity and
duration, than operating in manual mode.

7.2. Physical implementation of the feedforward predictive
compensator

An important aspect when designing control strategies is the feasibility of their physical
implementation. In addition to the instruments required for feedback control, the proposed automated
system must have a sensor that measures the disturbance of interest, an actuador to produce a
compensation of its effects and a reservoir of the drug to use.

In the next sections a description of the required elements, in order to operate in a close loop mode,
is done. An explanation of how exercise intensity can be measured is also covered.
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7.2.1. Disturbance measurement and sensor technology

As stated in chapter 3, an essential step for applying the feedforward strategy is that the disturbance
that affects the system must be measured and quantified. In this thesis, the disturbance is the exercise
done (PAMM) by the patient.

Nowadays, there is not a sensor that can directly measure PAMM. The only available method is by
measuring the arterial blood gasses while the person is doing physical activity. This is done with a very
sophisticated and non-portable device.

Nevertheless, it was found in the literature, an equation that relates the heart rate with PV 0T'%*, This
discovery combined with the developed equation (4.1) will allow an indirect measurement of PAMM.

Swain (1994) established two equations that relate the heart rate with PVOT***, one is for men and the
other for women. The difference relies on the basis that the cardio vascular system does not behaves in
the same form in men and women; this is due to a variation in the heart’s size. (Guyton & Hall, 2001).

%HRpax = (0.643 + 0.010)PVOI** + 36.8+1 for men (7.1)
%HRyqr = (0.628 + 0.014)PVOI™*+ 39+ 1.3  for women (7.2)

It is important to remark, that equations 7.1 and 7.2 are only valid for steady state values. This
cannot be seen as a drawback, since the minimum sample time of today’s glucose sensors is of 5
minutes and the settling of the PVOJ'** and PAMM system is faster. This means that when glucose is
measured, PVOT*** will already be at its steady state and therefore equations 7.1, 7.2 and 4.1 can be
used to quantify PAMM. In other words, the procedure in order to quantify PAMM is

Measure heart rate variations due to physical activity only, then equations 7.1 and 7.2 are used to
calculate the corresponding PVOT*** , the resulting value is introduced in equation 4.1 and PAMM is
quantified.

For measuring heart rate variations due to physical activity only, an odometer has to be used. It was
found that there is a commercial odometer (Omron HJ-720ITC Pocket Pedometer with Advanced Omron
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Health Management Software) that differentiates heart rate variations due to physical activity from
other factors.
The characteristics of the chosen odometer are

¢ It has an integrated accelerometer to detect motion

e Measures steps, aerobic steps and minutes, calories and distance

e Separately displays aerobic steps and minutes walked more than 10 minutes continuously
e 7 day history allows a review of a full week of exercise

e Measures blood pressure

e Measures heart rate

7.2.2. Actuator and reservoir

The actuation principle to follow for glucagon infusion is the same as for exogenous insulin infusion,
which typically corresponds to the use of an external pump that doses a specified drug amount to the
patient.

Since glucagon is not used when glucose level rises and only insulin must be secreted when it drops;
both exogenous hormones could be administrated through the same infusion site. Therefore glucagon
and insulin could be placed in two different reservoirs inside one pumping device engineered to
administer both substances by a single catheter.
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Chapter 8

Conclusions

This chapter summarizes the results obtained from chapter 4 through chapter 7, as well the final
conclusions that can be inferred from this thesis work and the challenges for future investigations in
order to improve what has been obtained.

8.1. Discussion of results

The results from analytical and statistical modeling and from the simulations of the predictive
controller of exercise effects are summarized in this section, although a more detailed presentation can
be found in the previous chapters.

8.1.1. Results from analytical modeling

In the analytical modeling issue the principal contribution is the inclusion of all exercise effects in the
Sorensen’s model. This implies the quantification of exercise, blood flow rate in the main organs,
glucose and insulin consumption and the addition of the input of external glucagon infusion.

Regarding to exercise quantification, several differential equations that represent the dynamics
involved in the system were develop, such as peripheral glucose uptake (PGU,), hepatic glucose
production ( HGP,), percentage of maximum oxygen volume consumption rate {PV07*%*), percentage

of active muscular mass (PAMM), rate of glycogenolysis depletion (di“il” ),kidney insulin uptake (KIU)
and peripheral insulin uptake (PIU).

From the simulations done with the modified Sorensens system, it was concluded that even the
glucose level had an accurate performance; insulin concentration did not behave as it is reported in the
literature. This was the main reason why it was discarded for its use in the predictive control strategy. So
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another model was implemented, this was the modified Bergman’s minimal order model. Unlike
Sorensen’s model, this had a response that matched the reported clinical data.

Nevertheless, Bergman’s model had a major drawback, it did not have an external glucagon infusion
input, which is fundamental in impeding glucose level to decrease in the presence of exercise
disturbance. In order to solve this problem, another innovation was implemented, which was the
combination of Sorensen’s and Bergman’s models. The glucagon compartment of the Sorensen model
modified with an input of exogenous glucagon was combined with the Bergman model with exercise
caused PVOT'“* input. A more detailed explanation is described in chapter 4.

When the combined Sorensen — Bergman systems was simulated, the response obtained was in the
range that the medical literature predicts.

8.1.2.  Results from statistical modeling

In this section, the followed statistical procedure to obtain a Wiener model representing glucose
behavior to exercise, glucagon and insulin inputs is described.

After getting sufficient data, near 5000 points from the experimental design the analytical system was
modeled in a statistical form using the Wiener modeling technique, in order to develop a predictive
regulator.

There were four data conditioning criterions involved in the statistical modeling, which were
normalization of the data in a theoretical form, scaling of data with respect to its maximum value and
without normalization. These criterions rose because the inputs were of very different order of
magnitude.

As it is stated in chapter six, the first objective when using Wiener modeling is to find the multiple
nonlinear regression parameters that describe the static nonlinear gain of the system; in this case these
parameters were obtained via least squares algorithm.

Afterwards, the linear parameters of each of the dynamic ARX models are obtained using the
generalized reduced gradient algorithm, which optimizes the parameters that will make a minimum
error between the predicted and real output. This mathematical tool was used because the nonlinear
parameters must constrain, according to the algorithm described by Rollins.

From the obtained models, it was concluded that the one with the minimum square error (mse)
results when the inputs are normalized with respect to its maximum value, which gave an acceptable
magnitude of 3.6098 with a sample time of 10 minutes. Nevertheless, this model was modified in order
to have the external glucagon infusion regression starting from the first iteration. This adjustment
lowered the mse to 3.1.

Also, it was observed that the sample time had a significant impact in the system. Although the
control literature reports that using a smaller sample time will lead to a better identification, in this case
a bigger one gave the best response. The model with a sample time of 10 minutes had a better response
that the one with a sample time of 5 minutes.

Even thought, there was an error between the system and the obtained model; this error was
compensated in the predictive control development by making a small adjustment in the parameters.
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8.1.3.  Results from the predictive control implementation

The final goal of this thesis was the development of a regulator that could compensate the nonlinear
and unstable effect of exercise over glucose level. This achievement was accomplished by designing a
model based predictor controller, which has glucose concentration level and PAMM as inputs and a
predicted external glucagon infusion as the output. The exogenous insulin input was ignored in the
compensator because this hormone will not interfere for raising the blood glucose level that is the goal
of the feedforward predictive compensator. Another reason is that exogenous insulin infusion will be
considered as the manipulated variable in the feedback PID controlier.

From the previous chapter, it was concluded that for a limited range of 0 - 40% PAMM and exercise
duration from O to 120 minutes the performance of this strategy is excellent. The maximum glucose
level deviation value from its steady state was +2 mg/dL, and this magnitude occurs at extreme
conditions, meaning that the patient is exercising at the highest intensity and duration level.

In chapter 6, it was established that the intensity range was limited to 40% PAMM due to the results
thrown by the testing phase. Also, from trials done to the controller, it was obtained that for values
beyond 120 minutes, its performance failed. Figures 92 to 94, illustrates the behavior of the closed loop
system when the limited range is exceeded.
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Figure 94. Performance of predictive control strategy. With 40% PAMM (blue) and a duration of 150 minutes.
Glucose steady state level at 90 mg/dL(cyan).Glucose concentration response in red. Insulin concentration level in
green.
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Figure 95. Performance of predictive control strategy. With 45% PAMM (blue} and a duration of 100 minutes.
Glucose steady state level at 90 mg/dL(cyan).Glucose concentration response in red. Insulin concentration level in
green.

Figure 96. Performance of predictive control strategy. With 40% PAMM (blue) and a duration of 200 minutes.
Glucose steady state level at 90 mg/dL(cyan).Glucose concentration response in red. Insulin concentration level in
green.

122 |



After observing the previous graphs, it can be concluded that if exercise lasts beyond the duration
constraint, there will be a serious drawback in the predictive controller. This performance is due to the
sample time used and the magnitude of glucose rate of change. It is important to remember, that the
selected model in the predictive algorithm uses the glucose rate to estimate the external glucagon
infusion, which also depends on the sample time. Therefore, as the patient keeps exercising, his
decreasing glucose concentration rate of change tends to augment, causing an increase in the difficulty
to regulate its glucose level. The sample time used has a major impact in this issue. Since in this thesis it
was consider a 10 minutes interval, exercise duration above 120 minutes will not be regulated as it is
desired, because above this limit, glucose rate has its largest magnitude. So, even if the predicted
external glucagon infusion is right, there is going to be a drawback in the interval between one sample
time and the next one, because the external glucagon predicted at time k will not be sufficient to keep
regulating the glucose level until time k+1, due to the increase of decreasing glucose rate of change.
Graph 95 illustrates the above description.
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Figure 97. Glucose rate of change (mg/dL/min){blue) with 40% PAMM
and lasting 200 minutes. Red block indicates the time interval where
glucose rate has its biggest magnitude. This is done in an open loop mode.

0.3

This disadvantage could be surpassed if the sample time was made smaller. Unfortunately, today
glucose sensors generally measure this molecule every 5 minutes and it was demonstrated in chapter 6,
that a model with this sample time does not work as well as with a sample time of 10 minutes.
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Nevertheless, before this work, there was no report of a controller that compensated this disturbance,
the results obtained are very promising in order to develop a fully integrated glucose regulator.

8.2. Conclusions and future challenges

8.2.1. Conclusions

The study of physiological systems is a hard issue due to their nonlinear behavior, as well as the lack of
mathematical models that represent their dynamics. A more difficult problem arises when it is desired
to regulate these systems, because advanced control strategies must be applied and sometimes, there is
no technology to accomplish this.

Nonetheless, in this thesis research, potential outcomes have been obtained, from a modification of
two analytical models, an identification of a statistical nonlinear model, which is crucial in order to apply
control theory, and finally the development of a predictive controller that has the ability of impeding the
glucose system to become unstable by compensating the effect of exercise and achieving an excellent
regulation accuracy.

Another promising result is that this predictive control strategy can be used in parallel with feedback
control, meaning that a fully integrated controller can be achieved with the following characteristics:

e Regulation of glucose level by reacting to disturbances, in general, that cause the rising of
glucose levels through insulin administration

¢ Regulation of glucose level by compensating exercise disturbance effect of decaying glucose
levels by exogenous glucagon infusion.

The application of both control schemes has the potential of improving the quality of life of diabetic
patients, bringing their lifestyle to resemble that of a healthy person.

Finally, it can be concluded that all the objectives proposed in this thesis, which involve the areas of
modeling, systems identification and advanced control strategies were achieved with a satisfactory
performance.

8.2.2. Future challenges

As stated in the previous sections, the major drawbacks in the system identification and control
implementation were the limitation of the exercise intensity and duration, which are consequences of
the sample time used.

For surpassing these problems, two approaches can be done, which are

124 |



¢ Decreasing the sample time approximately to 1 minute or less.
e Applying other modeling technique.

Decreasing the sample time has several advantages, such as obtaining more information of the
system dynamics from the experimental design which will make a better adjustment of the parameters,
causing that the PAMM range could be broaden. However, its major improvement will be in the
predictive controller implementation. A smaller sample time will allow an increment in the exercise
duration range. When a sample time of 10 minutes was used and exercise lasted more than 120, even
when the predicted external glucagon infusion was right at time k, glucose level tended to drop because
the manipulated variable was not enough for compensating the effect of the disturbance, since the
system needed to react faster and this was not possible within one long sampling period of 10 minutes
(the next sample time k+1 lags 10 minutes from the previous one). So, by shortening the sample time
this drawback can be surpassed.

Nevertheless, as it was stated before, up to these days there has not been a commercial sensor for
obtaining quick measurements of arterial glucose concentration. However, promising resuits were
obtained by Carvajal (2009), who successfully began to study a blood glucose sensing method based on
Yamakoshi's work. Carvajal's work shows it is possible to obtain a reliable measure within the required
parameters for this thesis research, without interferences from other analytes and tissues.

Nonetheless, if sensor technology does not improve in the next few years, other modeling
techniques can be used for compensating exercise effect on glucose level. Artificial neural networks
{ANN) could compete in performance with Wiener modeling. Their disadvantages are that they must be
trained for all possible inputs combinations, and this may be a difficult issue; also, they will not provide a
system structure, as it is done with Wiener modeling. So, basically the modeler would not know its
internal behavior. However, if the ARN is well trained, its performance can be as good as Wiener
modeling method.
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Appendix 1. Sorensen’s equations and parameter’s values
The following nomenclature and equations describe the compartmental model by Sorensen for the
glucose-insulin metabolism for either a healthy person or a diabetic patient. Taken from Sanchez.

Model variables

A: auxiliary equation state (dimensionless)
B: fractional clearance (1, dimensionless; N, L/min)
G: glucose concentration (mg/dL)
l: insulin concentration (mU/L)
N: glucagons concentration (normalized, dimensionless)
Q: vascular plasma flow rate (L/min)
g: vascular blood flow rate (dL/min)
T: transcapillary diffusion time constant (min)
V: volume (L)
v : volume (dL)
: metabolic source or sink rate (mg/min or mU/min)
Variables in pancreatic insulin release model in healthy body:
W: potentiator (dimensionless)
Y: inhibitor (dimensionless)
R: [abile insulin (U)
Z: secretion rate (U/min)
X, W..: intermediate variables (dimensionless)

Model sub and superscripts
A: hepatic artery
B: brain / basal value in insulin pancreatic release model
BU: brain uptake
G: glucose
H: heart and lungs
HGP: hepatic glucose production
HGU: hepatic glucose uptake
I: insulin
IHGP: insulin effect on HGP
IHGU: insulin effect on HGU
IVI: intravenous insulin infusion
K: kidney
KC: kidney clearance
KE: kidney excretion
L: liver
LC: liver clearance
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N: glucagon

NHGP: glucagons effect on HGP

P: periphery (muscle/adipose tissue)

PC: peripheral clearance

PGU: peripheral glucose uptake

PIR: pancreatic insulin release

PNC: pancreatic glucagon clearance

PNR: pancreatic glucagon release (normalized)
RBCU: red blood cell uptake

S: gut (stomach/intestine)

SIA: insulin absorption into blood stream from subcutaneous depot
SU: gut uptake

T: tissue or interstitial space

Glucose mass balance equations

4Gt B
VB —-———-———Cﬁ( ) = (GH(t)—GB(t)hB —(GB(t)_G’]g(t )% (81.1)
dG} 5
vE __(.11}@ = (GB(t)— GR(t)2 - Ty (a1.2)
t Tg

vy d6ule) _ Gg(tlap + Gyt + Gk (ax +Ge(thap —Gulthan - Trecu

dt
(a1.3)
Vs deSt(t) = (GH(t)“ Gs(t)}ls +I'meal ~Tsu (a1.4)
VL deI; ) =Gyl(tha +Gg(ths ~ Gy (thar + Tuop ~Theu (a1.5)
K E‘G;(t—(t) = (GH(t)—GK(t)}lK -Tke (al.6)
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dt

vp 3920 _ (G (0)-Gp()ap + (G;(t)—GP(t))%E.
P

T
VI dGp(t)

T
_ T VP _
2= (op(0)-FOFE-Trou

P

Glucose metabolic sinks and sources (mg/min):

FBC = 70
FRBCU =10
Tgy =20

FHGP =1 SSAIHGP (tx2 7 tanh(O. 388N(t)) - ANHGP (t)]

X [1.425 —-1.406 tanh{0.6199(—G—1%§Q - 0.4969)}

dAmer(t) =i[1.2088—1. 138tanh(1.669IL—(t)—0-8885 ~Amop(t ]
Y 21.43

dAnpgp(t) _ 1 l:2.7tanh(0.388N(t))-—1

-A t
dt 5 > nnge ( )}

Tacu(t) = 20A 1560 (t{5.6648 +5.6589 tanh{2.4375(G1LT(1t) - 1.48)}]

dAmcult) 1 (1))
g 5| 2anh 0.549- 0 Amcult

Feelt)= 71+ 71tanh|0.011(Gk (t) - 460)} for Gx <460 mg/dL
KEY™10.872G (1)~ 300, for G > 460 mg/dL

(al.7)

(al1.8)

(al.9)
(a1.10)

(a1.11)

(a1.12)

(a1.13)

(a1.14)

(a1.15)

(al.16)

(a1.27)

128 |



35G (1) 15 (t)
Torri(t)=22SP W 5 035 1 6.516231ankd 0.33827] -B\ 582113 118
rou(t 86.81 . 5.304 (a1.18)

Insulin mass balance equations

dIp(t
Vg —% =(1x(t)-15()Qp (a1.19)
dl(t
VH gt( )= Ig(t)Qp +IL (L +1k (Qk +Ip(tQp —Ix(t)Qy +Ty1  (a1.20)
dI.(t
Vs 3,[( )= (IH(t)“Is(t)bs (a1.21)
dI; (t
A3 {;t( ) 1o +15(Qs ~ 1L (L +Tpr ~Tc (a1.22)
dl, (t
Vk I;( ) (IH(t) IK(t)}Q -Tkc (a1.23)
. dip(t) TV
Ve 2~ (1) 1p )0 ~{ip (- TF O (a1.20)
P
dip(t vT
V3 "‘i(‘) = (IP(t)_ Ip (t))-]% +Ig1a —Tpc (a1.25)

Insulin metabolic sources and sinks (mU/min)

I'wi and I', are the terms for insulin administration in medical treatments using the intravenous
and the subcutaneous routes, respectively.

Iic(t)=Fc(a(t)Qa +Is(t)Qs +Tpr) (a1.26)
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ke (t)=Fclk (Rk (a1.27)

T
Ip(t
Tpc(t)= p(t) 1 (a1.28)
I-Fpc 1 _Tp
Fpc Qp V{
I'sir= 0 no pancreatic insulin release in diabetic patient (a1.29)

Z\G
I'plr (t) = Z}—G—g-;l}?m pancreatic insulin release for a healthy person (a1.30a)
H

V)~ ofw (0~ wio) (21300
29 b - v 1.300
RO iy -RO W) 20) (21300)
2(0)= M War(0)+ Mo X(0) - YOIR) (8.1.308)
(0= [ow@F” 01300

132327 4+ 5.93[G 4 (t)P-%2

W, (t) =[x (a1.30g)

Glucagon mass balance

Vo B e (0N a1)
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IpNR (t)={1.3102—O.61016tanh{1.057|(%151£—t5)—0.46981)}:'

Glucagon metabolic source (dimensionless)

x|2.9285-2.095tanh; 4. 18(9H—(t)—0.619lj
91.89

Parameter values

(a1.32)

Volumes Flows Diffusion time Dimensionless
constants factors
ve=3.5dL gp=5.9 dL/min Tg=2.1 min
vh =4.5dL
vy=13.8 dL qy=43.7 dL/min
ve=11.2 dL 0s=10.1 di/min
vi=25.1dL 0:=12.6 dL/min
Ga=2.5 dL/min
v¢=6.6 dL 0x=10.1 dL/min
vp=10.4 dL qr=15.1 dL/min TS =5.0min
vp =67.4dL
Vp=0.265 L Q3=0.45 L/min
V,=0.985L Q;=3.12 L/min
Vs=0.945 L Qs=0.72 L/min
V=114 L Q,=0.9 L/min Fc=0.4
Q,=0.18 L/min
V¢=0.505 L Q=0.72 L/min Fee=0.3
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Vp=0.735 L Qp=1.05 L/min Tp =20 min Fec=0.15
Vp =6.3dL
Va=11.311 Fenc=0.0091 L/min

Constants for insulin release model in healthy body:

®=0.0482 min™
B=0.931 min™
k=0.00794 min™
M,;=0.00747 min™
M,=0.0958 min™
v=0.575 U/min
Ro=6.33 U
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Appendix 2. Data results of the experiment

The following appendix includes the data obtained from the experimental designed that is described in
chapter 5.

Time PAMM INSULIN GLUCAGON dGlucose
[min) [%] [mU/min] [pg/min]  [mg/d}/min)
1500 0 0 0 0
1500 30 0 0 0
1505.167 30 0 0 -0.0196
1510 30 0 0 -0.0335
1516.8148 30 0 0 -0.0362
1520 30 0 0 -0.0329
1524.3173 30 0 0 -0.026
1530 30 0 0 -0.0151
1535 30 0 0 -0.0059
1540 30 0 0 0.0022
1545 30 0 0 0.0086
1550 30 0 0 0.0134
1555 30 0 0 0.0166
1560 30 0 0 0.0079
1565.0754 30 0 0 -0.0197
1570 30 0 0 -0.0431
1575 30 0 0 -0.0638
1580 30 0 0 -0.0818
1585 30 0 0 -0.0974
1590 30 0 0 -0.111
1595 30 0 0 -0.1228
1600 30 0 0 -0.133
1605 30 0 0 -0.1418
1610 30 0 0 -0.1494
1615 30 0 0 -0.1559
1620 30 0 0 -0.1615
1625 30 0 0 -0.1664
1630 30 0 0 -0.1705
1635 30 0 0 -0.174
1640 30 0 0 -0.177
1645 30 0 0 -0.1796
1650 30 0 0 -0.1818
1655 30 0 0 -0.1837
1660 30 0 0 -0.1853
1665 30 0 0 -0.1866
1670 30 0 0 -0.1878
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1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
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10000
10000
10000
10000
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10000
10000
10000
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10000
10000
10000
10000
10000
10000
10000
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10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000

-0.1888
-0.1896
-0.1903
-0.1909
-0.1914
-0.1918
-0.155
-0.1392
-0.1353
-0.1378
-0.1434
-0.1504
-0.1575
-0.1643
-0.1704
-0.1758
-0.1804
-0.1843
-0.1876
-0.1902
-0.1924
-0.1942
-0.1956
-0.1967
-0.1976
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-0.1991
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-0.1991
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1904.9806
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1920
1926.528
1930
1933.1289
1940
1945
1850
1955
1960
1965
1970
1975
1980
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0.2235
0.1868
0.1563
0.1309
0.1098
0.0923
0.0777
0.0655
0.0553
0.0468
0.0397
0.0337
0.0287
0.0245
0.021
0.018
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