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A Sirena.

"La tiene ahí para cuando quede tiempo,
para cuando aprenda a tocar melodías...

donde bailen los rayos rojos
y formen estrellas de cinco picos."

- Eugenia Garza
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Abstract

Rotating wavefields are characterized in order to describe the propagation of this
class of propagation invariant óptica! fields (PIOFs). As the use of rotating wavefields
for momentum transference in research applications has only recently been reported
in the literature, experimental setups will aid in determining the feasibility of such
applications of rotating wavefields in particular and PIOFs in general.

The present work is devoted to Bessel PIOFs and in particular, to a generation
method based on interferometric techniques. Rotating Bessel wavefields are experimen-
tally observed and characterized.
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Chapter 1

Introduction

Electromagnetic wavefields are found in everyday experience in both artificial and
natural radiation sources, such as sun light, radio waves and artificial lighting, not to
mention intensive radiation from exospheric sources [1], Only as recently as the late
1960s have monochromatic light sources been available for the experimental study of
light. Láser sources covering most of the electromagnetic spectrum are an ubiquitous
and common tool in the laboratory nowadays. This availability allowed for the intro-
duction and early experimental demonstration of one class of invariant solutions of the
Helmholtz equation by Durnin [2, 3], although their mathematical foundations can be
found much earlier in the literature [4].

The theoretical study of this class of fields has been intensive [5, 6, 7] and its
consequences extended to a variety of technological fields in the search for applications
that make use of the invariance characteristic [8, 9]. Numerous different techniques
for construction of propagation invariant óptica! fields (PIOFs) have been developed
ranging widely in their degree of technical complexity. The use of conical optics deserves
a special mention amongst these since its use was reported as early as 1954 [10].

More recently, Gutiérrez-Vega [11] has associated four fundamental classes of invari-
ant optical fields in a one to one relation to the four cylindrical orthogonal coordinate
systems by using group theory. Interestingly, these are the only possible classes of
fundamental PIOFs.

Remarkable interest is set on the Bessel family of solutions because of the particular
shape of the field, which attains an azimuthally symmetric intensity pattern while its
phase gradually varíes about the same coordinate. This feature has triggered several
ideas in the atomic physics context relating the use of Bessel beams to confine and
manipúlate múltiple particles in angular arrays by using only the radiation field and thus
avoiding any physical contact with the microscopic elements of the array [12, 13, 14].

The main purpose of the present work is to experimentally demónstrate that one
particular class of PIOFs, namely Bessel beams (BBs) can be generated by means
of an interferometric optical setup. This method, which relies on the principies of
coherent superposition of light, introduces an advantage over the traditional techniques
for achieving this purpose. Bessel beams produced in this way are in principie not
limited in their order in any way. The objective here is actually to obtain BBs of high



order, as opposed to the fundamental BB. This technique requires the use of a wavefront
división interferometer as proposed by Gutiérrez-Vega[15].

The experimental work of this thesis is devoted to produce an instance of gradual-
phase beams for which diffractive optics are used. A significant part of the work herein
focuses on the problem of generating the desired phase distribution on such diffractive
optical elements.

The organization of this thesis is as follows. Chapter 2 is a general outline of the
theoretical body of knowledge that has been developed regarding the invariant solutions
of the wave equations, their most remarkable properties and a concise description of
BBs. Some generation methods and applications of BBs are also presented.

Chapter 3 is intended to introduce the characteristics of rotating wavefields, in
particular, those of higher-order BBs. Interference of rotating wavefields with plañe and
spherical waves is briefly analyzed and again, generation methods and current trends
in their applications are outlined. Theoretical intensity distributions are provided in
this and the previous chapter as examples of propagation invariant optical fields.

Experimental results constitute the central core of the present work, these are pre-
sented in Chapter 4 along with discussion of the experimental setup that was used to
produce them and the techniques involved in its construction. Photographic sequences
are provided for comparison with theoretical results from simulation.

Conclusions on this work are presented in Chapter 5, along with the difficulties and
obstacles that aróse during the development of the experimental work. An outlook on
further work is also included.



Chapter 2

Propagation Invariant Optical
Fields

This chapter comprises a physical description of one particular class of electromag-
netic fields. Interest in this particular class of optical fields is due to an outstanding
characteristic of its propagation. Namely, that trie intensity distribution of the field re-
mains unaffected as it propagates, henee the ñame: propagation invariant optical fields
(PIOFs).

Firstly, the theoretical basis for the existence of such beams is presented in brief
and the invariance property is explained in terms of such theory. A few examples of
intensity distributions of different PIOFs are also shown. Next, a short discussion on
some additional characteristics of PIOFs are given from selected research work done
recently on the subject. The last part of this section is on the matter of Bessel beams,
a specific subset of PIOFs with interesting characteristics of their own. The study of
Bessel beams sets up the basis for the subsequent discussion of rotating wavefields,
which is the main subject of the present work.

2.1 Theoretical background

Diffraction has an effect on the propagation of any electromagnetic field in either
media or free space. This phenomenon, inherent to all undulatory transport in un-
bounded media or free space results in the dynamic redistribution of energy in the
spatial configuration of wavefields as they propágate. The same holds true for fields as-
sociated to beams, even in spite of their apparently localized, narrow transverse spatial
extent. An optical field distribution that is confined to a limited extent at an aper-
ture, for instance, will undergo diffractive spreading as it propagates away from the
aperture. A conventional measure of this effect on the field is given by the Rayleigh
range, or the distance along propagation at which the transverse área of the beam field
increases twofold. Correspondingly, the Rayleigh range is that distance at which the
energy density associated to the beam decreases to half its initial valué.

Particular consideration is given to a beam whose intensity profile in every cross
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section is given by a Gaussian function, as this beam represents the fundamental mode
of propagation or the first element of a complete set of solutions of the paraxial wave
equation. The transversal radius or spot size w of a monochromatic Gaussian beam of
wavelength A, propagating in the z direction away from its origin is given by [16]:

= WQ . + ,^2 (2.1)
\zfl/

where the Rayleigh range is given by [17]:

and WQ is the beam radius at z = 0. It is also customary to refer to 2w0 as the beam
waist. Clearly, if the waist of a beam is arbitrarily reduced, its spot size will then spread
in a shorter distance for a fixed wavelength.

2.1.1 Propagation invariant solutions of the wave equation

Durnin et al. [2, 3] pointed out, that a family of diffraction-free beams is physi-
cally possible. This class of beams would show no signs of diffractive divergence along
propagation after an arbitrarily long distance. Such fields are also often termed dif-
fractionless. At this point, it is worth mentioning that the indistinct use of the terms
diffraction-free or nondiffractional is somewhat questionable, as it is actually diffrac-
tion itself the cause for the characteristic invariance of these fields. For this reason,
propagation invariant optical fields, is a more suitable ñame.

Consider first the Helmholtz equation:

(V2 + fc2) £(r) = O, (2.3)

where k = ^ is the magnitud of the wavevector. Theoretically, a solution that complies
with the condition:

,2/ ,0 , í ) r , (2.4)

would propágate indefinitely with an invariant intensity profile. Solutions that conform
to this condition have been thoroughly studied [16, 3] after Whittaker [4]. In particular,
an exact, nonsingular solution to Eq. (2.3) that satisfies the confition in Eq. (2.4)is given
by:

27T

E(x, y,z>Q,t) = ei(k'z~^ I A(<p) exp [ikt (x eos (p + y sin <¿>)] dtp, (2.5)

where A;2 + A;2 = (^) = A;2, and, in the interpretation of the Fourier transform of E,
A((p) is the complex angular spectrum of the field. Note that \E(x, y, z,t)\ does not
depend on the coordínate z, so as to comply with Eq. (2.4).
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In view of Eq. (2.5), it can be shown [6] that a sufficient condition for invariance
under propagation is that the transverse frequency of the spectrum be given by the
Dirac delta function; in other words, that the wave vectors that constitute the field E
lie on the surface of a cone in K-space as shown in Fig. 2.1. The cone is characterized
by the angle 90 of its envelope, in the relations: kz = kcos00, and kt = ksin00. This is
evidently a consequence of Eq. (2.5) as this expression is the plañe-wave decomposition
of E. The wavevectors form a circular ring that lies at a constant valué \kz\ from
the kz = O plañe. This geometrical locus is termed Montgomery's ring. The surface
described in K-space by K = \k\ is usually referred to as McCutchen's sphere.

Figure 2.1. Angular spectrum in íí-space for a PIOF. Wave vectors lie on the surface
of a cone with semiangle #o-

In the simplest nontrivial case, A (<,<?) = A is a nonzero real constant. Henee the
left-hand-side of Eq. (2.5) is clearly the definition of the zeroth order Bessel function of
the first kind Jo(krp). The field is proportional to:

2?r

/ exp [ikt (x eos (p + y sin y?)] dtp (2.6)

(2.1)

E(x,y,z > 0,í) = ¿e<(

E(x,y,z > 0,í) = ^-e¿(

with: p2 = x2 + y2 for kz real. In this case, a beam with transverse amplitude propor-
tional to the fundamental Bessel function propagates ad infinitum with no degradation
of its power distribution. The size of the central máximum is 2.405/fct, corresponding
to the valué of the first zero of J0(ktp). In order to obtain this solution, an unbounded
aperture was considered, resulting in infinite spatial extent of the Bessel field. Since
this field is not square-integrable, it follows that such an ideal beam would carry an
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infinite amount of energy at nearly constant per annulus energy density [18]. In prac-
tice though, this situation is not attainable, and the limited size of aperturas results in
finite field distributions that closely resemble the theoretical case. It has nevertheless
been demonstrated, both theoretically and experimentally, that an actual truncated
field shows propagation invariance along a finite distance. In this case, the field is
not strictly propagation invariant, and thus it is said to be pseudo-nondiffracting. The
invariance distance is determined by the experimental setup used, as will be seen be-
low [19, 20].Note that since A((p) is an arbitrary complex function, there is an infinite
number of solutions given by Eq. (2.5). A more detailed description of Bessel PIOFs is
given in a subsequent section of the present work.

In general, for solutions in which A (</?) depends on the angular coordínate, the field
remains invariant, with a phase distribution that is not necessarily symmetric about
the propagation axis [7]. Examples of the resulting invariant beams associated to a few
particular angular spectra are shown in Figs. 2.2a-d. In particular, for Fig. 2.2c, the
beam is the result of an angular spectrum given by: sen(<p, q), the odd angular Mathieu
function of order n, where q is a parameter of ellipticity.

a. b. A((p) = S(r - r0) x cos(3<¿>).

c. A((f>) = S(r - r0) x costp

Figures 2.2a-d. Various exainples of PIOFs. a) Plañe waves, b) Bessel-
cosine beam, c) odd Mathieu beam, d) even parabolic beam.
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2.1.2 Additional considerations

One remarkable property of PIOFs, aside from its invariance upon propagation is
self-reconstruction. That is, if a PIOF is obstructed by an opaque obstacle in its path,
diffraction reshapes its intensity profile accordingly, but after some distance beyond
the obstacle the original field distribution is reconstructed. This phenomenon has been
explained in terms of Babinet's principie [6], and in terms of counter-travelling waves
within the región of invariance [21]. It is important to note that even though pseudo
nondiffractional bearns do show transverse intensity pattern invariance over a finite
distance, the intensity valué at a single point p1 undergoes oscillations at different
valúes of z within the invariance región.

Due to the cónica! distribution of the plañe waves composing a PIOF, it can be
found that the axial intensity shows interesting properties when an invariant beam is
focused. In essence, an additional apparent focus can be seen to form near the actual
focal plañe. This seemingly anomalous behavior has been proven to be consequential
of the spatial frequencies that constitute the PIOF and is not related to the aperture-
induced focal shift or any other geometric-optics effect [22]. Interestingly, one can adjust
the parameters of the beam in order to attain a second intense focal plañe with a given
magnification.

It can also be seen from Eq. (2.5) that a superposition of n invariant fields with
frequencies {u>n} subject to:

and (2.7a)

Ui(sm90i-l) = tJi+i (sin0ot+i - 1) fbr allí < n, (2.7b)

is also an invariant field, in the sense that the average intensity remains constant at a
given point r with different valúes of z. Thus a field needs not be monochromatic in
order to present invariance. Additionally, reports of partially coherent invariant fields
can be readily found in the literature [5, 23, 24]. Experiments related to such fields
are in agreement with the theoretical results for their fully coherent counterpart.

Nondiffracting beams have been extensively studied and classified according to their
behavior upon propagation [25]. A subclass of PIOFs will be described in a later section
as the main subject of the present work.

2.2 Bessel Beams

In general, if A((f>] = eim¥>,with m an integer, the field amplitude solution is propor-
tional to the m-th order Bessel function of the first kind, whereas the phase modulation
persists unperturbed in the PIOF. That is:

27T

E(x, y,z > O,í) = é(k^-^ íeim*exp (ikt (xcosp + y sin^)] d<p (2.8)

o
E(x,y,z > 0,í) = Jm(MeímV^-wt) (2.9)
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Because of the narrow, intense central región of trie fundamental Bessel beam and the
self-reconstruction feature, interest was promptly centered around the seminal work of
Durnin due mainly to the potential uses of nondiffracting beams in different power-
carrying and precisión alignment applications.

Higher order Bessel beams (HOBBs), unlike the fundamental Bessel wavefield, show
low-intensity extended regions with minima at their axes origin. The relative extent
of this región increases with the order of the beam. In Fig. 2.3 intensity profiles for
different Bessel wavefields are shown.

a. I(p) = 70
2 (M-

c. l(p) = J5
¿(ktp). d.

Figures 2.3a-d. Intensity profiles for Bessel wavefields of orders m = O, 1, 5
and 11 respectively. Note that the spatial extent of the central minima increases
with the order after the fundamental wavefield.

Likewise, an assortment of different methods for the generation of nondiffractional
beams were thoroughly researched. The main challenge in generating a Bessel field
distribution lies not only in creating the conical spectrum of wavevectors, but also in
effectively managing to modulate the amplitude of the field in the angular coordinate.
In principie, the most straightforward method to créate the conical set of wavevectors
involves the use of a conical optical element, namely, an axicon1. This procedure

1 Conical elements have been widely used in the design of unstable resonators. Currently, there are
several variations to the regular conical lens, such as the toroidal and radial axicons, the W-axicon
and the reflaxicon, short for "reflective axicon" [26, Ch. 23].
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was originally proposed by McLeod [10] although not in the context of propagation
invariance. The complex amplitude modulation however, represents a challenge that
is open to many options, most of which are considerably complicated, or expensive, to
implement.

Regarding its intensity transverse profile, Bessel beams resemble concentric light
cylinders with a symmetric power density that gradually decreases with distance away
from the propagation axis. This singular mark has motivated extensive research re-
garding the generation and propagation of Bessel beams.

2.2.1 Generation of Bessel beams

Although axicons are frequently used in optical systems, mostly in order to achieve
extended regions of field depth, their use in practice is limited by the difficulties involved
in their fabrication. Fig. 2.4 shows the rays involved when a plañe wave impinges on
the plañe surface of an axicon with índex of refraction n , radius a and base angle
a. The incident wavefront experiences a shift in phase that decreases with the radial
coordinate away from the optical axis, thus resulting in two conical waves, one that
converges and one that diverges from the apex of the axicon. By Snell's law, rays
parallel to the optical axis are deviated towards the vivinity of the optical axis after
the axicon and then interfere within a longitudinal región of limited extent:

ZMAX = -7^ (2-10)
sm O

along the propagation coordinate. After this distance, the paraxial región is obscured
by the expanding geometrical shadow once the resulting conical wavefronts propágate
away. For small valúes of a [27],

ZMAX ^ a f ^j-M • (2.11)

The distance ZMAX is thus said to be the length of the invariance región. Typically, a
is a few degrees so that long regions of invariance can be realized for practical purposes.
Note that an axicon is capable of creating a good approximation to a fundamental
Bessel beam only, since no phase modulation is introduced in the angular coordinate.
An additional phase píate can be introduced before the axicon to genérate higher-
order Bessel distributions. Recently, Laguerre-Gauss (LG) beams of angular order /
and radial Índex p have successfully been used to approximate l-th order Bessel beams
taking advantage of the azimuthal phase variation exp(z/</j) associated to LG beams
[28]. Additionally, the profile of the axicon can be modified away from its linear phase
dependency in order to induce a magnification of the output image. The fabrication of
quality axicons involves technical difficulties and henee high costs, which constitute the
main disadvantages for this experimental arrangement.

In the experimental verification of Durnin's work, an annular ring mask was placed
in the back focal plañe of a positive lens in order to genérate a fundamental Bessel
beam [2]. Here, the fact that the Fourier transform of a thin ring is indeed a Bessel
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function [29] was used advantageously. The experiment is simple in principie: a plañe
wave is now incident in a slide portraying a thin translucid ring of radius a. A positive
lens of radius R and focal distance / operates the Fourier transform on the emerging
field resulting in two conical waves that interfere in a región of invariance. In this case,
geometrical optics approximates the invariance región to:

7 fR
¿MAX — J —a

(2.12)

Región of

Zmax = fl/0

Figvire 2,4. Axicon experimental setup.

Durnin's setup is shown in Fig. 2.5. Using photoreduction techniques allows for
inexpensive sudes with ring radii of a few hundred microns. Additionally, a large, long
focal distance Fourier lens is typically available so that invariance distances of the order
of 101 meters are easily realizable. The efficiency of this simple setup is rather limited
by the annular aperture.

Annular Positive
reticle lens Región of

invariance

Diverging
conical
wave

Figure 2.5. Durnin's experimental setup.
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Polarization considerations are not made in the analysis so fax. However, important
asymmetries are introduced in both the near and far field distributions when linearly
polarized plañe waves are used to genérate Bessel beams by means of these the two
procedures. Moreover, as the central spot of a Bessel beam is reduced in size, scalar
diffraction theory no longer explains in a satisfactory fashion the propagation of sub-
wavelength features in the beam. A full vectorial approach is then required [30]. An
extensive treatment extending to the nonparaxial región and in full consideration of the
effects of polarization states can be readily found in the literature [31, 32].

Bessel beams of arbitrary order and, in general any PIOF, can also be attained
by means of holographic techniques. With the advent of fast computational devices,
the simulation of the interference pattern of the desired field with a plañe wave is
transferred to holographic or photographic film. Henee, the resulting hologram is used
to reconstruct the field with the aid of a converging lens. The resulting pattern in the
film can be regarded as an phase interferogram rather than a hologram in the strictest
sense of the term. The interferogram can also be produced by properly modulating
a transmission liquid crystal display (LCD). Fig. 2.6 shows the computer-generated
holograms for Bessel beams of order ra = O and m = 5.

a. Bessel hologram m = 0. b. Bessel hologram m = 5.

Figure 2.6a-b. Computer-generated holograms of two different Bessel beams, fun-
damental and 5th order respectively. The interferograms were generated with Matlab
code as tagged image files (TIFF) in negative gray scale.

Altérnate methods for the generation of Bessel beams have been proposed. Specifi-
cally, the use of spherically aberrating optics produces an annular pattern whose (dark)
center can be additionally blocked with the aid of a circular stop. The size of the stop
must be carefully selected in order to avoid diffraction from its edges to significantly
affect the field near the óptica! axis. Resulting zeroth order Bessel beams are outstand-
ing [8]. The use of a Fabry-Perot interferometer and other forms of resonators with
specific geometric characteristics have also been proposed for generating Bessel PIOFs
[33].
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2.2.2 Applications of Bessel beams

Several applications for Bessel beams have been proposed and a number of exper-
iments have been carried out to demónstrate their feasibility. Namely, Bessel beams
have been suggested to be used as a tool for optical manipulation in controlled linear
guidance and rotation of submillimeter translucid particles. This application makes
use of the power distribution of the beams together with radiation pressure in order to
control the position or displacement of small macroscopic particles. In one instance, a
PIOF was used as a light guide to accelerate and displace Cs atoms [9]. More recently,
Arlt et al. have used a Nd:YAG láser and an axicon to genérate a Bessel-like PIOF
in order to assemble polar arrays of silica spheres with a diameter of 2 p,m. The same
method was used to align a large silica rod in a direction parallel to the propagation of
the beam [12]. Given the self-reconstruction attribute of Bessel PIOFs, several colinear
samples could be manipulated simultaneously in over spatially separated test cells. In
the same manner, it has been proposed that múltiple optical interconnects be made
using the central región of a Bessel PIOF.

In a more complex application, múltiple Bessel beams have been spatially interfered
so as to créate a volumetric dark región in space that is surrounded by an increasing
radiation potential. It has been suggested that such región could be used in single-beam
atom trapping experiments [34].
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Chapter 3

Rotating Wavefields

Numerous works have directed their attention to PIOFs motivated by their potential
applications. As this new class of fields was gradually studied in detail, PIOFs were
further classified as self-imaging (SI )and rotating wavefields (RWs). In the most strict
sense, neither of these are propagation-invariant; the former posses an intensity pattern
that is reproduced after a finite propagation distance and the latter maintain their
power distribution upon propagation, except for a rotation in the azimuthal coordinate
[35]. In terms of their frequency distributions, both kinds of field satisfy the condition
for propagation invariance as their angular spectrum is described by a set of rings - as
opposed to one ring - over the sphere of McCutchen.

This chapter describes the general propagation characteristics of rotating wavefields.
Special attention is brought to the interference of RWs with plañe and spherical wave-
fronts for reasons that will become evident in this section. Finally, a brief review of
the potential applications and current experimental developments regarding RWs is
outlined.

3.1 Rotating scalar fields

It was seen in the previous section that the angular spectrum of a complex wavefield
E(r) is given by

27T

E(x, y,z,t)= e
i(kzZ'wt} I A((p) exp [ikt (x cosp + y sin (p)} d(p. (3.1)

o
The theory outlined in the previous section is also valid for fields not restricted to
a constant valué of radial frequency. For an arbitrary monochromatic field, however,
the radial frequency kt is not a constant, and thus integration must also be performed
with respect to it[36]. For convenience, if both r and k are expressed in cylindrical
coordinates: r = (p, ip, z) and k = (kp, kv, kz), then the spectrum is given instead by

oo 2?r

E(p, v, z, t) = e^2-^ í í kpA(kp, kv) exp [ikp eos ((p - k^} dkpdk^. (3.2)

o o
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The restriction imposed by the condition in Eq. (2.4)for a field that propagates without
change in its power distribution, (apart from a linear rotation upon propagation) can
also be expressed as

\E(p, p, O, í)|2 - |exp [Í7/(p, <p, Az)} E(p, y + eA¿, z + Az, í)|2 , (3.3)

with e a constant parameter that defines the direction and the spatial periodicity of
rotation of the field, and 77 is an arbitrary real function. Combining equations (3.2) and
(3.3) yields [36]

«?

/ a-m(kp)Jm(kpp) exp(im^) {exp [ir](p, (p, Az)] - exp[i(me + kz)Az}} dkp = O,
o

(3.4)
where

27T

am(kp) = i™ I A(kp,klp)exp(—imktf>)dkv, (3.5)
o

by making use of the expansión

f1 Jm(x) exp(im<p) = exp(ix eos (p) . (3.6)

Because Eq. (3.4) must hold for all p and (p, then the integrand must vanish, and thus:

rj(p, tp, Az) = 77(A¿) = (me + kz) Az + 2?rn, (3.7)

with n an integer. If we require that the phase change 77 (Az) be continuous and set
77(0) = O, then n = O and kz may assume only discrete valúes {kzm} depending on the
parameter m. Taking only M terms in Eq. (3.6), the field expression is now

M

^ dmJm(kpp) exp [i(m<p + kzm)} • (3.8)
m=\

The valúes of m are defined by O < kzm < k. From Eq. (3.7) it can be seen that the
geometric locus of the angular spectrum is now a discrete set of M Montgomery rings
with radii [36, 37]

1.2 \i/a

Note that for kzm — k, the spectrum collapses to a pole on McCutchen's ring, which is
the case of a plañe wave. On the contrary, for /3m — O, the field does not propágate in
the z direction. If the valúes of kz are not restricted to a discrete set, the result is a
nonperiodic rotating beam, as explained below.

The condition for smooth rotation of the transverse intensity in Eq. (3.3) also defines
the distance z at which a full rotation of the field is observed, namely:

ZR = 2Trm/kz. (3.9)
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In view of this result, a PIOF with no azimuthal structure (m = 0) can be thought of
as a special case of a rotating wavefield for which e = O, henee the single-ringed annular
spectrum of section 2.1.2.

Although a scalar formalism has been used to derive Eq. (3.7), an extensión to
vectorial rotating fields has been recently developed by Páákkonen et al. [30] with
the advantage of being suitable for nonparaxial beams. Additionally, an altérnate
treatment of generalized PIOFs describes an interesting subclass of fields characterized
by the aperiodic rotation of the intensity pattern, in the sense that they never return
to the original (reference) orientation along the propagation, see for instance reís. [25]
and [38].

3.2 Rotating Bessel beams

In the spectrum of Eq. (3.1), it is clear that the parameter m corresponds to an
azimuthal phase variation of the higher-order Bessel beam (HOBB).

E(x, y, z, í) = Jm(ktPymi(}é(k'z-^. (3.10)

In this particular case of PIOF, the spectrum still lies on a single ring but its amplitude
is modulated by the continuous complex circular functions of order m. Consequently,
HOBBs (m > 1) show a more complex phase distribution than that of their fundamental
counterpart, where only a relative phase change of TT is observed between adjacent
annuli. These phase changes are related to the zero-crossings of all Bessel functions,
as seen in Fig. 3.1. The fundamental Bessel function of the first kind as well as the
first three higher orders are shown. Notice that for higher orders there is a minima in
amplitude at p = O, which is consistent with an indetermination of the phase at this
point. For this reason, it is often said that HOBBs have a phase dislocation in their
center. Note also that the spatial extent of the central minima increases with the order
m, which is also evident from Fig. 2.3.

The phase of a HOBB is thus seen to vary in its full range continuously, for a total
of m periods in one azimuthal revolution. The phase distribution is best visualized
with the aid of Fig. 3.2b for E (p, (p) =J^(p) exp (¿5</?). Note the discrete radial phase
variations as opposed to the continuous azimuthal phase gradient. The seemingly dis-
continuous jumps in the angular direction are due to the phase being plotted only in
the (0, 2?r) range.

Due to the characteristic phase distribution of Bessel beams, the field is strictly ro-
tating as it propagates when the complex distribution is considered. Since the intensity
pattern remains unchanged by the local phase distribution, there is no visible effect of
rotation in a HOBB propagating by itself.

So far, only Bessel beams have been considered in this section, but it is worth
noting that given an arbitrary function A((p) for the angular spectrum in Eq. (2.5), the
field can be regarded as a superposition of Bessel fields, or any other set of orthogonal
functions.
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-0.5

Figure 3.1. Bessel functions of the first kind of order n.

In principie, as along as the phase distribution varíes smoothly with the azimuthal
coordínate, an arbitrary rotating field distribution propagating with invariant features
can be tailored provided the appropriate weights for each component in the set of
functions that describes its spectrum are properly calculated and reproduced.

a. \E(p,<p)\ = J¡ (p) b. argE (p, (p) = 5^

Figures 3.2a-b. Amplitude and phase distribution of a fifth order HOBB. Note the
discrete phase jumps in the radial coordínate.
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3.3 Interference of higher order Bessel beams

In order to observe and measure the effect of the azimuthal phase distribution in a
HOBB, the rotating-phase field can be interfered with a reference plañe wave. Since the
reference wavefront phase is constant, the differences in phase as the HOBB is interfered
with the plañe wave can be visualized easily as interference patterns.

One remarkable characteristic of rotating wavefields is that the energy flux can be
locally reversed with respect to the direction of rotation or propagation in either the
azimuthal or longitudinal direction respectively [15]. The conditions for this are solely
given by the parameters of the rotating beam and the plañe wave used as a reference.

A second case is that of a HOBB interfering with a spherical wavefront. In this case,
the reference wave has a phase distribution that varíes radially in a circularly symmetric
fashion. This type of interference generates rotating wavefields with interesting spiral
patterns, as it will be shown further ahead in this chapter.

3.3.1 HOBBs and plañe waves

Consider first the case of a plañe wave as reference. The field distribution in this
case at an arbitrary valué of z and t = O is:

£(r, t = 0) = Jm(ktp}eim^e^k^ + EQé^kz\ (3.11)

and thus, the field intensity is given by:

/(r) = J£(M + El + 2EQJm(ktp) eos 7, (3.12)

with 7 = in(f> — (k — kz] z. From this last term, it is evident that the field undergoes
one full rotation after a propagation distance:

This distribution is best described as a straight helix with longitudinal period ZR. For
an arbitrary time í, a fixed point PQ — (p0,<p0) is seen to rotate moving forward and
"follow" the helical trajectory at an angular velocity u. Note that since the interference
pattern has azimuthal symmetry under a spatial rotation of 2ir/m, then m intermedíate
images of the field are observed at distances:

Fig. 3.3 shows the spatial evolution of a Bessel beam of order m = 3 made to interfere
with a plañe wave for one third of a full revolution in steps of n/9. Note that it is
not possible to determine the relative angular rotation of the field were it not for the o
priori information on the longitudinal period of rotation ZR. A numérica! calculation
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is useful to determine the order of magnitude of ZR. For a He-Ne láser (A = 632.8 nm),
and a cone angle 9o = 1°:

ZRÍ =
1 — eos

= 4.15 mm, and

i = 12.44 mm.
(3.15)

The field undergoes one full rotation every 4 millimeters. Thus, for a fixed wavelength,
the cone angle alone determines the period of rotation in the frame of reference of the
field. It was seen in the previous section that this angle is dependent on the experimental
setup used to genérate the Bessel beam.

d e f

Figures 3.3a-f. Evolution of the transverse intensity distribution of the rotating wave
produced by interference of a third order Bessel beam and a plañe wave. Total displacement
along the propagation axis is 12.5 mm.

The amplitude of the interfering plañe wave must attain an intermediate valué
between the máximum of the Bessel function and the RMS valué of the first few lobes.
Large plañe wave field valúes will result in poor contrast of the radial modulation.

3.3.2 HOBBs and spherical waves
Spherical wavefronts differ from plañe waves in that their phase and amplitude

field are functions of the propagation distance and the radial distance from the óptica!
axis. In this case, the interference with a rotating wavefield no longer generates a
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perfect image of the field, but the rotation is still easy to visualize near the center
of the resulting beam. The radial phase variation of the spherical wave results in a
spiral pattern as the phase difference between the HOBB and reference wavefronts is a
function of the transverse radial coordinate.

This effect can be visualized in Figs. 3.4a-f. The rotating field corresponds to a
Bessel beam of the fifth order. Note that the intensity pattern is imaged very closely
over one fifth of a revolution. In this case:

E(r, í = 0) = Jm(ktp)eimifeí(k^ + -é(kz\ m = 5
P

so that the intensity is given by:

7(r) = J + m eos 7,

(3.16)

(3.17)

where: 7 = rrup — (k — kz) z, as before. Thus the spatial period of rotation is not affected
by the curvature radius of the interfering spherical wave.

When a converging spherical wave, the negative magnification of the intensity pat-
tern becomes apparent after a short propagation distance and it appears to "curl" the
spiral pattern. If instead, a diverging spherical wave is used for interference, the pattern
magnification is positive, resulting in a uncurling effect of the rotating beam and an
inversión in the direction of rotation.

d e f

Figures 3.4a-f. Evolution of the transverse intensity distribution of the rotating wave
produced with a Bessel beam of fifth order and a spherical wave. Total displacement along
the propagation axis is 12.5 mm.
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The use of both plañe and spherical wavefronts as references in interference with
any kind of beam yields a great insight of the phase distribution of the field of interest
along propagation. It is this experimental technique that facilitates the cióse study of
complex phase distributions.

3.4 Generation of rotating wavefields

The characteristic phase distribution of HOBBs suggests itself several approaches
for their practical generation. Note first that since the phase distribution typically
varíes harmonically with the azimuthal coordínate, a system with cylindrical symmetry
seems indicated only to introduce radial phase changes. Henee, it now seems rather
natural to use a conical element to induce the radial distribution on a plañe wave.

Experiments involving conical optics are straightforward for the fundamental Bessel
beam and it is indeed a very efficient way of attaining the desired beam. However,
HOBBs and, in general, other rotating wavefields require a complex field distribution
that lead to continuous phase variations in the field. It is this dependence of the az-
imuthal coordínate that challenges any serious attempt to obtain a rotating wavefield.
The problem has been addressed in several different ways, based mainly in the use of ei-
ther diffractive or refractive óptica! elements. The first one refers in essence to the use of
computer-generated holograms, either phase or amplitude-coded. The advancement of
electron-beam lithographic techniques allows for the custom fabrication of wavelength-
scale features into transmissive substrates that genérate an arbitrary phase distribution
[37]. Binary phase diffractive waveplates are also used when electrón beam lithography
and ion etching techniques are combined [39]. Traditional photographic techniques are
also extensively used to genérate lower quality holograms on silver halide films. The
difference in the quality of the results obtained with either method is proportional to
the density of analog storage media, which also determines the optical efficiency of the
diffractive device. Additionally, spatial light modulators are often used for the genera-
tion of rotating wavefields, with the well-known disadvantage of its discrete spatial grid
resulting from pixel coding.

As an alternative, refractive elements attempt to créate the local phase delay by
means of variations in the optical path of the incident beam. In principie, a material
with a constant Índex of refraction can be carefully shaped to attain the topographic
profile associated to the local phase delay that will result in the desired phase wavefront
[40]. The amplitude is further modulated by means of linear attenuation. In a recent
experiment, the characteristic angular momenta associated to Laguerre-Gauss beams
is taken advantage of as the beam is converted into a thin annular wavefield by means
of a linear axicon [41]. Since the radial delay is azimuthally symmetric, the phase
distribution is preserved in this transformation.

It should be evident by now that the feature that makes rotating beams attractive
is also the major technical difficulty in its practical realization. In the present work,
a well-known experimental technique is used in a novel way to genérate HOBBs. The
details of this technique are described in a subsequent section.
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Thus far, attention has been focused on RWs that undergo rotation about the op-
tical axis as they propágate. This effect is due to the circular symmetry of the fields
associated to Bessel and other kinds of beams. This situation does not fully describe
all the possible configurations of rotating beams. In particular, Mathieu (fundamental
and odd and even-angular) beams are known to have a field distribution that results in
rotation about their interfocal axis along propagation [15].

3.5 Current experimentation with rotating wave-
fields

Increasing interest has motivated extensive research on the uses and applications
for rotating wavefields. Perhaps the most exciting possibility is that of interaction of
the radiation field of RWs with matter in the atomic scale. As RWs posses angular
momenta related to their rotating intensity patterns, the use of HOBBs or rotating
Laguerre-Gauss beams has been suggested as múltiple atom traps or optical bottles in
making use of optical dipole forces [13]. When an atom is radiated with láser light
that is blue-detuned with respect to a particular atomic resonance, the dipole forcé
field restricts the atom (or set of atoms) to a región of low-light intensity. In using this
principie, múltiple regions of field minima surrounded by high intensity field barriers
have been proposed as atomic traps [14].

Rotating wavefields could also be used as optical carriers of information, however,
any kind of modulation attempted to be made with the rotation characteristics requires
first the development of a reliable rnethod for the generation and dynamic shaping of
the angular spectrum of the fields.
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Chapter 4

Experimental Procedures

Once the theoretical basis for the generation of HOBBs are extensively described in
the literature, one may be tempted to take for granted their experimental realization
and objective comparison of results with the theory. However, no theory can be com-
plete without verification of its predictions. This chapter describes a simple laboratory
setup to produce HOBBs along with several - successful and unsuccessful - attempts to
construct the custom optics required for this endeavour. The results of the successful
efforts are presented and compared with the respective theoretical predictions.

4.1 Experimental setup

In sections 2.2.1 and 3.4.1, a number of experimental approaches for the generation
of RWs in general and HOBBs in particular were discussed. Essentially, generation
methods are based in either the use of conical optics combined with phase plates or
wavefront reconstruction techniques by means of computer-generated holography. The
reír active axicon is sometimes replaced by the ubiquitous circular slit. It has been
seen that the major difficulty in generating a HOBB rests in the continuous phase
distribution of their angular spectrum.

The subject of the present work is the experimental verification of a simple and orig-
inal method for the generation of HOBBs. The technique was proposed by Gutiérrez-
Vega [15] and is founded in the physical understanding of the nature of RWs. As a result
of the mathematical principies outlined above, the approach is novel in principie and
its implementation suggests a natural setup. In order to derive the operating principie
of this method, let us review the plañe wave decomposition of a HOBB:

27T

Jm(ktp)ém(f = í ém(p exp [ikt (x cosp + y sin (p)] dtp. (4.1)

o

Where: p2 = x2 + y2. Using:

F{ó(r-r0)} = 27rr0Jo(27rr0p) (4.2a)

!^{¿(r-n,)} = J0(M (4.2b)
Kt
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with 2^ = j sin# the spatial period in Fourier space, then Eq. (4.1) can be rewritten in
a more compact form in terms of the Fourier transform, as:

(4.3)

The right-hand side of Eq. (4.3) represents a field that is proportional to the ra-th Bessel
function of the first kind. This expression is also interpreted as the operation of a system
that performs the Fourier transform of the input field EÍ = 8(r — ro)eimíp and results
in the Bessel field. It is this delta function that directly suggests the generation of a
fundamental Bessel beam using Durnin's experiment with an annular slit for m = 0.
By using Euler's identity, the complex part of the left hand side of Eq. (4.3) can be
further decomposed so that:

- r0)(cosm0 + ¿sinmtf)} = ktjm(ktp)eim(p, (4.4)

- r0)(cosm0) + i6(r - r0) sinm0} = ktJm(ktp)eim(f . (4.5)

Thus, in order to obtain the Bessel field distribution on the RHS of Eq. (4.5), the
complex transmittance in brackets would have to be fed into a Fourier transform system.
The functional form of the transmittance slit suggests the geometrical means to achieve
this. Since there are two annuli with different angular modulations, one purely real and
one purely complex, an arrangement of two field sources with the appropriate angular
modulation can be proposed. For instance, an amplitude-splitting interferometer such
as the Mach-Zehnder. The Bessel distribution is being attained by means of adding
together the odd and even angular parts of the desired Bessel field. A plañe wave
incident in transmissive optical elements with the transmittance functions:

t\(9] = S(r — ro)cosm9 (4.6a)
Í2(0) = Íó(r-r0)smm0 (4.6b)

would serve this purpose. The binary annular transmittance represented by the Delta
function is to be modulated in both amplitude and phase. Note that the relative phase
of both ¿i and t-¿ is constant and that the transmission functions attain both positive
and negative valúes in the full range of 9. The factor i in í2 represents a phase shift in
¿2 relative to ¿iin the valué of the field independent of 6, that is, a temporal phase shift
equivalent to a relative phase delay. In terms of optical elements, two identical binary
annular slits with modified transmittance over the angular coordinate can be used to
genérate initial fields:

Eoi(6) = EQ6(r-r0)cosm6, (4.7a)
£02(8) = iE06(r-r0)smm6. (4.7a)

A quarter-wave retarder can be introduced in the optical path of £02 in order to induce
the relative temporal delay with respect to EQ\. Once obtained, carefully interfering
the fields and performing the Fourier transform with a well-corrected lens will result,
in principie, in:

(4.8a)

(4.8b)
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The modulus of the circular functions can be achieved by means of properly overexposed
photographic film. Regarding the phase transfer function, since there are m + 1 sign
changes in the phase of íi and ¿2 in one full range of #, then in principie, a set of
1/2 wave retarders can be introduced in the appropriate positions of the film so to
act as phase inverters and provide for the required phase distribution. The suggested
optical setup is shown in detail in Fig. 4.1. Note that, since: sin# = cos(0 — 7r/2),
then except for a rotation in their relative angular positions, ¿i and t? are physically
identical. Care must be taken in order to ensure that the optical axes of the retarders
are properly aligned with respect to both the incoming field and the fast axis of the
1/4-wave retarder. Note also that at the converging lens L%, located exactly one focal
length from either slit operates the Fourier transform on the resulting field. Simple as it
may seem, the setup thus requires precise alignment of the different component beams
in order to obtain the desired result upon interference.

Spatial filter

Quarter-wave
Beam splitter retarder

B, R,

Láser source

Mirror
M2

Figure 4.1. Suggested experimental setup to genérate HOBBs.

In view of Eq. (??), it is evident that EQ\ and £02 evolve into the orthogonal components
of the Bessel beam. Henee, it is strictly adequate to say that the setup generates the
Bessel wavefield by first producing its odd and even components and then adding them
together at the output of the interferometer. It is important to point out that in
practice, the transmittance functions t\ and t<¿ can only be cióse approximations of the
ideal delta functions, for any real annuli must have finite widths and these are not
necessarily uniform up to wavelength scale. Formally, the Fourier transform of a real
circular slit, tR (r) = 1, r0 < r < n is given by [29]

(4.9)
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so that:

lim F{tR(r)} = 2?rri J0(27rr0p), (4-10)
(ri-r2)-»0

by use of L'Hospital rule. Clearly, the result will get increasingly cióse to the expected
interference pattern when the annuli are built as thin as possible within reasonable
limits.

4.2 Description of experimental techniques

Prom the above discussion, it should be evident by now that the key elements
in the Mach-Zehnder interferometer are the complex plates described by íi(#) and
1^(0}• The approach to construct these components was to split their complex transfer
functions in their real and imaginary parts and build them separately. Overlapping the
phase changes has an overall practical advantage over attempting to build the complex
function. For instance, given:

¿i($) = cos# = Si(9) |cos$| = U i ,^ ,« , , ,„ , _ . _ .. ,. ,,.
* f a \ • • a (ü\\- Q\ fa\ fü\ i ° <G < 27r, (4.11)t2(9) = ismv = 132(6) \smO\ — s2(^)a2(^) v '

with:

3^2 (4.12)
<7T

<2?r

For implementation, it is easier to think of each one of t\(6} and Í2(0) as the product
of an amplitude transfer function and a phase reversal function. The amplitude now
varies as the absolute valué of the circular functions, whereas the phase is reversed
where appropriate according to their sign. Ergo, overlapping a gray scale píate a\(6]
and a phase píate with s\(0} will result in an effective amplitude transfer function ti(#).
Note that the valúes of a\(8) are real for all 9, whereas the domain of Si(0) has only
two possible valúes (see Fig. 4.2a-d).
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Figure 4.2c. si(0). Figure 4.2c. s2(0).

The same holds true for any valué of m other than m = 1, as discussed here, with
the consequential added complexity in the phase plates si(0) and s<¿(6), as the number
of zero-crossings increases linearly with m. Several attempts were made to obtain
reasonably accurate amplitude and phase plates with limited financial resources, some
of which are described below.

4.2.1 Photographic techniques

Theoretically, an arbitrary amplitude modulation of monochromatic light can be
performed by means of a gray scale píate. Such píate can be constructed by several
means, the less expensive of which is, by far, exposition of photographic film with the
desired modulation ^(91,^2) for positive film, or its supplementary normalized counter-
part: 1 — tF(qi, q<¿) for negative film. Here (qi,q-¿) stand for the transverse coordinates.
Experimentally, complications in the modulation can arise primarily from two sources:
first, the dynamic range of the valúes between the desired transmittance minima and
máxima and secondly, the functional variation of the target transfer function. In the
first case, if the range is small, the variations must be resolved by pushing the film de-
veloping process to attain the largest number of valúes between minima and máxima,
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the limit being set by the sensitivity vs. time curve for a particular film. Adjusting
for the logarithmic response is necessary and for a particular amplitude field transfer
function the optimal adjustment is obtained by experimentation. In the latter case,
very small sections of low transmittance in the vicinity of rapidly varying halftones is
best obtained by a configuration of múltiple films, so that the zero-transmission regions
are attained but some resolution in the vicinity is lost. Here, the adjustment is linear,
but it is important to note that unexposed film is fax from totally transmissive and thus
a uniform obscuration of about 26% is typically observed at 632.8 nm.

In order to obtain the angular transmittance functions 0,1(6} = |cos#| and 0,2(6} =
|sin#|, tests were conducted with Pan-F Plus black and white negative film ISO 50
from ILFORD. The film was bracketed towards overexposure at one-half stop steps
from 1/1000 to 5 seconds. The development process was realized with Kodak HC— 110
at room temperature using water for stop bath. The film was then fixed with a dilution
of Kodak Rapid Fixer in normal concentration as recommended by the manufacturen
Typical resolution for this film with the above process was found to be 90 lines per
millimeter (Ipm). The complementary amplitude transmittance functions:

tcl = l-|cos(0)|, (4.13a)

tc2 = l-|sin(0)|, (4.13b)

were generated by a 1024 x 1024 valué matrix in matlab and displayed in a liquid crystal
display properly set to neutral bright and contrast valúes. The valué range of each ma-
trix element could vary from O to 1023 in halftones of gray. The film performed poorly
since the zero-exposure transmission proved to be too lossy and considerable obscura-
tion limited the contrast of the amplitude behind the píate. In order to compénsate
for this, the film was replaced with Kodak Technical Pan black and white negative film
ISO 100. Contrary to what one would expect, one can push the developing process up
to 190 Ipm or better for this film. This fact becomes reasonable as ILFORD film is
designed with graphic arts applications in mind. The main advantage of Technical Pan
film is, however, its high transmittance at zero exposure. Since the film is not strictly
rigid, one must carefully stretch the film uniformly before attempting to mount it in
the interferometric setup.

Once the angular amplitude modulation was achieved, there remains the construc-
tion of the annular slit. A photographic approach was first attempted using a backlit
semi-translucid white paper with a thin circular annulus drawn on it with black organic
ink. Even though the slit was imaged on the film at very high resolution, the contrast
of the film is not good enough to produce the desired diffractive effect. Múltiple films
were carefully overlapped to improve contrast, but in this case the absorption was too
high for practical detection of the diffractive pattern as the total transmitted power is
severely reduced even at only two-film combinations.

On a second attempt, two concentric circular cuts were made on an opaque vinyl
self-adhesive film. The cuts were performed by a CNC diamond cutter driven by an
MS-Windows compatible driver and given binary input with Corel Draw. Severa! com-
binations of diameters were essayed; however, the cutter would consistently tear the
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film apart due to the small radii of the circles. The outcome would typically be an off-
set inner circle and a considerable ripple around the circumferences resulting in highly
irregular and large annuli. As this deviation of optical methods proved to be too rough
an approach, it was an obvious step to go back to photographic techniques and find a
way around the low contrast issue.

4.2.2 Lithographic techniques

Lithography is actually a broad term that encompasses all methods of producing
a contact negative of a desired print that is then transferred onto media by either
mechanical, chemical or optical methods or a combination of these. In this work,
the term lithography refers strictly to photolithography. In essence, photolithography
is different from photography only in that the positive final prints are produced by
contact negative masks in the former whereas optical magnification (or reduction) of
the negative is taken advantage of in the later technique.

There is a fundamental difference in lithographic film when compared to black and
white photographic film1. Namely, that the range of lithographic film is binary; that is,
the film can be totally transparent or totally opaque within the domain of a single grain.
As a consequence, it is practically impossible to obtain halftones out of lithographic
film due to its high contrast, but this is clearly advantageous for the construction of
the slit.

After múltiple tests, it was found that a circle of diameter 0 = 1500 ± 25 //m and
thickness 6 ~ 22 ± 3 //m was easily achieved by photoreduction of a positive black
circular ring printed on white bond paper. The positive print was done with a black
and white láser printer at 150 dots per inch (dpi) with an original ring diameter of
7.5 mm and a 1/4 point (pt) ring thickness - approximately 88.2 ¿¿m -. The reduction
was done at 20% with an AGFA photoreducer using AGFA orthochromatic line film.
Theoretically, the thickness of the ring could be reduced to 17.6 /¿m, however, the film
is difficult to push while developing as the sensitized emulsión is removed in the process,
whereas the opposite occurs in photographic film.

The diffraction pattern that results when a plañe wave impinges on the ring is shown
in Fig. 4.3. Since the wavefront was not further focused, this is not strictly a Bessel
PIOF. Note also that the vertical scale is normalized to the expected máximum of the
Bessel distribution. The observed truncation at approximately 35% of this valué is due
to saturation of the (uncompensated) CCD sensor in the camera.

As the lithographic mask served the purpose of generating the intended distribution,
an attempt to emulate the angular transmittance function with binary modulation was
made. The benefit from this approach would be a single amplitude píate that would
serve as the radial delta function and angular amplitude modulator as well.

Evidently, this approach would be successful as long as the binary approximation
to the circular functions is cióse enough not only in density, but also in regards to the

1 Sensitivity of photolithographic film is dependent of the wavelength that the film is exposed to, in
particular orthochromatic film is practically insensitive to red light, as opposed to panchromatic film,
with a nearly fíat sensitivity across the entire visible spectrum.
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local variation or rather, the slope that describes the local changes in halftones.

A photolithographic infrared láser printer was used to genérate the discrete ampli-
tude modulation on photolithographic polyester film. Even though the modulation is
in average equivalent to the intended circular function, the interference patterns show
sensitivity to the discrete dotted distribution used to approximate the continuously
varying sinusoidal functions.

Figure 4.4 shows the diffraction patterns that result when using the outcoming
masks from this process for severa! valúes of ra. Note that although the patterns do
resemble the general functional form of the theoretical patterns on the left column,
there exists a broad apparent discontinuity in the región of minima. Additionally, a
considerable ripple can be observed along the annular sections of the patterns that is
not explained by the irregularities of the ring, but rather by the border waves that the
discrete amplitude modulation produces added to the finite extent of the annular slit.
The photographs were obtained with a black and white 1/3 in charge coupled device
(CCD) camera. Ripple of the annular lines of 1% random has been accounted for in
the simulation.
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Figure 4.3. Bessel-like interference intensity pattern. The scale máximum is set to
the peak valué of the theoretical zeroth order Bessel transverso intensity (not shown).

In general, lithographic techniques proved to be appropriate for binary masks but
its use in masks with continuous amplitude modulations is far from adequate. Unfor-
tunately, the balance between the high contrast of the annular slit and the gradual
distribution of halftones along the angular coordínate was not attained in one single
lithographic filter. Thus, sepárate plates for each purpose were generated and over-
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lapped using registration marks and a microscope (see Fig. 4.5).

Figure 4.4a-f. Experimental (left column) and theoretical diíFraction pat-
terns for absolute-valué circular functions. a)-b) sin2<¿>|, c)-d)
| cos5y|.

e)-f)

It is important to note that at this point no phase modulation has been embedded
onto the plates. The result from overlapping the múltiple films and retardéis is shown
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in Fig. 4.6.
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Figure 4.5. Overlapping of múltiple plates to obtain the desired transmittance function.

Figure 4.6. Resulting transmission píate (grating detail).

4.2.3 Phase retardation methods
From the above discussion regarding the construction of the complex plates, it may

appear that the local phase changes required for the construction of the Bessel beam
is as straightforward as the amplitude modulation. In principie, that is the case. The
procedure is simple: for a circular function cos(m#), one requires m phase inversions
every TT/TO radians. A half wave retarder can then be placed in the amplitude píate
covering this angular extent for every sign reversal of the phase.

In practice, the retarders can be sliced as circular segments off from a mica or
quartz half wave phase píate. When using mica, caution must be used to keep the
fast axis properly oriented relative to the polarization vector of the láser source. In
the case of quartz, or any other birefringent crystalline material, every section must
be obtained from the crystal growth direction and all with the same thicknesses, so to
avoid unwanted phase shifts in the residual components of the linearly polarized láser
source.

Triangular sections were cut from a cellulose acétate butyrate (CAB) supported
polyvinyl-alcohol clear film calibrated to one half wave in the 560 to 820 nm range at
0.01 in. thickness. The film was sectioned using a surgical blade and a microscope. Each
section was then placed on the negative side of the amplitude píate (ring and negative)
and bonded with cellulose tape well away from the optical path of the incident beam.
The transmission figure at incident light for the retarder film is 92%, with a phase
uniformity of 8% according to the manufacturer. The size of the vicinity where the
máximum variation in phase is attained is large compared to the thickness of the ring,
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which makes it difficult to notice any inhomogeneity upon transmission. Since the fast
axis is sensitiva to transverse misalignment, the placing of the retarding sections must be
made only after the negative film has been stretched and overlapped to the lithography
with the ring. Note that even though both plates have idéntica! transmission complex
functions, the relative spatial rotation amongst them forbids from using two equal
plates, for such rotation would modify the relative alignment of the polarization vector
of the source field and the retarders. A typical (overexposed) focused interference
pattern from the prototype píate for m = 2 is shown in Fig. 4.7a. Notice that, again,
the overall distribution of the intensity does resemble the expected pattern but the
angular minima are considerably more extended. In addition, the experimental result
is significantly irregular, in particular, a consistent ripple in the ring segments can be
observed. This irregularity is attributed to the border waves that arise from diffraction
off of the edges of the retarder sections and the finite extent of the annular aperture.

a b

Figures 4.7a-b. Experimental and theoretical diffraction patterns using
CAB-polyvynil-alcohol retardéis for m = 2.

Given the poor performance of film retarders, an altérnate approach for the phase
transfer function was tried. This time, instead of recurring to a birefringent material in
order to rotate the polarization vector locally, a change in optical path was introduced,
thus resulting in a phase shift of one half wave2. In order to achieve this, a thin (30 p,m)
silica píate was inserted at the proper locations on the amplitude píate to account for
the delay. The optical path difference had to be set to a fixed valué so that the phase
shift A0 complies with:

A0 = knGdsmi = Tr(l + 2l), 1 = 0 ,1,2, . . . (4.14)

where: HQ — 1.50, is the refractive Índex of the glass píate, d its thickness and 7 is the
relative angle between the plañe of the silica píate and the amplitude píate. The first
angle 7 at which a half wave phase delay can be achieved is:

7 = arcsin ( -^— ) ~ 0.40°. (4.15)
\2nGd)

In the actual experiment, the angle 7 is slowly varied to attain the lowest valué possible
so that the reflection loss remains small and lateral deviations of the beam are negligible.

2In fact, for a linearly polarized field, a spatial and a temporal phase delay of TT are equivalent.
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Since glass is a brittle material, the main disadvantage of this method is the diíñculty
in cutting the glass plates to an arbitrary size. Since silica plates are available in
rectangular shape, they are particularly suitable to be used in an experiment with
m = 1 without the need for cutting or shaping3. The intensity distribution at the
Praunhofer plañe after a typical píate with glass phase inverters is depicted in Fig.
4.8a. Note that the result is in better agreement with the theoretical expectations (Fig.
4.8b) when compared to previous results using polyvinyl-alcohol phase retarders.

Figvires 4.8a-b. Experimental and theoretical diffraction patterns
using glass retarders m — 1.
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Figure 4.8c. Transverse intensity profile surface plot.

Glass is indeed a more reliable material for the purpose of retardation, as limiting the
variations in its thickness is a relatively easy process. The high purity of optical glass
is also easily achievable. Because of this, the quarter-wave retarder is also more con-
venient to implement with glass, as long as the tilt angle is set to the proper valué in

3Mostly for this reason, the experimental work described in the next section focuses almost entirely
on the case m = 1.
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accordance with Eq. 4.14 for 7r(l+2/)/2. One disadvantage of glass over film is, nonethe-
less, its brittleness, which complicates the integration of the slides in the experimental
arrangement.

4.2.4 Assembly procedures

Once the custom optical elements have been described and constructed, some de-
tails must be carefully accounted for in order to obtain successful results from the
interferometric setup described in the previous section.

Firstly, as the glass slides must lie at a small angle 7 with respect to the amplitude
plates, each one of them (ra for each arm) are now to be attached to rotary mounts
where this angle can be varied with high precisión, namely, of the order of 0.1°. The
amplitude plates are to be set at a an angle of 90° with respect to each other, and for
this purpose, at least one of them is also to be placed on a rotary mount orthogonal
to the propagation axis. The glass slide that will serve as quarter-wave retarder in one
arm of the interferometer is required to be tuned to that precise retardation, again, a
rotary mount is prescribed. At this point, there are 2ra + 2 angular variables to be set
before interference is observed. Evidently, it is advisable to attempt the experiment
first with the lowest valué of m.

In order to obtain the desired phase distribution upon interference at the output of
the interferometer, the láser source must be linearly polarized. As the glass retarders
are to be tilted in the direction of the slow axis, circular (or elliptical) polarization of the
source would result in added complexity of the experiment and an interference pattern
that is a superposition of two rotating Bessel beams with orthogonal polarization states,
resulting in a phase distribution that will depend on the relative magnitude of the field
components.

4.2.5 Setup integration

Because the spatial structure of the beams to be interfered presents small features, it
is desired to construct the Mach-Zehnder interferometer so that the arms are as short as
possible. Also, since an important feature of the experiment is the invariant distance of
the resulting HOBB, the sepárate beams are to be carefully aligned over a long distance
within the spatial limits of the laboratory.

For the actual experiment, the light from a 25 mW He-Ne láser (632.8 nm) was first
spatially filtered by focusing it with a 10X objective into a 25 //m Al pinhole. The lens
L\ (f = 2.54 cm) was used to form the collimated beam that would serve as the input
to the interferometric setup. The beam was split and its components reflected in the
mirror MI and M-¿ (surface figure: A/4) at right angles. At this point, the quarter-wave
retarder was introduced in path 2 of the interferometer. The beams passed through the
plates ti and Í2 and the resulting diffraction patterns were added at the nonpolarizing
beam splitter B<¿. The length of the optical path between the beam splitters is set to 12
in. The lens L-¿ (f = 6 in, R — 2 in and: / = 15 in., R = 5 in used in another instance)
focuses the output beam to the invariance región. All components were mounted on an
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optical breadboard bench. A photograph of the experiment is shown in Fig. 4.9.

Figure 4.9. Actual experimental setup.

Records of the intensity distribution at different distances from Z/2 were obtained by
two different methods. First, a single-lens reflex 35 mm photographic camera with the
lens removed was used. Best exposure times were found to be within the 1/125 to 1/500
s range. Alternatively, a charge coupled device (CCD) black and white composite video
camera connected to a frame grabber was also utilized for this purpose. Because of
the limited dynamic range of the CCD sensor and its sensitivity in the near infrared, a
neutral density filter was used at the input pupil. Exposure time in this case was set
by the automatic bright control and white balance of the frame grabber. The cameras
(not shown) were mounted on an optical rail that allowed displacement in the direction
of propagation.

4.3 Experimental results

In general, an experiment is intended to demónstrate the predictions and results
of theoretical work. Due mainly to the relentless nature of reality, it is often hard
to construct the adequate source for a particular effect. Sometimes, the difficulties
are found in the observation method for the desired phenomenon. The outcome of an
experiment must then be carefully analyzed and its deviations from theory explained
in the best possible manner. This section presents and describes the results recorded
from the experimental setup described in the two former sections.

4.3.1 Preliminary results
Once the setup has been fine-tuned, the odd and even components are generated

and inspected independently to determine its suitability for interference. Clearly, the
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components must not only match the theoretical expectations but they must also be
identical except for a 90° spatial rotation. Fig. 4.10a and 4.10b are depictions of the
Bessel-sine and Bessel-cosine components respectively.

a. Bessel-cosine. b. Bessel-sine.

Figures 4-10a-b. Transverso intensity profiles for Bessel odd and even components.

Generation of a rotating Bessel beam requires first the proper generation of a HOBB.
The most critical factor in attaining this proved to be the proper phase delay between
component beams. A small deviation in this was prejudicial since the phase delay varies
largely with small tilt angle variations of the glass píate. Also, the lateral displacement
of the beam, although relatively small, is non-negligible when the dimensions of the
features of the HOBB are considered. In Fig. 4.11a, the effect of a relative global phase
shift of A0 = 3?r/4 between the components over the interference pattern at the output
of the Mach-Zehnder interferometer is shown.

a. Theoretical. b. Experimental result.

Figures 4-lla-b. Interference of first order Bessel components witha relative phase
shift.

Compare to the actual experiment in Fig. 4.1 Ib, and note that local relative phase
shifts are also present, which is evidenced by dark regions. In particular, cióse to the
center on the right lower región where the seventh and eighth annular regions vanish.
After repeated experimentation, these phase shifts were found to be caused by local
deformation of the lithographic films in the grating.
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4.3.2 Results frorn interference
Proper correction of the aforementioned deformation and careful alignment of the

interferometric setup allows for the production of a first order Bessel beam, which can
be seen to present good circular symmetry albeit the ubiquitous ripple in the outer
lobes (Fig. 4.12).

Figures 4.12. First order Bessel beam.

Perhaps the most characteristic feature of HOBBs, and certainly one of the main mo-
tivations of the present work is precisely the minimum at their origin. Naturally, one
would expect this to be easily observable, but Fig. 4.11 is evidently contradictory in
this respect. The poor visibility, or rather, the relatively small dimensions of the mini-
mum are best explained by the large relative amplitude of the first lobe in J^(ktp). The
normalized amplitude of this intensity function is shown in Fig. 4.13. This distribution
corresponds to the Fourier transform of an infinitely thin circular ring, which is not
strictly the case for this experiment.
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Figure 4.13. First order Bessel function of the first kind.

The distribution of the pattern in Fig. 4.12 has been characterized as a function of the
radial coordinate. Pixel gray level valúes have been mapped to relative intensity in Fig.
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4.14. The theoretical Bessel distribution has been superimposed in the plot. Note the
general good agreement in the functional form of the intensity (crossed lines) except for
a slight lateral shift of the zeroes and the unavoidable saturation of the CCD camera.
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radial displacement (pixels)

Figure 4.13. Theoretical (solid line) and experimental intensity distributions for a
first order Bessel beam.

Note that even though the innermost levéis reach only 20% of the theoretical máxima,
the central minimum is considerably small in extent (3 pixels across). Also, it can be
seen from Fig. 4.14 that the minima registered near the center is somewhat displaced
above zero. This is explained by the eífect that saturated pixels have over neighboring
pixels despite low-light levéis incident on the latter.

4.3.3 Invariance región measurements

The results so far show only intensity patterns of the wavefields at a fixed distance.
This particular pattern is expected to be invariant as it propagates according to the
theory outlined in chapter 2. In order to verify this, several photographs were taken at
fixed intervals of 1 m from the output of the interferometer. The photographic sequence
is shown in Figs. 4.15a to 4.15f for propagation distances z — 1 to 6 m and an output
lens Z/2 with focal length / = 6 in and radius R = 2 in. In this case, the invariance
región is calculated as:

D

ZMAX = f- = 7.74 m
a
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e. z = 5 m. f. z = 6 m.
Figures 4.15a-f. Photographic sequence of the evolution of a first
order Bessel PIOF upon propagation.
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Figures 4.15g. Transverse intensity profile surface plot for z = 2 m.

40



It is evident from the photographs that the conical invariance región is degraded pri-
marily in its surroundings as the propagation distance increases. Furthermore, the
central región remains visible and relatively undistorted only to become less intense as
it turns into the geometrical shadow as shown in Fig. 2.5. Clearly, the intensity pattern
is severely altered at ±45° after a few meters. These diagonal regions correspond to
the overlapping of the boundaries of the circular components of the Bessel beam; a
variation in intensity here becomes more evident after the conical waves propágate.

In view of Eq. 2.12, replacing the output lens for another lens of larger radius and
focal length results in an increased invariance región. For lens parameters: / = 15 in
and R — 5 in, one would now expect: ZMAX = 48.38 m. Because of physical limitations,
it is difficult to attempt to measure invariance distances over 5 m, but certainly the
quality of the observed beam will improve for a larger valué of ZMAX- A different
sequence with the new output lens is shown in Fig. 4.16. for propagation distances:
z = 0.25, 1.0, 2.0 and 3.0 m.

c. z = 2.0 m. d. z = 3.0 m.
Figures 4.16a-f. Spatial evolution of a first order Bessel beam.
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Figures 4.16g. Transverse intensity profile surface plot.

4.3.4 Observation of rotating wavefields

Thus far, only intensity distributions have been characterized. The phase distribu-
tion of the wavefield is nonetheless critica! in the invariant and rotating characteristics
of HOBBs. The intensity of a low-power visible wavefield is an easily observable phys-
ical quantity, either by direct or indirect methods. However, the phase of the field is
a more subtle attribute and coherence observations require interferometric techniques
as explained in chapter 3. Now that a reasonably good HOBB has been generated,
the next step is the observation of the spatial rotation of its intensity pattern as the
beam propagates. In order to achieve this, a plañe wave was constructed with the same
láser source by means of an additional beam splitter and it was set to interfere with
the Bessel beam. An advantage in using the same source for interference is the nuil
effect of the temporal coherence of the wave trains as long as the optical paths of the
plañe wavefront and those of each of the Bessel beam components are set to have the
same length. The tolerance for optical path difference should be small compared to
the coherence length for the láser source, which in this case was found to be about 49
cm. after the láser was stabilized. A path difference of the order of 1 in due to the
breadboard grid spacing was thus rather acceptable.

With the purpose of obtaining a photographic sequence where the rotation of the
intensity pattern could be observed, video captures of 4 to 7 seconds were performed
while allowing the camera to move smoothly in the direction of propagation within the
central part of the invariance región, for a number of rotations of the pattern. The
capture was digitized by means of the frame grabber and the output was dumped as
an Audio Video Interleaved (.avi) file. Raw data from single frames was extracted from
the file and converted into bitmap (bmp) files. An example of such sequence in shown
in Fig. 4.17. Note that the pattern is rotating clockwise from Fig. 4.17a to 4.17d. A
reference feature that facilitates visualization of the rotation is the central minimum,
note how it moves from the top vertical position to the middle left position in steps of
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90 degrees.

Figures 4.17a-d. Sequential video frames showing the evolution of a RW.
Rotation is clockwise.
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Figure 4.17e. Transverse intensity profile surface plot.

Note also that the phase shift between adjacent lobes is quite evident, particular ly in
the central área where bright circular sections are radially followed by narrow annular
dark zones and dimmer lobes. Local máxima are observed in angularly opposite loci.
For comparison purposes, the photographic sequence in Fig. 4.18a-f is a computer

43



simulation of the experiment.

c d
Figures 4.18a-d. Computer simulation of the evolution of the RW in Fig 4.17.

Even though the contrast in the sequence is acceptable, there is evidently a poor balance
between the plañe wave amplitude and the RMS valué of the HOBB. This is due to the
fact that the plañe wave is not uniform in the planes of observation, this nonuniformity
is mainly caused by the poor surface figure of the mirrors (A/4) and beamsplitter (A/6
max.) used to divide the wavefront in the interferometer. The experimental setup is
thus very sensitive to slight random deformations of the plañe wave.
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Chapter 5

Conclusions

This chapter briefly outlines the achievements of this work and discusses the techni-
cal problems that aróse during experimental activities. Further work is also suggested
as an extensión to the results presented herein.

5.1 Milestones

In this work we have successfully produced a high order Bessel beam by adding
its even and odd angular components. The approach used for this purpose was the
construction of each component separately and the further interference of both by means
of a Mach-Zehnder arrangement. In this manner, it has been shown that a HOBB can
be constructed in a relatively simple and inexpensive way. An additional advantage of
the arrangement is the use of binary half-wave phase changes for the transmission slits
that genérate the Bessel components.

Several techniques were attempted to develop a local phase retardation method
with low deformation of the wave front. Materials used in this regard include plástic
retarders, quartz, mica and silica.

Perhaps the most important achievement of the present work is the reliable genera-
tion of a zeroth order Bessel beam and the practical demonstration that phase modula-
tion can be performed with only a few microscopic manipulation tools. An exceptional
feature of the experimental techniques used here is its low cost when compared to us-
ing state of the art electrón beam lithography or deposition techniques to produce an
annular slit.

Successful generation of a first order Bessel beam was also achieved; the interfero-
metric setup proposed for this purpose proved to be an effective though cumbersome
method, in particular because of the fabrication and manipulation of the transmission
gratings. The resulting beam was characterized and good agreement with a Bessel
transverse intensity distribution was found.

Rotation of the first order Bessel beam was achieved and its gradual phase distrib-
ution observed in single frames captured from a video sequence. The altérnate radial
phase shift between adjacent lobes was also observed using this procedure. The resuJts

45



obtained herein have been presented at the animal meeting of the International Society
for Optical Engineering (SPIE) 2003 [42].

Numerous results were presented in photographic form, however, a considerable
amount of additional work can be done using the experimental setup by modifying the
transmission plates thus altering their geometrical and optical parameters. Necessar-
ily, a more robust setup must be implemented in order to make detailed observations
of physical properties such as momentum and energy flux within the context of the
application of HOBBs to atomic traps. Finally, in order to attain repeatability of he
experiment suitable for accurate measurements, finer mechanical subsystems are im-
prescindible.

5.2 Difficulties

To the eye of the unexperienced, overestimation of the available resources and their
usage might result in unnecessarily laborious and time-consuming tasks that could
otherwise be avoided. This was the case regarding the available equipment for the
construction of the interferometer.

Most of the problems in obtaining acceptable results from the experiments described
above aróse from financial limitations of the project. Clearly, an interferometric exper-
iment requires the use of high-quality optics, particularly regarding the surface figures
of diffractive and reflective elements, such as mirrors and lenses. Additionally, the pro-
cedure used to record intensity patterns of rotating wavefields described in sect. 4.3.4
is not the most suitable one given that the manual motion of the camera induced un-
wanted displacement of several optical elements in the setup. The use of an automated
precisión translation stage would be highly convenient.

Other difficulties aróse in the construction process of the transmission plates. Man-
ual cutting, placement, and bonding of small plástic parts proved to be the most time-
consuming task in the entire development of the experiment. The fact that once made,
the plates were in general impossible to modify added complexity and increased prepa-
ration time for every trial. The construction of the plates is quite simple in principie,
given that the proper tools for micromanipulation are available.

Interference of HOBBs and spherical wavefronts require of proper control of the
reference waveforms. Due to the low surface figure of the reflective optics, it was
difncult to achieve an extended wavefront with reasonable accuracy.

Finally, as the experiment requires a considerably powerful light source, a high-
voltage power supply was refurbished for the purpose. This was perhaps the most
temperamental piece of equipment within the setup and the cause for the most impor-
tant delays in between triáis.

5.3 Forthcoming experimentation

In order to obtain a more accurate picture of the intensity distribution of the HOBBs
and RWs involved in the experiments, and due to the broad dynainic range of these,
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it would be more convenient to use láser profiling hardware instead of photographic
techniques. Evidently, the truncation of high brightness valúes would be somewhat
diminished in this manner.

The construction of reliable spherical wavefronts will allow for the observation of
more complex phenomena, such as the nonuniform rotation of the wavefields. For this
purpose, lower-tolerance surface figures should be used (A/10 at least) in reflective
sur faces.

Additionally, an altérnate method for the generation of the angular even and odd
Bessel components should be used, so as to produce Bessel beams of order TO ̂ > 1. In
this respect, spatial light modulators are most promising but expensive devices.

5.4 Future work
Recently, a new technique for the generation of binary Fourier holograms has been

developed [43]. The technique makes use of commercially available optical media (CD-
R) and writer to map the interferogram onto the surface of the compact disc. Because
of its high spatial resolution, the usage of this media for transmission plates can result
in improved beam quality. Also, using transparent diffractive or reflective methods to
genérate the HOBBs can be more efficient than, specially in the case of the annular
slit, where most of the incident power is lost.

The use of SLMs to genérate the desired wavefronts could be as well advantageous,
but its feasibility is limited by their low diffraction efficiency and high cost.
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