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A comparison of control schemes for an articulated 

2 degree-of-freedom Robot Manipulator optimized 

via Genetic Algorithms 
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Thesis Advisor: Dr. Rogelio Soto 

Robot manipulators play an important role in actual industrial processes. The 
trajectory following of robot manipulators is a non-linear problem that still requires 
much research [34]. This research work focuses on the control of the dynamics of an 
articulated robot manipulator. 

A 2 degree-of-freedom (DOF) articulated robot manipulator is simulated, each 
of the two links of the robot having its respective controller. Two different kind of 
control objectives for the robot's links are considered, position control and velocity 
control. Four control schemes for the robot's dynamics were selected. For position, a 
PID Controller [24] and a Fuzzy Self-tuning (FST) PID Controller [14] are considered. 
On the other hand, for velocity control the F S T P D + Controller [35] and the Fuzzy 
Sliding Mode (FSM) Controller [12, 16, 28] were chosen. Controller's performance and 
robustness in relevant tasks are evaluated and compared in order to determine which 
control scheme fits best for each task. 

Empirical adjustment of most controller's parameters always depend on the time 
and tests invested in tuning the controller, it is time consuming and subject to human 
error. As a fair comparison is intended, controller's parameters are optimized via 
Genetic Algorithms [22]. W i t h this method, the tuning of parameters is not subtle to 
human error and the comparison can avoid possible erroneous conclusions. 

Optimization of parameters of all controllers was carried out successfully. Pa -
rameters set by the G A are interpreted and show several details about the structure 
of the considered controllers. Performance comparison of controllers is discussed and 
conclusions about the complexity of controllers and its equivalence when performing 
some tasks is presented. 



Contents 

Acknowledgments v 

Abstract vi 

List of Tables ix 

List of Figures x 

Chapter 1 Introduction 1 
1.1 Problem Formulation 2 
1.2 Hypothesis 6 
1.3 Objectives 6 
1.4 Methodology 6 
1.5 Document Organization 7 

Chapter 2 Artificial Intelligence Methods 8 
2.1 Fuzzy Logic 8 

2.1.1 Fuzzy Sets and Fuzzy Subsets 8 
2.1.2 Linguistic Variables 9 
2.1.3 Fuzzifiers and Defuzzifiers 11 
2.1.4 Fuzzy I F - T H E N rules 12 
2.1.5 Fuzzy Inference Engine 13 
2.1.6 Fuzzy Processing of Variables 14 

2.2 Genetic Algorithms 14 
2.2.1 The Algorithm Description 15 
2.2.2 Simple example of Genetic Algorithm 17 

Chapter 3 Robot Mechanics 21 
3.1 Robot Kinematics 21 
3.2 Robot Dynamics 22 

3.2.1 Lagrange equations of motion 23 
3.2.2 Lagrangian for a 2 D O F robot manipulator 24 

vi i 



3.2.3 Dynamic model of Robot Manipulators 27 
3.2.4 Dynamic model of a 2 D O F Robot Manipulator 29 
3.2.5 Dynamic model parameters 30 

Chapter 4 Controller design 32 
4.1 Position Controllers 33 

4.1.1 PID Controller 33 
4.1.2 Fuzzy Self-Tuning PID Controller 34 

4.2 Velocity Controllers 36 
4.2.1 Fuzzy Self-Tuning P D + Controller 36 
4.2.2 Fuzzy-Sliding Mode Controller 39 

Chapter 5 Simulation Results 46 
5.1 Position Controllers 47 

5.1.1 Model Reference for Position Controllers 48 
5.1.2 Simulation Results for the PID Controller 49 
5.1.3 Simulation Results for the F S T PID Controller 55 
5.1.4 Position Controllers Comparison 57 

5.2 Velocity Controllers 60 
5.2.1 Simulation Results for the F S T P D + Controller 61 
5.2.2 Simulation Results for the F S M Controller 66 
5.2.3 Velocity Controllers Comparison 68 

Chapter 6 Conclusions 71 
6.1 Discussion about Position Controllers 71 
6.2 Discussion about Velocity Controllers 72 
6.3 Contributions of this research work 73 
6.4 Further Work 73 

Appendix A Final Value of Parameters modified by the G A 74 
A . l Final Values for Parameters of Controllers 74 
A.2 Sliding Surface of the F S M Controller 82 
A.3 PID with Unsaturated Torque Signal 88 

Bibliography 90 

V i t a 94 

vii i 



List of Tables 

2.1 Initial random population 19 
2.2 Population after the first cycle 19 

5.1 Parameters of the G A used to optimize the P I D controllers 49 
5.2 Parameters adjusted by the G A for the PID controller of each link. . . 49 
5.3 Parameters that define a F L T 55 
5.4 Rules selected from RuleOrder 56 
5.5 Parameters of the G A used to optimize the F S T PID controllers 56 
5.6 Performance Comparison of Position Controllers 60 
5.7 Parameters of the G A used to optimize the F S T P D + controllers. . . . 61 
5.8 References for velocity controllers in the optimization process 62 
5.9 References for velocity controllers in performance tests 63 
5.10 References for velocity controllers in robustness tests 65 
5.11 Parameters adjusted by the G A for the F S M controllers 67 
5.12 Parameters used by the G A to optimize the F S M controllers 67 
5.13 Performance Comparison of Velocity Controllers 69 

A . l Final Values for the PID Controller of Link 1 77 
A.2 Final Values for the PID Controller of Link 2 77 
A.3 Final Values for the F S T PID Controller of Link 1 78 
A.4 Final Values for the F S T PID Controller of Link 2 79 
A.5 Final Values for the F S T P D + Controller of Link 1 81 
A.6 Final Values for the F S T P D + Controller of Link 2 81 
A.7 Final Values for the F S M Controller of Link 1 83 
A.8 Final Values for the F S M Controller of Link 2 84 
A.9 References to illustrate sliding surfaces 84 
A.10 Performance comparison of PID with saturated and unsaturated torque. 89 

IX 



List of Figures 

2.1 Triangular and Trapezoidal M F s 10 
2.2 M F s for speed. 10 
2.3 Example of fuzzy processing of variables 14 
2.4 Fitness assignment to a population of n individuals 16 
2.5 Flow chart diagram of steps the Genetic Algorithm performs 17 
2.6 Function f(x) = y/x 18 

3.1 Sketch of a 2 D O F Robot Manipulator 24 

4.1 P I D block diagram 34 
4.2 F S T P I D block diagram 35 
4.3 F L T parameters 35 
4.4 F S T P D + block diagram 39 
4.5 Sliding surface in a phase plane 40 
4.6 Discontinuous term of equation 4.26 42 
4.7 Presence of chattering as the result of control switching 42 
4.8 F S M block diagram 43 
4.9 F S M controller parameters 43 
4.10 Possible shape of function Kpuzziisi) 45 

5.1 Fitness assignment for optimization of controllers 47 
5.2 Methodology applied to compare Position controllers 48 
5.3 PID with optimized parameters. Response of: a) link 1; b) link 2. . . . 50 
5.4 PID performance test. Response of: a) link 1; c) link 2. Torque for b) 

link 1; d) link 2 52 
5.5 P I D robustness test. External perturbation for: a) link 1; b) link 2. 

Parametric variations for: c) link 1; d) link 2 54 
5.6 F S T PID with optimized parameters. Response of: a) link 1; b) link 2. 57 
5.7 F S T P I D performance test. Response of: a) link 1; c) link 2. Torque for 

b) link 1; d) link 2 58 
5.8 F S T PID robustness test. External perturbation for: a) link 1: b) link 

2. Parametric variations for: c) link 1; d) link 2 59 

x 



5.9 Methodology applied to compare Velocity controllers 61 
5.10 F S T P D + with optimized parameters. Response of: a) link 1; b) link 2. 62 
5.11 F S T P D + performance test. Response of: a) link 1; c) link 2. Torque 

for b) link 1; d) link 2 64 
5.12 F S T P D + robustness test. External perturbation for: a) link 1; b) link 

2. Parametric variations for: c) link 1; d) link 2 66 
5.13 F S M with optimized parameters. Response of: a) link 1; b) link 2. . . 68 
5.14 F S M performance test. Response of: a) link 1; c) link 2. Torque for b) 

link 1; d) link 2 69 
5.15 F S M robustness test. External perturbation for: a) link 1; b) link 2. 

Parametric variations for: c) link 1; d) link 2 70 

A . l M F s of FLTs of F S T PID Controller for link 1 75 
A.2 M F s of FLTs of F S T PID Controller for link 2 76 
A.3 M F s of FLTs of F S T P D + Controller for link 1 77 
A.4 M F s of FLTs of F S T P D + Controller for link 2 80 
A.5 M F s of the F S M Controller for link 1 82 
A.6 M F s of the F S M Controller for link 2 82 
A.7 Function KFuzzi(s\) 83 

A.8 Function KFUZZ2(S2) 83 
A.9 Phase plane response of the F S M for: a) link 1; b) link 2 85 
A . 10 Phase plane response of the classical Sliding Mode for: a) link 1; b) link 

2 85 
A . 11 F S M test. Response of a) link 1; b) link 2. Torque for: c) link 1; d) link 

2 86 
A . 12 Classical Sliding Mode. Response of: a) link 1; b) link 2. Torque for: c) 

link 1; d) link 2 87 
A . 13 P I D with unsaturated torque. Response of: a) link 1; b) link 2. Torque 

for: c) link 1; d) link 2 88 

xi 



Chapter 1 

Introduction 

Robot manipulators are commonly used in industrial process to develop tasks like 
painting, pick and place, arc welding and others. Actually, industrial robots are capable 
to develop a great variety of activities with high precision and repeatability. However, 
research about robotics is relevant given that there are still many applications that 
commercial robots are unable to perform correctly, like handling of fragile objects and 
imitation of human moves. The trajectory following of a robot manipulator is a non-
linear control problem that still requires much research and is a very important field for 
production process. It is also an interesting control problem from the academic point 
of view. 

This thesis focuses on the control of the dynamics of robot manipulators. The 
desired control objective is to make the manipulator asymptotically follow a given 
trajectory within a finite interval of time. This objective is not possible in general since 
asymptotic stability can be achieved only as time approaches to infinity [34] from the 
theoretical point of view. 

Actual industrial robots have gears in its joints which transmit power from the 
actuators. When gear ratio is big enough, the robot's dynamics simplifies greatly to 
the point that the non-linearities can be neglected [34]. The robot's dynamics is given 
thus only by the dynamics of the actuators. The counterpart of using gears is that the 
mechanical complexity of the system increases and the mass does as well. 

Thus, if no gears are used, the primary difficulty for the control of the robot's dy-
namics is that the robotic system is highly non-linear and presents inherently unknown 
dynamics [31]. A non-linearity in a system is a non-proportional relation between cause 
and effect. Physical systems are inherently non-linear, thus all control systems are non-
linear from a certain point of view. Non-linearities can be classified as inherent (natural) 
and intentional (artificial) [5]. Inherent non-linearities are those which naturally come 
with the system's hardware and motion. Centripetal forces in rotational motion and 
Coulomb friction between contacting surfaces are examples of non-linearities. 

The unknown dynamics are due to imperfect mathematical modelling of friction, 
dead time, loads, temperature, maintenance and so on. Therefore, is vital that the 
controller has the capability to adapt to different robot working conditions. For exam-
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pie, when a robot takes an object, due to the object's mass, the apparent mass of the 
robot's last link is increased. The other links are affected by this parameter change 
because the robot is a linked mechanism. Adaptable control laws are heavily studied 
with the aim to minimize the perturbations with time. 

If a controller that handles well all this issues is developed along with the needed 
actuators, it could be possible to design lighter and faster robots, with less or without 
gears. However, the mechanical design of robots is beyond the scope of this document, 
which focuses mainly on the study of the control of robot's dynamics. 

W i t h the speed of actual processors many complex control techniques are possi-
ble to be implemented. Actual actuators have also many capabilities which weren't 
available when robots from the last two decades were designed, thus the design of even 
actual robots has limitations not valid for today's technology. In the research presented 
in this document, performance of two controllers of the same kind for the same task 
is compared. A simulation model of a 2 degree-of-freedom (DOF) articulated robot 
is used to compare the different control schemes and decide which performs better for 
different kind of tasks. 

1.1 Problem Formulation 
When controlling the dynamics of articulated robot manipulators, the principal 

problem is the inherent non-linearities in the system. The logical choice when a non-
linear system will be controlled is to use a non-linear controller which absorbs the 
non-linearities; while if the system is linear, then a linear controller would be the best 
choice. If the operating point of a given control system is small and the non-linearities 
are smooth, the control system may be approximated by a linear system with good 
accuracy. 

Many of the most common controllers are linear because its application does not 
require improved performance or the operating point can be approximated as a linear 
system. A n articulated robot manipulator is a non-linear system and its operating 
point is the whole range of movement, therefore its dynamics cannot be approximated 
to a linear system [34]. From this point in the document, the term robot manipulator 
will refer to articulated robot manipulator. 

As a robot manipulator is subject to an environment with high variability, inter-
acts with objects of different sizes and weights and its parameters can change with time 
as the robot ages. The dynamic model of a robot manipulator can be derived mathe-
matically or by analyzing system data, but uncertainties of the actual real system with 
respect to the system model will always exist. 

When controllers are to be built without having an accurate mathematical model 
of the system to be controlled, two problems arise: first, how to establish the structure 
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of the controller, and second, how to set numerical values of the controller parameters 
[39]. The first problem can be solved based in the approximated system model and the 
task type. For the second problem, depending on the controller there may be a method 
to adjust its parameters. 

Controlling the dynamics of robot manipulators means to make the robot's links 
asymptotically approach to a reference. It is an interesting problem and represents 
some challenges in the design of the controller's structure and optimization due to its 
non-linearities and model uncertainties. 

For robot manipulators, position tasks means regulating the system in a static 
position reference. Velocity tasks, in the other hand, means tracking of position trajec-
tories. The tracking problem can be defined as follows [5]: Given a non-linear dynamics 
system and a desired output trajectory, find a control law for the input such that start-
ing from any initial state within a bounded region, the tracking errors go to zero while 
the whole state x remains bounded. 

Velocity controllers are defined as follows [10]: Assume that joint position q and 
joint velocity q are available for measurement. Let the desired joint position qd be a 
twice differentiable vector function. The controller will determine the actuator torques 
r in such a way that the following control aim be achieved 

3 

(1.1) 

The control system is said to be globally asymptotically stable if the control aim is 
guaranteed irrespective of the robot initial configuration q(0) and q(0). 

For this research, two different controllers will be optimized for position tasks: 

P I D Controller The conventional PID controller is widely used in industrial process 
control because of its simplicity and its rather satisfactory performance. This 
controller was introduced in 1922 as a three-term controller [24]. It grow popular 
and was heavily analyzed to date. It is commonly used in applications in which 
the process parameters are well known and do not vary substantially [14]. 

Fuzzy Self-Tuning P I D Controller This controller dates from 1985 [14]. When the 
process parameters are not known accurately or if they vary under different op-
erating conditions, a conventional PID controller may not behave satisfactorily. 
The system performance can be improved by applying more elaborate nonfuzzy 
control schemes or by using a fuzzy controller. Instead of replacing the conven-
tional PID controller by a fuzzy controller, it is desirable to maintain the PID 
controller and to add a higher level of control to it to improve the performance of 
the system. In this control scheme, the knowledge, experience and intuition of a 
designer is formulated linguistically and, by applying fuzzy subset theory, trans-
formed into an extended fuzzy algorithm for tuning the parameters of the PID 



controller, which is known as Fuzzy Self-tuning (FST) PID controller. Stability 
about this controller has been studied in [36, 21]. In [22] Membership Func-
tions (MF) for this controller have been optimized via Genetic Algorithms and 
compared against an empirical tuning. 

Similarly, for velocity tasks two controllers will be considered: 

Fuzzy Self-Tuning P D + Controller This controller was introduced first in [17] in 
1998 as Fuzzy Self-tuning Computed-torque Control based in the Computed-
torque Method [29]. It was later handled as Fuzzy P D + in [35], which is also 
based in the controller introduced in [10] known as P D + . The structure of P D + 
control consists of a linear P D feedback plus a specific compensation of the robot 
dynamics. In the Fuzzy P D + control scheme, the gains of the P D + are allowed 
to vary according to a fuzzy logic system which depends on the robot state. This 
is an important ingredient to deal with practical specifications such as keeping 
asymptotically the tracking error within prescribed bounds without saturating 
the actuators. Stability for this controller is analyzed in [17, 35, 33]. 

Fuzzy Sliding Mode Controller The Fuzzy-Sliding Mode (FSM) Controller has the 
characteristics of both a fuzzy logic controller and a variable structure controller 
(VSC) or also known as sliding mode controller. It was introduced in 1992 in 
[12, 16] and was further studied in [28]. The F S M C has a fuzzy-sliding motion 
similar to the conventional sliding motion of the V S C . In the F S M C the switch-
ing hyper plane is a fuzzy set, while in the sliding mode controller is a crisp set. 
Membership functions and fuzzy rules can easily be determined to prespecify the 
behavior of control system. In the conventional sliding mode controller, when the 
system enters into sliding mode, the state trajectories of the controlled system will 
be kept on a specified switching hyperplane. Due to the sampling action of digital 
implementation, delay of switch device and its operation at discrete instants, a 
sliding mode controller may have chattering. This phenomenon is undesirable in 
most control applications because high frequency components in the system not 
considered in the model could be excited and make the system unstable. One of 
the principal motivations to develop the F S M C was the attenuation of chatter-
ing. A simulation of a 6 D O F robot manipulator implementing this controller is 
reported in [3]. 

The more complex is the system and the controller, the more complex will be the 
adjustment procedure of the controller's parameters settings. Adjusting the controller's 
parameters can be a tedious task and many times the adjustment will not be the optimal 
even if is carried out by experienced operators. Empirical adjustment is an iterative 
process which can be costly and time consuming. A n example of this case are the 
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P I D controllers, which are very popular and effective for industrial applications but its 
performance depends heavily on the operating parameters of the system. Once these 
parameters change, a significant amount of effort is required to manually tune the PID 
controllers [22]. 

A n approach based in Genetic Algorithms (GA) is considered for this task. G A s 
have been applied to control problems in approximating the system's model and for the 
design and optimization of the controller for the system. In [39] a Genetic Algorithm 
is implemented as an estimator for discrete time and continuous systems. Genetic 
Algorithms are used in [11] to estimate both continuous and discrete time systems and 
for identifying poles and zero or physical parameters of a system, in order to design an 
adaptive controller in combination with a pole placement scheme. 

A comparison of Fuzzy Control against PID Control for a Position and Force 
Control of a Robot hand is presented in [8] and resulted that the Fuzzy Controller 
outperformed the PID Controller in tests of pure position control and pure force control. 
In that paper, both controllers were empirically adjusted, which lacks of a formal proof 
to determine if one controller has a better performance than another one. A PID 
controller has been successfully optimized with a G A comparing this optimization with 
that of a Simulated Annealing (SA) method and empirically adjusted settings in [13], 
the G A outperformed the optimization by SA and the empirical method. The last 
comparison is much better than the first one because the tuning of parameters in this 
case is not subtle to human error, which could have a negative effect in the controller's 
performance. 

Therefore, G A s will be used to optimize the controller's parameters to work in 
relevant operating points of the robot's links. After optimization, controller's perfor-
mance criterions will be measured and compared to determine which fits best for each 
kind of task. It is always important to make fair comparisons, in this case conditions 
of the system and design of controllers must be the same. Conditions of the system 
can easily be simulated to be the same, the difficulty relics in performing a fair tuning 
of controllers. Most controllers can have excellent performance if well tuned, while if 
tuning is poor then performance is also. 

The common technique to tune controllers, even in industrial processes, is by 
empirical adjustment based on the operator's knowledge of the system. Empirical 
adjustment of parameters always depend on the time and tests invested in tuning the 
controller, it is time consuming and subject to human error. The use of G A s to optimize 
the controllers intends to overcome this problem and stay apart from possible erroneous 
conclusions. 
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1.2 Hypothesis 
The principal hypothesis is that controllers for the dynamics or robots manipula-

tors can be successfully optimized by Genetic Algorithms. Different controller schemes 
can then be compared fairly when optimized by this method. The comparison and the 
parameters of the controllers optimized provide relevant knowledge about the control 
of the system. 

1.3 Objectives 
The first objective of this research work is to optimize the proposed controllers 

to develop specific tasks. Once the controllers have been optimized, a comparison of 
performance criterions will be made. Optimization before performing a comparison is 
vital because is the most important part of the design. A controller is not useful if it 
is not well tuned, but is very useful if all parameters are set so the system develops the 
specified task. 

A particular objective, regarding to position controllers is to determine if a non-
linear controller handles the system much better than a linear controller. This will 
tell if the extra controller-complexity makes a real difference or is enough with a linear 
well-tuned controller . 

1.4 Methodology 
Given a physical system to be controlled, a common procedure for control design 

is as follows, with possibly a few iterations [19]: 

1. Specify the desired behavior, and select actuators and sensors. 

2. Model the physical plant by a set of differential equations. 

3. Design a control law for the system. 

4. Analyze and simulate the resulting control system. 

5. Implement the control system in hardware. 

For this thesis, only steps 1 to 4 are followed for each controller, implementation 
of the control system is left as a future work. Steps 3 and 4 are done for each of the 4 
controllers considered to analyze. 

A n additional step is implemented also for each controller, the optimization of 
the control system's parameters, and is carried out via Genetic Algorithms. Finally, 
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having each controller designed and optimized, a comparison of performance criterions 
will determine which controller is better for each particular task. 

Steps for the optimization and performance evaluation process are listed below: 

1. Optimization. In this step the parameters for the controller of each link are 
optimized with the G A . 

2. Performance tests. Once optimized, both controllers for each task are tested 
in normal operation conditions. 

3. Robustness tests. The robustness of each controller is evaluated by modifying 
the operation conditions for which the controller was optimized. 

1.5 Document Organization 
The present document is organized as follows. In chapter 2 actual Artificial Intel-

ligence (AI) methods are described, which are Fuzzy Logic, an important component 
of controllers and Genetic Algorithms, the optimization method chosen. Chapter 3 
presents the Robot's mechanics, a dynamic model to implement a simulation is devel-
oped. The proposed controllers for comparison are presented in chapter 4. A methodol-
ogy for the optimization and comparison process is introduced in chapter 5, comparison 
after optimization is also reported in this chapter. Finally, chapter 6 presents the con-
clusions of the research. 
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Chapter 2 

Artificial Intelligence Methods 

In this section two popular Artificial Intelligence methods are described. One is 
Fuzzy Logic, a method to represent knowledge and has been used broadly in control, 
decision-making techniques, prediction, etc. The other is Genetic algorithms (GA) , 
which is an optimization method based in the mechanics of natural evolution of a 
population. 

In the early 1960's, Lofti A . Zadeh from the University of California at Berkley 
introduced the idea and concept of grade of membership for the elements of a set. In 
1965, he published his seminar paper on fuzzy sets [40] which lead the emergence of 
the fuzzy logic technology. The first fuzzy logic controller was published by [20], used 
to control a simple dynamic plant. 

Fuzzy logic is an extensively studied field, many concepts and many applications 
have been developed. In this section a brief explanation of the most important concepts 
for understanding fuzzy logic most of these reported in [2]. 

2.1.1 Fuzzy Sets and Fuzzy Subsets 
A fuzzy set is a generalization to classical set where the elements have degrees of 

membership. A fuzzy set is characterized by having a set of elements and a membership 
function (MF) that maps these elements of a universe of discourse to their corresponding 
membership values. The M F of a fuzzy set A is denoted by HA- The logic operators of 
intersection and union have multiple choices for the fuzzy conjunction (AND) and the 
fuzzy disjunction (OR) operators. 

A n ordinary subset A of a set X can be identified with a function X —> {0,1} 
from X to the 2-element set {0,1} as follows 

2.1 Fuzzy Logic 

(2.1) 
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This function is called the characteristic function. 
Different from ordinary subsets, fuzzy subsets of X can have varying degrees 

of membership from 0 to 1. Using fuzzy subsets, the value of A(x) is thought as the 
degree of membership of x in A . This function is called membership function of A 
and can be expressed as HA : X —> [0,1]. A n special case is when the M F only takes 
values 0 or 1, A is known in this case a crisp subset of X. 

Commonly the set X is called the universe of discourse. Since data is generally 
numerical, the universe of discourse is most often an interval of real numbers. The shape 
of a M F depends on the notion the set is intended to describe and on the particular 
application involved. Common M F s for control applications are triangular, trapezoidal, 
Gaussian and sigmoidal Z- and S-functions. 

Triangular M F are used in applications very often, see figure 2.1. Equation 2.2 
characterizes the degree of membership of x in this kind of M F . Graphical represen-
tations and operations with these fuzzy sets are simple. A triangular M F A with end 
points (a, 0) and (6,0), and high point (c, a) is defined by: 

For the case of trapezoidal M F , end points (a, 0) and (6,0), and high points ( C , Q ) and 
(d, a) define a trapezoidal M F A as follows: 

M F s are useful for processing numeric input data. A wider explanation of fuzzy 
subsets can be found in [25]. 

2.1.2 Linguistic Variables 
When a variable is described with numbers as values, it can be formulated with 

math theory. But when a variable takes words as values, there isn't a formal structure to 
formulate the problem with classic math theory [15]. The linguistic variables concept 
was introduced in order to provide a formal structure to deal with words as values. 
Linguistic terms are useful for communicating ideas and knowledge with human beings, 
is the most important element in the representation of human knowledge. 

Fuzzy subsets are associated with a linguistically meaningful term; for example 
"high" error and "low" error. The word error is the linguistic variable and adjectives 
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Figure 2.1: Triangular and Trapezoidal M F s . 

Figure 2.2: M F s for speed. 

"high" and "low" are linguistic values. A linguistic variable is the equivalent of a 
symbolic variable in A I and a numeric variable in science and engineering. In general, 
the values of a linguistic variable can be linguistic expressions of terms and modifiers 
such as "very", "more" and connectives such as "and", "or". 

For example, the velocity of a car is x, which can take values in the interval 
[0, Vmax], where Vmax is the car maximum velocity. Two M F s are defined "s/ou/' and 
"fast' within [0, Vmax] as shown in 2.2. If x is considered as a linguistic variable, it can 
take values as "s/otu" and "fast'. Thus, it can be said that "x is slouP or "x is fas?. 

Formally, a linguistic variable is characterized by (X, T, U, M), where: 

X is the name of the linguistic variable. From figure 2.2, X is the car speed. 

T is the set of linguistic values X can take. From figure 2.2 is inferred that T = 
slow, fast. 
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M is a semantic rule relating each linguistic value in T with a fuzzy subset in U. From 
the last example, M relates T= slow, fast with the M F s in figure 2.2. 

2.1.3 Fuzzifiers and Defuzzifiers 
The fuzzification process is defined as a mapping from a real-valued point x* G 

U C Rn to a fuzzy set A' in U. While designing a fuzzifier, one should consider that 
the input is at the crisp point x*, the fuzzy set A' should have a large membership 
value at x*. If the input to the fuzzy system is corrupted by noise, it is desirable that 
the fuzzifier should suppress the noise. Maybe one of the most important points when 
designing a fuzzifier is the computations involved in the inference engine. If the fuzzifier 
is ruled by a complex formula then performance will be greatly affected, furthermore 
the knowledge with a complex function will be harder to understand by a human being 
than when using a simpler function. 

In [15], three fuzzifiers are proposed: 

Singleton fuzzifier The singleton fuzzifier maps a real-valued point x* G U into a 
fuzzy singleton A' in U, which has a membership value 1 at x* and 0 at other 
points int t/ ; it is expressed as 

(2.5) 
where 6j are positive parameters and * describes the t-norm (described in [15, 
25]), which is usually an algebraic product or rain product. In order to use 
trapezoidal M F s (which are an extension of triangular MFs) , little changes should 
be implemented in the last equation. 

Gaussian fuzzifier The Gaussian fuzzifier maps x* £ U into a fuzzy set A' in U 
which has the following Gaussian M F : 

U is the physical domain in which X can take quantitative values. From figure 2.2, 
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(2.4) 

Triangular fuzzifier The Triangular fuzzifier maps x* € U into a fuzzy set A' in U 
which has the following triangular M F : 



(2.6) 

This fuzzifier method is broadly used in many applications, however the applica-
tion described in chapter 5 only uses trapezoidal and singleton fuzzifiers. 

The defuzzification process is a mapping from fuzzy set B' in V C R to a crisp 
point y* G V. In other words, the defuzzifier specifies a point in V that best represents 
the fuzzy set B', which is similar to the mean value or a random variable. The fuzzy 
set B' is defined in a special way and there are a number of methods to determine its 
representing point. The design of the fuzzy subset B' along with the defuzzification 
process should consider the same points as when designing the fuzzification process. 

Also in [15] the center of gravity defuzzifier, center average defuzzifier, maximum 
defuzzifier are defined. For the application in this document, only the center average 
defuzzifier process is reported. 

Center average defuzzifier As the fuzzy set B' is the union or intersection of M 
fuzzy sets, an approximation of the centers of the M fuzzy sets with the weights 
equal the heights of the corresponding fuzzy sets. Let y~l be the center of the I'th 
fuzzy set and wi be its height, the center average defuzzifier determines y* as: 

This defuzzifier is the most commonly used defuzzifier in fuzzy systems and fuzzy 
control. It is computationally simple and intuitive plausible, small changes in y~~l 

and wi result in small changes in y*. 

Fuzzy systems are knowledge-based systems or rule-based systems. The core of a 
fuzzy system is a knowledge base composed of fuzzy I F - T H E N rules. A fuzzy I F - T H E N 
rule is a relation that transforms conditions about linguistic variables to conclusions. 

The following is an example of a fuzzy I F - T H E N rule [15]: 

in which words "high" and "/ess" are characterized by M F s . Fuzzy rules are com-
monly generated from a human expert in the system or from knowledge obtained while 
operating the system. 

(2.7) 

2.1.4 Fuzzy IF -THEN rules 

IF velocity of car is high 
THEN apply less force to the accelerator pedal 
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The main feature of this kind of knowledge representation is its partial matching 
capability that enables an inference even when the rule conditions are partially satisfied. 
To infer a conclusion in a fuzzy rule, the conditions based on the match degree of the 
input data and the consequent are combined. The higher is the matching degree, the 
closer is the inferred conclusion to the consequence of the rule. 

2.1.5 Fuzzy Inference Engine 
A typical rule base is of the form 

(2.8) 

A common interpretation for Rj is a fuzzy relation X x U. This means that when 
the input is x, the degree to which a value u € U is consistent with the meaning of Rj 
is 

where T is some t-norm [25]. Thus, Cj is a fuzzy subset of X x U. For a given input 
x, Cj induces a fuzzy subset of U 

This implies that the output of each rule Rj is a fuzzy subset of U. The Mamdani 
method [20] uses the minimum of the t-norm: 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Having translated each rule Rj into CJ, the next task is to fuse all the rules 
together. The problem is that given N fuzzy subsets, C f , • • •, C% of U, it is needed to 
combine them to produce and overall output. What is wanted is a single fuzzy subset 
of U from the CJ, j = 1, • • •, N. The Mamdani method to accomplish this task is for 
each x G X = Xx x • • • x Xn, this gives the fuzzy subset 

(2.13) 

of U. This last equation is known as Mamdani synthesis. 
The overall output is, for each x, a fuzzy subset Cx of U. The meaning of Cx is 

that when the input x is given, each control action u is compatible with degree Cx(u). 
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Figure 2.3: Example of fuzzy processing of variables. 

In most control applications, a single numerical (crisp) output is needed u* = u*(x) for 
the control law. A crisp output is obtained from Cx using any of the defuzzification 
methods described above. 

2.1.6 Fuzzy Processing of Variables 
The fuzzy processing of crisp variables can be summarized as follows: 

Fuzzification Mapping from a real-valued point (crisp point) to an input fuzzy set in 
the universe of discourse. 

Rule-Based Inference Transformation of input fuzzy sets into output fuzzy sets by 
means of a set of rules and an inference engine. 

Defuzzification Mapping from output fuzzy sets to a real-valued point. 

The process above summarized is illustrated in figure 2.3. This figure shows an 
example of a single-input single-output fuzzy system, however, the number of input 
and output variables a fuzzy system can process is not limited. 

2.2 Genetic Algorithms 
Genetic algorithms are search algorithms based on the mechanics of natural se-

lection and natural genetics [6]. They combine survival of the fittest among string 
structures with a structured yet randomized information exchange to form a search 
algorithm. In every generation, a new set of artificial creatures (strings) is created 
using bits and pieces of the fittest of the old, an occasional new part is tried for good 
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measure. Genetic algorithms are no simple random walk, they exploit the historical 
information to speculate on new search points with expected improved performance. 

The principal differences of G A s from more normal optimization and search pro-
cedures are: 

• GAs work with a coding of the parameters, not the parameters themselves. 

• GAs perform a parallel search, exploring many points in the search space at the 
same time. 

• GAs use only the result from the objective function to guide the search. 

• G A s use probabilistic transition rules, not deterministic rules. 

2.2.1 The Algorithm Description 
The core of the G A is the codification of the solution to the problem, usually han-

dled as a binary string of finite length called chromosome. Each solution is known 
as an individual, there is a number of individuals (solutions) that compose a pop-
ulation. Every cycle of the G A , individuals are evaluated with a fitness function 
and with some operators (that will be described next) a new population or offspring 
is created. The cycles in which a new population is created are called generations. 
So, the G A works with a population of solutions that explore the search space at the 
same time (within a generation), therefore is said that GAs perform a parallel search, 
regardless of the fact that only one solution is evaluated at a time. 

To run a G A , an initial population is needed, it can be random (setting every bit 
of the chromosome of every individual randomly to 0 or 1) or defined, maybe as the 
last population of a previous run. Within a population, every individual is codified into 
a string representing its chromosome. 

A codification with real numbers has also been developed and implemented in 
[23], the best representation is the one which is more natural to the problem. Computer 
languages in which individual bits cannot be accessed the real codification is encouraged. 
However, there is an option to this case, the virtual gene genetic algorithm (vgGA) 
[38]. In the vgGA, traditional crossover and mutation are implemented as arithmetic 
functions. This implementation allows the generalization to virtual chromosomes of 
alphabets of any cardinality. This codification is more efficient than using an integer 
number to represent a single bit, in terms of computer memory. 

To give every individual an estimate of how good or bad it behaves, its chromosome 
is decodified into an instance of the solution to the problem. The problem is then 
simulated and its performance is evaluated with the fitness function defined, the result 
of the evaluation is assigned to each individual. Individuals are evaluated along the 
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Figure 2.4: Fitness assignment to a population of n individuals. 

generations with the same fitness function. This sub procedure is illustrated in figure 
2.4. 

Having received an evaluation with the fitness function, individuals are repro-
duced in a way that those with higher fitness receive more copies and those with 
lower fitness receive less copies. A popular method for selecting individuals to repro-
duce based in its fitness is roulette-wheel selection. In roulette-wheel selection, fitness 
for all individuals compose a wheel with every individual having a piece of the wheel 
representing its relative fitness with respect to the total population. A pointer points 
randomly to some place in the wheel and the chosen individual receive a copy in a 
mating pool. This is performed a number of times equal to the size of the population. 

After the selection process, stronger individuals (with higher fitness) are more 
likely to have more copies in the mating pool than the weaker ones. Once the mating 
pool is created each copy of each individual mates with another one chosen randomly. 
A crossing point is selected within the string bits for each mate to perform crossover 
after that point, this is called single-point crossover. Multiple-point crossover has been 
analyzed in [37], results suggest that two-point crossover performs better than single-
point crossover. Wi th crossover, a new offspring is generated, two new individuals 
for the next generation are created from two individuals in the current generation. 
Crossover of two individuals with cross point after the second bit is illustrated below. 

Before crossover After crossover 
00100 00111 
11111 ~* 11100 

After crossover, each bit of each individual is mutated with a very low probability, 
usually 2%. The result is a new population with possibly better individuals than their 
parents in the last generation. 
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Figure 2.5: Flow chart diagram of steps the Genetic Algorithm performs. 

This is a brief description of GAs, a pseudo code of the whole algorithm is rather 
complicated. Instead, a flow chart diagram of a simple G A is illustrated in figure 2.5. 
A pseudocode version has already been reported in [6]. 

2.2.2 Simple example of Genetic Algorithm 
In this section a G A is followed step by step to illustrate it's mechanics. First, 

consider the function f(x) = \fx, when x 6 [1 64] illustrated in fig. 2.6. The G A will 
try to find the value for x that maximizes the function f(x). 

If the shape of the function is not known or where the maximum value can be 
found, a wide range for the involved variables must be chosen in order to let the G A 
find the optimal values for that function. This is a weak point for the G A , it can only 
explore points within the given range of variables. 

As the G A only works with binary numbers, x must be codified in a binary string, 
which for this example wil l be of length 4. The four digit string can represent values 
from 0 (0000) to 16 (1111), these digits must be decodified to transform them into 
valid values for x. The following expression is used for the decodification of the binary 
unsigned integer representation of the string. 

(2.14) 
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Figure 2.6: Function f(x) = 

were d(i) is the decodified value of the integer representation of the string z, x m a x 

and xmin are the limits for x and I is the length of the string. For example, the string 
(1111), with unsigned integer given by i = 16 is decodified into d(i) — 64 using equation 
2.14. This is one of many ways to decode a string, depending on the application other 
methods for decodification can be used. 

Unti l now, only the codification and decodification methods have been defined. 
The following step is to create a population of individuals, for this case the population 
will be composed only by four individuals. The population is created by giving each 
individual a string with each bit value randomly selected as 0 or 1. Table 2.1 illustrates 
the initial population, values for fitness are obtained by evaluating each individual 
(which is an instance of x) with the function f(x). The parameter |&j is the probability 
of selection for that individual, the higher the value for this parameter, the higher will 
be its probability to obtain a copy in the mating pool. The expected count ~ is an 
estimate of the number of copies each individual will have in the mating pool after 
selection. 

Table 2.2 shows the population after the first cycle. Cross points were randomly 
selected and resulted in 3 for the first mate and 2 for the second mate. Mutation is set 
to 2% and acts along all bits in the chromosomes of all individuals, in this case only 
the last bit in the chromosome of the last individual was mutated. It is known from 
figure 2.6 that the maximum of f(x) will be when x = 64 by string 1111, having fitness 
equal to f(x) = 8. 
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Table 2.1: Initial random population. 

# Parents 
(Last Gen.) 

Individual 
String i d{i) m JL. 

E / 
k 
f 

Actual 
Count 

1 - 1110 14 59.8 7.73 0.35 1.38 2 
2 - 0101 5 22.0 4.69 0.21 0.84 1 
3 - 1001 9 38.8 6.22 0.28 1.12 1 
4 - 0011 3 13.6 3.68 0.16 0.66 0 
Sum 
Average 

22.32 
5.58 

1 
0.25 

4 
1 

4 
1 

Table 2.2: Population after the first cycle. 

# Parents 
(Last Gen.) 

Individual 
String i d(i) m £ / 

h 
f 

Actual 
Count 

1 [1,2] m i l 15 64.0 8.00 0.30 1.21 2 
2 [1,2] 01010 4 17.8 4.22 0.16 0.64 0 
3 [1,3] 11101 13 55.6 7.46 0.28 1.12 1 
4 [1,3] 10111 11 47.2 6.87 0.26 1.03 1 
Sum 
Average 

26.55 
6.64 

1 
0.25 

4 
1 

4 
1 
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If the solution of the problem requires an improved accuracy for the involved vari-
ables, the codifying strings for those variables must be larger and a bigger population 
must be used. If the evaluation of every individual is costly and the solution requires 
a good resolution, the algorithm run will take much time. Knowledge about the opti-
mal solution of the problem and its behavior can improve the algorithm's performance 
greatly. 

In the second step the G A has already found the optimal with only eight eval-
uations of the objective function out of the 16 possible values x can be decodified 
into. This may not sound surprising because the example is very simple, but for bigger 
problems with solutions codified in larger strings, the G A works with higher efficiency. 

It is known for advance which is the optimal value of x for the fitness function f(x) 
and the algorithm can be stopped right now. However, in a more complex problem the 
optimal value or values for the function to be optimized might not be known. Different 
criterions for stopping the algorithm must be considered in this case, like number of 
generations, average fitness of the individuals in the current population, variance in the 
fitness of the individuals, etc. 
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Chapter 3 

Robot Mechanics 

3.1 Robot Kinematics 
Manipulator-type robots have multiple D O F , are three dimensional, are open loop 

and are chain mechanisms. Kinematics analysis of robots have been extensively studied 
and reported in the literature. Analysis for robot manipulators are can be found in 
[26, 34, 9]. 

For a kinematic analysis, a three-dimensional reference frame is placed in the base 
of the robot, denoted by the coordinates [x y z]T. Links are numbered consecutively 
from the base (link 0) to the end effector (link n). Joints are contact points between 
the links and are numbered in such a way that joint i connects the links i and i — The 
axis of motion of joint i is assigned to the z axis and identified by z%. The generalized 
articular coordinate, denoted by is the angular displacement around z, if joint i is 
rotational, or the lineal displacement over z; if joint i is translational. 

Articular positions for every link are measured with sensors placed in the actuators, 
which are commonly located in the joints. For a n D O F robot, the articular positions 
vector q will have n elements: 
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(3.1) 

The position and orientation of the end effector of the robot is essential for most 
of the applications because is the element that performs the desired task. This position 
and orientation is expressed in terms of the reference coordinate frame located in the 
base of the robot. The x vector of Cartesian positions which contains coordinates and 
angles can be written as follows: 

(3.2) 

where m < n. 
For the case of a 6 D O F robot manipulator, the end effector can be in any position 

and orientation in the Euclidean three dimensional space, thus m = 6. This means 



that three components of the x vector refer to the position and the other three to the 
orientation of the end effector. 

The forward kinematics model of a robot describes the relationship between the 
articular positions q and the position and orientation x of the robot's end effector, as 
represented by eq. 3.3. 
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(3.3) 

This model can be obtained following a methodology and involving simple trigono-
metric expressions and identities. The inverse kinematics model is just the inverse 
relation of the forward kinematics model as shown below: 

(3.4) 

Different from the forward kinematics model, obtaining the inverse kinematics of 
a mechanism is a complicated process and in many cases can exist none or multiple 
solutions. 

One of the more common methods to derive the forward and inverse kinemat-
ics of robots is the Denavit-Hartenberg representation, which serves for all possible 
configuration of robots. For a description of this method refer to [26]. 

3.2 Robot Dynamics 
While the kinematic analysis of robot serves to determine the estimated position 

of the links and eventually its velocities, the dynamic model of robots relates to the 
interaction of the system's internal and external forces. Dynamic analysis can determine 
accelerations of the robot's links based on loads, masses and inertias. This document 
focus on the control of the dynamics of a 2 D O F robot, the simulation results presented 
in chapter 5 are obtained using the dynamic model developed in this section. 

To be able to accelerate a mass and take it near or to a determined position it is 
needed to exert a force on it. The same analogy can be made to angular positions, to 
cause an angular acceleration in a rotating body a torque must be applied on it. In the 
case of robots, to accelerate any link, it is necessary to have actuators that are capable 
of exerting large enough forces and torques on the links and joints to move them at a 
desired acceleration and velocity. To be able to calculate how strong each actuator must 
be, it is necessary to determine the dynamic relationships that govern the motions of 
the robot, i.e. the force-mass-acceleration and the torque-inertia-angular acceleration 
relationships. 

The dynamic equations may be used to find the equations of motion of mecha-
nisms. Knowing the forces and torques, it can be determined how a mechanism will 



move. A dynamic model of a robot consists of a vectorial differential equation that can 
be expressed in terms of q as: 

(3.5) 

In the last equation, / is not the same function which appears in equation 3.3. 
Obtaining the dynamic model is helpful when developing a computer simulation of the 
robot. 

Techniques such as Newtonian mechanics can be used to find the dynamic equa-
tions for robots. However, due to the fact that robots are three-dimensional, multiple 
D O F mechanisms with distributed masses, it is very difficult to use Newtonian me-
chanics. Lagrangian mechanics is based on energy terms and for complex mechanisms 
as robots, it is easier to use. 

3.2.1 Lagrange equations of motion 
As commented before, the dynamic equations of motion for a robot manipulator 

can be obtained directly from Newton's equations. This is possible, but for a robot 
with n D O F , the analysis becomes mucho more complex. For this case, the use of 
the Lagrange equations of motion is a more convenient way when obtaining a dynamic 
model. This section only describes the part of the Lagrange analysis that leads to the 
development of a dynamic model for a 2 D O F robot manipulator. A deeper analysis 
and derivation of this equations can be found in [7]. 

Consider a n D O F robot, the total energy of the robot £ is given by the sum of 
its kinetic K. and potential energy U. This relation can be expressed as shown in eq. 
3.6. 

(3.6) 

where q = [qx q2 ••• qn]T• 

The Lagrangian C(q, q) is defined as the difference between the kinetic energy of 
the system and the potential energy of the system, as follows: 

For a robot manipulator, the Lagrange equations of motion can be written for 
each joint as: 

where i = 1, • • •, n and Tj are the external forces and torques applied to the robot, as 
those exerted by the actuators, friction forces, loads, etc. 

(3.7) 

(3.8) 
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Equation 3.8 can also be written in vectorial form as: 

(3.9) 

3.2.2 Lagrangian for a 2 DOF robot manipulator 
Consider the robot manipulator shown in figure 3.1. The robot is composed by 2 

rigid links with length li and Z2 and masses m i and m2 respectively. Joints 1 and 2 are 
rotational so the displacements are along the vertical plane x — y. Distance between 
the rotary axis and the center of mass (COM) for each link is denoted by lc\ and lc2 

respectively. The moments of inertia are given by I\ and I2 for link 1 and 2 respectively. 
The angular positions are measured for qi starting from the negative y axis and for q2 
from the extension of link 1 to link 2. Both positions are positive clockwise. 

Figure 3.1: Sketch of a 2 D O F Robot Manipulator 

For this case, the articular positions vector q(t) is defined as follows: 

As the robot is composed of two links, the total kinetic energy of the systen 
K(q, q) is given by the sum of the kinetic energy of each link: 

The coordinates in the x — y plane for the C O M of link 1 are easily derived and 
found to be: 

(3.10) 

(3-11) 
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similarly, coordinates for the C O M of link 2 are derived and shown below: 

(3.14) 

(3.15) 
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(3.12) 

(3.13) 

For this configuration of robot, it is a relatively simple task to find the expressions 
above. Links move within a bidimensional plane. 

The velocity terms can be found by derivation of the expressions for the coordi-
nates of the C O M for each link with respect to time. These expressions are given by 
eq. 3.14 and eq. 3.15 for link 1 and link 2 respectively. 

One of the components needed to compute the kinetic energy is the square of the 
velocity of the C O M of every link. This term is given by eq. 3.16 and eq. 3.17 for link 
1 and 2 respectively. 

(3.16) 

(3.17) 

W i t h the last equations derived, the kinetic energy for link 1 can be expressed as: 

(3.18) 

and for link 2: 

(3.19) 

The total potential energy of the system is also composed of the sum of the 
potential energy of each link: 



(3.20) 

For link 1, the potential energy is expressed by eq. 3.21 and for link 2 by eq.3.22. 

(3.21) 

(3.22) 

Having determined the kinetic and potential energies, the Lagrangian of the system 
is found to be: 

(3.23) 

Derivatives of the robot's Lagrangian are now found in order to derive the equation 
of motion for each link in the system. For link 1 are expressed by eq. 3.24, eq. 3.25 
and eq. 3.26. 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

For link 2 by eq. 3.27, eq. 3.28 and eq. 3.29. 
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(3.28) 

(3.29) 

Having derived the last equations, the final step is to merge those equations in 
the Lagrange equation of motion for each link, eq. 3.8 as shown below for i = 1,2. 

(3.30) 

For link 1, the dynamic equation of motion is given by eq. 3.31. While for link 5 
by eq. 3.32. 

(3.31) 

(3.32) 

3.2.3 Dynamic model of Robot Manipulators 
This section make use of the dynamic equations of motion found in the last section 

to obtain the dynamic model of a 2 D O F robot. The kinetic energy JC(q,q) of a 
mechanical articulated device composed by n links can be expressed as: 

(3.33) 

where M(q) for a is a symmetric positive definite n x n inertia matrix. For the case 
of the potential energy U(q), a specific expression is not known, but it depends of the 
articular positions vector q. 

The Lagrangian as defined in eq. 3.7 now using eq. 3.33 turns to be: 

(3.34) 

and thus, the Lagrange equation of motion can be rewritten as follows: 



(3.35) 

(3.36) 

(3.37) 

(3.38) 

2dq " ' ^ ^ ' dq 

Substituting expressions in 3.39 and 3.40 into the last equation, the dynamic 
equation of motion for n D O F robots can be expressed compactly as eq. 3.41: 

(3.39) 

(3.40) 
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where C(q,q)q is a n x 1 vector known as the Coriolis and centrifugal forces vector. 
The term g(q) is a n x 1 vector of gravity forces and r is also a n x 1 vector which 
contains the external forces to the system. 

A n important part of a real mechanical system is friction, which for this model 
can be described as the function f(q). Therefore, the system model can be re-written 
as equation 3.42. 

(3.41) 

(3.42) 

Assuming that friction is modeled by viscous and Coulomb effects, the friction 
terms in the robot dynamics can be described by: 

where Fv and Fc are n x n diagonal matrices whose positive entries denote the viscous 
and Coulomb coefficients of each joint. The term sign(qr) is a n x 1 vector expressed as 
follows: 



and sign(x) is the sign function given by: 

(3.44) 

(3.45) 

sign(x) = +1 if x > 0 
sign(x) = — 1 if x < 0. 

Furthermore, to implement a computer simulation of the model, equation 3.42 can 
be solved for q as shown below. 

where variables q and q are obtained by integration of q. 

3.2.4 Dynamic model of a 2 DOF Robot Manipulator 
For a 2 D O F robot manipulator as shown in fig. 3.1. eq. 3.42 is composed as 

follows: 

(3.47) 

where each matrix component is defined as: 
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(3.46) 



M n (?) = m-ilci + m2l2 + m2l2
2 + 2m2lilc2cos(q2) + h+I2 

M12(g) = m2l2
2 + m2lilc2cos(q2) + I2 

M2i (q) = m2/c2 + 2̂̂ 1 lC2COs(q2) + 7 2 

M 2 2 ( q ) = m2l2
c2 + I2 

Cu(q,q) = -m2lilc2sin(g2)g2 

Cu(q,q) - -rn2lllc2sin{q2)[q2 + q2\ 
(3.48) 

C2i{q,q) = m2lilc2sin{q2)qi 

C22(<?,$) = 0 

5i (q) = [mild + m2li]g sin(qi) + m2g lc2sin{qx + q2) 

g2(q) = m2g lc2sin(qi + q2) 

h{q) = Mi + / C l sign(ft) 

/2(g) = fvtto + fc2sign(q2) 
These expressions are used to develop a computer simulation of a 2 D O F robot 

for which the control algorithms presented in chapter 4 are tested and compared. 

3.2.5 Dynamic model parameters 
A real experimental robot with these parameters has been built at C I C E S E re-

search center. Parameters used for the simulation of a 2DOF robot as shown in fig. 3.1 
are reported next: 
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These parameters used for the simulation where found by experimental evaluation 
of three identification schemes to determine the dynamic parameters of a 2 D O F direct-
drive robot [32]. Actuators are direct-drive motors, are D M series motors from Parker 
Compumotor. Motors are operated in torque mode so they act as torque source and 
accept an analog voltage as reference for torque signal. According to the manufacturer, 
the direct-drive motors are able to supply torques within the following bounds: 

r r x = 150[iVm] 
T™°* = 15[JVm]. ^ ' ; 

The physical control algorithm is executed at 2.5 msec sampling rate in a control 
board (based on a DSP 32-bit floating point microprocessor) [18]. For purpose of this 
thesis, it is implemented in MATLAB-Simul ink along with the robot dynamical model. 
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Chapter 4 

Controller design 

In the last chapter, the dynamic model of the robot was obtained as equation 3.46 
and shown below again. 
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(4.1) 

As commented before, r is a n x 1 vector which contains the external forces or 
torques to the system. If the robot's link are specified to move towards some desired 
angular position qd or to follow a trajectory with a given angular velociy qd, these 
torques must be calculated in order to make the links move as specified. The task of 
applying the necessary torques to the system is accomplished with a controller defined 
by a control law. Depending of the reference and the actual position, the controller 
applies a torque r to the link. 

This section deals with two kind of robot's links controllers, which are used for 
different tasks. The first kind are position controllers, links are given a desired angular 
position qd and the controller must be able to make the link approach to that position 
without overshoot and steady state error. Position controllers doesn't care about the 
velocity of the link, the goal is to move the link towards some desired angular position 
and keep it there until a new desired position is set. Two position controllers are 
introduced in this chapter, one is the Proportional Integral Derivative (PID) Controller, 
the other is the Fuzzy Self-tuning (FST) PID Controller, which is an extension of the 
former. 

The second kind are velocity controllers, by its name these controllers regulate 
the position and velocity of each link. The desired position is given by a trajectory 
and the desired velocity is just the derivative of the position, furthermore the desired 
acceleration can also be computed. Also two velocity controllers are presented, the first 
is the Fuzzy Self-tuning P D + (FST PD+) Controller and the second is a Fuzzy-Sliding 
Mode (FSM) Controller. 



4.1 Position Controllers 

4.1.1 PID Controller 
This section describes the structure of the PID and its application for the control 

of the robot's arm links. Many of the commercial and industrial robot arms are still 
P I D controllers, although numerous methods like adaptive control, neural control and 
fuzzy control have been studied. The PID controller is very robust if parameters are 
adjusted properly and its performance can be enough to complete the tasks of many of 
the more common applications. 

The introduction of this popular controller is claimed by the Taylor Instrument 
Company in 1936 when preact, that is, derivative action, was added to their double 
response controller. The use of derivative and integral action was, in the 1930s not 
new: many controllers using it had been designed and used throughout the nineteenth 
century. A consequence of the gradual introduction of such controllers into the process 
industries was a growing interest in the dynamics of various typical processes and 
attempts to analyze the behavior of controllers [1]. 

However, Nicolas Minorsky in 1922 in his paper "Directional stability of auto-
matically steered bodies" had already analyzed and discussed the properties of the 
three-term controller [24]. This paper stands as one of the early formal discussions of 
control theory. 

Structure for this controller is illustrated in figure 4.1. The equation for a PID 
controller can be described as follows: 

where q = qd — q is the error of the angular position of the link with respect to the 
desired angular position, q = qd — q is the error of the angular velocity of the link 
with respect to the desired angular velocity. Terms Kpy Kv and Ki are 2 x 2 diagonal 
matrices with constants defining the PIDs for both links. 

This is the simplest of the controllers that will be defined in this document. A l -
though its simple structure, it is difficult to optimize the parameter settings of this 
controller for robot arms because these systems have serious non-linearities and strong 
couplings. Chapter 5 describes how this controller's parameters will be modified by a 
G A (an optimization method) to compare its performance with a more complex con-
troller, the F S T P I D controller, which is described next. For all controllers, chapter 5 
describes how its parameter's settings will be optimized. 

(4.2) 
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Figure 4.1: P I D block diagram 

4.1.2 Fuzzy Self-Tuning PID Controller 
The P I D Controller described in the last section is a linear controller and can 

handle most linear systems with great performance. Real-world object's dynamics 
are commonly non-linear and therefore a linear controller may handle the system but 
performance can be seriously affected in some cases. This control scheme has been 
successfully applied to a flying robot in [30]. Also, in [22] this controller has been 
optimized with a Genetic Algorithm for the same robot manipulator model, resulting 
in an enhanced response accuracy and speed. 

The F S T P I D Controller is an extension to the PID Controller for non-linear sys-
tems. It consists of a fuzzy system tuning online the PID controller settings depending 
on qi and qt. Equation of this controller is expressed as: 

where Kp(q), Kt(q) and Kv(q) are 2 x 2 diagonal matrices with entries KPi(q~i), Kit(qi) 

and KVi(q~i) respectively. 
Figure 4.2 shows a block diagram of the F S T PID Controller. 
In order to tune the gains according to the input, a conceptual Fuzzy Logic Tuner 

(FLT) is defined. The conceptual F L T is composed by one input \x\ and the corre-
sponding output y (see figure 4.2), which can be seen as a static mapping H defined 

The universes of discourse of |x| and y are partitioned into three fuzzy sets: B 
(Big), M (Medium) and S (Smalt) each described by a M F . Trapezoidal M F s are used 
for input variables and singleton M F s for output variables, this is illustrated in figure 

(4.3) 

by 

(4.4) 
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Figure 4.3: F L T parameters. 

4.3. The corresponding Small, Medium and Big M F s for the input variable |x| are 
denoted by 

(4.5) 

For the output variable y, the corresponding singleton M F s to Small, Medium and 
Big are represented by 
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(4.6) 

For the case of F S T controllers the F L T is a single-input, single-output fuzzy logic 
system. For the controller of each link there are three FLTs , one for each gain of the 
P I D portion of the controller. The input for each F L T (denoted by |x|) is always the 
absolute error of the current link \q~i\. The output of the F L T (denoted by y) is the gain 
of each component of the PID . The defuzzification method used is Weighted-Average 
and the fuzzy model is Sugeno. 

This controller is much more complex than the PID , to optimize the fuzzy systems 
many parameters must be set correctly and no theoretical method is known to accom-
plish this task in one step. It is an iterative procedure of trial and error and therefore 
a G A is a well suited method to search the optimal parameters or at least the closest 
possible in a finite time search. 

4.2 Velocity Controllers 
A basic problem in control of robot's dynamics is the so-called motion control, 

where a manipulator is requested to track a desired position trajectory. This section 
describes the velocity controllers, which accomplish this task. Two different velocity 
controllers are presented in this section, the F S T P D + controller and the F S M Con-
troller. In chapter 5 the methodology to optimize parameters settings and performance 
comparison of both controllers is presented. 

4.2.1 Fuzzy Self-Tuning PD+ Controller 
When nonlinearities are not severe, local linearization can be used to derive linear 

models which are approximations of the nonlinear equations near the operating point 
[9]. The manipulator control problem cannot be linearized because no linearization 
valid for all regions can be found. Instead of linearizing for an operating point, the 
controller can be designed to cancel the non-linearity by compensating the robot's 
dynamics using the developed model of the system. 

Computed Torque Method 

Using the system model in the control law to linearize the system is known as 
the computed torque method, first proposed in [29]. A control scheme of this type 
might be called a linearizing control law, since it uses a non-linear control term to 
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cancel a non-linearity in the controlled system such that the overall closed loop system 
is linear. In a linearizing control law scheme, there exists a servo law (commonly a 
linear controller) and a model-based portion with the model of the non-linearity of the 
system. 

The problem of controlling a robot manipulator is a multi-input, multi-output 
(MIMO) problem. A vector of desired joint positions, velocities and accelerations are 
given and the control law must compute a vector of joint actuator signals. The lineariz-
ing control law scheme is applicable and appears in a matrix-vector form. Equation 4.7 
shows a generic linearizing control law: 
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where, for a system with n controlled variables, F, F' and /? are n x 1 vectors and a is 
an n x n matrix. The matrix a is chosen to decouple the n dynamic equations of each 
controlled variable. If the system model is accurate, the linearization and decoupling 
will compensate correctly the system and the servo law can be denned in a simpler way. 
A n example of using a P D for the servo law is given by the equation below: 

where Kp and Kv are n x n diagonal matrices of constant gains, E and E are n x 1 
vectors of errors in position and velocity respectively. 

Ideally, the non-linearities in the system would be cancelled with the model-based 
portion of the linearizing control law and the servo law would make the system a linear 
closed loop system. A practical problem arises when the parameters and the structure 
of the non-linear system are not known accurately. 

Fuzzy Self-Tuning P D + Control for Robot Manipulators 

Taking only the internal forces of the system (ignoring friction terms), the manip-
ulator dynamics can be written as equation 4.9. 

As has been described in the last section, the linearizing control law must have 
the following shape: 

where r is the n x 1 vector of joint torques. Terms for the model-based portion of the 
control law are chosen from equation 4.9 as follows: 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 



The servo law can be defined similarly as equation 4.8 for the robot manipulator 
in matrix form: 

38 

(4.12) 

finally, substituting equation 4.13 into 4.10 the linearizing control law is given by the 
next equation: 

(4.13) 

So in the closed loop system with the linearizing control law, the next equation 
describes the system: 

(4.14) 

(4.15) 

which ideally behaves as a second-order linear system. 
W i t h both portions of the linearizing control law, the controller just defined is 

known as Computed-torque Control. It was introduced in [29] and a fuzzy supervisor 
scheme was presented later in [17]. This controller is robust and can handle very well 
some tasks, but its performance is enhanced when gains are allowed to vary according 
with a fuzzy logic system which depends on the robot's states. This controller was 
introduced in [35], with the name of Fuzzy P D - h Control law for this controller is 
simplified to: 

(4.16) 

where Kp(q) and Kv(q) are n x n diagonal positive definite matrices whose diagonal 
entries are denoted by KPi(qi) and KVi(qi) respectively. 

This controller is similar as the F S T PID, both use the same kind of F L T for tuning 
online the servo control law. For convenience and standardization, this controller will 
be named Fuzzy Self-tuning P D + in this document, given its similarities with the 
structure of the F S T PID . The input for each F L T is the absolute error of the current 
link \q~i\ and its output is one of the two gains of the P D portion of the controller for 
each link, therefore two F L T s are needed for this controller. 

A block diagram of this controller is shown in 4.4. In this figure the FLTs are 
represented by a single one-input, two-output block, because the input for both fuzzy 
systems is the same and fuzzy logic systems can have as many inputs and output as 
needed. 



Figure 4.4: F S T P D + block diagram 

4.2.2 Fuzzy-Sliding Mode Controller 
The sliding mode control is a method derived from phase plane analysis. Phase 

plane analysis is a graphical method for studying dynamic systems, which was intro-
duced in the late 1800's by mathematicians such as Henri Poincare. The idea of the 
method is to generate, in the state space of a second-order dynamic system, motion tra-
jectories corresponding to various initial conditions and then to examine the qualitative 
features of the trajectories. 

The phase plane is a graphical representation of the state space of dynamic sys-
tems. For the case of second-order systems, the phase plane is a two-dimensional plane 
with the process variable in the x axis and its derivative in the y axis. A further de-
scription and analysis of phase planes and sliding surfaces in non-linear systems can be 
found in [5]. 

Sliding Mode Control for Robot Manipulators 

The vector containing the controlled variable (angular position) states for a single 
joint of a robot manipulator is defined by 
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(4.17) 

and let q = qd — q be the tracking error in the variable q, thus 

(4.18) 

represents the tracking error vector of the system states (controlled variable and its 
further derivatives). A time-varying surface S(t) is defined in the state-space R{n) by 
the scalar equation s(qs; t) = 0, where 



(4.19) 

and A is a strictly positive constant, which is interpreted as a line in the phase plane 
of slope —A and containing the point = [qd qd]T, as illustrated in figure 4.5. 

Figure 4.5: Sliding surface in a phase plane. 

Notice that qs refers to a vector of system states of a single variable, while q used 
in earlier sections is a vector of angular positions for all joints (in this case are two). 
If only two states are considered for control (n = 2) i.e. position and velocity of link 1 
and 2, then the following expression for a 2 D O F manipulator is valid 
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(4.20) 

where s is a vector of sliding surfaces for each joint; q and q are 2 x 1 vectors containing 
the angular velocity and position errors respectively for joint 1 and 2; A is a 2 x 2 
diagonal matrix with constants defining slopes in the phase planes for joint 1 and 2. 

Given initial conditions qd{0) = q(0), the problem of tracking q = qd is equivalent 
to that of remaining in the surface S(t) for all t > 0. When s — 0, it represents a linear 
differential equation whose unique solution is q = 0. Therefore, the problem of tracking 
the n—dimensional vector qd can be reduced to that of keeping the scalar quantity s 
at zero. The simplified 1st—order problem of keeping the scalar s at zero can now be 
achieved by choosing the control law such that outside S{t) the following condition is 
satisfied 

(4.21) 

where rj is a strictly positive constant. The last equation states that the "distance" 
to the surface (s 2) decreases along all system trajectories. Thus, all trajectories point 



towards the surface S(t), once on the surface the system trajectories remain on the 
surface. The system's behavior once on the surface is called sliding regime or sliding 
mode. It can be said that the sliding condition makes the surface an invariant set. 

The necessary condition for the dynamics to be in sliding mode is 
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(4.22) 

which helps satisfy in part equation 4.21. Equation 4.1 can be rewritten as follows 

(4.23) 

thus, the condition for the dynamics to be in sliding mode using equation 4.23 are given 
by 

(4.24) 

Solving equation 4.24 for the control input, an expression for T called equivalent 
control T E Q is obtained: 

(4.25) 

if the dynamics were exactly known, T E Q would maintain s = [0 0]T. It can easily seen 
that control laws given by equations 4.14 and 4.25 are pretty similar. 

In order to satisfy sliding condition 4.21 in the presence of uncertainty on the 
system model, a discontinuous term r ' is added to T E Q across the surface s = 0: 

(4.26) 

where r ' = k sign(s). In the last equation, k is a 2 x 2 diagonal matrix with gains 
for the controller of each link, term sign(s) returns a 2 x 1 vertical vector containing 
the sign of S{ for each link. The term sign(x) denotes the sign function in equation 
3.45. 
this is illustrated in figure 4.6. By choosing hi to be large enough, equation 4.21 is 
satisfied. Equation 4.26 can be seen as an intuitive feedback control strategy that 
means "if error is negative, push hard enough in the positive direction". 

Fuzzy-Sliding Mode Control for Robot Manipulators 

When the sign function is used, chattering is commonly found when the system is 
close to the sliding surface, see figure 4.7. Chattering is undesirable in most applications 



Figure 4.6: Discontinuous term of equation 4.26. 

since it involves high control activity, it could excite high frequency components not 
considered in the system model and make it unstable in the worst case. 

Figure 4.7: Presence of chattering as the result of control switching. 

For this reason, a fuzzy system softens the output of the controller so the system 
remains within the sliding surface without drastic moves from the controller. This 
controller was introduced in 1992 in [12, 16] with the name of fuzzy-sliding mode 
controller. It was further studied in [28]. This controller is illustrated in figure 4.8. In 
[3] a F S M controller is used to control in simulation a 6-DOF robot manipulator. 

The fuzzy system is composed by one input x and the corresponding output y, 
which can be seen as a static mapping H defined by equation 4.27, slightly different 
from that of the F L T . 
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Figure 4.9: F S M controller parameters. 

The universes of discourse of x and y are partitioned into three fuzzy sets: N 
{Negative), Z {Zero) and P {Positive) each described by a M F . Trapezoidal and trian-
gular M F s are used for input and output variables, this is illustrated in figure 4.9. The 
corresponding Negative, Zero and Positive M F s for the input variable x are denoted by 

(4.28) 

For the output variable y, the corresponding singleton M F s to Negative, Zero and 
Positive are represented by 

43 

(4.27) 



(4.29) 

The fuzzy inference method is the Mamdani model and the denazification method 
is the center of mass. For the fuzzy system just described, the inference rules are 
designed such that if the control variable is above the sliding surface, the control signal 
is negative; if it is below the sliding surface, the control signal is positive. Rules in the 
fuzzy system are defined as follows: 

which is an extension to the sliding mode with boundary layer [4]. The function 
KFuzzi(si) with M F s defined by 4.28 and 4.29 may have a shape like figure 4.10. Bound-
ary values for r / are given as an effect of the trapezoidal output M F s . 
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Term r ' in equation 4.26 is now given by Kpuzz(s). It is a vertical vector of two 
elements, the output of the fuzzy systems for both links. Input for the fuzzy system in 
this case is the value for a single link and the output is the discontinuous term T[ of 
the torque applied by the controller. The F S M control law can be expressed as follows: 

(4.30) 



Figure 4.10: Possible shape of function KFuzz.(Si). 
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Chapter 5 

Simulation Results 

This section presents the results of the simulation for the controllers that are 
being compared. The equations of the robot's dynamics were modeled in M A T L A B -
Simulink and the Fuzzy Systems defined were simulated using the M A T L A B - F u z z y 
Logic Toolbox. 

As established before, two position controllers and two velocity controllers are 
compared for similar tasks. In order to make a comparison as fair as possible for the 
controllers of each kind, a methodology for the optimization and testing process is 
proposed. This process is described as follows: 

1. Optimization. In this step the parameters for the controller of each link are 
optimized with the G A . As the intention is to use the controller in all the motion 
range, it will be optimized to work in the regions known to be hard to handle. 
This is when any link is in the positions 90° and 270° respect to the negative y 
axis. The controller of each link is optimized separately. 

The G A will try to maximize the negative of the Integral Absolute Error (IAE) 
criterion for all controllers. The fitness function for all controllers is thus given 
by the following expression: 
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(5.1) 

Maximizing the negative of the I A E means try to make it as closer to zero as 
possible. For position controllers, the error for the I A E calculation is the difference 
of the response of a model reference with respect to the response of the link. The 
error for the I A E calculation for the optimization of velocity controllers is the 
difference of the desired position trajectory with respect to the position of the 
link. 

Figure 5.1 shows a block diagram illustrating the fitness evaluation for controllers. 
The chromosome of each individual is first decodified, then a simulation of the 
respective link of the robot arm with the controller defined by the decodified 



Figure 5.1: Fitness assignment for optimization of controllers. 

parameters is done and finally performance of the system is measured. The 
fitness is assigned for each individual in the population. 

2. Performance tests. Once optimized, both controllers are tested in normal 
operation conditions, i.e. no parameter variation and no perturbations. The 
references given for both links are along all the motion range and both links are 
moving at the same time. This is the main test for both controllers because 
following the references given in this step is the least expected performance. 

3. Robustness tests. In this last step, the robustness of each controller is evaluated 
by modifying the operation conditions for which the controller was optimized. 
Two kind of tests are performed, one is varying of the robot's internal parameters 
and the other is by giving the system an external perturbation. 

For all controllers, the final value of parameters optimized is reported in Appendix 
A . A test to illustrate the sliding surface in a phase plane for the F S M controller and 
the P I D controller with unsaturated torque signal can also be found in Appendix A . 

5.1 Position Controllers 
This section presents the simulation results for the PID and F S T PID controllers. 

The performance of both controllers is compared one against the other, so the method-
ology described above is followed. Figure 5.2 shows a block diagram of the steps to 
compare the two position controllers considered. 

47 



Figure 5.2: Methodology applied to compare Position controllers. 

5.1.1 Model Reference for Position Controllers 
One thing that can be noted from the robot's dynamic model is that it can be 

approximated to a second-order system in small regions of the motion range. This 
means that small moves tend to behave as a linear second-order system, but in the 
large, the system is non-linear. So a linearization the system and design of a controller 
for a linear system is not recommended. Instead, the controller can be adjusted to 
achieve a linear behavior of the system for all the motion range. 

Based in this idea, the controller is optimized by the G A so the system behaves 
the most closely to a second-order linear system. The closed loop transfer function of a 
second-order system is given by equation 5.2. For a deeper description of second-order 
linear systems refer to [27]. 
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(5.2) 

Another desired behavior of the system is to have very little or no overshoot, so 
the second-order reference system is designed to be critically damped, this means a 
damping ratio of £ = 1. The undamped natural frequency is arbitrarily chosen to be 
wn = 5 for link 1 and wn = 7 for link 2. 

When the G A optimizes position controllers, the system performance is evaluated 
using the I A E with respect to the system model as follows: 

(5.3) 

this is different to the error defined previously for the controller of each link, which 
remains as g,- = — <fc. 

The goal of the optimization of position controllers is that the system shows a 
transient response close to the response of a second-order linear system. If the error for 
the I A E calculation were evaluated with respect to the position reference, the transient 
response may be faster and more accurate but also more likely to have overshoot or 



Table 5.1: Parameters of the G A used to optimize the PID controllers. 

Table 5.2: Parameters adjusted by the G A for the PID controller of each link. 

oscillation when approaching the reference. Overshoot and oscillation are not desired 
for this application, therefore must be minimized. To avoid torque saturation is not 
one of the goals of the optimization. 

5.1.2 Simulation Results for the PID Controller 
Optimization of Parameters for the PID Controller 

As described above, the first step in the methodology for comparing position 
controllers is the optimization of the controller's parameters. For this purpose a G A 
with the parameters shown in table 5.1 is used to optimize controller for link 1 and 
link 2. Table 5.2 reports the parameters modified by the G A and its string length for 
the P I D controller. For each PID controller the G A adjusted the Kp, Kv and Ki gains, 
which for simplicity were defined by the same string-length. The decodification for 
these parameters was done using equation 2.14. 

The references for which the controller is optimized are intended to be so that the 
controller handles the most non-linear regions of the motion range, this references are 
given by equations 5.4 and 5.5. 

(5.4) 
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(5.5) 

Also, to ensure the controller can also handle parametric uncertainties, the mass 
of link 2 (m,2) changes from 100% to 300% in t = 6 sec. while optimizing link 1 and in 
t = 4 sec. while optimizing link 2. Controllers for each link are optimized separately, 
this means that each link's controller is optimized while the other link remains static 
but coupled. 

Performance of the controller for each link achieved after optimization is shown in 
figure 5.3. Both links show a transient response close to the model reference but have 
steady-state error and overshoot. 

Performance tests for the PID Controller 

The next step after the optimization of the controller is to test it in normal op-
eration conditions for a wider operation range. This is intended to see if now that the 
controller has been optimized to handle hard regions, it generalizes its behavior to other 
points in space. One important detail is that in normal operation conditions both links 
wil l probably move coupled at the same time, so these tests are performed giving ref-
erences for both links simultaneously. As commented before, no external perturbation 
or parameter variation is present in these tests. 

The simulation results for this step are shown in figure 5.4. The reason to make link 
2 follow the same references twice is because it can accomplish following the references in 
less time than link 1 and still needs to be moving while link 1 is moving. References for 
this test are given by equations 5.6 and equations 5.7 for link 1 and link 2 respectively. 



From these results it can be noted that link 1 and link 2 approach to the given 
references but accuracy is not the best. Steady state error (ess) is 2.9° for link 1 and 
1.6° for link 2. A good accuracy would be ess < 1°, but for both links this was not 
possible. This inaccuracy is mainly because the G A did not optimize the controllers to 
be accurate, but to have an optimal behavior considering references in all the motion 
range. 

The torque plots show that controller for link 1 makes soft moves and its torque 
signal is saturated in few occasions. In the other case, controller for link 2 saturates 
the actuator more times and makes more drastic moves than link 1. Appendix A shows 
the torque signal if the actuators were not saturated in simulation. 

Robustness tests for the PID Controller 

The robustness tests are performed to see if the controller is able to handle different 
conditions that can be present while performing some task. Simulation results for the 
P I D controllers performing these tests are presented in figure 5.5. 

The first robustness test is an external perturbation as shown in figure 5.5(a,b). 
A n external perturbation of 20° @ t — 2 sec. is being applied to both links. The 
references are q^i = 90° and = 0° all the time for link 1 and link 2 respectively. 
Both links start the simulation in the same positions of its references and move coupled 
at the same time. 
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Figure 5.4: P I D performance test. Response of: a) link 1; c) link 2. Torque for b) link 
1; d) link 2. 
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The second kind of robustness test is a parameter variation, this is accomplished 
by changing link's 2 mass m2. For this test, m2 can be described as a function of time 
given by equation 5.8. The references are given the same for both links and defined 
generically by equation 5.9. The same function is applied for testing controller of link 
1 and link 2. Different from the perturbation test, now each link moves while the other 
one remains static. Figure 5.5(c,d) show performance of controllers for link 1 and link 
2 respectively for this test. 

In the perturbation test, performance of this controller for link 1 is poor, given by 
ess = 2.6° (being ess < 1° a good accuracy range). Controller for link 2 is much better, 
having an accuracy within the range ess < 1°. Both links separate from its reference at 
the start of the simulation because position controllers don't compensate the control 
signal automatically with the gravity matrix as the velocity controllers do. 

For the parameter variation test, performance for the controller of link 1 is poor 
near the 90° region, in the worst case e s s = 5.2°. As m,2 increases, the accuracy of 
controllers for both links decrease heavily. Link 2 is less affected than link 1 when 
m2 changes, the worst case was ess = 3.3°. From these tests, it can be observed that 
controller for link 1 doesn't show good robustness, controller for link 2 show better 
performance for the perturbation test but not so good in the parameter variation test. 
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Figure 5.5: PID robustness test. External perturbation for: a) link 1; b) link 2. 
Parametric variations for: c) link 1; d) link 2. 
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Table 5.3: Parameters that define a F L T . 

5.1.3 Simulation Results for the FST PID Controller 
Optimization of Parameters for the F S T PID Controller 

Following the methodology proposed, the F S T PID controller is optimized with a 
G A . Table 5.3 contains a list of parameters that define a F L T which are modified by the 
G A . The input M F s are defined by p = {pi ,P2,P3,P4} and the output singleton M F s 
by k = {ki, &2, These parameters are coded each in a substring and concatenated 
into a string to be handled by the G A . 

In order to decode the parameters from the string, first p\ is obtained using equa-
tion 2.14 and the next three parameters are decoded and adjusted as 
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(5.10) 

where dPn is the decodified value of each parameter and n = 2,3,4. This results in 
Pi < P2 < P3 < Pi-, which is a necessary condition because the M F s must cover the 
entire universe of discourse. 

For the output singleton M F s , it is needed to obtain gains that satisfy the restric-
tion > &2 > k\. Therefore the decodification and adjustment for these parameters 
is 

(5.11) 

where d ^ d ^ G [0,100] are the decodified values using equation 2.14. 
The RuleOrder parameter, refers to the order of the rules, which can be selected 

as shown in table 5.4. In [22] the same F L T is optimized by a G A , but rules were fixed 



Table 5.4: Rules selected from RuleOrder. 

Table 5.5: Parameters of the G A used to optimize the F S T PID controllers. 

following the next reasoning. For a big position error we need to apply a small kp in 
order to avoid torque saturation. The first rule specifies that for a small position error 
we should apply a big kp in order to reduce this error. For the derivative gain kv, a 
similar criterion is used taking into account that for big position errors it is suitable to 
have small damping, to avoid an oscillatory response. In the case of integral gains a 
inverse criterion is used taking into account that for big \q\ it is suitable to have big ki 
to reduce the position error. As the intention is not to limit optimization, rules were 
also free to be modified by the G A . 

So, for the Controller of a single link there are 8 parameters for each of the three 
F L T . The resulting string that codifies parameters for the three FLTs of each joint has 
39 x 3 = 117 bits. 

Parameters of this G A are slightly different from that used for the PID, see table 
5.5. A larger population size is used because there are more parameters to be adjusted, 
so more solutions (individuals in the population) must be processed in parallel to find 
the optimal. More parameters to be adjusted mean an increase in the string length 
handled by the G A and so in the complexity of the problem. 

For the optimization of the F S T PID, the same conditions are used as for the PID, 
i.e. references and changes in m2. The G A evaluates the performance of each solution 
using the I A E of the system with respect to the model reference. Performance of this 
controller after optimization is shown in figure 5.6. 
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Time (sec.) Time {sec) 

a) b) 

Figure 5.6: F S T P I D with optimized parameters. Response of: a) link 1; b) link 2. 
Performance tests for the F S T PID Controller 

As done for the PID , the F S T PID is now tested in normal operation conditions 
with no external perturbations or parameters change. The same references are given for 
this controller as shown in figure 5.7. Now link 1 reached the specified references with 
much more accuracy (ess = 1.6°) than the PID controller (ess = 2.9°), but still is out 
of the range ess < 1° of a considered good accuracy. Controller for link 1 show better 
performance criterions than the PID. Performance for link 2 is good but no better than 
when using the P I D controller for all criterions in this test. For both links the torque 
plots show more control signal activity but actuators are saturated almost the same 
times. 

Robustness tests for the F S T PID Controller 

After the performance tests, robustness tests are performed for the F S T PID. The 
same test done for the P I D is performed for the F S T PID, figure 5.8 show the simulation 
results for this controller. 

Performance in the presence of an external perturbation was almost the same for 
link 1 than when using the PID (see table 5.6). For link 2 performance is worse than 
when the PID was tested, having an increase of the e s s from 0° to 1.1°. This test shows 
that the P I D is much better in this case for link 2. When varying 7712, link 1 and 2 
show better evaluation than the PID in all performance criterions. 

5.1.4 Position Controllers Comparison 
This section summarizes the results obtained for tests performed on the position 

controllers. From every test four different criterions are obtained to make a comparison 
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Figure 5.8: F S T P I D robustness test. External perturbation for: a) link 1; b) link 2. 
Parametric variations for: c) link 1; d) link 2. 
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Table 5.6: Performance Comparison of Position Controllers 

between the controllers. For the ess units are degrees, unlike commonly expressed (as 
a percentage), because changes in references are not the same every time. Therefore 
the maximum ess along the simulation time is reported instead. Similar to ess, the 
Settling time (ts) is taken when the link remains within the 0.5° region close to the 
reference (commonly taken when the link remains within 2% of its reference). This 
last parameter is only used for the robustness test. Table 5.6 reports values for the 
evaluation criterions. 

Based in the table, for link 1 the F S T PID controller is superior to the PID in 
every test. For link 2 the performance is better for the F S T PID than the PID only 
in the parameter variation test. This suggests that a F S T PID controller is better for 
link 1, while for link 2 is the PID. 

5.2 Velocity Controllers 
Similar to the Position Controllers, a comparison of velocity controllers is pre-

sented in this section. Now a F S T P D + controller and a F S M controller will be 
compared one against the other following the methodology proposed. As for Posi-
tion controllers, the methodology applied for Velocity controllers is illustrated in figure 
5.9. 

As commented before, in the optimization step the G A will try to set the con-
troller's parameters so that the negative of the I A E is maximized. The error for the 
I A E calculation in the optimization of velocity controllers, is given by the difference 
between the desired position trajectory and the angular position of each link as follows: 
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Figure 5.9: Methodology applied to compare Velocity controllers. 

Table 5.7: Parameters of the G A used to optimize the F S T P D + controllers. 

5.2.1 Simulation Results for the FST PD+ Controller 
Optimization of Parameters for the F S T P D + Controller 

As for the P I D and the F S T PID , an optimization of the F S T P D + controller is 
done in the first step. This controller is similar to the FST PID in that it uses the same 
F L T structure, (see fig. 4.3, table 5.3 and 5.4) but only two are needed to adjust each 
of the P D gains (kp and kv) in real time. Table 5.7 lists the parameters of the G A used 
to optimize this controller. 

References are also similar as those used for the optimization of position controllers 
(90° and 270°), but instead of a drastic reference change, a ramp is used to move the 
references from the actual point to the next. Ramps with velocity of 200°/sec. and 
300° I sec. were used for the references of link 1 and link 2 respectively. Mass of link 2 
m 2 changes from 100% to 300% in t = 3.5sec. when optimizing both links. References 
for both links are listed in table 5.8. 

Response of the system using this controller after optimization is shown in figure 
5.10. Both links present overshoot no matter if m.2 is increased and ess is less compared 
to the results of the optimization of position controllers. 
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Table 5.8: References for velocity controllers in the optimization process. 

Figure 5.10: F S T P D + with optimized parameters. Response of: a) link 1; b) link 2. 
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Table 5.9: References for velocity controllers in performance tests. 

Performance tests for the F S T P D + Controller 

As for the position controllers, this controller is tested in normal operation condi-
tions for references different from which it was optimized. Links also move coupled at 
the same time with no external perturbation or parameter variation. Ramps for refer-
ences in this test are slower than for the optimization (50°/sec. for link 1 and 100°/sec. 
for link 2), the intention is that the conditions of the optimization are harder to handle. 
Table 5.9 details the references for link 1 and link 2, the former executes the cycle only 
once and the latter does it twice. The reason for which link 2 follows the references 
twice is the same as for the position controllers. 

Figure 5.11 shows the results for this test, both links follow accurately the refer-
ences, with ess = 0.0° for link 1 and ess = 0.1° for link 2, which is a good accuracy 
{ess < 1°)- Overshoot in the worst case was 0.6° for link 1 and 1.1° for link 2. Torque 
plots show drastic moves and the actuators are saturated in several ocassions. 
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Figure 5.11: F S T P D + performance test. Response of: a) link 1; c) link 2. Torque for 
b) link 1; d) link 2. 
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Table 5.10: References for velocity controllers in robustness tests. 
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Robustness tests for the F S T P D + Controller 

The last step for evaluating this controller is the robustness test, which is also 
similar to that made for the position controllers. 

The external perturbation test is exactly the same performed to earlier controllers, 
20° @ t = 2 sec. being applied to both links at the same time. References are static 
and defined as % i = 90° and g<a = 0° along the simulation time for link 1 and link 2 
respectively. Figure 5.12(a,b) show results for this test. 

For the parameter variation test similar references are given as for the position 
controllers. Table 5.10 lists the references for this test which are repeated three times, 
one cycle for each value of m,2- The same velocity as the normal operation conditions 
test (50°/sec. for link 1 and 100°/sec. for link 2) is used. Link's 2 mass m 2 is a function 
of time denned by equation 5.13 for link 1 and equation 5.14 for link 2. Figure 5.12(c,d) 
show performance of controllers for link 1 and link 2 respectively. 

(5.13) 

(5.14) 



Figure 5.12: F S T P D + robustness test. External perturbation for: a) link 1; b) link 2. 
Parametric variations for: c) link 1; d) link 2. 

This controller shows a superior performance than the position controllers in the 
external perturbation test. The settling time is very low compared to position con-
trollers, ts = 0.4sec. for link 1 and ts = 0.3sec. for link 2. Accuracy is very good, 
having ess = 0.0° for both links. 

In the parameter variation test, steady state error and overshoot are present when 
m2 is 200% and 300% of its original value. For link 1 overshoot was 4.0° and e 5 S = 2.8° 
which are high, while for link 2 overshoot was 2.1° and ess = 1.5° These last results on 
performance criterions are high, but also the parameter change. 

5.2.2 Simulation Results for the F S M Controller 
Optimization of Parameters for the F S M Controller 

The F S M controller is composed of a sliding surface defined by A and a fuzzy 
system denned by pi, k\, k2 and A;3 as shown in figure 4.9. These parameters are listed 
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Table 5.11: Parameters adjusted by the G A for the F S M controllers. 

Table 5.12: Parameters used by the G A to optimize the F S M controllers. 

in table 5.11 along with the length of the string that codifies it in the G A . 
The decodification and adjustment for k\, k,2 and ks is similar as for the FLTs . It 

is done by the following equation: 

where dfc2,<4, £ [0,100] are the decodified values using equation 2.14. 
This controller is optimized using the G A with parameters listed in table 5.12. The 

same conditions as for the F S T P D + are used, i.e. references and m2 increment. After 
the PID , this controller is the one with less parameters and therefore its chromosome 
length and population size are smaller than for the F S T PID and the F S T P D + . 

Response of the system after optimization is shown in 5.13. The controller makes 
the system move very close to its reference. The overall performance is very similar to 
the F S T P D + controller at least in this step. 

Performance tests for the F S M Controller 

Once optimized, the next step according to the methodology is testing the con-
troller in normal operation conditions. The same references are given to the system and 
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a) b) 

Figure 5.13: F S M with optimized parameters. Response of: a) link 1; b) link 2. 

the response is reported in figure 5.14. This test also shows that this controller behaves 
almost the same as the F S T P D + controller, with no change in ess and overshoot only 
0.1° less for both links. Torque plots are also very similar. 

Robustness tests for the F S M Controller 

This section presents the robustness tests performed to the F S M controller. Con-
ditions and references are the same as for the F S T P D + controller, shown in fig.5.15. 
Results are very similar than for the FST P D + controller. When an external perturba-
tion is presented ts is only enhanced for link 1 in O.lsec, for link 2 remains the same, 
accuracy is also very good with ess = 0.0° for both links. 

For link 1, the overshoot is enhanced in the parameter variation test, going from 
4.0° when using the F S T P D + to 2.8° with the F S M , for link 2 only decreases 0.1°. 
Also, accuracy is enhanced for link 1 going from a ess — 2.8° when using the F S T P D + 
to a ess = 2.0° with the F S M , for link 2 is also enhanced but only a change of 0.1° less. 

5.2.3 Velocity Controllers Comparison 
A comparison of the velocity controllers is presented in 5.13. The same criterions 

measured for the position controllers are measured for the velocity controllers. From 
this table, the F S M controller has a better evaluation than the F S T P D + in every 
criterion for both links. Although this difference, behavior is almost the same and 
both controllers seem to be much more robust than position controllers, as the external 
perturbation test suggests (which is the same for both type of controllers). 

68 



Table 5.13: Performance Comparison of Velocity Controllers 
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Chapter 6 

Conclusions 

Results obtained after optimization of controllers presented in the last chapter 
show that the G A successfully optimized both kind of controllers. The G A started 
from random parameter settings for all controllers, knowing nothing about how to set 
these parameters correctly. Setting the controller's parameters empirically would have 
been a hard job and doubts about the good setting of the parameters would remained. 
Controllers comparison was done as fair as possible for each kind of controllers, i.e. 
same tuning procedure, same optimization objective and same testing conditions. 

Position controllers show less accuracy and more error compared with velocity 
controllers, but its structure does not involve the compensation of dynamics based 
in the model of the robot. Compensation of the robot's dynamics involve matrix 
multiplication, which can be costly in terms of computer operations. Knowledge of 
the robot's parameters is also needed to compute the compensation, but is not always 
available or precise. However, velocity controllers show good robustness in the presence 
of model uncertainties. 

Even, velocity controllers have more information about the desired output of the 
system than position controllers. Velocity controllers receive the desired angular posi-
tion qd, the desired angular velocity qd and the desired angular acceleration qd. Posi-
tion controllers are only guided by the desired angular position qd (the desired angular 
velocity qd is always zero). 

6.1 Discussion about Position Controllers 
It is shown from table 5.6, that the F S T PID controller is better for link 1 than 

the P I D controller in all cases. While for link 2 works better the PID controller when 
the robot works in normal operation conditions, but when parameters vary the F S T 
P I D performs better. 

These results can be justified according to the following points: 

• Link 1 is heavier and bigger than link 2, its non-linearities in the dynamics are 
harder and a non-linear controller is neccesary to control this link. 
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• Using a non-linear controller for link 2 only increases the total complexity of the 
system (robot dynamics + controller), making it more difficult to be optimized. 
A non-linearity is added to the system from the point of view of the G A . 

A n interesting point about the parameters of position controllers after optimiza-
tion (see appendix A) is that the integral gain K i in both PIDs ended with the minimum 
possible value, within the specific range. In the F S T PID, the K i f t i z z gain also has the 
minimum value in the output M F for the controller of link 1, while for link 2 is not 
the minimum but is small (2.1 in the range [0.1 250]). 

For the integral gains in the F S T PID , the order of rules can be chosen by the G A 
with parameter RuleOrder. This parameter is decodified from a single bit (1 bit from 
a 117-bit string), therefore it is hard for the G A to test the different combinations of 
this parameter with the others, which could lead to a quick convergence into a local 
maximum. 

Maybe RuleOrder — 0 for the case of integral gains and different values for the 
parameters of M F s could lead to a better performance, but only empirical knowledge 
supports this inference. However, from the simulation results the G A suggests that 
a PD-based controller may be a better choice for position tasks, when the desired 
deynamic behavior of the links of this particular robot is similar to a second-order 
linear system. 

6.2 Discussion about Velocity Controllers 
Table 5.13 shows the performance criterions comparison for the two velocity con-

trollers considered. It can be seen that both controllers show almost the same perfor-
mance for both links in all tests, except in the parameter variation test, in which the 
F S M controller was better than the F S T P D + controller. 

From the performance criterions table, at least two relevant conclusions can be 
drawn: 

• The G A successfully optimized both controllers for the specific task. If the perfor-
mance criterions were significantly better for one controller than the other, some 
doubts would remain about the reliability of the optimization method. However, 
the G A successfully optimized these controllers for the specific objective because 
the final result, regardless of the control structure, was similar. This is also one 
of the Hypothesis intended to be proved. 

• Both controllers have the same capabilities or are equivalent when its specific 
parameters are set in a certain way, in this specific application. Its structure is 
similar, but both are derived from different theories. 
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6.3 Contributions of this research work 
In the literature, there are no reports of comparison of different controllers pre-

viously optimized for the same task. Most of the reports compare a single controller 
tuned by different methods or two or more controllers optimized empirically. Optimiza-
tion of different controllers of the same kind for the same tasks leads to a fair testing 
and comparison of their capabilities. So the comparison tests presented in this research 
are a contribution to the study of robot control. 

In the case of position controllers, the G A suggested that a PD-based controller is 
a better choice if the desired behavior of the system is similar to a second-order system. 
This is also a contribution because there are no reports that achieve the dynamics of 
the robot's links for position tasks to behave this way. 

For velocity controllers, the contribution is the optimization of the F S T P D + 
controller and the F S M controller for this application. Also the experimental results 
concluding that both controllers can have the same capabilities, given that performance 
reached after optimization for both was similar. However, the F S M controller is encour-
aged to be used in this application because there are less parameters to be adjusted, 
being a simpler problem to be optimized and having the same capabilities than a more 
complex controller, the F S T P D + . 

6.4 Further Work 
As a further work, it might be interesting to develop a controller derived from 

the Accuracy-Based Classifier System (XCS). A n X C S is an adaptable system whichs 
learns from the payoff it receives from the enviromnent after performing an action given 
some condition. Wi th this system in mind, Robot's states could be the condition and 
controller gains could be the action. A system model could also be derived from this 
method by using the X C S to learn the system model in parallel with the operation. 

The design and construction of an experimental 2 D O F robot manipulator is also 
considered to test the proposed controllers after they have been optimized. It could 
also be used as a test bed for other AI methods. 
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Appendix A 

Final Value of Parameters modified by the G A 

A . l Final Values for Parameters of Controllers 
Final values for parameters modified by the G A are reported in the next tables. For 

the PID controller, tables A . l and A.2 show the value of parameters after optimization 
for link 1 and link 2 respectively. 

Final values of parameters optimized for the F S T PID controller of link 1 and link 
2 are shown in A.3 and A.4 respectively. Figures A . l and A.2 show the shape of the 
input and output M F s represented by these values for link 1 and link 2 respectively. In 
tables A.5 and A.6 results for the F S T P D + controller are shown for link 1 and link 2 
respectively. For this controller, figures A.3 and A.4 illustrate the MFs of the FLTs for 
link 1 and link 2 respectively. 

Tables in which parameters for FLTs are defined, the final value of the param-
eters may not be within the specific range for that parameter. This is because the 
decodification of pi, p2, P3 and P4 is done using equation 5.10 shown below again: 
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(A.l) 

in which the decodified value of the current parameter is added to the value of the last 
parameters decodified. For the parameters fci, &2 and £3 the decodification is done by 
equation 5.11 as shown below again: 

(A.2) 

where d^d^ £ [0,100] are the decodified values using equation 2.14. By using this 
decodification ki and k^ can have final value higher than its range max. 

For the F S M Controller, the final value of parameters for link 1 and link 2 are 
shown in tables A.7 and A.8 respectively. The M F s for the fuzzy systems used in this 
controller are illustrated in figures A.5 and A.6 for link 1 and link 2 respectively. 



Figure A . l : M F s of FLTs of F S T PID Controller for link 1. 
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Figure A.2: M F s of FLTs of F S T PID Controller for link 2. 
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Table A . l : Final Values for the PID Controller of Link 1 

Table A.2: Final Values for the P I D Controller of Link 2 

Figure A .3 : M F s of FLTs of F S T P D + Controller for link 1. 
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Table A.3 : Final Values for the F S T PID Controller of Link 1 
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Table A.4: Final Values for the F S T PID Controller of Link 2 
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Figure A.4: M F s of F L T s of FST P D + Controller for link 2. 
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Table A.5 : Final Values for the F S T P D + Controller of Link 1 

Table A.6: Final Values for the FST P D + Controller of Link 2 
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Input MFs Output MFs 

Figure A.5 : M F s of the F S M Controller for link 1. 

Figure A.6: M F s of the F S M Controller for link 2. 

Parameter px is decoded with the use of equation 2.14. For parameters ki, k2 and 
k3 the decodification is the same as for the FLTs . 

Shapes of functions KFUZZI(SI) and KpUZZ2(s2) are illustrated in figures A.7 and 
A.8 for the controller of link 1 and link 2 respectively. 

A.2 Sliding Surface of the F S M Controller 
In order to illustrate the slope of the sliding surfaces in the phase planes for the 

F S M Controller, the following test was performed on the system. References were 
given for both links as shown in table A.9 , initial references were qd(0) = [0° 0 ° ] T and 
qd(0) = [0° 0 ° ] r . Initial positions for link 1 and 2 were q(0) = [20° 20°] T . 

The F S M Controller after optimization shows the response in the phase plane of 
q illustrated in figure A.9 for link 1 and link 2. In these figures the sliding surfaces are 
illustrated as dashed lines that cross the origin, which represent zero error in angular 
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Table A . 7: Final Values for the F S M Controller of Link 1 
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Table A.8: Final Values for the F S M Controller of Link 2 

Table A.9: References to illustrate sliding surfaces. 

position and velocity, or qds = [0 0] T . Slope for these sliding surfaces is given by the 
parameter A reported in tables A.7 and A.8 for link 1 and link 2 respectively. 

The same test was performed using the discontinuous function from equation 4.26 
(shown below again) instead of the fuzzy system, as the classical sliding mode controller 
was defined. Figure A.10 shows the response of the system in the phase plane for link 
1 and link 2 using the sliding mode controller with this function. It can be seen how 
chattering is present due to the hard non-linearity the relay function adds to the system. 
Gains for the sgn function were set empirically as kx = 50 for the controller of link 1 
and k2 = 5 for the controller of link 2. 

Transient response of the system is shown in figures A.11 and A.12 for the F S M 
Controller and the classical Sliding Mode Controller respectively. In torque plots ap-
plied by the classical Sliding Mode Controller (see figure A.12-c,d) it can be seen that 
chattering in the control signal is present in both links. 
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Figure A.12: Classical Sliding Mode. Response of: a) link 1; b) link 2. Torque for: c) 
link 1; d) link 2. 
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b) 

d) 

Figure A.13: PID with unsaturated torque. Response of: a) link 1; b) link 2. Torque 
for: c) link 1; d) link 2. 

A.3 PID with Unsaturated Torque Signal 
In order to illustrate the performance of a controller without torque signal satua-

ration, the PID experiment was modified for the test shown below. The P I D controller 
with saturated torque signal is now compared with the same PID controller but with 
unsaturated torque signal for both links. References are the same as in the perfor-
mance test for the PID controller (see chapter 5). Parameters of the controller are the 
resulting after optimization. 

Figure A.13 (a, c) show the transient response and the torque applied for link 
1. For link 2, figure A.13 (b, d) show the transient response and the torque applied 
respectively. 

Table A . 10 compares performance of the PID with saturated and unsaturated 
torque signal. The saturated torque signal is according to the capabilities of real direct-
drive motors, is the experiment reported in chapter 5 for the performance of the P I D 
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Table A . 10: Performance comparison of PID with saturated and unsaturated torque. 

in normal operation conditions. For link 1 almost the same performance is obtained, 
I A E is better if torque is unsaturated. For link 2, if torque is unsaturated, performance 
is enhanced in the overshoot criterion and I A E . 

Altough performance of the controller is better with unsaturated control signal, 
is not a significant performance enhancement. From torque plots, it can be seen that 
torque requested by the controller to the actuators is beyond the capabilities of real 
direct-drive motors. 
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