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Abstract

Fault diagnosis is a critical task for many real-world processes. The diagnosis problem is that of estimating the
most probable state of a process over time given noisy observations. For many applications, the complex dynamics
of the process requires reasoning with both discrete and continuous variables, so a hybrid model such as the jump
Markov linear Gaussian (JMLG) model is needed. The JMLG model has a set of discrete modes to represent the
fault states and a set of continuous parameters for the continuous variables.

Although diagnosis is a simple procedure in principie, it is quite costly even for processes that are compactly
represented, because the belief state is typically exponential in the number of state variables. Computing exact
diagnosis is an intractable problem. Therefore, we must use numerical approximation methods such as Particle
Filtering (PF).

PF is a state-of-the-art Markov chain Monte Cario method which can diagnose dynamic systems by approxi-
mating the belief state as a set of particles. PF sequentially computes an approximation to the posterior probability
distribution of the process states given the observations. This nonparametric approach has several advantages; it
can approximate any probability distribution and consequently can be used to monitor systems with changing or
uncertain structure.

Rao-Blackwellized Particle Filtering (RBPF) is a Particle Filtering variant that combines a PF for sampling
the discrete modes with Kalman Filters for computing the distributions of the continuous states. This reduces
the computational cost because the continuous states are represented by the sufficient statistics of the continuous
distributions.

In this research, we show that it is possible to enhance the RBPF algorithm to sample the discrete modes directly
from the posterior probability distribution. It is also possible to select the futes! particles before the sampling
step. These improvements result in a more efficient algorithm, look-ahead Rao-Blackwellized Partióle Filtering
(la-RBPF). La-RBPF essentially performs one-step look-ahead to select good sampling regions. We show that the
overhead of the extra processing per particle is more than compensated for by the decrease in diagnosis error and
variance.

La-RBPF provides several additional advantages. It requires fewer particles to achieve the same approximation
accuracy. Moreover, because the discrete modes are sampled from the posterior probability distribution, if a fault
state appears, la-RBPF will detect the fault no matter how low its prior probability distribution.

Another additional result of this research is a leaming method for the JMLG parameters. This modelling proce-
dure combines the Least Squares Estimation and Expectation-Maximization algorithms.

The proposed algorithms were intensively tested in several real-world systems having industrial characteris-
tics, and compared with the existing PF and RBPF algorithms. The results consistently demonstrated la-RBPF's
advantages.
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Chapter 1

Introduction

In this chapter I give a very brief and simple introduction to this research. For case of reading, citations, equations
and justifications are kept to a mínimum. Except for the motivation section, every following concept or idea is fully
discussed or analyzed in a later chapter.

1.1 Motivation

System monitoring and timely fault detection capabilities are critical requirements of many modern systems. For
years these features have only been of utmost importance in safety critical systems such as civil and military aviation,
or nuclear power plañís, etc. However, recently, other factors have been playing a major role in recognizing the need
for these capabilities in other industrial systems. For the time being, by the term fault we consider failures, errors,
malfunctions, deviation or disturbances in the functional process that can lead to undesirable or intolerable behaviour
of the process.

It is no surprise that the general problem of fault detection and isolation has received considerable attention in the
literature of reliability engineering, control engineering and computer science (the artificial intelligence community).
There are many reasons that have made the automatic fault detection and isolation and accommodation problem to
become an active área for research in a wide variety of industries and systems. Examples of contributing factors are:

• Processes in the chemical and petrochemical industrial are becoming larger and more complex. Associated of
this trend imply that each hour of down time is more expensive, and that the source of malfunction or fault is
more difficult to lócate. As industrial processes enlarge, the total amount of energy and material being handled
increases, making early and correct fault detection and diagnosis imperative both from the point of view of
the system safety as well as reduced manufacturing costs. The purpose of monitoring for faults is to reduce
the occurrence of sudden, disruptive, or dangerous outages, equipment damage, and personal accidents, and
to assist in the operation of the maintenance program.

• The increased level of sophistication of many industrial and consumer goods due to the advances in electronics
and computer technology, and the same time decrease in processor's costs. Today's automobiles are a good
example of this trend. The auto manufactures have incorporated a huge amount of electronics in recent cars.
Many functions such as anti-block brakes, security systems, traction control, temperature control, etc are
performed automatically.



• Autonomous underwater vehicles (AUV)and remotely operated vehicles (ROV) have been receiving increasine
attention over the last years due to their significant impact in several underwater operations, [Antonelli, 2003].
Examples are monitoring and maintenance of off-shore structures or pipelines, and exploration of the ocean
floor. The benefit in the use of unmanned vehicles is in terms of safety, due to the possibility to avoid the risk
of manned missions, and economic. Autonomous underwater vehicles are generally required to opérate over
long periods of time in unstructured environments in which an undetected failure usually implies loss of the
vehicle. It is clear that, even in case of failure detection, in order to termínate the mission, or simply to recover
the vehicle, a fault tolerant strategy, must be considered. In case of the use of remotely operated vehicles, a
human operator is in charge of remotely operated vehicles, a failure detection strategy would help the human
decisión making process.

• The usefulness of autonomous systems such as robots in hazardous or dangerous situadons is highly dependent
on their reliability [Visinsky et al., 1995]. Chemicals and radiation can damage robotic components, whereas
actions of malfunctioning robots can make environments more hazardous. As humans usually cannot enter
hazardous environments to repair or remove a failed robot, such failures can be very expensive.

• Modern military aircraft have some unique features compared to other industrial applications, and the de-
sign of control systems capable of compensating for a wide range of failures poses numerous challenges,
[Boskóivc and Mehra, 2002]. Modern military aircrafts are characterized by highly reliable components and
flight software, however, critical subsystemor componen! failures can cause instability of the closed-loop con-
trol system and loss of the aircraft. While not every failure is critical, the fact that even a single failure may
lead to catastrophic consequences makes the fault detection and isolation system design highly challenging.

• The environmental concern is now a new reason for fault diagnosis systems'. The California Air Resource
Board, and Environmental Protection Agency legislations require as of 1998, that On Board Diagnostics II be
rolled into all light duty vehicles sold in North American fleet. Basically, it requires fault detection capability
for all vehicle components whose failure could result in emission levéis beyond a certain threshold.

• In the last 10 years, three space missions have disappeared before reaching Mars, [Verma et al., 2001]. Mars
Observer was launched on Sept 25,1992 from the Kennedy Space Center aboard a Titán III rocket. On
August 21, 1993 the spacecraft was lost in the vicinity of Mars after (most probably) an explosión of the fuel
and oxidizer elements when the spacecraft began its manoeuvring sequence for Martian orbital insertion.Mars
Climate Orbiter failed to achieve Mars orbit on Sept 23, 1999. A failure to recognize and correct an error in
a transfer of information between the spacecraft team in Colorado and the mission navigation in California
lead to the loss of the spacecraft, [NASA, 1999]. Mars Polar Lander and the two Deep Space 2 micro-
probes were integrated on a common cruise stage for the trip. Separation of the micro-probes and the lander
was planned to occur about 10 minutes prior to the Mars landings. The design of the lander precluded any
Communications from the period shortly before separation from the cruise stage until after Mars landing.
The planned Communications after landing did not occur, resulting in the conclusión that the Mars Polar
Lander mission failed. Several possible failure causes are presented, which include loss of control due to
spacecraft dynamic effects or fuel migration, local characteristics of the landing site beyond the capabilities
of the lander, and the parachute covering the the lander after touchdown. The most probable cause of failure
is that spurious signáis gave a false indication that the lander had landed, resulting in a premature shutdown

1 Updale, The Center for Systems Science, Simón Fraser University, Canadá



Introduction 3

of the lander cngines and the destruction of the lander when it crashed into the Mars surface on Dec 3, 1999,
[NASA, 2000].

In the processes and systems that were described above, in order to have the efficient operation of the process and
to increase the reliability and safety, prompt detection of faulty situations (fault detectiorí) and the fast identification
(isolatioii) of the most probable causes (faults) need to be addressed. Fault Detection and Isolation (FD1) can be
carried out using analytical or functional information about the system being monitored, i.e. based on a mathematical
model of the system. This approach is known as analytical redundancy, which is also known as model-based or
quantitative FDI. Model-based is currently the subject of extensive research and is being used in highly reliable
control systems due to the fact that analytical redundancy based techniques are economical and powerful. Fault
detection and diagnosis can be applied at many stages:

- Detection of an incipient fault

- Early detection of faulty condition

- Real time determination of causes of a. malfunction

- Prediction of a suitable course of action to take to rectify the abnormal condition

- Post-failure diagnosis of the cause of failure

process's requirements define the best place for the FDI system.
A key componen! in a FDI system is process monitoring, which is a continuous real-time task of recognizing

anomalies in the behaviour of a dynamic system and identifying the underlying faults. This task has three importan!
difficulties:

1. Diagnosis musí be on Une, process systems are designed for continuous operation and are capable of operating
with múltiple minor faults; shutdown for diagnosis and repair is either costly or in some cases, impossible.

2. Few system parameters are observable, all measurements come from sensors, which can be expensive, unre-
liable and invasive, monitoring is typically based on a small subset of the system parameters.

3. The systems are dynamic, the system exhibits time-varying behaviour, parameter valúes vary over a continuous
range.

Automated process monitoring systems typically provide a set of alarms which are triggered whenever fixed
thresholds are exceeded. Typical processes or systems can have over a thousand distinct alarms, and hundred of them
can be activated in seconds. In such as situations, process operators may overlook relevant information, respond too
slowly, panic when the rate of information flow is too great, and make incorrect decisions. This research is intended
to contribute with an on line diagnosis algorithm for dynamic systems, as an aid to tackle these situations found in
industrial processes and other applications.

1.2 Diagnosis problem
Monitoring and diagnosis of any dynamic system critically depend on the ability of estímate the system state given
the observations. We are interested in dynamic hybrid system, systems which have both discrete and continuous



variables. A hybrid system consists of a set of discrete modes, which represen! faulty conditions or operational
modes of the system, i.e.broken wheel, stuck valve, damaged pump. Also a hybrid dynamic system has a set of
continuous variables2, i.e. temperature,flow, speed, level, etc. which model the continuous quantities that define
the system performance.

We define the term state as the combination of a discrete mode plus a valué of each continuous variable i.e
{broken wheel, 85°C, 49 m/s}. Unfortunately, not all the hybrid system can be measured for several reasons, such
as, high cost, impossibility or inability to observe the states. Therefore, we have a continuous observation function
in order to compute the likelihood of an observation given the discrete mode and the valúes of the continuous
variables. For both continuous variables and observations we are considering a stochastic component; also, for the
discrete mode transitions. The learning model procedure for hybrid systems is a very importan! challenge; there is
no practical solution yet. Additionally, we are looking for industrial applications in order to test our solutions.

Figure 1.1 shows a graphical representation of what we want to solve . Given only the observations (temperature)
over time, we have to estimate/diagnose the most probable discrete mode (normal operation, faulty fan, faulty grill,
faulty fan and grill simultaneously, etc.) and continuous state variable (no shown in this graph) on real time.

iOO 550

50 100 150 200 250 300 350 400 450 500 550
time (=) secs

Figure 1.1: Problem definition. Given only the observations (lower plot) over the time, we want to estimate/diagnose
the most probable discrete mode (upper graph) on real time.

1.3 Approaches to diagnosis dynamic systems
A variety of technologies have been proposed to date for the design of diagnosis systems based on the types of faults
to be detected and the class of models deemed appropriate for these faults. Some popular approaches are:

• Analytical redundancy based fault detection and isolation systems

• Non-model based approaches such as those based on statistical hypothesis testing and signature analysis
2Commonly known as state space or continuous state variable in the engineering community.
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- Fault tree methods, which nave been studied in detail by reliability engineers

- Discrete events systems approaches

- Artificial Intelligence based model-based reasoning

our research is focused on the last approach. Artificial intelligence model-based diagnosis systems are generally
based on a logical framework for diagnosis. These approaches generally are discrete, so they do not detect faults
that appear as continuous variations. We can use monitors and quantize these continuous variables; however, they
do not have enough resolution to give the practica! results that industrial applications demand, specifically during
the transient changes. Discrete techniques are not adequate for these limitations.

Typical fault detection and isolation systems can model continuous dynamic systems. These methods have the
potential of detecting soft incipient faults even during the system's transient operations. However, they generally
cannot work with hybrid systems. Some of the traditional FDI systems can be extended to hybrid systems; but, they
are only useful under restricted conditions.

Monitoring and diagnosis of a hybrid dynamic systems depend mainly on the ability to estímate the hybrid
state given the observable variables. Specifically for hybrid system, diagnosis- task results computationally very
expensive because the system has to follow múltiple models and transitions between them. When the number of
models grows, tracking all possible trajectories is exponential in the number of time steps and the problem then
becomes intractable.

Qualitative reasoning techniques perform diagnostic inference involving múltiple components in a computa-
tionally efficient manner, but they are limited by the low-resolution introduced by discretization of the continuous
variables.

Some practica! solutions to this intractable problem include approximation by Gaussians. Gaussian functions
can summarize the distributions for each trajectory, but, the results are not always good. Some approaches with a
similar idea (summarizing the information with few statistics) are based on bank of Kalman filters; however, Kalman
filters as a Gaussian function are only applicable to continuous variables.

Our approach is based on a probabilistic technique known as Partióle Filteríng (PF~). PF is a Sequential Monte
Cario method allow us to work with process densities with both continuous variables and discrete modes. The
problem of estimating the state of a dynamic system from observations is named Filtering. As the state evolves, the
system obtains a sequence of observations (and actions). Filtering estimates the state of the system as the posterior
distribution, also known as belief state. Bayesianfiltering reduces the filtering problem by assuming that the system
state evolves in a Markovian way, so the past and future states are conditionally independen! given the present state.
The Markov property allows us to estimate the state recursively.

1.4 Particle Filtering

Several Particle filter algorithms were developed with different ñames. The most populars are:

- Monte Cario filters, [Kitagawa, 1996]

- Sequential importance sampling, [Doucet, 1998]

- Bootstrap filters, [Cordón et al, 1993]

- Condensation trackers, [Isard and Blake, 1996]



• Dynamic mixture models, [West, 1993]

• Survival of the fittest, [Kanazawa et al, 1995]

A Partióle Filter is a Markov chain Monte Cario (MCMC) numérica! algorithm triat approximates the belief state
using a set of samples, named particles, and maintains the distribution updated as new observations are made over
time. Basically, the standard Partióle Filter algorithm consists of two sequential steps:

1. Sequential Importance Sampling Step.
A possible future state for each partióle is generated by using the stochastic model of the system. Conditioning
on the new Information (observations) and the Bayes' rule, each particle is weighted by the likelihood of
seeing the observations in the updated state represented by that particle.

2. Selection Step3.
To avoid the degeneracy of the sequential importance sampling, high-weight particles are replaced by several
particles while low-weight particles tend to disappear.

Particle Filters (PF) have several features that make them a desirable algorithm for estimation/diagnosis. Some
of these features are:

• Both discrete and continuous variables can be easily represented even with a single particle.

• PF are non-parametric and can represen! a wide range of distributions. Specifically, non-linear systems with
any type of prior belief distribution.

• The accuracy of results (quality of the approximation) can be traded for computational efficiency; basically,
we can establish the number of particles based on how much computation time is available. The computational
resources that PF demand depend on the number of particles. This feature allow us to implement them on
real time applications.

• PF are easily implemented. The posterior distribution is specified through a set of particles.

• For many cases, the computational complexity is not affected as the dimensión of problem increases.

• They can be easily implemented on parallel computers.

Although it has been shown by Monte Cario simulations that these methods outperform the classical suboptimal
methods, there are importan! drawbacks to resolve, specifically for diagnosis problems. Particle Filters have a well-
known problem named sample impoverishment. In this problem, discrete modes with a non-zero probability of
being the actual state of the system (because of the observations) contain no particles, and are then considered by
the particle filter as zero-probability discrete mode. These are the discrete modes in which we are most interested,
as faults usually show very low probabilities. This is one importan! problem that we have to cope with.

As the number of dimensions grow, the number of particles required for a good approximation grows expo-
nentially. We can reduce the number of particles required by representing the continuous variables in a compact
way (sufficient statistics, such as mean and covariance). The Rao-Blackwell equation [Casella and Robert, 1996]
allow us to implement this idea. The Rao-Blackwell Particle Filtering (RBPF) algorithm is a highly efficient vari-
ant of Particle Filter which only samples the discrete modes and propágales the sufficient statistics for continuous
variables.

3This step allows PF algorithms genérate practical solutions
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In Rao-Blackwell Particle Filtering, it is possible to sample the discreta modes directly from the posterior, and
also it is possible to select the fittest particles before the sequential importance sampling step. These improve-
ments result in an even more efficient algorithm called look-ahead Rao-Blackwell Particle Filtering (la-RBPF),
[Morales-Menéndez et al, 2002].

1.5 Related work

The most importan! contributions to the diagnosis/estimation of dynamic systems based on Particle Filtering have
come mainly from researchers at:

• University of California, Berkeley

• Cambridge University

• Stanford University

• Carnegie Mellon University

• NASA Ames Research Center

In Chapter 2,1 discuss the work of each one in detail, along with other importan! results. For the. time being, I
give a brief introduction to their related approaches.

Standard Particle Filtering has significant problems when sampling in high-dimensional spaces, and it can be
inefficient. Sometimes, the model structure has special characteristics, and can be marginalized out analytically (di-
vide and conquer). Rao-Blackwellization is a technique that allow us to marginalize some variables out and increase
the efficiency of Particle Filtering. It reduces the size of the space over which we have to sample. The very first paper
about Rao-Blackwellized Particle Filtering was presented at the Conference on Uncertainty in Artificial Intelligence
in 2000. This paper presented importan! theoretical contributions and results based on work at Cambridge and UC
Berkeley.

Stanford researchers have Consolidated much research in the monitoring of dynamic systems using hybrid Dy-
namic Bayesian Networks (DBNs). Incorporating the unscented filter, a general framework for non-linear dynamic
systems was developed and tested with one of the largest and most complex hybrid DBNs built to date. Important
contributions have been presented on modelling and monitoring. On the monitoring side, they exploited some sys-
tem properties, such as weak interaction, conditional weak interaction and sparse interaction, in order to implement
inference algorithms with factored sampling. Factored sampling can help when working with huge domains.

In robotics, Particle Filtering implementations have had successful results4. Detecting and diagnosing faults is
very important for these autonomous systems. Carnegie Mellon researchers have been working in this field, com-
bining Particle Filtering algorithms with other ideas. Cost models have been incorporated into particle generation
in order to account for the risk that arises relative to a control goal. A new Markov Decisión Process algorithm that
computes the risk function was developed. A state estimation method using Particle Filtering and principies of de-
cisión theory takes utility functions into account. Lately, probabilistic models, such as Partially Observable Markov
Decisión Processes (POMDPs) have been used for tracking the state (fault) of the stochastic system. Additionally,
a hierarchical approach to fault identification has been incorporated.

Planetary rovers represent a challenge for the Artificial Intelligence community. NASA, in collaboration with
many universities and research centers, has had many important results. Rovers and mobile robots present a special

4PF generated the first solutions for two previously unsolved problems (global localizaron and kidnapped robot)



problem for state estimation techniques due to a changing environment. Some proposed approaches combine con-
tinuous probabilistic state estimation using Kalman filters with discrete qualitative state estimation using POMDPs.
Also, standard Particle Filtering had been used for hybrid diagnosis - this is the closest approach to ours. Lastly, the
Gaussian Particle Filter (GPF), an efficient variant on the Particle Filtering family for non-linear hybrid systems,
has been developed. In collaboration with UBC, an improved versión, GPF2, has also been developed. It includes
features of la-RBPF, [de Freitas et al., 2003], and has been tested in real domains with excellent results.

1.6 Contribu tions
Our contributions cover both a learning algorithm for the jump Markov linear Gaussian (JMLG) model parameters
and look-ahead Rao-Blackwellized Particle Filtering (la-RBPF) for the diagnosis/estimation problem. Both were
intensively validated with real data from different industrial applications.

• The main contribution of this research is the la-RBPF algorithm, which is an efficient variant of the Particle
Filtering (PF) family. The most important la-RBPF features are low diagnosis error, low diagnosis variance
and detection of discrete modes with very low prior probabilities. These features allow us to implement
inference tasks on-line in real applications of hybrid dynamic systems. la-RBPF opens up many opportunities
in different fields, including state estimation for control strategy selection, [Morales-Menéndez et al, 2003],
real-time diagnosis in mobile robots, [de Freitas et al., 2003], etc. For domains with a large number of discrete
modes, la-RBPF may be limited to off-line inference; however, there is still great potential due to the ever-
increasing performance of computing hardware and software, or parallel computing.

• The JMLG model is a special case of a hybrid graphical model in which observable time series data are
modelled in terms of unobservable discrete and continuous variables. This model gave good results for both
modelling and inference in industrial processes. The proposed learning procedure for the JMLG model param-
eters, which combines the Least Squares Estimation and the Expectation-Maximization method, performed
well and allowed us to capture the dynamic behaviour of processes operating in different conditions or un-
der faulty situations. Certainly, the JMLG model is an efficient and practical way to model hybrid dynamic
systems.

1.7 Outline
Chapter 2 provides an overview of the main approaches to diagnosis in dynamic systems. Briefly, we define the kind
of domains we are considering. Some definitions commonly accepted by the control engineering community are
presented. The most important approaches to tackling the fault diagnosis problem in dynamic systems are briefly
discussed. We review traditional model-based methods where State Observers, Parameter Estimation, Kalman Fil-
ters, and Parity Space are the most representative. Then, typical Artificial Intelligence techniques that have been
applied to diagnosis in dynamic systems are discussed. We consider Neural Networks, fuzzy logic, qualitative rea-
soning, logic-based, and Dynamic Bayesian networks. Finally, related work in Particle Filtering (PF) is presented.
Based on these approaches, we motívate our research.

In Chapter 3 we provide the fundamental tools on which our research is based. We discuss Hidden Markov
Models (HMMs) and State-Space Models (SSMs). HMMs and SSMs are well-known models; however, most real
and interesting processes cannot be characterized by either purely discrete or purely linear-Gaussian dynamics. The
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Jump Markov Linear Gaussian JMLG model evolves as a natural generalizaron of HMMs and SSMs. Learning
the JMLG parameters is still an intractable problem; we show the Variational Learning approach, the Expectation-
Maximization (EM) method and Least Squares Estimation (LSE) as the building blocks of our proposal to cope
with this problem. Finally, the standard Particle Filtering and Rao-Blackwellized Particle Filtering algorithms are
presented. Detailed descriptions of each procedural step are shown. Our proposal is based on these methods.

Our proposal is presented in Chapter 4. We divided this chapter into the modelling problem and the inference
(estimation/diagnosis) problem. First, we describe the Jump Markov Linear Gaussian model for hybrid dynamic
systems. Based on this model we propose a learning algorithm. The learning algorithm is an iterative procedure
based on the LSE and EM methods. Next, we show the proposed algorithm for the inference problem, look-ahead
Rao-Blackwellized Particle Filtering (la-RBPF). We end this chapter with some comments on the main results for
the learning and la-RBPF algorithm.

The experimental work is one of the most importan! contributions of this research. Intensive experiments were
conducted at ITESM Campus Monterrey (for the industrial processes), and at the University of British Columbia
(for the mobile robot). Chapters 5 and 6 show these results. We tested both the learning and inference algorithms in
four experimental domains and two simulated systems. Chapter 5 presents the modelling and estimation/diagnosis
results for the industrial dryer, level tank, heat exchanger, and mobile robot. Each domain contains interesting
and distinctive dynamic characteristics. In order to test our inference algorithm with more complex systems, in
Chapter 6 we present a non-linear Continuous Stirred Tank Reactor (CSTR) simulator. The CSTR simulator allowed
us to conduct tests involving more discrete modes, more continuous variables, more observations, etc. Additionally,
using the effective JMLG models we learned for the mobile robot, we generated some simulated runs involving
more discrete modes and different noise levéis. These results are also presented in Chapter 6.

Finally, in Chapter 7 we present a detailed discussion of the learning and inference algorithms based on the
experimental results. We present our main conclusions, organized into contributions and limitations for both the
learning and la-RBPF algorithms. Some significant real applications of la-RBPF at NASA Ames Research Center,
[de Freitas et al., 2003], are discussed. We end this chapter with some open questions and future directions.



Chapter 2

Diagnosis in Dynamic Systems

2.1 Introduction
For years, the only way to learn about faults in industrial processes was through our senses; looking for changés in
color, listening for unusual sounds, feeling for changés in temperature or smelling for fumes. Later, measuring in-
struments appeared which could provide numerical information about the processes. However, these instruments can
also show faults. The impact of these faults becomes more critical if the instruments are used in automatic control
systems; malfunctions without the presence of human operators can be catastrophic; see chapter 1, section 1.1.

The operation of industrial processes requires increasingly advanced supervisión and fault diagnosis (and fault
tolerance) to improve cost efficiency, availability, reliability and safety. Supervisory functions enable operators to
identify unacceptable process states, to make better decisions and to take appropriate actions [Enste and Uecker, 2000].
Fault tolerance and fault diagnosis are becoming more and more important.

Fault tolerance can be achieved by ehher passive or active strategies. The passive approach makes use of robust
control techniques to ensure that the system becomes less sensitive with respect to faults. In contrast, the active
approach provides fault accommodation, i.e. the reconfiguration of the system when the fault occurs.

As in many áreas, computers have made a huge contribution and have taken automatic systems to a new level.
Currently, computers are operating complex systems in almost every domain with excellent results. Features such as
massive-information integration and high speed processing make it feasible to efficiently detect and diagnose many
processes. Initially, industrial computers were only applied to complex processes expensive enough to justify their
use, but they have now become part of our computerized society.

We start this chapter with some basic definitions of dynamic systems and fault diagnosis. Based on these
definitions and a simple example, we roughly describe the kind of dynamic process which we want to work with. A
general review of the main approaches to fault diagnosis in dynamic systems is presented. Then we discuss the main
applications of Particle Filtering in fault diagnosis. We end this chapter with a brief justification of our research.

2.2 Definitions
In loóse terms a system is an object in which variables of different kinds interact and produce observable signáis.
The observable signáis that are of interest to us are usually called outputs. The system is also affected by external
stimuli. External signáis that can be manipulated by the observer are called inputs. Figure 2.1 shows a system with

10
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one input u(t) and one output y(t), called a SISO (single-input single-output) system. A MIMO (multiple-input
multiple-output) system has nu inputs u(t) and ny outputs, Figure 2.2.

Input Output

y(t)

Figure 2.1: SISO dynamic system. One input u ( t ) affects a single output y ( t ) .

The dynamic systems that we are considering have three important properties:

• Linearity. They are linear systems. For non-linear dynamic systems a linear approximation is taken.

• Time invariance. The relationship between the inputs and outputs is permanent; it does not vary with time. In
the mathematical representation of the system, this is equivalen! to the model parameters being constant.

• Causality. The system output at any time t depends only on inputs at time í and before; it is not affected by
future inputs.

Causality is a natural property of all physical systems. Linearity and time invariance do not always hold; how-
ever, in some cases they may be assumed in order to simplify the mathematical treatment. Other important defini-
tions to be considered are given in Appendix A, section A. 1.

Inputs Outputs

y (t)

Figure 2.2: MIMO dynamic system. nu inputs u(t) affect ny outputs y ( t ) .

Terminology in the fault diagnosis field is not consistent; however, there are some commonly accepted states
and signáis definitions (taken from the IFAC Technical Committee SAFEPROCESS, [Isermann, 1997b]):

- Fault, Failure and Malfunction.
A fault is a non-permitted deviation of at least one characteristic property or parameter of the system from the
acceptable/usual/standard condition. Faults can differ in terms of time dependency, as shown in Figure 2.3.
A failure is a permanent interruption of a system's ability to perform a required function under specified
operating conditions. A malfunction is an intermittent irregularity in the fulfilment of a system's desired
function.

- Disturbance and Perturbation.
A disturbance is an unknown (and uncontrolled) input acting on a system. A perturbation is an input acting
on a system, which results in a temporary departure from the current state.
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Error and Residual.
An error is a deviation between a measured or computed valué of an output variable and the true, specified
or theoretically correct valué. A residual is a fault indicator, based on a deviation between measurements and
model-equation-basedcomputations.

Syrnptom.
A symptom is a change in an observable quantity from normal behaviour.

Figure 2.3: Time-dependency of faults. y(t] represents the output signal, and í is the continuous time. y(0) repre-
sents the output variable in acceptable condition. The plots show different ways in which faults can appear.

We can classify [Gertler, 1998] the faults we are interested in into three categorics:

• Process faults. These can be divided into additives and multiplicatives. Additive faults are unknown inputs
acting on the process which are normally zero and which, when present, cause a change in the process out-
puts of known inputs; see Figure 2.4. Multiplicative faults are changes (abrupt or gradual) in some process
parameters. They cause changes in the process outputs which depend also on the magnitude of known inputs.

• Sensor faults. These are discrepancies between the measured and actual valúes of individual process variables.
These faults are usually considered additive (independent of the measured magnitude), although some sensor
faults, such as sticking or complete failure, may be better characterized as multiplicative.

• Actuator faults. These are discrepancies between the input command of an actuator and its actual output.
Actuator faults are usually handled as additive, although again, some kinds (sticking or complete failure) may
be better described as multiplicative.

Figure 2.4: Basic models of faults: additive and multiplicative. yw¡(f) is the fault-free output signal, /(í) is the
fault, and y ( t ) is the observable output signal.

Fault detection and diagnosis systems are commonly defined as:
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- Fciult detection, the determination that something is goíng wrong;

- Fault isolation, the determination of the exact location of the fault;

- Fault identification, the determination of the dimensional, spatial, and temporal location of the fault, and the
category of fault.

Fault diagnosis is the term usually used for both the isolation and identification tasks. Fault detection and fault
isolation are essential in any practica! system, but in some domains/ati/r identification may not be worth the extra
effort it requires. Usually, we consider [Leonhardt and Ayoubi, 1997] automatic fault diagnosis as two sequential
steps: fault detection and fault diagnosis. However, most practica! systems contain only the Fault Detection and
isolation tasks and are labelled FD1 systems [Gertler, 1998].

Certain assumptions are normally adopted for the fault detection and diagnosis task. Any noise generated from
the process, sensors or actuators is considered random with zero mean; any nonzero mean is a fault or disturbance.
It is assumed tiíat faults are not present initially in the system, but that they arrive laten

We can measure the detection performance by three different means:

1. Fault sensitivity, the ability to detect small faults.

2. Reaction speed, the ability to detect faults almost on time (small delay).

3. Robustness, the ability to opérate in the presence of noise, disturbances and modelling errors.

2.3 Scope

The main goal of this research is to do real-time diagnosis and state estimation (as an inference task) in dynamic
industrial processes. By diagnosis we mean the detection/determination of faults that could occur in the process
itself, in its measuring instruments or in its actuators. By state estimation we mean the identification of different
operating conditions which the process can be in. For dynamic industrial processes we consider boilers, reactors,
power plañís, oil refineries, chemical plants, etc., and well as machines like robots, rovers, vehicles, etc. A robot
or a chemical plant can have hundreds, even thousands of variables; however, we can divide the system into small
practica! subsystems and tackle the problem in an isolated fashion. We are exclusively concerned with dynamic
systems characterized by continuous-time operation. If the dynamic system has non-linear behaviour, it has to be
modelled as a series of linear segments. In the following subsection, we show an example of the kind of process that
we are interested in.

2.3.1 A continuous dynamic system

Let us consider a multiple-input multiple-output continuous dynamic system, as defined in Appendix A, section A.l.
As an example, we consider a heat exchanger1. In this heat exchanger a process stream is heated by condensing
steam. The goal of this industrial equipment is to heat the process fluid from some inlet temperature up to a specific
outlet temperature, Figure 2.5.

The outlet temperature is defined as the output variable, y(t), in this system. The latent heat of condensation of
the steam provides the required energy to the process fluid. The steam flow corresponds to the input variable, u(t).
Considering only these definitions, the natural multiple-input multiple-output heat exchanger can be visualized as a
single-input single-output continuous dynamic system, Figure 2.6.

'One of the experimental processes used to test our algorithms was a heat exchanger.
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Steam

Figure 2.5: Heat exchanger. By condensing steam, the process stream is heated from some inlet temperature up to
an outlet temperature.

Figure 2.6: Single-input single-output continuous dynamic system. The outlet temperature is the output variable,
and the steam flow is the input variable

In order to control the outlet temperature, we have to measure it. We can use a temperature sensor/transmitter
(usually called primary/secondary control elements). If there exists a difference between the measured temperature
and the desired one, some action must be taken to correct this deviation. The steam flow has a direct effect on the
outlet temperature; indeed, it is the most influential variable in changing the outlet temperature. The steam flow can
be manipulated by a control valve (called a final control element). There are additional devices required for proper
operation of this system: steam traps, pumps, vacuum breakers, and sensors/transmitters (flow, pressure, temper-
ature, concentration, etc). Some of these additional devices are shown in Figure 2.7 and described in Table 2.1.
However, many devices are omitted for clarity.

Table 2.1: Heat exchanger instrumentation.

tag — ñame
FT10
TT10
TT20
FT30
PT30
FV30

Functional ñame
Flow sensor/transmitter
Temperature sensor/transmitter
Temperature sensor/transmitter
Flow sensor/transmitter
Pressure sensor/transmitter
Flow valve

Description
Process stream flow
Process stream temperature
Heated stream temperature
Steam flow
Steam pressure
Steam flow valve

Finally, considering this heat exchanger as part of a larger process, some basic relationships with other subsys-
tems (steam boiler, steam users, previous subprocess, following subprocess, etc.) are shown in Figure 2.8. As we
can see, there are many variables that can affect the outlet temperature.
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Figure 2.7: Instrumented heat exchanger. Basic instrumentation is required for monitoring and control purposes.

Based on the described process, we can identify three very simple possible faulty points (although there exist
many more):

• Pumps

• Sensors/actuators

• Steam trap

Pumps and sensors/actuators have well-known roles in various systems, and the eífect of faulty conditions is easily
inferred. We provide a brief description of a steam trap.

A steam trap removes condénsate, air and CO-2 from the heat exchanger, as fast as they form. The steam trap
enhances the system's overall efficiency and reliability, and results in substantial energy savings. A faulty steam trap
can genérate problems such as loss of live steam, dirt and scale formation, and steam flow blocking.

It is important to note that we are not trying to find the cause of a faulty device itself. For example, for a faulty
pump, such causes could include: starter defective, shaft broken, intake blocked, discharge valve closed, speed
too low, etc. There are specific procedures for tríese problems which are generally provided by suppliers. We are
interested in the devices as parts of the system, and in how their faulty conditions can be manifested in the variables
that we can observe.

In addition, different (non-faulty) operating conditions can be considered for this system. Three examples are
shown:

• Normal operating conditions. Every subsystem works properly. The variables are at their nominal operating
points.

• High process flow. Some subsystems (Subsystem-1, Subsystem-2, etc.) are demanding more heated process
flow than normal.

• Low steam flow. Some steam users are demanding more steam than normal, so we have less available steam.
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Figure 2.8: Heat exchanger and other subsystems. The outlet temperature can be affected by many variables.

Each situation has different dynamic behaviour, consequently their variables show different valúes. In our
original control problem, a new policy is required for each one. If the operating condition can be successfully
estimated, the control policy is straightforward. State estimation is a practical inference task in many domains.

Every faulty or non-faulty operating condition has to be characterized as a continuous dynamic system, for
which the only information we have consists of noisy observations (input/output variables). We must perform our
inference task (diagnosis or state estimation) based on these observations.

It is importan! to note that discrete devices are part of this system. By discrete devices we mean devices which
exhibit only discrete valúes such as pumps {on,off}, solenoid valves {open, closed}, level sensors {low, médium,
high}, and alarms {low-low, low, high, high-high}. However their impact only is considered through the continuous
observations. We work with any process that can be modelled as a continuous dynamic system.

2.4 Fault diagnosis in dynamic systems
Methods for fault detection and diagnosis may be roughly classified into model-free methods and model-based
methods, [Gertler, 1998]. We present a brief description of both approaches.
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2.4.1 Model-free methods

The following FDI methods do not use the mathematical model of the process:

1. Physical redundancy. Múltiple sensors are installed to measure the same variable; the discrepancies indícate
a sensor fault.

2. Special sensors. Some sensors are installed explicitly for detection and diagnosis, e.g. a máximum tempera-
ture sensor in some device, process or system.

3. Limit checking. Process measurements are compared to preset limits. Exceeding the threshold indicates a
fault situation.

4. Spectrum analysis. Most process variables exhibit a frequency spectrum under normal operating conditions;
any deviation from the normal operating condition is a symptom of abnormality.

5. Logic reasoning. These techniques evalúate the information obtained from the detection of conditions. The
simplest techniques consist of trees of logical rules of the "IF-symptom-AND-symptom-THEN-conclusion "
type. These techniques are complementary to the methods outlined above.

Statistical Process Control (SPC) charts and statistical Hypothesis Testing (HT) have also been used in fault de-
tection and isolation systems. See [Himmelblau, 1978] for SPC in chemical processes and [Duyar and Eldem, 1992;
Rudas, 1991] for HT in various applications.

[Morales et al., 2001] proposed an FDI system where parametric estimation is used for residual generation. The
resulting residuals are processed by a statistical decisión block, where hypothesis testing and statistical process
control techniques are used for determining the presence and the location of a fault.

2.4.2 Model-based methods

Model-based FDI uses a mathematical model of the process. Continuous-time dynamic systems are modelled by
differential equations or equivalent transformed representations. However, computers opérate in a sampled domain,
using sampled data. For practica! reasons, we describe the process in discrete time, in the form of difference
equations.

Most model-based FDI methods follow the analytical redundancy concept. Real measurements of a process
variable are compared to analytically calculated valúes of the same variable. The resulting differences, named
residuals, are indicative of faults in the process. This generation of residuals needs to be followed by a decision-
making block in order to isolate and identify the faults, Figure 2.9, [Gertler, 1998].

There are four main classical methods for residual generation in model-based FDI approaches:

1. Diagnostic observers. Observer prediction errors are used as fault detection residuals.

2. Kalman Filter. The prediction error of the Kalman Filter [Kalman, 1960] can be used as a fault detection
residual.

3. Parity (consistency) relations. Parity relations are rearranged direct input-output model equations, under linear
dynamic transformation. The transformed residuals are used for detection and isolation [Frank, 1990].

4. Parameter estimation. A reference model is obtained by first identifying the process in a fault-free situation.
Then the parameters are re-identified on-line. Deviations from the reference model are used as a basis for
detection and isolation.
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Figure 2.9: Fault detection and isolation system. Residuals are generated by comparison between real valúes and
analytically computed valúes. This must be followed by a decision-making block in order to isolate and identify the
faults.

2.5 Approaches
Model-based methods are somewhat overlapping approaches; it is quite difficult to define a precise classification
with specific characteristics. All of them combine similar ideas and sometimes similar principies.

Classical approaches in the control engineering community can be simply grouped into State observers, Pa-
rameter estimation, Kalmanfilter and Parity space. These have made huge contributions in different domains with
successful results.

There is another important group of approaches which are based on typical Artificial Intelligence techniques.
They can be classified into data-based models and knowledge-based models.

Data-based models constitute an alternative to the analytical approach for FDI systems. In many practical
applications, there are large archives of process data which can be used to set up data-based models. The two
most common types of data-based models are artificial neural networks andfuzzy relational models. There are also
neural-fuizy approaches which combine their main features.

In the case of fault diagnosis in complex systems, we are faced with the problem that no, or no sufficiently
accurate, mathematical models are available. The use of knowledge-based techniques in the framework of diagnosis
expert systems or in combination with a human expert is then the only feasible way. The knowledge-based approach
uses the available knowledge to derive either a qualitative description of the system in the form of a qualitative
model, or a rule-based representation.

Rule-based techniques make use of heuristic symptoms, knowledge about the process history, or statistical
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knowledge, the evaluation of which is organized in the framework of diagnostic expert systems. If the symptoms are
considerad in connection with the inputs of the system, one can speak of a symptom-model-based approach. The
major difficulty is the knowledge acquisition, which is known as an extremely difficult task.

Powerful diagnostic frameworks have been developed based on logic, probability and the combination of both.
We present examples of two approaches, logic-based and dynamic Bayesian networks.

Finally, in the following section we present the most representative applications of Particle Filtering to fault
diagnosis, on which our research is based. Most of the approaches that we describe have been successfully applied
in various fields; we mainly address their application to fault diagnosis in continuous dynamic systems.

2.5.1 State Observers

The state is the mínimum sel of variables which describes the behaviour system [Ogata, 1995]. Observer-based
fault detection techniques have been applied to complex processes including nonlinear and time-varying systems
with considerable modelling uncertainty. The basic idea is that one reconstructs measurements of the process using
a state-observer, and makes the decisión on possible faults in the process. In contrast, the parameter estimation
approach (section 2.5.2) makes the fault decisión by performing an on-line parameter estimation. Both methods are
complementary and are therefore best applied in combination. The parity space approach (section 2.5.4) leads to
certain types of observer structures and is therefore structurally equivalen!, even though the design procedures differ
[Frank and Ding, 1997].

Basically, in the observer-based approach, the generation of residuals reflecting the faults is done by estimating
outputs of the process and using the estimation errors as the residuals. For fault detection, a simple observer is
sufficient, whereas for the localization of faults, properly structured sets of residuals are required. In doing this
one may use linear or nonlinear, full or reduced-order, fixed or adaptive observers [Frank and Ding, 1997]. There
are many different approaches for the design of diagnostic observers. Examples of these are geometric methods,
spectral theory, frequency domain and algébrale methods [Frank el al., 2000].

[Chen et al., 2001] designed a novel approach to robust fault diagnosis, modelling uncertainties and unknown
input disturbances for discrete systems. (The approach is also applicable to dynamic systems.) First, they decouple
the unknown input disturbances in the system. Then, a state observer is constructed and the faults are identified
by the least squares method, based on the relationship between the faults and state observation error. Finally, the
robustness of the identification algorithm to modelling uncertainties is enhanced using the dead zone function.

Robustness is essential for practica! applications. Many theoretical articles about the robustness problem related
to modelling uncertainty have appeared [Frank, 1992]. There is a huge theoretical foundation for the analytical
observer-based approach in time domain and linear systems. Also, there are extensions to the frequency domain
design of linear observers, adaptive observers, and nonlinear robust observers [Ding et al., 1994; Ding et al., 1990;
Ding and Frank, 1999; Caccavale, 1998].

2.5.2 Parameter Estimation

Parameter estimation was developed for and widely used in modelling, signal processing and control. It can also be
applied to fault detection and isolation systems [Isermann, 1997a]. The main idea of parameter estimation in FD1
systems is the on-line estimation of the parameters of the actual process, followed by comparison to their nominal
valúes. The resulting deviations form the residuals used for FDI [Isermann, 1997a]. To interpret the faults, we need
to explain the deviations in terms of physical parameters. Henee the model should be as detailed as possible. This
effort produces the following advantages:
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• it provides a deeper insight into the process,

• if the relationship between the model parameters and physical parameters is unique, fault isolation is easy to
implement, and

• it provides direct fault Identification.

The main limitation is that the estimated parameters must be persistently excited by an input signal. Also, to
isolate faults, the relationship between the physical and mathematical parameters must be unique. This represents
another important potential limitation for complex industrial processes.

[Dinca et al., 1999] describes a model-independent probabilistic approach which can be used for the estimation
of system parameters and unmonitored state variables. These can include noisy data and/or parameter/modelling
uncertainties. This approach can estimate the probability of finding the system in specified intervals of system pa-
rameters and dynamic variables. This is good for diagnostic purposes because it allows us to rank the possible system
faults in terms of their likelihood through a set of logical rules. These rules map the relationships between system
parameters and variables to system faults. The estimation methodology is based on a Markovian representation of
system dynamics.

2.5.3 Kalman Filters approach

Kalman filtering (KF) [Kalman and Buey, 1961] is a well-known technique for state and parameter estimation. For
processes with linear dynamics and Gaussian noise, it provides an excellent means of tracking system states. Kalman
filtering is a recursive estimation procedure that uses sequential measurement data sets. Prior knowledge of the state,
expressed by the covariance matrix, is improved at each step as prior state estimates are used for prediction and new
measurements for subsequent state update.

A bank of Kalman filters was first used by [Magill, 1985], as a parallel set of estimators for a sample stochas-
tic process. [Hanlon and Maybeck, 2000] improved the technique, calling it Múltiple Model Adaptive Estimation
(MMAE) and using it to reliably detect and identify sensor and actuator failures in aircraft. MMAE consists of a
bank of parallel KFs, each with a different model, and a hypothesis testing algorithm. Each of the Kalman filters
can be identified by a discrete valué of a parameter vector. Each filter is provided a measurement vector and the
input vector, and produces a state estimation and a residual. The hypothesis testing algorithm uses the residuals to
compute conditional probabilities of the various hypotheses that are modelled in the KFs, conditioned on the history
of measurements received up to that time, and to compute an estimate of the truc parameter vector. A further idea
considers a KF bank, named the residual correlation KF bank (RCKFB), with outputs that are estimates of the power
spectral density of each of residuals. Using the spectral contení of the residual, the fault can be detected.

[Goel et ai, April 2000; Roumeliotis etai, May 1998; Rudas, 1991] used múltiple parallel KF estimators to
model the system behaviour under each type of fault in a mobile robot. A similar application for mobile robots, but
based on the Interacting Multiple-Model (1MM) approach was proposed by [Hashimoto et al., Oct 29 Nov 03 2001].
The MM algorithm requires specification of an entire matrix of failure state transition probabilities for its Markov
model, which often is significantly more difficult for a designer to provide accurately than a single lower bound. For
this and other reasons, [Fisherand Maybeck, 2002] proposed MMAE with filter spawning [Fisher, 1999] to detect
and estimate faults on actuators (VISTA F-16). Filter spawning is used to include additional filters with different
hypotheses in the MMAE bank.

[Liu and Si, 1997] proposed a full-order observer to detect and isolate múltiple faults. A fault isolation filter
was designed such that faults can be asymptotically detected and isolated. The observer's gain matrix is determined
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so that the ¿th component of the output residual is decoupled from all but the úh fault. To satisfy this property,
the columns of the fault detectability matrix are assigned as eigenvectors of the observer's transition matrix with
a set of fixed eigenvalues. [Keller, 1999] proposed extending this idea to detect faults appearing simultaneously
or sequentially in discrete-time stochastic linear systems. The obtained fault isolation filter is very similar to the
predictor-corrector structure of the standard Kalman filter, allowing the establishment of its convergence and stability
conditions.

[Washington, 2000] presented MAKSI (Markov and Kalman State Identification) which combines continuous
probabilistic state estimation using Kalman filters with discrete qualitative state estimation using a Markov-model
representation, applied to rovers. Kalman filters can track múltiple hypothesis; however, they lack methods for
automatically choosing which states to track. Tracking all possible states is infeasible in practical applications. KF-
based localization has also become common practise in robotics [Goel etal., 1999]. Kalman filters have been used
in combination with many approaches; the Kalman filter is fully discussed in Chapter 3.

2.5.4 Parity space approach

This method generales residuals using analytical information [Patton and Chen, 1991]. Residuals are formed as the
differences between actual process outputs and those predicted by the model. These residuals are then subjected to a
linear transformation to obtain the desired fault-detection and isolation properties. To enhance fault isolation, resid-
uals are designed to exhibit directional or structural properties in response to particular faults. The residuals must
present some dynamic characteristics, for the desired transient behaviour and noise filtering. With parity relation
design, these specifications are explicit, though they may need to be relaxed to accommodate the natural require-
ments of causality and stability of the residual generator [Gertler, 1997]. Among the model-based FD1 techniques,
the parity space method is particularly appealing due to the lack of stability concerns common to other methods
[Medvedev, 1995].

[Staroswiecki and Comtet-Varga, 2001 ] extends the parity space approach to non-linear systems, focusing on the
issues of robustness, fault detectability and isolability. The approach was illustrated using a (simulated) induction
motor. However, for practical applications, calculation of the residuals can be intractable.

2.5.5 Artificial Neural Networks approach

Artificial Neural Networks (ANN) are non-linear systems. The non-linear transformation between inputs and outputs
results from their inner structure. Artificial neural networks consist of neurons which are activated as soon as
their inputs exceed a certain threshold. The neurons are arranged in layers which are connected such that the
signáis at the input are propagated through the network to the output. The choice of the transfer function of each
neuron yields the overall non-linear behaviour of the network. During a training period, a set of neural network
parameters is learned from a given set of data, aiming at the best approximation of the behaviour of the system
[Koppen-Seliger and Frank, 1995].

Fault detection and diagnosis can be viewed as a pattern association problem where we wish to recognize de-
viations, disturbances or malfunctions and associate them with their respective causes. Artificial neural networks
can store knowledge by learning from historical fault information. During learning the network memorizes the fault
patterns, and in the testing stage, when shown a new input pattern, it associates that pattern with the appropriate
memorized one. Some artificial neural networks can also interpólate the memorized patterns.

There exist a variety of architectures such as thefeed-forward and recurrent ANN. Feed-forward networks are
commonly utilized for pattern recognition tasks, while recurrent networks characterize nonlinear dynamic feed-
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back systems. For fault detection, feed-forward networks trained using the error back propagation algorithm
[Rumelhart et al, 1986] are the most popular.

[Fan et al., 1993] showed that networks trained with the error back propagation algorithm can often successfully
diagnose new cases of faults. However, there are some difficulties such as entrapment into a local mínimum during
network training, long training times, and the need for several runs to optimize structural and functional parameters
of the network.

Radial basis function and adaptive resonance theory networks have also been employed for fault detection and
diagnosis, [Whiteley and Davis, 1994]. Neural networks based on adaptive resonance theory possess the needed
stability-plásticity2. Radial basis function networks are good for extrapolation; however, they do not always guar-
antee an óptima! solution to classification problems.

[Vora et al., 1997] proposed a counter-propagation neural network for performing fault diagnosis. This kind of
network has several advantages; mainly, the training algorithm is simple (no entrapment into local minima), and
the optimal network architecture can be determined beforehand. However, counter-propagation neural networks
have severe limitations for múltiple faults. [Watanabe et al., 1994] proposed a Hierarchical ANN for múltiple fault
diagnosis with notable success.

For residual generation purposes the neural network simply replaces the analytical model describing the process
under normal operation. Employing a non-linear input/output description, the neural network approximates the
non-linear process. This general pattern may be substantially compressed by estimating each system's output with
a sepárate neural network. Not all of the system outputs may be influenced by the faults under consideration.
The appropriate cholee of input space is one of the most difficult tasks in configuring the neural network. One
needs to have sufficient knowledge to use a trial and error strategy, or one must apply an optimization algorithm
[Koppen-Seliger and Frank, 1995].

The major difficulties in the application of neural networks to FDI schemes is the lack of analytical information
on the performance, stability and robustness of the neural network, [Polycarpou and Vemuri, 1995]. Some applica-
tions are [Terra and Tinos, 2001] on robotic manipulators, and [Goel et al., April 2000] on mobile robots.

[Valles, 2001] proposed a supervisory scheme in adaptive control systems based on FDI techniques. These
supervisory schemes combined neural networks, state observers, statistical hypothesis testing and statistical process
control charts.

2.5.6 Fuzzy Logic approach
Residual evaluation can be seen as a classification problem [Frank and Koppen-Seliger, 1997]. The task is to match
each pattern of the symptom vector with one of the preassigned classes of faults or the fault-free case. Fuzzy logic
[Zadeh, 1978], in this context, means how well a variable, a fault, or an operational condition satisfies a vague
description. The principie of residual evaluation using fuzzy logic consists of a three-step process:

1. The residuals have to befuzzified.

2. The residuals have to be evaluated by an inference mechanism using fuzzy IF-THEN rules.

3. The residuals have to be defuzzified.

The fuzzification of the residuals is a mapping of the representation using crisp valúes into a representation by
fuzzy sets. It is a fuzzification of the threshold [Kiupel and Frank, 1993]. Residuals must meet the ideal conditions
of being zero in the fault-free case and different from zero in the case of a fault.

2Stability: does not forget the learned information. Plasticity: ability to learn new patterns
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The task offault decisión is to infer a fault (in the set of possible faults) from a set of residuals. In this case,
the residuals are defined by their fuzzy sets, and the relationships between the residuals and the faults are given by
IF-THEN rules. We can solve this task with the aid of a fuzzy relation, defined by the theory of fuzzy logic. We can
transform the set of fuzzified residuals onto the set of fuzzified statements of faults.

Finally, the fuzzy information on the faults has to be converted into crisp sets. Many defuzzification algorithms
are known [Montmain and Gentil, 1993]. Fuzzy logic can be applied to threshold adaptation with great success in
the case of uncertain systems with changing operating conditions [Schneider, 1993].

As an example of this approach, consider the fuzzy-reasoning application [Dash et al., 2003] in fault diagnosis.
The fault diagnosis task is based on patterns presented in the measurements process. The temporal patterns that a
process event generales can be used to infer the state of operation using a pattern-matching approach. However, noise
and qualitative properties of the features could lead to imprecise classification boundaries at the trend-identification
stage, and henee at the trend-matching stage too. Moreover, exact inference could require a huge knowledge-base of
patterns with no guarantee during the classification stage. Fuzzy reasoning can ensure robustness to the uncertainty
in the trends' identification and matching stages. The main motivation for using fuzzy inferencing to perform fault
diagnosis is to handle the impreciseness in trend representation. Basically, fuzzy logic is used to exploit the trend
information generated by an interval-halving strategy [Dash et al., 2001] for trend extraction. This application was
tested in the fault diagnosis of a reactor simulator3.

Fuzzy logic has been implemented in very successful commercial applications, particularly in control systems,
so FDI based on Fuzzy logic is naturally ideal in many domains.

2.5.7 Qualitative Reasoning approach

The artificial intelligence community developed the theory of diagnosis from first principies (system structure
and behaviour descriptions). The early important works on static systems were [Davis, 1984; Genesereth, 1984;
de Kleer and Williams, 1987; Reiter, 1987]. Later, [Forbus, 1984; de Kleer and Brown, 1984; Kuipers, 1984]
[Kuipers, 1986] developed the theory of Qualitative Reasoning (QR) about physical systems, which was moti-
vated initially by diagnostic problems. Using Qualitative Simulation [Kuipers, 2001], it was possible to super-
vise simple dynamic processes and diagnose their faults. Pioneer applications are [Forbus, 1986; Kuipers, 1987;
Dvorak and Kuipers, 1989; Ng, 1990].

Qualitative Simulation predicts the set of possible behaviours consistent with a qualitative differential equation
model of the world. Its valué comes from the ability to express natural types of incomplete knowledge of the world,
and the ability to derive a provably complete set of possible behaviours in spite of the incompleteness of the model.

A Qualitative Differential Equation (QDE) model [Kuipers, 1994] is an abstraction of an ordinary differential
equation, consisting of a set of real-valued variables and functional, algebraic and differential constraints among
them, see Appendix A section A.2 for more details. A QDE model is qualitative in two senses:

• The valúes of variables are described in terms of their ordinal relations with a finite set of symbolic landmark
valúes, rather than in terms of real numbers.

• Functional relations may be described as monotonic functions rather than by specifying a functional form.

These purely qualitative descriptions can be augmented with semi-quantitative knowledge in the form of real
bounding intervals around unknown real valúes and real-valued bounding envelope functions around unknown real-

3We also tested our algorithms in a similar domain, Chapter 6, section 6.2.



24

valued functions. Qualitative and semi-quantitative models can be derived by composing model fragments and
collecting the associated modelling assumptions.

Qualitative Simulation starts with a QDE and a qualitative description of an initial state. Given a qualitative
description of a state, it predicts the qualitative state descriptions that can possibly be direct successors of the cur-
rent state description. Repeating this process produces a graph of qualitative state descriptions, in which the paths
starting from the root are the possible qualitative behaviours. The graph of qualitative states is pruned according to
criteria derived from the theory of ordinary differential equations, in order to preserve the guarantee that all pos-
sible behaviours are predicted. Abstraction methods have also been developed to simplify the resulting qualitative
behaviours.

The resulting graph of qualitative states can still be quite large, requiring automated methods based on temporal
logic model-checking to determine whether the qualitative prediction implies a desired conclusión. A set of qualita-
tive models and their associated predictions can also be unified with a stream of observations to monitor an ongoing
dynamical system or to do system identification on a partial model.

There has been much work on Qualitative Simulation for dynamic systems: [Berleant and Kuipers, 1992]
[Dvorak and Kuipers, 1989; Dvorak, 1992; Berleant, 1991; Berleant and Kuipers, 1997;Clancy, 1998;Clancy, 1997;
Clancy and Kuipers, 1998; Kay et al, 2000; Rinner and Kuipers, 1999b]. Other important works in Qualitative
Simulation are [Subramanian, 1995; Kay and Ungar, 2000; Molle, 1989; Molle and Edgar, 1990].

When complete information about an industrial process is not available, quantitative model-based techniques
for FDI can be replaced by qualitative ones. These make use of the available incomplete information by building a
qualitative model, in terms of which the analysis and reasoning can be carried out.

A qualitative observer makes use of Qualitative Simulation on the basis of conventional filtering techniques to
perform observation filtering. The principie of observation filtering is that the simulated qualitative behaviour of a
variable must cover its counterpart, the measurement obtained from the system itself. The idea behind the qualitative
observer-based technique is that a fault causes a deviation of the system output in such a way that its counterpart,
the estimated output, is no longer consistent, i.e. a fault will produce an empty set of qualitative estimated states
[Zhuang and Frank, 1997].

[Mcllraith et al., 1999] formulated the diagnosis problem for dynamical systems as a model selection problem,
where hybrid systems were considered. They divide the diagnosis task into two steps, initial conjecturing of candi-
date diagnoses followed by subsequent refinement and tracking to select the most likely diagnoses. This application
combines different qualitative reasoning techniques such as temporal causal graphs [Mosterman and Biswas, 1999]
and trackers [Rinner and Kuipers, 1999a] with quantitative approaches like the Expectation-Maximization method
[Dempster et al, 1977] and the General Likelihood Ratio, [Basseville and Nikiforov, 1993].

[Lafortune et al., 2001; Sampath, 2001] proposed an approach based on Discrete Event Systems4 (DES) to per-
form detection and identification of unobservable fault events using diagnosers. These are finite-state autómata built
from the discrete-event model of the system under consideration. This hybrid approach to failure diagnosis integrales
the qualitative discrete event systems diagnostic methodology with quantitative analysis-based techniques.

2.5.8 Logic-based approach
Within the reasoning methods, the logic-based approach considers the knowledge of the domain to be defined
through first-order clauses. These clauses define the design (functionality and structure) of the process, the possible

4DESs are dynamic systems which are characterized by a discrete state space of lógica! valúes and by event-driven dynamics.
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faults and the observations that the process can genérate. There are two main logic-based approaches [Poole, 1989]:
Consistency-based and Abductive-based.

• Consistency-based approach.
In this approach there is only knowledge about how the process opérales normally, how its parts are structured.
The diagnosis task consists of isolating deviations from normal performance. There is no knowledge about
how the faults occur and appear themselves [Reiter, 1987]. A consistency-based diagnosis is a minimal set of
abnormalities such that the observations are consistent with all other components under normal performance.
The main idea behind consistency-based diagnosis is that there always exist representative observations when
the process works normally.

[Reiter, 1987] presents a consistency-based diagnosis approach which can be applied to dynamic processes,
but it demands checking the consistency of process behaviour over time. Tracking the actual behaviour over
time, and simulation, are required. This simple idea was used in many applications. See [Dvorak, 1992] as
an example, in which qualitative reasoning becomes necessary in order to cope with the prohibitive solution
space. [Struss, 1997] gives a theoretical foundation for consistency-based diagnosis without the expensive
simulation step.

• Abductive-based approach.
Here there is only knowledge about the faults and how they appear. An abductive diagnosis hypothesizes
faults in order to explain the observed symptoms. An abductive diagnosis is a minimal set of assumptions
that, along with background knowledge, implies the observation.

[Poole, 1987] describes the Theorist framework, an example of how to use abductive-based diagnosis. Given
some observations, the system builds the theory that would explain these observations. The Theorist system
is implemented with a theorem prover. [de Silva et al., 1992] developed a hybrid diagnostic system based on
the Theorist framework and artificial neural networks. Abductive diagnosis provides mechanisms that permit
more detailed diagnosis than consistency-based diagnosis can provide.

Independent Choice Logic fICLJ [Poole, 1997] combines the power of expressibility of first-order logic with
a structured approach to handle uncertainty with probabilities. The ICL can represent both types of logic-based
approaches, consistency-based and abductive-based. Moreover, ICL combines logic, decisión and game theory into
a coherent framework. It has a simple possible-worlds semantics characterized by independen! choices and an
acyclic logic program that specifies the consequences of these choices.

Probabilistic Horn Abduction (PHA) [Poole, 1993] is an extensión ofICL which includes acyclic logic programs
with Negation as Failure [Poole, 2000], ICL has a structured hypotheses space, and an acyclic logic program to give
the consequences of the hypotheses. The hypotheses are partitioned into alternatives, the set of alternatives is a
choice space. There is a possible world for each selection of one element from each alternative; the logic program
specifies what is truc in that world. The semantics of negation as failure is given in terms of stable models.

Another extensión of ICL is dynamic independent choice logic, where the dynamics of the world is modelled
rather than the structure of the choices. One can represent any discrete Bayesian network with first-order clauses.
This feature can be exploited to model cause-effect relationships for the fault diagnosis task. Computing the posterior
probabilities will help to determine the most likely set of faulty components in the process. The probable faulty
components are generated by computing the most likely explanations.

[Garza et al, 2001 ] proposed a methodology for automated diagnosis where a Dynamic ICL is used to represent
the diagnosis problem. Causal probabilistic models are used to represent the relationships among the elements of
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the process and its dynamics. Additionally, FDI techniques are integrated into the probabilistic logic framework.

2.5.9 Dynamic Bayesian Network approach

A Dynamic Bayesian Network (DBN) [Dean and Kanazawa, 1989] is a temporal stochastic model for dynamic
systems which is suitable for monitoring processes. Bayesian Networks (BN) are directed graphical models that
encode conditional independences between state variables vía the graphical structure. State variables are represented
as nodes and influences between variables are represented as ares between nodes. Each node is associated with a
given conditional probability distribution that encapsulates the conditional probability of that variable given its
parents in the network.

A dynamic Bayesian network is a temporal versión of a BN, in which nodes represen! the state of the system
at a particular point in time. The set of nodes representing the state at a point in time is called a time slice. Nodes
¡n one time slice may have parents in the same time slice and in the previous time slice. A DBN is specified by
two components: a prior BN that represents the initial distribution over the initial state, and a 2-time-slice BN that
represents the transition distribution from states at time t to states at time t+1.

[Lerner et al., 2000] proposed an approach to the problem of tracking and diagnosing processes with mixtures of
discrete and continuous variables. The approach is based on the framework of hybrid dynamic Bayesian networks.
Hybrid DBNs can manage a greater range of problems such as nonlinear dynamics and discrete failure modes that
influence system evolution. Also, hybrid DBNs can model a variety of faults, including burst faults, measurement
errors and gradual drifts. Many of the issues that have challenged traditional approaches to diagnosis - ranking
possible failures, handling of múltiple simultaneous failures, and robustness to parameter drift - can be addressed
within a probabilistic tracking framework.

The inference task in DBNs is generally intractable because the number of modes in these systems grows expo-
nentially over time. [Lerner et ai, 2000] proposed an approach based on the same Kalman filter principies. They
maintain múltiple candidate hypotheses about the state of the process, updating them based upon evidence. Similar
hypotheses are collapsed instead of choosing the most likely ones. Using a bound window one step forward into
the future, they propose using this information to determine which hypotheses should be kept and which should be
collapsed. They avoid the exponential blowup, caused by many discrete variables, by reasoning separately about the
different subsystems while still propagating correlations between them. A simulated faulty process is analyzed.

[Lerner et al., 2002] demonstrated the feasibility of the hybrid DBN approach for monitoring complex processes.
A general framework is given for approximating nonlinear behaviour using integration methods that extended the
unscented filter [Julier and Uhlmann, 1997]. Also, they show how to use a fixed-point computation to deal with
effects that develop at different time scales. Experimental results indicate that this approach is much faster and more
precise than standard particle filtering.

[Arroyo-Figueroa and Sucar, 1999] presented a type of probabilistic temporal network called temporal nodes
Bayesian network (TNBN). These networks combine uncertainty and temporal reasoning. A TNBN is a Bayesian
network where each node represents an event change of a variable, and causal-temporal relationships are included
through the ares. Previous probabilistic temporal models5 represen! the state valué at different times, however
TNBN's representation is based on state changes at different times. This representation was tested for diagnosis
using a steam boiler training simulator. The level steam drum behaviour was analyzed after an increment on steam
demand occurs. This is a well-known challenging problem for boiler's operation, specially, if the shrink-swell
phenomena appears, [Dukelow, 1991]. If there are few changes for each variable in the time interval of inference,

5See related work in the extended versión paper, [Arroyo-Figueroa et ai, 1998].



Diagnosis in Dynamic Systems 27

the modelling task becomes easy. Moreover, this facilitates the temporal knowledge acquisition (one of the most
time consuming task). A practica! application of these ideas were Consolidated through the SEDRET6 system,
[Arroyo-Figueroa et ai, 2000]. Potentially, SEDRET can be used to assist an operator in real-time operation for a
steam boiler.

2.6 Particle Filtering in diagnosis

Particle Filters (PF) are powerful tools for Bayesian state estimation in non-linear systems, [Doucet et al, 2001;
Doucet, 1998; Pitt and Shephard, 1999; Kanazawa et al, 1995; Liu and Chen, 1998]. One can approximate a pos-
terior distribution over unknown state variables using a set of particles drawn from this distribution.

[Thrun et al, 2002] proposed a Particle filter that generales samples according to a distribution and combines
the posterior probability with a riskfunction. The risk function measures the importance of a state location on future
cumulative costs. This approach yields better results than conventional Particle filtering for fault diagnosis. The
algorithm was tested in two domains: robot localizaron and mobile robot diagnostics. [Thrun, 2002] presents some
of the recent innovations in robotics using PF. Early successes for Particle filter implementations can be found in
the área of robot localization, in which a robot's position must be recovered from sensor data. Particle filters were
able to solve two important previously unsolved problems, known as the global localization and kidnapped robot
problems, in which a robot has to recover its position under global uncertainty.

[Verma et al., 2001] gave a method for autonomous fault detection in simulated space rovers. The approach uses
a non-parametric estímate of system state which is updated based on sensor measurements. The state estimation
is generated using a decision-theoretic generalization of Particle filters which uses utility functions to detect the
important states. Good results were shown in terms of variance and number of particles in a small domain. However,
the algorithm is computationally very expensive.

[Dearden and Clancy, 2001] described an approach to hybrid diagnosis based on Particle filters for planetary
rovers. The hybrid model can be seen as a partially observable Markov decisión process (POMDP) [Monahan, 1982].
POMDP is a framework for decision-theoretic planning problems, where the task is to determine the best action to
perform given the current estímate of the actual state of the system. This estímate, commonly named the belief
state, is what they want to determine in the diagnosis problem. Maintaining an exact belief state is computationally
intractable for this kind of domain. Therefore, they approximate the belief state and keep it updated using Particle
Filtering. However, because fault states typically have very low probability, there is a risk that there will be no par-
ticles in a fault state when a fault occurs, and the system will be unable to diagnose the fault. The proposed solution
always tries to assign some particles to fault states that are important to diagnose. This is done without biasing the
diagnosis. These important states are suggested by a traditional model-based diagnosis system.

[deFreitas, 2001] proposed an efficient Monte Cario method known as Rao-Blackwellized Particle Filtering
(RBPF) [Doucet et al., 2000a] for fault diagnosis. The task of diagnosis is to identify the discrete state of operation
using continuous measurements. A jump Markov linear Gaussian model was adopted, consisting of one different
linear-Gaussian state model for each possible discrete state. The results show a considerable reduction in diagnosis
error.

[Verma et al., 2002] presents an integration of their early, [Thrun et al, 2002; Verma et al, 2001], approaches,
but they include probabilistic methods to account for the uncertainty. They present a new hierarchical approach that
improves the accuracy of fault identification by focusing the search for the corred fault hypothesis. The algorithms

6Intelligent System for the Diagnosis and Prediction of Events
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were tested using the Darwin2K simulator [Leger, 2000].
[Koller and Lerner, 2001] tested a Fárdele Filtering approach. Bootstrap sampling algorithm [Elliott, 1994]

(with some modifications in the implementation) is applied to two large DBNs. One problem is a hybrid network
that models a nonlinear process (two water tanks) which is commonly used as a benchmark in the fault diagnostics
community [Mosterman and Biswas, 1999]. They show that particle filtering works properly with an extremely rich
class of dynamic systems. Particle filtering showed robustness and high applicability to different domains; how-
ever, the curse of dimensionality is an issue for Particle Filtering in high-dimensional spaces. The computing time
required was not discussed.

[Mcllraith, 2000] builds on a previous work, [Mcllraith et al., 1999] (discussed in subsection 2.5.7). It presents
a mathematical formulation of the hybrid monitoring and diagnosis task as Bayesian model tracking and model
selection. Basically, they give a method for tracking múltiple models of nonlinear behaviour simultaneously using
factored sampling and conditional density propagation. The condensation [Isard and Blake, 1998] Particle Filtering
algorithm is used.

[Ngeía/., 2002] proposes an approximate monitoring algorithm that combines the best qualities of Particle
Filtering and the Boyen-Koller (BK) method [Boyen and Koller, 1998]. Like PF, it can be performed on any size
model, and like BK, it is able to exploit the subdivisión of a complex system into weakly interacting subsystems. The
basic idea is to represent the belief state using a set of factored particles. By factoring particles, a bias is introduced
into the belief approximation, however, the variance is significantly reduced. Three implementations of the Factored
Particles algorithm were created using dynamic Bayesian networks with binary nodes.

[Koutsoukos et al., 2002] proposed a hybrid diagnosis architecture based on Particle Filtering. The approach
combines Qualitative Reasoning and hybrid estimation, leveraging the speed of the Qualitative diagnoser and the
resolution of the hybrid model. Basically, the approach uses continuous measurements to compute appropriate
likelihood functions, but it is based on a temporal discrete event model of the system dynamics. Autonomous
transitions between modes triggered by the continuous dynamics are considered. This hybrid diagnosis is focused
on the mode transitions that cover most of the probability space. Probabilities change dynamically based on the
continuous behaviour of the system and have to be recomputed at every time step. Particle filtering allows an
efficient computation of these transition probabilities. The proposal was only tested with simulated processes.

2.7 Conclusions
We consider the inference task (diagnosis/estimation) to be the determination of the state of the continuous dynamic
process over time given some observations, [de Freitas, 2001]. We want to reason with a hybrid model that repre-
sents the continuous dynamic system behaviour. This hybrid model contains continuous and discrete variables. A
set of discrete modes represents the different states (faulty or non-faulty operating conditions) of the system, and a
set of continuous valúes represents the continuous variables that govern the dynamics of the system.

Computing exact inference for a hybrid dynamic model such as the one we describe above is computationally
intractable. The complexity of the inference task grows exponentially over time, so no closed-form solution is
possible. Approximate inference algorithms such as Particle Filtering are the most general approach to this problem,
and currently the only approach to performing filtering7 in general-purpose hybrid dynamic Bayesian networks.

It is important to insist that we model the continuous dynamic system using a hybrid dynamic Bayesian network,
where discrete nodes represent the discrete modes and continuous nodes represent the continuous observations.

7Also called tracking or monitoring.
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Howcver, we do not adopt any convencional approximate inference techniques for this representation, because these
techniques are designed primarily for discrete domains or very limited class hybrid DBNs.

Other featuces that we want in our solution are:

- Nonlinearity in processes. Non-linear processes can be qualitatively linearized around some specific operating
points.

- Low probabilities. Faulty states typically have very low probabilities; this causes problems when numerical
approximations are applied.

- On-Iine solutions. We would like to be able to do inference in real-time, although off-line solutions are quite
acceptable in many domains.

Only Particle Filtering techniques can cope with these requirements. Therefore, we propose a principled proba-
bilistic approach to the on-line diagnosis/estimation of dynamic systems.



Chapter 3

Fundamentáis

3.1 Introduction

A Partióle Filter (PF) is a Markov chain Monte Cario (MCMC) algorithm that approximates the belief state using
a set of samples, called partióles, and keeps the distribution updated as new observations are made over time. Rao-
Blackwellized Particle Filtering (RBPF) is a Partióle Filtering variant. Both Partióle Filtering and RBPF have been
successfully used in dynamic systems for inference tasks.

Typical dynamic industrial processes have múltiple operating conditions, called discrete modes. If each discrete
mode's behaviour has linear dynamics, we can model a process with the Jump Markov Linear Gaussian (JMLG)
model.

In this chapter we describe the PF and RBPF algorithms for dynamic systems which are modelled by the (JMLG)
model.

First, we describe how the JMLG model emerges from the State-Space Model (SSM) and the Hidden Markov
Model (HHM). Then, three learning algorithms be discussed:

• Variational learning, which maximizes a lower bound on the log likelihood.

• Expectation-Maximization, an iterative procedure for máximum likelihood parameter estimation from data
sets with missing or hidden variables.

• Least Squares Estimation, which aims to minimize the sum of the squared deviations of the observed valúes
for the dependen! variable from those predicted by the model.

These algorithms are combined in the following chapter in order to find a learning procedure for the JMLG
parameters.

Next, we present in detail the Particle Filtering and Rao-Blackwellized Particle Filtering algorithms. The sequen-
tial importance sampling and selection steps (basic steps in PF) are discussed. Also, the Kalman filter is analyzed
as an importan! step in the RBPF algorithm.

Finally, we summarize this chapter, which includes the most important fundamentáis on which our research is
based.

30
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3.2 Jump Markov Linear Gaussian Systems
Many probabilistic time series models come from either Hidden Markov Models (HMMs) or stochastic linear dy-
namical systems commonly known as State-Space Models (SSMs). Using a single discrete random variable - the
hidden state - hidden Markov models can represen! the past information of a sequence. The prior probability dis-
tribution of this state can be calculated from the previous hidden state using a stochastic transition matrix. If we
know the state at any time, the past, present and future observations become statistically independent - the Markov
independence property.

Similarly, using a real-valued hidden state vector, state-space models can represent past information. Again,
conditioned on this state vector, the past, present, and future observations are statistically independent. The depen-
dency between the present state vector and the previous state vector is specified through the dynamic equations of
the system and the noise model. A common case occurs when these equations are linear and the noise model is
Gaussian; this model is also known as a linear dynamical system or Kalman filter model. HMMs and SSMs are
well-known models; however, most real and interesting processes cannot be characterized by either purely discrete
or purely linear-Gaussian dynamics.

Typical industrial processes, such as the-one we described in Chapter 2 subsection 2.3.1, may have múltiple
discrete modes of behaviour, each of which has approximately linear dynamics. We are interested in dynamical sys-
tems which are characterized by a combination of discrete and continuous dynamics. Switching state-space models,
or Jump Markov Linear Gaussian (JLMG) systems, are a natural generalization of hidden Markov models and state-
space models in which the dynamics can transition in a discrete manner from one linear operating regime to another.
This model had been exploited in many fields including digital communication [Logothetis and Krishnamurthy, 1999],
signal processing [Krishnamurthy and Moore, 1993], target tracking [Bar-Shalom and Li, 1995; Mazor et al, 1998],
economics, and many other fields [Chang and Athans, 1978; Shumway and Stoffer, 1991 ; Bar-Shalom and Li, 1993].
In the following subsections, we briefly present the SSM and HMM frameworks and then the JMLG model.

3.2.1 State-Space Model (SSM)

State-space models are commonly used in signal processing. A state-space model defines a probability density over
a time series of real-valued observation vectors by assuming that the observations were generated from a sequence
of hidden state vectors. The hidden state vectors obey the Markov independence property. The joint probability for
the sequences of states and observations can be represented as1 :

p(xt \Xt-l)p(yt \Xt) (3.1)
t=2

Figure 3.1 shows the conditional independences specified by equation (3.1). Figure 3.1 is a Directed Acyclic
Graph (DAG). Each node is conditionally independent of its non-descendents given its parents. Specifically, the
variable yt is conditionally independent of all other variables given the state xt; and xt is conditionally independent
of xi,...,xt-2 given Xt-i. Shaded nodes represent observable variables and unshaded nodes represent hidden
variables.

The simples! model assumes that the transition and output functions are linear and time-invariant, and that the
distributions of the state and observation variables are multivariate Gaussian. The state transition function is

xt+i = Axt + Bit+i (3-2)
'See Appendix B, Section B.l.l for notation.
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Figure 3.1: State-Space Model graph. For this directed acyclic graph, each node is conditionally independent of its
non-descendents given its parents. Shaded nodes represen! observed variables and unshaded nodes represen! hidden
variables. An initial state XQ ~ AÍ(IJ.Q, 530) is assumed. The Gaussian noises are omitted for clarity.

where A is a state transition matrix, B is the noise state matrix, jt is i.i.d. Gaussian, such as, 74 ~ A/"(0, /) with
covariance Q. The initial state is XQ ~ N(HQ, So)- Equation (3.2) ensures that if p(xt) is Gaussian, then p(xt+1) is
Gaussian too. The output function is

yt = Cxt + Dvt (3.3)

where C is the output matrix, D is the output noise matrix, vt is i.i.d. Gaussian, such as vt ~ A/"(0, /) with
covariance 1Z. Often, the observation vector can be divided into input (ut) and output (yt) variables. Equation (3.2)
becomes

x t+i = Axt + B-/t+i + Fut+i (3.4)

where ut is the input observation and F is the input matrix. Equation (3.4) models the input-output behaviour. The
general output function is

yt = Cxt + Dvt + Gut (3.5)

where G is usually a nuil matrix for most applications. Figure 3.2 shows a full state-space representation including
input variables.

Figure 3.2: Full state-space model. A probabilistic graphical model for stochastic dynamic systems with hidden
states (Xf), and observable (inputs Ut and outputs yt) variables. The output at time í is conditionally independent
of all other variables given the state at time t. The state at time í is conditionally independent of states at times
1 , 2 , . . . , í - 2 given the previous state at í - 1. Gaussian noises (wt, vt) are omitted for clarity.

p ( y t \ x t ) is also Gaussian, given by equation (3.6)

p(yt\xt) = (27r) -(yt - Cxt¿
l(yt - Cxt - Gut)] ,

J
(3.6)
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The problem of state estimation or inference for state space models consists of estimating the posterior proba-
bilities of the hidden variables given a sequence of the observed variables. Assuming the local likelihood functions
for the observations are Gaussian and the priors for the hidden states are Gaussian, the resulting posterior is also
Gaussian. The most importan! special cases of inference are:

• Filtering (also called monitoring or tracking), where the goal is to calcúlate the probability of the current
hidden state x¡ give the sequence of inputs and outputs up to time t, p(xt|!/l:t)'ul:t)- Th£ Kalman Filter (KF)
is the solution to this problem.

• Smoothing, in which the goal is to calcúlate the probability of xt, given the sequence of inputs and outputs
up to time t, where ts < t, p(xt,\Vi-.t,Ui¡t) is computed using the Kalman filter in its forward direction. A
similar set of backward recursions from ts to t completes the computation by accounting for the observations
after time t. This idea is known both as the Kalman smoother and the RTS (Rauch-Tung-Streibel) smoother
[Rauchefa/., 1965].

• Prediction, where the goal is to calcúlate the probability of future states and observations given observations
up to time t. We can simúlate the system in the forward direction given p(xtp\yi:t,ui:t) and compute the
probability density at future time tp, tp > t.

A graphical representation of these kinds of inference is shown in Figure 3.3.

Filtering
O t T

A
Figure 3.3: Three kinds of inference. Inference is computed by p(xt|j/i:t, iti;t). We know the data represented by
the shaded área, t is the current time. T is the máximum time. The triangle indicates the time step (í for Filtering,
ts for Smoothing, and tp for Prediction) in which the inference is computed.
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3.2.2 Hidden Markov Model (HMM)

Like the state space model, the hidden Markov model defines probability distributions over sequences of observa-
tions, y\:f The distribution over sequences is obtained by specifying a distribution over observations at each time
step t given a discrete hidden state zt (as opposed to the continuous state in an SSM), together with the probability of
transitioning from one hidden state to another. The joint probability for the sequences of states zt and observations
yt can be factored as in equation (3.7)

\Z\ ) JJ p(zt \Zt- \Zt ) (3.7)
t=2

This equation obeys the Markov independence property. Figure 3.4 shows the conditional independencies specified
by equation (3.7), where z0 ~ p(z0).

Figure 3.4: Hidden Markov model graph. Conditional independencies are represented as in the state space model;
however, zt represents a discrete hidden state.

In the HMM framework, the state is represented by a single multinomial variable; this variable can take one of
nz discrete valúes, zt € {!,... ,nz}. The state transition probabilities aredefined by p(zt\zt-\). If the observables
are discrete symbols taking one of ny valúes, the observation probabilities is represented by p ( y t \ Z t ) . However, for
a continuous observation vector, p(yt zt) can be modelled in many different forms, such as Gaussian, a mixture of
Gaussians, etc.

Given sequences of observations, we can use the Baum-Welch algorithm [Baum el al., 1970] and learn máximum
likelihood parameters for an HMM. The Baum-Welch algorithm follows Expectation-Maximization (EM) principies,
[Dempster et a/., 1977]. For the E-step, it uses the forward-backward algorithm to infer the posterior probabilities of
the hidden states; for the M-step, it uses expected counts of transitions and observations to re-estimate the transition
and output matrices.

The inference task in hidden Markov models can be addressed using two algorithms. Given a hidden Markov
model with known parameters and a sequence of observations, we can compute the posterior probabilities of the hid-
den states using a recursive algorithm known as the forward-backward algorithm. "[he, forward-backward algorithm
follows the Kalman filter and Kalman smoother principies. If we want to compute the single most likely sequence
of hidden states, the Viterbi algorithm is the solution. This algorithm also consists of a forward and backward pass
through the model. Like state space models, Figure 3.2, hidden Markov models can be augmented to allow for input
variables [Bengio and Frasconi, 1995].

Hidden Markov models and State Space models are well-known frameworks with many more extensions and
algorithms to work with. We combine these simple structures in order to get a hybrid model which is a rich enough
representation for our purposes.
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3.2.3 Hybrid models

A natural way to improve both models is to combine them. Such combinations are known as hybrid models, state-
space models with switching, and jump-linear systems. Basically, hybrid models combine the discrete transition
structure of hidden Markov models with the linear dynamics of state space models. A lot of work has been done
using this idea in different domains.

Inference approaches in switching state space models

One of the very first approaches to addressing the inference task in this kind of hybrid model was developed by
[Chang and Athans, 1978]. They computed the conditional mean and variance of the state for linear switching state-
space models. However, the prior and transition probabilities of the switching process are assumed to be known.
They show that the exact conditional distribution of the state is a Gaussian mixture with (nz)T components.

[Bar-Shalom and Li, 1993] addressed the state-estimation problem in switching models using different methods.
These methods are referred to as generalized pseudo-Bayesian and Interacting Múltiple Models. They follow the
same idea of collapsing the mixture of nz Gaussians (which results from considering all the settings of the switch
state at a given time step) into a single Gaussian. This approximated solution avoids the exponential growth of
mixture components. Figure 3.5 shows the hybrid model considered. Both the state dynamics and the output
matrices switch, and the switching obeys Markovian dynamics.

\ \

Figure 3.5: Hybrid model. State and output matrices switch at each time step, obeying the Markovian property.

[Kim, 1994] derived approximation methods for similar hybrid models, adding observable inputs, Figure 3.6.
The James Hamilton Markov switching model is extended to the state space representation of a general dynamic
linear model, which includes autoregressive integrated moving average and classical regression models as special
cases.

[Hamilton, 1994] proposed a hybrid model in which a real-valued observation at time t, yt is Gaussian. Its mean
is a linear function of yt-i, -MÍ/t-r and of binary indicator variables for the discrete states, z t_i,.. . , z t_ r. Basically,
the system is an (r + I)"1 order hidden Markov model driving an rth order auto-regressive model. This system is
tractable for small r and a small number of discrete states nz. The real-valued states are known (observable).
Outputs depend on the states and previous outputs, and the form of this dependence can switch randomly, Figure 3.7.
This hybrid model is closely related to the Hidden Filter HMM (HFHMM), [Fraser and Dimitriadis, 1993]. Exact
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\

Figure 3.6: Hybrid model with observable inputs. State and output matrices switch at each time step. This hybrid
model combine both the discrete transition structure hidden Markov models with the linear dynamics of state space
models.

inference in this model can be carried out tractably, using an algorithm which works like the forward-backward
procedure for hidden Markov models.

An inference algorithm for hybrid Markov switching systems was presented by [Elliot et al., 1995]. The true
switch states, zt, are represented as unit vectors, and the estimated switch state is a vector in the unit square with
elements corresponding to the estimated probability of being in each switch state. The real-valued state, xt, is
approximated as a Gaussian given the estimated switch state, formed from a linear combination of the transition and
observation matrices for the different SSMs weighted by the estimated switch state.

3.2.4 JMLG model
We work with the following hybrid model, the Jump Markov Linear Gaussian (JMLG) model, Figure 3.6. The
dynamic behaviour for the simplest case of this model was described by equations (3.4-3.5). We generalize it here:
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\

Figure 3.7: Hybrid model; states and outputs are observable.

(3-8)

(3.9)

(3.10)

where yt e M"y denotes the measurements, xt € Rn* denotes the unknown continuous states, ut 6 U is a known
input, and zt € {1,..., nz} denotes the unknown discrete modes. The noises are i.i.d. Gaussian: *yt ~ A/"(0, /) and
vt ~A/"(0,/). Note that the parameters (A(i),B(i),C(i),D(i),F(i),G(i)}™^1 depend on the discrete mode. For
each discrete mode, we have a single linear-Gaussian model. We ensure that D(i)D(íf > O for any i. The initial
states are x0 ~ A/"(//0, £0) anc^ zo ~ P(ZO)-

The above mathematical description for the JMLG model is characterized and tested in subsequent chapters.

3.3 Learning the JMLG parameters

3.3.1 Introduction

The problem of learning the parameters of a switching state-space model has not yet been solved. However, impor-
tant contributions have been made. The most relevant approaches are:

• Variational Learning for switching state space models, [Ghahramani and Hinton, 1998].

• The Expectation-Maximization method for state space modes (switching state space models with nz = 1),
[Ghahramani and Hinton, 1996].

Although the results obtained by these approaches are not totally satisfactory, they are the building blocks for
our proposal, particularly the EM method. Traditional Least Squares Estimation is also part of our proposal, and is
also reviewed.

[Tugnait, 1982] used the truncated máximum likelihood estimation algorithm to estimate the transition proba-
bility given the noisy observations of the system output variables. Switchings are modelled by a finite state ergodic
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Markov chain. However, the transition probability matrix is assumed to belong to a compact set. The measurements
are taken after the system has achieved a statistical steady state - another importan! limitation.

The learning problem for switching state-space models was addressed by [Shumway and Stoffer, 1991]. They
consider a single real-valued hidden state vector and switching output matrices. The probability of choosing a
particular output matrix is a pre-specified time-varying function (independent of previous choices). The approach
involves classical máximum likelihood estimation using an approximation to the EM algorithm in combination with
a standard nonlinear optimization procedure. Figure 3.8 shows the kind of hybrid model considered. Their algorithm
uses a single Gaussian to approximate a Gaussian mixture with (nz)T components at each time step.

Figure 3.8: Hybrid model. The output matrix switches independently at each time step.

3.3.2 Variational Learning

[Ghahramani and Hinton, 1998] proposed a hybrid model: a state-space model with switching and a jump linear
system with hidden múltiple real-valued state vectors, Figure 3.9. The jump Markov linear Gaussian model that
we want to exploit has the architecture shown here, Figure 3.9. It is importan! to emphasize that this graphical
representation correspond to the same model represented in Figure 3.6. For simplicity, in Figure 3.9 we omitted the
input signal Ut and the relationship between zt and |:Cj}™li is considered through the superscript. The proposed
inference algorithm is based on a structured variational approximation. A learning algorithm is developed for all the
parameters of the model, including the Markov switching parameters. This algorithm maximizes a lower bound on
the log likelihood of the data. Basically, it decouples into forward-backward recursions on a hidden Markov model,
plus Raiman smoothing recursions on each state space model. The states of the hidden Markov model determine the
soft assignment of each observation to a state space model; the prediction errors of the state space model determine
the observation probabilities for the hidden Markov model..

The sequence of observations y\:T is modelled by specifying a probabilistic relation between the observations
and the hidden state space, which consists of real-valued state vectors {2^}^=! ar>d one discrete state space vector
Zt. The discrete state, zt, is modelled as a multinomial variable that can take on nz valúes: zt G {!,..., nz}. The
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Figure 3.9: Switching state space model. zt are the discrete switch variables, xj" are the real-valued state vectors
where m e {!,... f nz}, and yt are the observable variables.

joint probability of observations and hidden states can be factored as

(3.11)

The observable variable yt is multivariate Gaussian with output equation given by the state space model with
switch state zt = m. The probability of the observation vector, yt, is

(3.12)

where = yt -

Each real-valued state vector evolves according to the linear Gaussian dynamics of a state space model with its
own initial state, transition matrix, input matrix, and noise matrix, see equation (3.4). The switch state variable itself
evolves according to the discrete Markov transition structure specified by the initial state probabilities P(ZQ) and the
state transition matrix p(zt\zt-i).

Using the Expectation-Maximization (EM) algorithm, [Baumetal., 1970; Dempstereí al., 1977] (for details
see section 3.3.3), a learning algorithm for the parameters of a switching state-space model is proposed. The EM
algorithm consists of two iterative steps:

1 . The E-step optimizes a distribution over the hidden states.

2. The M-step optimizes the parameters given the distribution over the hidden states.

Any distribution over the hidden states q(zi-T, XI-.T), where Xt = \x^\. . . , x^} is the combined state of the
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state space model, can be used to define a lower bound B on the log probability of the observed data:

n, -
log p(yi:T\0) = log^ p(zllT,Xl:T,y1:T\e)d(Xi:T) (3.13)

z t = l j

= log £ fq(zia.,X1:T) \ P(*™**>y™W] d(X,T} (3.,4)
^1J I q(Zl:T,X1:T) J

e denotes the parameters of the model. 0 = {A^m\... ,G^m\Q^m\ R(m\ (¿t0, E0),p(z0),p(zt\zt-l)}, where:

• {A(m\ . . . , G(m)}^'=1 are the matrices of each state space model.

• Q(m) and R^ are the state and output noise covariances.

• /^o and SQ represen! the mean and covariance for the initial state XQ.

• P(ZQ) is the prior for the initial discrete Markov process.

• p(zt\zt-i) is the discrete transition matrix.

Using Jensen's inequality, [Cover and Thomas, 1991], on equation (3.14), we can get a lower bound B(q, 0),:

logp(yi:T\0) > V /q(z l : T ,X l : T ) log \?^Ii^^l^l]d(X1:T) = B(q,9) (3.15)
^J [ q(Zl:T,Xl:T> J

During this iterative procedure, the E-step holds the parameters fixed and sets Q to be the posterior distribution
over the hidden states given the parameters, q(z-i-T, X\:T) — P(ZI-T, Xi-.T\y\:T, 0)- This maximizes B with respect
to the distribution, turning the lower bound into an equality. The M-step holds the distribution fixed and computes
the parameters that maximize B for that distribution. Since B — logp(yi-.T\0) at the start of the M-step, and since
the E-step does not affect logP, the two steps always increase logP.

Because the posterior probability of the real-valued states is a Gaussian mixture with n^ terms, the exact E-step
for a switching SSM is intractable, [Chang and Athans, 1978; Bar-Shalom and Li, 1993]. In order to derive a learn-
ing algorithm, [Ghahramani and Hinton, 1998] approximates the posterior probability of the hidden states. Rather
than setting q(z\..T, X\:T] = P(Z\-.T, Xi:T\yi:T) m the E-step, a tractable distribution Q is used to approximate
P. The difference between the bound B and the log likelihood is given by the Kullback-Liebler (KL) divergence
between Q and P, [Cover and Thomas, 1991]:

KL(q || p) = ¿ íq(zl:T,Xl:T) log \ .^'^ J d(X1:T) (3.16)
i7 \.P(zl:T,Xi:T\yi:T)]zt = l

Choosing Q to have a tractable structure, the parameters of Q are variedlo minimize equation (3.16). In the new
EM algorithm, the E-step optimizes the parameters of the distribution Q to minimize equation (3.16), and the M-
step optimizes the parameters of P given the distribution over the hidden states. This strategy is named variational
approximation2 and the free parameters of the distribution are called variational parameters. This algorithm was
tested on artificial data sets, and on a real data set that measured respiration forcé in a patient with sleep apnea, but
the results were not enough good to be a viable method for learning the parameters of switching state-space models3.
However, this is the most successful general approach in this field, henee this brief explanation.

2[Jordán el ai, 1999] gives a good introduction to these methods.
'Personal communication with Geoffrey Hinton (University of Toronto) and Zoubin Ghahramani(University College London), Dec 2002.
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3.3.3 Expectation-Maximization Method

The Expectation-Maximization (EM) algorithm, [Dempster et al., 1977], provides a general approach to the problem
of máximum likelihood parameter estimation in statistical models (with latent variables). The EM approach takes
advantage of the conditional independence structure of graphical models. EM systematically follows the divide-
and-conquer strategy. It helps us deal with problems in which the likelihood or its derivatives are computationally
intractable.

Latent variables are generally used to simplify the model. We may observe a complex pattern of dependency
among a set of variables y\-.T- Rather than modelling this dependency directly, we may find it simpler to account
for their dependency via "top-down" dependency on a latent variable XI-.T (as shown in the model in Figure 3.1).
Basically, EM is an iterativa algorithm, consisting of two steps:

1. Expectation step. The valúes of the unobserved latent variables are defined by calculating the probability of
the latent variables, given the observed variables and the current valúes of the parameters. We compute the
expected sufficient statistics.

2. Maximization step. The parameters are adjusted based on the defined latent variables.

Algorithm

The probability model is p(y\:T, x\-T\0), where y\..T are observable and x\,T are not; 6 represents the model param-
eters {A, B,C, D, F, G, Q, 7£,A/"(/ío,Z!o)}- P(yi--T\0) represents the marginal probability, so the log likelihood
is:

. . (q(xi:T\yi-.T)

^ ^ I \ W P(yi:T,Xl:T\8) „ ~m> 2^q(xi:T\yi:T)log— j- — r - r- (3-20)
^ q(X-í:T\y\:T)

± C(q(x1:T),0) (3.21)

where the summation in equation (3.18) denotes marginalization, and q(x\:T\yi-.T) is an averaging distribution.
Equation (3.20) involves Jensen's inequality, due to the concavity of the logarithm function. £(g(z1::r),#) is an
auxiliary function that represents a lower bound for the log likelihood of an arbitrary distribution q(xi:T\yi-.T)- The
EM algorithm is a coordinate ascent algorithm on the function £(<jr(zi:r), 0)- At iteration (í + 1), we first maximize
£-(q(x\:T), 0^) with respect to q(xi¡T\yi:T)- F°r this optimizing choice of averaging distribution q(t+l\ we then
maximize jC(q(xi:T)^+1\Ow) with respect to 9 which yields the updated valué 0(í+1). Giving these steps their
traditional ñames, we have:

(3.22)

(3.23)

where equation (3.22) represents the E step and equation (3.23) the M step. (Appendix B Section B.1.2 shows how
the optimization proceeds.)
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[Ghahramani and Hinton, 1996] gives the expectation-maximization algorithm for estimating the parameters
of linear systems represented by a state space model, equations (3.4)-(3.5). Rather than regarding the state as
a deterministic valué corrupted by random noise, the state and state noise variables are combined into a single
Gaussian random variable. A similar idea was used for the observation variable. Based on equations (3.4) and (3.5)
we can write the conditional densities for the state and output, p ( y t \ x t ) and p(z t |z t_i). Using equation (3.1) we
can calculated the following equation (3.24) for the joint log probability, and genérate the EM algorithm.

Iogp(z0-r, 2/1-7-) = -^^^<- ^~ n..\'T>--L(.. r<~ r<..\\ T lo§ 1^1
2

(x Ax Fu}} ( r - D ' Q g l Q I(zt - Axt-i - rut)\

:|£o|

According to [Ghahramani and Hinton, 1996], the expectation-maximization algorithm can be though of as a
forward-backward algorithm, where the forward part is computed by the Kalman filter and the backward part is
computed using Raunch's recursion [Rauch et al., 1965]. See [Ghahramani and Hinton, 1996] for the detailed pro-
cedure and formulas.

3.3.4 Least Squares Estimation

Control engineering approach

Modern control theory, starting around 1960, is an approach to the analysis and design of complex control systems.
It is based on the concept of state and is applicable to multiple-input, multiple-output systems which may be linear
or nonlinear, time invariant or time varying. Modern control theory is essentially a time-domain approach. Some
importan! definitions in this context, using an engineering point of view, are state, state variables, state vector and
state space, see Appendix B section B.1.3.

There are many techniques available for obtaining deterministic state space representations of discrete-time
systems, [Ogata, 1995]. Consider the following very simple discrete-time system described by

yt + aiy t_i H ----- h an<iyt-na = b0ut + &iit f_i H ----- h bnbut-nb (3.25)

where ut is the input and yi is the output of the system, as previously defined in section 3.2.1. The coefficients
{a¿}"=! and {bj}^^ are considered constant. This equation can also be written in the form of the pulse transfer
function Gp(z):

where Y(z) represents the 2-transform of yt, U(z] represents the z-transform of ut, and z = esTs where s is the
Laplace complex variable and T3 is sampling time. Using the direct programming method, equation (3.26) becomes
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the following state-space representation, called a controllable canonical form, [Ogata, 1995].
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(3.27)

(3.28)

Equation (3.27) is a special case of equation (3.4). Here {xj}"^j represents na states at time í, and the noise
matrix is nuil (B = 0). Similarly, equation (3.28) is a special case of equation (3.5), where again the noise matrix is
nuil (D = 0).

This state space representation, equations (3.27)-(3.28), is well-known in the control engineering community as
a determinisüc state space representation, where the states and observations are valúes corrupted by random noise.

Learning procedure

Based on the above approach, we can now use the conventional and well-known identification process for dynamic
systems in the control engineering community.

Equation (3.25), commonly called the ARX model (Auto-Regressive with eXogenous variable) can be written
as

Typically we have a set of training data {j/¿, Ui}^'" from which to estimate the parameters 6 = {-ai • • • -
anab0 .. .bnh}. We use the LeastSquares Estimation strategy, in which we pick 6 in order to minimize the following
Residual Sum of Squares (RSS):

RSS(0)= 2^ (y¿ - / ( ¡ /¿- i , . . . ,y¿-n n ,u¿ , . . . ,« , -„„ ,6>)) (3.30)
i—7mn{n0,n(,}

From a statistical point of view, this criterion is reasonable if the training observations {y¿,u»}"=í'° represent
independen! random draws from their population. Even if they were not drawn randomly, the criterion is still valid
if the observations are conditionally independen! given the inputs.
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If we rewrite the ARX model as 3^ = XQ (see Appendix B Section B.1.3 for a detailed example), RSS(0) can
be rewritten as

RSS(Q) = (Y-XQ)'(Y -XQ) (3.31)

This is a quadratic function in the number of parameters. Differentiating with respect to 0 we obtain

<3.32>
Assuming that X is nonsingular and henee X'X is positive definite, we set the first derivative to zero

X'(Y-XQ) = 0 (3.33)

to obtain the unique solution
QLS = (X'X)~1X'Y (3.34)

where QLS is the best (Least Squares) estimator (see some properties of this estimator in Appendix B section B. 1 .3).
A famous and important result in statistics asserts that QLS has the smallest variance among all linear unbiased estí-
males, [Ljung, 1987]. With QLS we can get the deterministic state space representation in the framework established
in section 3.2.1.

3.4 Particle Filtering
If we want to work with probabilistic dynamic models which combine discrete and continuous states4, such as
the JMLG model (section 3.2.4), we have to work with algorithms for approximate inference. The state-of-the-art
method is the Monte Cario Particle Filter (PF). We can define the diagnosis/estimation task in a very simple way:

• Given: the observations (inputs and outputs) {ut, yt}T=i' tne JMLG model and its parameters,

• Compute: the most probable discrete mode {zt}^=1.

Given these observations, the inference task for any subset or property of the discrete modes zo-.t relies on the
joint probability distribution p(zO:t|yi:tiui:t)- The original problem becomes that of estimating the distribution
p(zo-.t\y\:t, wi:t)5 or some of its characteristics such as the filtering density p(zt\yi-.t). The goal of the analysis is to
compute the marginal posterior distribution of the discrete modes p(¿o:t|yi:t)- This distribution can be derived from
the posterior p(xo:t, zo:t|yi:t) by standard marginalization. The posterior density satisfies the following recursion:

, i \ / \ \ , , - , -
P (X0:t, Z0:t\yi:t) = P (X0:t-l, Z0:t-l\y\:t-l) X - 7 - ¡ - x - • (3.35)p(yt|yi:t-i)

However, this recursion involves intractable integráis. We must use numerical approximation schemes such as
Particle Filtering. Particle Filtering computes, over time, a stochastic point-mass approximation of the posterior
distribution of the states given the observations. (Some PF fundamentáis are shown in Appendix B section B.2.1.)

"Generally assumed to be Gaussian distributed.
5 For clarity, we drop off the control signal ut from the argument of various probability distributions.
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3.4.1 Algorithm

In the Partióle Filtering setting, we use a weighted set of samples, callea partíales, { ( X Q t , ZQ t),w\}!¿Li to approx-
imate the posterior with the following point-mass distribution:

N

PN(XQ:t,ZO:t\yi:t) = ^ w[l) ó (.) <;) (z0:t, Z0:t) , (3.36)
•¿ ' X0:('z0:t
¿=1

where 5 (¡> (¡> (xo-t, ZQ.t) denotes the Dirac-delta function.
X0:t'z0:t

Given A' particles {^o:t-i'20:í-i}£i at t™e £ ~ 1. approximately distributed according to the distribution
P(xO:t-i>zO:t-i\yi-t-i)> PF enables us to compute N particles {^t> zo-t}z^i approximately distributed according
to p(xg.t, Zo*tlí/i:t) at u"16 *• Since we cannot sample from the posterior directly, the Particle filtering update is
accomplished by introducing an appropriate importance proposal distribution q(xo:t, ZQ-.Í) from which we can obtain
samples. The pseudo-code for this basic algorithm is shown in Figure 3.10. The algorithm consists of two basic
steps. We describe each one in detail.

• Sequential Importance Sampling (5/5)

• Selection

Sequential Importance Sampling (SIS) step

• For i = i, ..., N, sample from the transition priors

• For i = i, ..., N, evalúate and normalize the importance weights

Selection (Resampling) step

• Multiply/Discard particles (ín't'^o't) with respect to high/low importance weights wt
w to

L J í=i

obtain TV particles (xl*' z(l}t }
L J t=i

Figure 3.10: Standard Sequential Monte Cario algorithm at time t.
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Sequential Importante Sampling

We have to extend the current paths {x$ t_1, ^o't-iJí^i to genérate new paths at time í, {^o-íi^o-tlí^i- We use the
proposal distribution q (x~o :t, 2o:t|yi:t) given by the integral

g(xO:t,20:í |ZO:í-l,20 :t-l,yi:t)dp(xO:t-l, .ZO:t-l |yi:t-l) (3.37)

We propose

g(xO:t,2b:t |xO:t-l , .ZO:t-l ,yi:t) = <?(zt , ¿t |XQ:t- 1 , ¿0:t- 1 , Vl-.t) ¿x0:t- 1 ,í0:t- 1 (^0:t- 1 , ̂ 0:4-1 ) (3.38)

in order to leave the past trajectories intact. Only the current particles (at time £) are modified. We must do this to
avoid the intractable integral in Equation (3.37). The resulting proposal distribution is:

1 i ¿0:t-l |2/l:t-l )<?(x t , ?t X0:t-l , ¿0:t- 1 , í/l:t) (3.39)

Because we are sampling from g(xo:t, ?o:t|yi:í)> tne particles must be weighted by the importance weights

(3.41)

We can see that the optimal importance distribution, according to equation (3.40) is

q(Xt, Zj XO:t-l ,ZO:t-l , yi:í) = P(Xf, 2"t 1^0:4- 1, ZQ:t- 1, yi:t)- (3.42)

However, equation (3.42) can be difficult to evalúate. We prefer to use the transition prior (which simplifies to
the Markov density) as proposal distribution:

<7(x t ,Z t |xO:t- l ,ZO:t- l ,yi : t ) = P (xt X t _i , Zt_ j ) J9 (?t |zt_ ! ) , (3.43)

Equation (3.41) simplifies to the likelihood function

wt oí p (yt|x(, z t) . (3.44)

Selection Step

The earliest Particle filtering implementations were based only on sequential importance sampling, which degener-
ates with time. [Cordón el ai, 1993] proposed a selection (or resampling) step which led to successful implementa-
tions.

The selection step eliminates samples with low importance weights and multiplies samples with high importance
weights. A uniformly weighted posterior can be generated by resampling a set of uniformly weighted particles from
the distribution represented by the weighted samples.

A selection or resampling scheme associates to each particle (xQ.t,ZQ.t) a number of "children", say 7V¡ € N,
such that £3¿=i NÍ = N. There are various selection schemes such as
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• Sampling importance re-sampling (SIR),

• Mínimum variance sampling,

• Residual resampling.

All of ihem satisfy E(/V¿) = Nw¿1', bul Iheir performance varíes in lerms of var (/V¿). Resulls in [Kilagawa, 1996;
Crisan et ai, 1999] indícale Ihal the reslriclion E(/V¿) = Nüi is unnecessary lo obtain convergence. Considering
Ihese resulls, il is possible lo design biased bul computalionally inexpensive seleclion schemes.

Il was found Ihal Ihe specific choice of resampling scheme does nol significantly after Ihe performance of Ihe
particle filler6. We chose a minimum variance sampling algorithm. SIR and residual re-sampling are presented in
Appendix B, seclion B.2.2.

Minimum variance sampling

This seleclion scheme includes slralified/syslemalic sampling procedures [Kilagawa, 1996] and Ihe Tree Base Branch-
ing algorilhm [Crisan, 2001]. A sel of N points U are sampled in Ihe inlerval [0,1], each of the points a dis-
lance jj aparl. The number of children Nt is taken lo be Ihe number of poinls Ihal lie between ^l~ •>"(•"• 7 = 1 Wt

and Y^j=iwt • This strategy introduces a variance on JV¿, namely var(Ni) = Ntw't (l — Ntw't ), where
w't = Nt (wt N — NÍ J, NÍ = \Nivt \ and Nt = A^ — ̂ ¿_j 7V¿. Its compulalional complexily is C?(Ar).

A graphical representalion of Ihe Particle Filtering algorilhm, using 10 particles, is given in Figure 3.11. In this
example we show Ihe following four sequential operalions:

1. We slart at time í - 1 with a set of unweighted samples {2¿_1; ^}£Li 7- This set of samples provides an
approximation ofp(z t_i|yi : t_2).

2. For each sample, we can calcúlate ils normalized importance weighl using Ihe information at time í — 1, ob-
laining a sel of weighled samples {z¡_i, w t_i }ÍLi • This new sel provides an approximation of p(zt-\ \yi-.t-i).

3. The selection step selects the mosl importanl particles to obtain a set of unweighted particles {z¿_i, j f } i L i -
This new sel is slill an approximalion of p(zt-\\yi-.t-i)-

4. The sampling slep generales variely. We obtain a new set of particles {z¡ , jf}^Li al time t which approxi-
malesp(z t |yi : í_i).

3.5 Rao-Blackwellized Particle Filtering
Rao-Blackwellized Particle Filtering (RBPF) [Akashi and Kumamoto, 1977; Doucel et al, 2000a; de Freilas, 2001]
is a Particle Fillering variant which exploits some of the analytical slruclure of Ihe model. Basically, if we know
Ihe valúes of Ihe discrele modes zt, il is possible to compute Ihe dislribulion of Ihe conlinuous states xt exactly.
We can Iherefore combine a Particle filler lo compule Ihe dislribulion of Ihe discrele modes wilh a bank of Kalman
fillers lo compule Ihe dislribution of Ihe conlinuous stales. Thal is, we approximale Ihe posterior dislribulion with a
recursive, slochaslic mixture of Gaussians. This strategy is known as Rao-Blackwellization because it is relaled to
Ihe Rao-Blackweü formula [Casella and Robert, 1996], (Appendix B seclion B.3.1).

6We tried the three selection algorithms with similar results.
7For clarity, the graph is only showing 1 variable {z^2i}< but we are working with both {r¿_!, zfli}-
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Figure 3.11: Slandard Particle Filien An approximalion of p(zt-\ |yi:t-2) is obtained through unweighted measure
í^f-i ' ]H£=i at ti"16 ¿ - 1- F°r eacn particle Ihe importance weights are computed at time t— I, {^-i^t-\}^=i^
which generales an approximalion of p(zt-i\yi-.t-i)- The seleclion slep is applied and an approximalion of
p(zt-\\y\:t~i) is oblained using unweighted particles {2¿_j, ^}¿li- Note that this approximated distribulion and
Ihe previous one are Ihe same. The SIS slep yields {z¿ , ^}£Li which is an approximalion of p(zt\yi-.t-i) al lime t.
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Following the Rao-Blackwell formula, we can factorize

Vlit , ¿0:í) P ( Z0:t \ Vl-.t) , (3.45)

The density p(xo:t\ y\:t, ZQ:t) in equation (3.45) is Gaussian and can be computed analytically if we know the
marginal posterior density p ( zo:t\ yi-.i) • We can compute this density recursively using

/ I 1 / I \ P(yt\y\:t-l,ZQ:t)p(Zt\Zt--í) ,_ .,.
P(ZQ:t\y\:t) =P(zO:t-l\yi:t-l) * - — - - - - '- (3.46)p(yt\y\:t-\)

Equation (3.46) does not have a closed-form solution. If we attempt to sol ve this problem analytically, we obtain
intractable integráis, henee a numerical approximation must be used. It is important to point out that the density
p(yt\y\:t-i,ZQ..t) in equation (3.46) does not simplify lop(yt\zt), as does its equivalen! in equation (3.35), because
there is a dependency on past valúes through z0:t-

Using a set of weighted samples {ZQ\ , w¿ }^=1 to represent the marginal posterior distribution, we can approx-
imate equation (3.46) using

N

PN(zQ:t\yi:t) = ̂  W^ 5 ¿i) (ZQ:t) , (3.47)
¿=1

The marginal density of XQ:Í is a Gaussian mixture

This Gaussian mixture can be computed efficiently with a stochastic bank of Kalman filters.

3.5.1 Algorithm

The Rao-Blackwelliied Partióle Filtering algorithm, whose pseudo-code appears in Figure 3.12, consists of three
basic steps:

1. sequential importance sampling,

2. selection step, and

3. updating step.

We briefly discuss each step.
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Sequential Importance Sampling

We sample z¿ and then propágate the mean /j,¡' and covariance E¿' of xt with a Kalman filter. Table 3.1 shows the
Kalman filter formulation. Since the dimensión of p(zo:t\yi-.t) is smaller than that of p(z0;t,x0..t\yi:t), used in stan-
dard Particle Filtering, we should expect to obtain better results with less variance. See Appendix B section B.3.2.

Kalman Filter.
The Kalman Filter (KF) is a set of mathematical equations, Table 3.1, that implement a predictor-corrector
type estimator which is optimal in the sense that it minimizes the estimated error covariance. It is one of the
most well-known and often-used tools for stochastic estimation using noisy sensor measurements.

The Kalman filter estimates a process by using a form of feedback control. The filter estímales the process
state at some time and then obtains feedback in the form of (noisy) measurements. As such, the equations for
the Kalman filter fall into two groups:

- time update equations, and

- measurement update equations.

The time update equations are responsible for projecting the current state (equation 1 in Table 3.1) and error
covariance (equation 2) estimates forward in time to obtain the a priori estimates for the next time step.
The measurement update equations (5 and 6) are responsible for the feedback - i.e. for incorporating a new
measurement into the a priori estímate to obtain an improved a posteriori estímate.

The time update equations can also be thought of as predictor equations, while the measurement update
equations can be though of as corrector equations. Indeed the final estimation algorithm resembles that of a
predictor-corrector algorithm for solving numerical problems.

If the process to be estimated is non-linear, or the measurement relationship to the process is non-linear, or
both, then we have to use the extended Kalman Filter (EKF). EKF is a Kalman filter which linearizes, using
the partial derivatives of the process and measurement functions, about the current mean and covariance.

Table 3.1: Kalman Filter equations.

Importance distribution. Using the prior proposal for zt and applying equation (3.46), we find that the impor-
tance weights for zt are given by the predictive density

N(yf,yt\t-i,St). (3.48)
This is the most widely used distribution (as with the standard Particle Filter) because it is easy to compute. However,
it can be inefficient since it ignores the most recent evidence.



Fundamentáis 5 1

Selection step

As in the standard Particle Filter, we use the resampling procedure in order to avoid the degeneracy of the sequential
importance sampling simulation method.

Updating step

We perform one step of the Kalman recursion to compute the minimum statistics < ¡j. ̂ l¡t, £ j + j u í 2/t+i[t ' ^t+i' \

given i z¡ , /¿vt _r Sv f_j i. Basically, we use equations 5 and 6 in Table 3.1 with the fittest particles after the
resampling step.

The Rao-Blackwellized PF estímate is usually computationally more expensive than the standard Particle Filter.
Intuitively, we expect it is worth performing Rao-Blackwellized Particle Filtering when the average conditional
variance of the variable Xo:t is high.

Figure 3.12: Rao-Blackwellized Particle Filtering algorithm at time t. RBPF combines Particle Filtering to compute
the distribution of the discrete modes zt with a bank of Kalman filters to compute the distribution of the continuous
states xt.
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3.6 Summary

In this chapter we reviewed the fundamentáis on which our research is based.
We reviewed two well-known graphical models, the state space model and the hidden Markov model. The Jump

Markov Linear Gaussian model (JMLG) is a combination of these. We tested the JMLG model with real process
data and found that it is an excellent framework for representing linear dynamic systems which exhibit different
behaviours (discrete modes) over time. We show these results in Chapter 5. Unfortunately, there is no procedure
for learning the full set of JMLG parameters. In the following Chapter 4 we propose an algorithm to cope with this
problem. Our proposal is based on the Expectation-Maximization and Least Squares Estimation methods that we
discussed in this chapter.

We presented the Particle Filtering (PF) setting, describing a Markov chain Monte Cario algorithm. This algo-
rithm approximates the belief state using a set of particles and keeps the distribution updated over time. We also
discussed Rao-Blackwellized Particle Filtering (RBPF), a Particle Filtering variant, which exploits some of the an-
alytical structure of the JMLG model. RBPF typically exhibits results with lower variance than standard PF. We
gave the basic steps and principies of these algorithms (most of the proofs and details are included in Appendix B).
Both PF and RBPF were implemented and tested with several real-world processes (Chapter 5 and 6). Based on
the theoretical foundations discussed here and the experimental results of PF and RBPF, we propose a new Particle
Filtering variant which can be implemented in real-time for fault diagnosis or state estimation in dynamic systems.



Chapter 4

Look-ahead Rao-Blackwellized Particle
Filtering

4.1 Introduction

Complex systems with high demands on performance and availability are the result of modern technology. Fault-
tolerant control, monitoring and diagnosis capabilities play a crucial role in achieving these requirements. Domains
include autonomous systems (i.e. spacecraft, planetary rovers, and mobile robots), industrial plañís (i.e. chemical
plants, oil refineries, and nuclear plants), etc. Monitoring and diagnosis algorithms for these applications must
be efficient and preferably on-line. We need quick diagnosis (usually real-time) using limited information and
computational resources.

We can view the diagnosis task as an estimation problem in which we must determine the state of a system over
time, given some data from that system. Model-based diagnosis is a common approach to this problem, in which the
overall system state is represented as an assignment of a mode to each component of the system. This assignment
is an alternative description of the state, if the set of models associated with the modes is consistent with the obser-
vations. However, model-based diagnosis traditionally opérales on discrete modes only, henee continuous variables
must be discretized. During the discretization process, importan! information is generally lost, and transient events
cannot be diagnosed. Reasoning is inadequate with discretized models because fine discretization is required to
accurately model the complex dynamics. Continuous behaviours are difficult to capture using the puré qualitative
models of discrete model-based reasoning systems. Reasoning in terms of continuous dynamics is importan! if
we want to detect functional failures, as well as low-level incipient faults and subtle component degradation. To
overeóme these problems, we need to reason directly with continuous variables.

To tackle this problem we must address some issues. A system's continuous dynamics and its evolution through
different behaviour modes are coupled. For this reason, we need hybrid monitoring and diagnosis capability. We
need to monitor a system's performance along both its discrete mode changes and its continuous state changes.

A hybrid system considers a set of discrete modes, where a mode represents a fault state or operational condition
of the system, and a set of continuous variables which model the continuous quantities of the system. In this
context, we use the term hybrid state to talk about a mode of the system and a valué for each continuous variable
of the system. With each observable variable we associate an observation function that defines the likelihood of
an observation given the mode and the valúes of the continuous variables. The observation function is required
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because generally not all the states are observable. Finally, we must formally represen! the noises associated with
both continuous and discrete variables. The jump Markov linear Gaussian model (Chapter 3 section 3.2.4) is used
to model this hybrid system. Leaming the JMLG model's parameters is one of the main problems to sol ve.

To detect the onset of subtle failures, it is essential that a monitoring and diagnosis system be able to accurately
extract the hybrid state of the system from a signal that may be hidden among stochastic disturbances such as
measurement noise. This is the diagnosis task or hybrid estimation problem we want to solve.

Computing exact hybrid diagnoses in this probabilistic dynamic model is computationally intractable in the
general case. The most general approaches to overcoming this problem are the Particle filtering algorithms, which
sequentially compute a numerical approximation to the posterior probability distribution of the system states given
the observations.

To solve the hybrid diagnosis problem we are proposing Look-ahead Rao-Blackwellized Particle Filtering (la-
RBPF), an efficient variant of the Particle Filtering algorithms. Basically, we are using particles to estímate the
distribution of discrete modes, and we are approximating the continuous variables using a multivariate Gaussian
that is updated at each time-step using a Kalman filter.

In order to produce an effective diagnosis algorithm, we have to solve several problems such as very low prior
fault probabilities, nonlinear behaviour, and high dimensional state spaces.

Because Particle Filters are numerical approximation algorithms based on sampling, they have particular trouble
with diagnosis problems due to the low probabilities of transitions to fault states. If a fault state has a very low
prior, then a very small number of particles will enter the state. A classical heuristic solution to this problem is to
increase the number of particles; however, this may increase the computing time beyond real-time requirements.
Most industrial applications demand real-time diagnosis with limited computational resources. Our proposal is
efficient with fewer particles.

la-RBPF is restricted to linear models with Gaussian noise. Most real systems have nonlinear behaviour; how-
ever, we can break nonlinear states into several pieces that are approximately linear Gaussian. Unfortunately, as the
number of possible faults grows, or nonlinear states are broken into linear Gaussian models, the number of discrete
modes in the system grows. A high number of modes requires a huge number of particles to accurately approx-
imate the posterior distribution. The number of particles also grows exponentially with the dimensionality of the
continuous states.

In this chapter, our hybrid model is formally described in section 4.2.1, where we establish the meaning of each
parameter and its relationship with the diagnosis/estimation problem in this context. A learning algorithm based on
the Least Squares Estimation algorithm and Expectation-Maximization method is proposed in section 4.2.3. Our
main contribution, the inference task is described in section 4.3, and the look-ahead Rao-Blackwellized Particle
Filtering (la-RBPF) inference algorithm is presented in section 4.3.3. The fundamentáis of la-RBPF were presented
in Chapter 3, so here the algorithm's description is straightforward. Finally, some expected results are summarized
in Section 4.4. These results are demonstrated via experimental and simulated tests in Chapters 5-6, respectively.

4.2 Modelling

4.2.1 Model Formulation

Formally, we can represen! the hybrid system to be diagnosed using the jump Markov Linear Gaussian model
(JMLG), adopted by [de Freitas, 2001] (briefly described in Chapter 3, section 3.2.3)



Look-ahead Rao-Blackwellized Partióle Filtering 55

Zt ~

zt+i = A(zt+i)xt + jB(zt+i)7t+1 + F(zt+i)ut+i
yt = C(zt}xt + D(zt)vt + G(zt)ut,

where:

• Zt £ { 1 , . - • , nz } denotes the unknown possible discrete modes the system can be in (normal operation, faulty
conditions, etc.) nz represents the number of possible discrete modes. The variable Zt denotes a discrete-time,
time-homogeneous, first-order Markov chain at time t.

• xt € R"1 denotes the unknown continuous states the system can be in. nx represents the number of continu-
ous states.

• yt e K™y denotes the continuous observable variables. ny represents the number of measurements.

• ut € Rn" is another continuous observable variable, a generally known control signal or exogenous input
sent to the system at time t. nu represents the number of inputs. Generally, Ut & U.

• 7t 6 R""" is an exogenous input called the process noise. n7 is the number of process noises (usually
n~i = nx). 74 can be modelled as a random, uncorrelated sequence with zero mean and Gaussian distribution
specified by the covariance matrix. Mathematically, 7¿ is iid Gaussian, 7t ~ 7V(0, Ingamma), with covariance
E[7t7Í] = Q-

• v t € R"v is an exogenous input called the measurement noise. nv is the number of measurement noises
(usually nv = ny). vt is iid Gaussian, vt ~ A/"(0, /„„) with covariance

• p(z t |z t_j) is a probabilistic transition function over the discrete modes zt. PÍJ = Pr(zt = j\zt-\ — i) for
any i,j £ {!,... ,nz}. The transition probability matrix is in R" íXn ', with elements satisfying pitj > O and
Ujii Pi,j = 1 f°r eacn row i € {1, • • • , n2}.

• The initial states are:

- the prior distribution z0 ~ P(ZO) for the discrete modes
- x0 ~ A/"(/UO, £3o) for the continuous states, where ]T0 > 0.

• The parameters (A(zt),B(zt),C(zt),D(zt),F(zt),G(zt)Y are matrices with D(zt)D(zt)' > O for any
zt e {!,..., nz}.

We state explicitly that our model implies the following continuous densities:

p(xt\zt,xt-i,ut) = M(A(zt)xt^+F(zt)ut,B(zt)B(zt}'}

p(yt\zt,xt,ut) =

Figure 4. 1 shows a general graphical representation of the proposed hybrid system, using the jump Markov linear
Gaussian (JMLG) model2, repeated here for convenience. G matrix is nuil for all our domains, so the simplified
graphical representation for the jump Markov linear Gaussian (JMLG) model is shown in Figure 4.2.

'The matrix G is a nuil matrix; however, they are considered for completeness.
2For clarity, we omit the noise signáis.
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Figure 4.1: General JMLG model for hybrid system modelling. yt is the measurement variable. ut is the control
signal. X( is the continuous state. zt is the discrete mode, which follows the Markovian property. Shadow nodes
represent observable (known) variables. XQ and ZQ (not shown here) represent the initial continuous states and
discrete mode, respectively.

\

Figure 4.2: JMLG model for hybrid system modelling. There is not direct dependence between the measurement
variable yt and the control signal ut.



Look-ahead Rao-Blackwellized Partióle Filteríng 57

4.2.2 Problem definition

The problem of learning the parameters of a deterministic state space model is known in the control engineering
community as the system identification problem. In its most general form it assumes access only to sequences of
input variables u1:f and output y1:t observations (shadow nodes shown in Figure 4.1). This problem has a well-
known solution if we have only one discrete mode (nz = 1). However, modelling the parameters for the general
JMLG model represents an intractable problem. Table 4.1 shows the known and unknown variables. We can
formúlate the modelling problem as follows:

Given the data UI-T and y\:T and the dimensions nu and ny of this data, find the parameters O = (nz,nx,
{A(j),B(j),C(j),D(j},F(j),G(j)}r¡^, p(zt\zt-i), P(ZQ), Af(/¿0,Eo) ) for the jump Markov linear Gaussian
model.

Table 4.1: JMLG model formulation.

known variables
ny

2/1:7-
nu

UI-.T

unknown variables
( A ( j ) , B ( j ) , C ( j ) , D ( j ) , F ( j ) , G ( j ) ) n . ^

nz

nx

p(zt\zt-i), p(z0), N(HQ, E0)

4.2.3 Learning algorithm

As we pointed out in Chapter 3, Section 3.3.2, this learning problem is unsolved. The solution is intractable for dif-
ferent reasons, and particularly because there is a huge number nz < T of possible discrete modes and a potentially
infinite number nx of continuous state variables. This leads to

• Huge possible sequences {zt}?=0, zt e {1, . . . , nz}.

• Huge possible transition matrices p(zt\zt-\) & R"*xn* andp(z0) 6 R" lXl.

• Huge number of possible matrices {A(j), B ( j ) , C ( j ) , D(j),F(j)}^1; indeed an infinite number for {A(j),

In order to solve this problem, we are proposing a practical solution strongly based on knowledge about the
process. Note that the end goal is not to find the best possible JMLG model. Our main goal is to build a good JMLG •
model of the process in order to estimate/diagnose its operating condition. Our proposal is as follows.

STEP1 (Discrete Modes)

Based on our process knowledge and inference goals, we identify the number of possible discrete modes nz. The
number nz of discrete modes must be representative of the most probable faulty points (i.e. stuck wheel, faulty
sensor, broken valve), operating modes (i.e. normal condition, startup, shutdown) or nonlinear regimes that the
process or system can be in. We have to define a discrete mode for each combination of faults, operating modes
or nonlinear régimen. For simultaneous faults, the number of discrete modes grows exponentially. This number nz

defines the main dimensionality of the problem.
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STEP2 (Markov Properties)

We design the transition matrixp(z t |z t_i) S 7£n*xn* based on histórica! data for the process/system. This transition
matrix must be representative of how the operating conditions change over time or how the faults can appear. The
design of this transition matrix depends on the problem to be solved. For the purposes of this research the transition
matrices were engineered based on our experience of the process. We must also define the prior distribution ZQ ~
P(ZQ) E TU1'x 1, which indícales the most probable initial condition for each discrete mode. The results of this step
are:

• p(zo), initial prior distribution for the discrete modes

• p(zt\zt-i), transition matrix for the discrete modes

STEP 3 (Identification)

Identification (learning) is a method for model building based on experiments. Basically, it is the determination,
on the basis of input and output, of the model within a specified class of models to which the system under test is
equivalent. By this definition three basic entities are involved in system identification: the data, a set of models, and
a rule or criterion for model estimation. The data are usually obtained from suitably designed experiments. Then a
suitable model must be determined within the set of candidate models. Finally the model is tested to see whether it
is an appropriate representation of the system. See Appendix C, section C.l.l for the general procedure of system
identification.

We have to learn the parameters (.¡4, B, C, D, F, G) for each of the nz discrete modes of the jump Markov linear
Gaussian model. It is very importan! to note that given nz, p(zt\pz-i) and P(ZO)> the new problem is relatively easy
to tackle. We have divided the original leaming problem into nz small learning problems, each to be carried out
using the following procedure, usually iterative.

Step 3a (Design the experimental tests)

We must design the experimental test for each discrete mode. We can divide this stage into two sequential steps:

1. Step-Response analysis is implemented in order to identify basic process information such as the range of
linearity of the process, static gains and relevant time constants (dead time and delay time). Step responses
can fumish this information to a sufficient degree of accuracy. Based on plots of the step-response, some
characteristic numbers can be graphically constructed, which in turn can be used to determine parameters in
a model of given order. See [Smith and Corripio, 1997] for a complete description.

2. We then use the information from the step-response analysis to design frequency-rich input signáis such as
the Pseudo Random Binary Sequence (PRBS). PRBS tests follow the persisten! excitation condition. PRBS
tests have been widely used in the control engineering community for system identification. See Appendix C,
section C. 1.3 for a detailed description of Pseudo Random Binary Sequence tests.

The results of this step, for each discrete mode, are:

• ny, the dimensión of the continuous measurement variables

• nu, the dimensión of the control signal



Look-ahead Rao-Blackwellized Partióle Filtering 59

• {MJ}"^'" , the experimental control signal sequence

• {yí}™^]'", the experimental measurements sequence

Step 3b (Learning the deterministic model)

Given the sequence ({u¿,y¿}"=i'") foreach discrete mode, we mustnow learn the parameters and dimensión of the
deterministic model. The simplest and most common model follows the Auto-Regressive with eXogenous variable
structure (ARX). For the ARX structure we must define the following numbers of parameters. These numbers are
closely related to the dimensión nx of the continuous states matrices:

1. na, the number of a coefficients (auto-regressive side)

2. nb, the number of 6 coefficients (exogenous side)

After defining these numbers, the parameter estimation problem, {aj}™^ and {bj }"lj, of linear parameter mod-
els can be computed. This can be treated as a well-known linear regression problem (see Chapter 3, section 3.3.4 for
a complete description, or [Ljung, 1987] for other methods). The-definition of the model structure and computation
of parameters {a,}™^ and {bj}"^ is an iterative procedure. The procedure ends when some condition is reached,
(see Chapter C, section C.l .4).

The ARX model can be translated into a deterministic state space representation (Appendix B, section B.1.3).
The main results of this step are:

• nx, the dimensión of the continuous states

• The matrices {A(j) 6 Rn 'x"-,C(j) € Rn»*n*,F(j) e Rn*x"»,G(j) = O e R"^"-}^

Step 3c (Learning the probabilistic model)

In this second learning step, we use the Expectation-Maximization (EM) algorithm, (Chapter 3 section 3.3.3). This
stage is needed to compute the noise matrices (B, D) and refine the estimates of matrices (^4, C, F, G) computed in
the previous stage.

The Expectation-Maximization algorithm consists of two steps:

• the E step: a Rauch-Tung-Striebel Kalman smoother is used to compute the sufficient statistics of the Gaussian
states,

• the M step: we update the matrices of parameters using analytically derived equations.

The EM results strongly depend on the initial conditions. For this reason, we use the previous learning stage to
get a very good initial approximation of the matrices A, C, F, G. This initial approximation contributes significantly
toward avoiding convergence to shallow local máximum of the likelihood function. Note that we do not need
additional experimental data in this step; the data generated by the PRBS test are persisten! input signáis, and the EM
algorithm can find the right solution. The initialization step with the deterministic model also provides us with rich
information about the dynamic behaviour of each discrete mode. It might be possible to replace this initialization
step with another method, such as simulated annealing; however, we prefer a more elegant step exploiting the
process knowledge.

The main results of this step are:
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• The matrices {B(j} € Rn 'xn^£>(j) e En»xn«}^1

• Re-computed matrices {A(j) <E R"'xn%C(j) € Rn»x n*,F(j) 6 Rn-xn ' ' ,G(j) = O e Rn»xn»}!?i1

• Initial states z0 ~ A/"(/UQ, £]0) for each of the nz discrete modes.

Step 3d (Validation)

After steps 3a, 3b and 3c, there are standard validation procedures, but we have to keep in mind that the obtained
parameters for the JMLG model represent a good estimation within the chosen model structure (nx, ny, nu, etc.)
The crucial question is whether the learned model is good enough for the inference problem. We have to verify that
the learned model agrees with the real process behaviour; see Appendix C, section C.1.4 for some guidelines. If the
learned model does not agree with the real process, we must (in the following order):

1. Try other initial conditions for the EM algorithm (probabilistic model)

2. Increase the model complexity for the Least Squares Estímate algorithm (deterministic model)

3. Try another experimental data set (representative data)

Figure 4.3 shows the pseudo-code of the algorithm for learning the parameters of the JMLG model. This proposal
assumes the designer can take advantage of good process knowledge. Figure 4.4 presents a simple flow diagram of
this procedure. Between each step we show the resulting information and the iteration loops.

Figure 4.5 shows a graphical example of the obtained results (omitting the meaning of each variable). The upper
graph represents the discrete modes over time. The middle graph shows the real data and the deterministic state
space representation.

4.3 Inference problem

4.3.1 Problem definition

Given a jump Markov linear Gaussian model, a sequence of observations j/1:t and control inputs ui:t, estímate (on-
line) the most likely hybrid state {zt, xt} at each time t. Essentially, we want to find the discrete modes (Figure 4.5,
upper graph) given the observations (middle graph) over time.

As we established in Chapter 3 section 3.4, the inference task for any property of the discrete modes and continu-
ous states relies on the joint probability distribution p(x0.t, z0:t\yi-t, wi : t)3. The aim of the analysis is to compute the
marginal posterior distribution of the discrete modes p(zo-.t\yi:t)- This distribution can be derived from the posterior
distribution p(xQ.t, zo-.t\y\:t) by standard marginalization. The posterior density satisfies the following recursion:

(4-1)

p(yt\yi-.t-i
This recursion involves intractable integráis in the denominator; for this reason, we must use Particle Filtering
techniques.

3For ease of presentaron, we omit u\ -t from the arguments of the various probability distributions.
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STEP 1 (Discrete modes)

• Define the number nz of discrete modes

STEP 2 (Markov properties)

• Specify the transition matrix and the prior distribution

STEP 3 (Identification)

• Step 3a (Designing the experimental tests)

- Design and implement step response test

- Design and implement the PRBS test

• Step 3b (Learning the deterministic model)

- Using the Least Squares Error algorithm compute the deterministic model : A, F, C, G

• Step 3c (Learning the probabilistic model)

- Using the Expectation-Maximization algorithm compute the probabilistic model. Com-
pute the noise matrices (5, C) and re-compute (A, F, C, G)

• Step 3d (Validation)

- If acceptable error is exceeded, try different initial conditions for the EM algorithm, try
increasing the model complexity in the LSE algorithm, then try another experimental
data set

Figure 4.3: JMLG modelling algorithm

4.3.2 Objectives

Based on the definition of the inference problem in section 4.3.1, Bayesian inference for the jump Markov linear
Gaussian model relies on the posterior density p(zo:t,zo:t|2/i:t)- There are many advantages to using numerical
approximation such as Particle Filtering, but also several problems. We are interested in an inference algorithm with
the following features:

• Industrial applications.
We want an algorithm which can help us diagnose/estimate faults/states in real domains. The inference algo-
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Discreto Modes Markov Properties
, p(zt|zM)

Forj = 1, ... , nz

Step-response analysis

Dynamic behavior

PRBS tests

n , n , u. , y. i = 1,...,Tu y i i

Learning the deterministic model

no

nx AG), Cu), FU), Gü)

Learning the JMLG model

no

no

AG), B(¡), CG), DG), FO), GQ)

yes

Figure 4.4: JMLG modelling procedure. This diagram shows the parameter learning procedure. After each step we
show the generated information and the possible iteration loop.



Look-ahead Rao-Blackweüized Partióle Filteríng 63

46

w 44
>? 42

>í" 40

Discreta modes

100 200 300 400 500 600 700 800 900 1000

Deterministic state space model

200 400 600 800 1000

200 400 600
time steps

800 1000

Figure 4.5: JMLG modeling results. The upper graph shows the discrete mode over time. The middle graph shows
real data and the data generated by the deterministic state space model (SSM). The lower graph shows the error
signal, the difference between the real data and the synthetic data generated by the jump Markov linear Gaussian
model.

rithm should work efficiently in domains with different dynamic behaviours and signáis.

• Real time inference.
We want an algorithm to solve industrial problems. Many industrial applications rely on real time diagno-
sis/estimation. To satisfy this requirement, the algorithm needs to be very efficient.

• Mínimum diagnosis error.
The algorithm must be reliable to be part of industrial applications. Fault diagnosis using numerical approx-
imation techniques has a special problem that can increase the diagnosis error: transitions to faulty discrete
modes typically nave very low probabilities. Using Particle filtering, faulty discrete modes often have no
particles, and are thus erroneously considered to have zero probability. We want to improve on this.

• Mínimum variance.
Particle Filtering is a probabilistic approach; unlike deterministic methods, its results are given in terms of
averages and variances. Nevertheless, we want to consistently obtain results with mínimum variance.

4.3.3 Proposed algorithm
The jump Markov linear Gaussian model combines discrete modes ( z t ) , continuous states (it), and continuous
observations (yt,ut). For this reason, we must work with algorithms for approximate inference. The method is
the Monte Cario Particle Filter (discussed in Chapter 3, section 3.4). Rao-Blackwellized Particle Filtering (RBPF)
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[Akashi and Kumamoto, 1977; Doucet et al., 2000b] is a Particle Filtering variant based on the Rao-Blackwell for-
mula [Casella and Robert, 1996]. Basically, RBPF combines a:

- Particle Filter to compute the distribution of the discrete modes zt, with a

- Bank ofKalman Filters to analytically compute the distribution of the continuous states zt.

As we showed for the Rao-Blackwellized Particle Filtering algorithm in Chapter 34, by considering the factor-
ization p(xo:t, zo:t|yi:í) = p(xo.t y\-.t, zQ:t)p(zo:t\y"L:t} [Casella and Robert, 1996] it is possible to design efficient
algorithms with lower variance. The density p(xo:t\yi-t, zo-t) is Gaussian and can be computed analytically if we
know the marginal posterior density p(^o:t|yi:í)- This density satisfies the alternative recursion:

/ I N / i X ^ P(yt\yi:t-l,ZQ:t)p(zt Zt-l) , . -,
~ ( 4 . 2 )^~u-"i»-" ™- —'•• p(yt\yi..t-i)

Because the analytical solution of equation (4.2) involves intractable integráis, we use a weighted set of particles
{ZQ-Í, wt SiLi to represent the marginal posterior p(zo:t|j/i:t)- The marginal density p(x0:t|yi:t,zo:t) is a Gaussian
mixture that can be efficiently computed with a stochastic bank of Kalman filters.

In order to deal with unexpected observations, it is possible to improve standard RBPF by looking one step
ahead. In the Sequential Importance Sampling step for standard PF and RBPF, we need to have an approximation
of p(zi:t|yi:t) using an importance distribution q(zi:t\yi-.t) at any time í, and to be able to propágate this estímate
in time without subsequently modifying the past simulated trajectories {z\ t}^=l. We are looking for a recursive
formula, easy to implement. We can specify the importance function form as:

q(zi-.t\yi:t) = q(zi\yi)q(z2\yi-.2, ^1)9(23^1:3, ¿i-.z) • • • q(zt\yi-.t, zi-.t-i)
t

q(zi-.t\yi:t) = q(zi\yi)'[[q(zk\yi:k,zi,k-í) (4.3)
fc=2

Equation (4.3) allows for the recursive evaluation of the importance weight wt which is given by

The proportionality in Equation (4.4) aróse because we deleted the constant term p(yt\yi-.t-i)- There are many
possible choices for q(zi:t\yi:t); but all must include the support of p(zi:t\yi-.t)- We are interested in a proposal that
minimizes the variance of the importance weights. Also, this proposal must have the form shown in equation 4.3,
where we consider 2i : t_i and y\.¿ to be known information.

The minimum variance of the importance weight at time í, conditional on 7/1 :t and z1:t_1; is obtained using
p(zt\yi-.t, z\:t-\] as the optimal importance distribution.

4We represent some previous results for completeness.
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This optimal distribution allows us to compute the probability of the discrete modes {zt = fc}£lj

/ , , x : - , : - , = k\Zt-l)
P(Zt = «I / l : t ,Z l : t - l ) = - ; - ¡ - C - (4.5)

and the importance weights are

k=l
n, , ,

= Y,M\yt\t--i(zt = k),St(zt = k)\p(zt = k\zt-ú (4.6)
fc=i ^ /

where the parameters in equation (4.6),

• m\t-i - E(j/t|i/t-i), and

• St =cov(yt 3/i :t_i),

are the innovation and the prediction covariance of the observation conditional on z\._t—í and zt = k (fc 6
{1,..., nz}). We have to compute one step of the Kalman filter in order to obtain the importance weight. Com-
puting the importance weight requires nz evaluations of the term J\f(yt\t-ii 5t). This could be computationally
expensive when the number of possible discrete modes nz is large. However, when the number is small, say 10 or
100, we can compute the distributions in equation (4.6) analytically.

As we can see in equation (4.6), the importance weights do not depend on zt; we are marginalizing over this
variable. It is therefore possible to select particles before the sequential importance sampling step. We can choose
the fittest particles at time t — 1 using the information at time í.

These are the main ideas behind the new efficient algorithm, look-ahead Rao-Blackwellized Particle Filter-
ing (la-RBPF) [Morales-Menéndez et ai, 2002; Morales-Menéndez et a/., 2003]. For the standard PF and RBPF
discussed in Chapter 3, the importance weights depend on the sample z¡ , thus not permitting selection before
sampling. Selecting particles before sampling results in a richer sample set at the end of each time step. Basically,
we are sampling the discrete modes directly from the posterior distribution.

Following is a summary of the basic steps for la-RBPF. But first, for comparison, we also show standard RBPF
(Chapter 3 section 3.5).

Standard Rao-Blackwellized Particle Filteríng

For each particle:

1. Sample a new discrete mode from the transition prior

2. Compute the prior mean and covariance

3. Update the mean and covariance for the continuous parameters

4. Weight the particles as the observation probability given the prior observation mean and covariance

5. Select the fittest particles

6. Update the sufficient statistics using one step of the Kalman recursion
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Look-ahead Rao-Blackwellized Particle Filtering

For each particle:

1. Look ahead at each possible discrete mode zla E {1, . . . , nz}

2. Update the approximations of the continuous parameters as if we had sampled zla

3. Compute the observation likelihood with these approximations

4. Compute the posterior probability of zla as the new discrete mode

5. Compute the weight of each particle

6. Select the fittest particles

7. Sample a discrete mode directly from the posterior probability distribution

8. Update the sufficient statistics using one step of the Kalman recursion

The key steps in look-ahead Rao-Blackwellized Particle Filtering versus standard RBPF are the order of sam-
pling (7) and selection (6) steps, and sampling from the posterior. The pseudo-code for la-RBPF is shown in
Figure 4.6.

Because we are sampling the discrete modes from the true posterior probability distribution, very low prior
probabilities (i.e. fault probabilities) do not represen! a big problem. The observation likelihood can capture the
evidence over time, so if a faulty discrete mode appears, it is identified eventually. We may have to wait for enough
evidence to accumulate in order to overeóme the low prior probability, but we can detect it.

Figure 4.7 shows a graphical representation of the standard Particle Filter, consisting of two steps (sequential
importance sampling and the selection or resampling step, Chapter 3 section 3.4). We want to emphasize the
following events:

• A set of 10 resampled (selected) particles exists at time t-1.

• A new set of 10 particles is sampled using the transition prior at time t-1.

• The importance weights are computed for each particle at time t-1.

• A new set of 10 particles is resampled (selected) according to the weights (previous step) at time t.

Now, we ¡Ilústrate the same events as they occur in the la-RBPF algorithm. For la-RBPF the events are in the
following order:

• A set of 10 resampled (selected) particles exists at time t-1.

• The importance weights are computed for each particle at time t-1.

• A new set of 10 particles is resampled (selected) according to the weights (previous step) at time t-1. We are
choosing the fittest particles at time t-1 using the information at time í.

• A new set of 10 particles is sampled at time í.

As we can see in Figure 4.8, selecting particles before sampling results in a richer sample set at the end of each
time step, and we are more likely to be able to deal with changing filtering distributions.
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Kalman prediction step

For ¡=1 , . . . , N, and for zt = 1, . . . , nz compute

• For i=1 , . . . , N , evalúate and normalize the importance weights

¿=i
witn respect to high/low importance

j, E^, 4ÍLi } .
J ¿=1

Selection step

• Multiply/Discard particles

weights w^ to obtain TV particles

Sequential importance sampling step

• Kalman prediction. For i=1 , . . . , N, and for zt = 1, . . . , nz using the resampled information,
re-compute

For Zí = 1, . . . , nz compute

Sampling step

Updating step

• For i=1 ..... N, use one step of the Kalman recursion to compute the sufficient statistics
{Mí

(l),£t
(í)} given

Figure 4.6: la-RBPF algorithm at time í. The algorithm uses an optimal proposal distribution. It also selects particles
from time í - 1 using the information at time t. nt\t-i - E (xt\ yi-.t-i), Mt - E (xt\ yi-.t), yt¡t-i — E (yt\ yi-.t-i),

1:t_1)>i:f = cov (xt\ y1:t) and St = cov(y t| j/1:t_!).
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Resampled partióles
at time t-1

Sampled partióles

Weighted partióles

Resampled partióles
at time t

Figure 4.7: Graphical representation, Standard Partióle Filtering. Starting with the resampled partióles at time t-1, a
new set of partióles is proposed at time t. We compute the importance weight of each partióle. Finally, we select the
fittest partióles according to their weights. Note the filter has failed to track the modes appearing at the right of the
filtering posterior distribution at time í.



Look-ahead Rao-Blackwellized Particle Filteríng 69

o o o o o o o o o ou mu \ i \ Resampled partióles
at time t-1

Weighted partióles

Resampled partióles

Sampled partióles
at time t

Figure 4.8: Graphical representation, look-ahead Rao-Blackwellized Particle Filtering algorithm. First we compute
the importance weights. After resampling according to these weights, we propose new particles at time t. With this
algorithm, we are more likely to be able to track all modes of the changing filtering distribution at time í.
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La-RBPF Convergence

The RBPF convergence proof of [Doucet et al, 2000a] also applies to la-RBPF; the main difference between these
algorithms is the proposal distribution. The Rao-Blackwellization sampling scheme used in la-RBPF is widely
demonstrated in [Casella and Robert, 1996], and a complete explanation is included in Appendix C section C.2.
Also, for completeness, we include the following convergence proof.

Let B (Rn) be the space of bounded, Boreal measurable functions on Mn. || g || = supieRn |g(x)|. The
following theorem was given in [Crisan and Doucet, 2000]. In addition, [Crisan and Doucet, 2002] presents a survey
of convergence results on Particle Filtering methods.

Theorem 1 // the importance weights wt are upper bounded and if we use one of the selection schemes de-
scribed in Appendix B, section B.2.2, then, for all t < O, there exists ct independen! of N such that for any

E
N . . . . .

g*í \

J i at °'í 1:í ° / (4.7)
¿=1

where the expectation is taken with respect to the randomness introduced by the Particle Filtering algorithm (such
as la-RBPF). The convergence of this general Particle Filter is guaranteed and the convergence rate is independent
of the dimensión of the state space5.

4.4 Main Results
We discuss our results in three main áreas: industrial applications, JMLG model and la-RBPF algorithm. This is a
brief summary; most of these results are discussed and analyzed in detail in Chapter 7, supported by experiments.
La-RBPF algorithm represente our main contribution in this research.

4.4.1 Industrial Applications

To the best of our knowledge and belief there is no published literature in this field. Specifically, there are no papers
which exploit this principled probabilistic technique, Monte Cario Particle Filtering, for estimation/diagnosis in
technical processes such as:

• Shell-and-tube heat exchanger

• Industrial dryer

• Level-tank.

In the last five years, many important papers have appeared using similar tools, but their results have been based
on simulated equations, simplified models, etc. Nevertheless these papers show impressive results and make very
important contributions in many fields. Another important group of papers have appeared in robotics, visión, etc.,
making important contributions in this área.

Our research was based mainly on real-life applications in industrial or pilot processes. We believe that the prac-
tica! nature of this research is one of its most important contributions. Fault Detection and Isolation (FDI) systems
are the classical approach to tackling the diagnosis/estimation problem in the control engineering community, and

usually increases exponentially over time.
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there is a lot of research in this área (Chapter 2); however, our proposal is innovativc in this practical field. We
believe it represents a potential tool for other applications due to its on-line propendes.

We also tested our algorithm in the robotics field using real data with excellent results, [de Freitas et al., 2003].

4.4.2 JMLG model

We got excellent results representing continuous dynamic processes using the jump Markov linear Gaussian (JMLG)
model, see Figure 4.5.

Depending on the inference task we are interested in, the model designer requires certain process knowledge:

• Fault diagnosis.
If we want to use the JMLG model to diagnose faults, we must identify all the different possible faulty points
(and their combinations). The difficult task here is designing the transition matrix and prior distribution.
Usually faults are unpredictable and difficult to analyze.

• State estimation.
If we are interested in state estimation, we must identify the different operating conditions the process can be
in. Nonlinearity could appear; we need to break nonlinear states into several pieces that are approximately
linear Gaussian.

A lot of work was required for the experimental tests, however the JMLG model always performed well. We
tested our models in processes with fast and slow response, high and low noise, one and more dimensions for the
continuous state variables, and four or more discrete modes. In every case, the results were excellent.

The JMLG model represents a simple framework for modelling nonlinear processes or processes with different
operating conditions. Given this model, the diagnosis/estimation task is relatively straightforward.

The proposed learning procedure gave good results; however, there are some possible practical problems. It can
be difficult to implement persistent input signáis for fault states, because it is difficult to reproduce faulty situations.
Indeed, it is difficult to identify and implement all the possible faulty conditions. Nevertheless, we can consider
the most common ones and design a practical system. It is importan! to note that this problem also exists in other
model-based approaches.

4.4.3 Look-ahead Rao-Blackwellized Particle Filtering

We tested the three Particle Filtering algorithms described in this chapter and the previous chapter 3. Representative
results are shown in Figure 4.9. The left graph shows diagnosis error versus number of particles, while the right
graph shows diagnosis error versus computing time per time step. Diagnosis error is the percentage of time steps
during which the discrete mode was not identified properly. The Máximum A Posteriori (MAP) was used to define
the most probable discrete mode over time.

• Diagnosis error versus number of particles.
The proposed algorithm la-RBPF gives a very low diagnosis error per number of particles. It works signifi-
cantly better than standard PF and RBPF.

• Diagnosis error versus computing time.
la-RBPF also gives a very low diagnosis error per unit of computing time, despite its greater computational
expense per particle compared with standard PF and RBPF. However, if the number of discrete modes grows
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Figure 4.9: Representative diagnosis error performance. The left graph shows diagnosis error versus number of
particles for the three Partióle Filtering algorithms. The right graph shows diagnosis error versus computing time
per time step (only, for the RBPF line the number of particles are shown over each data point, same number of
particles are associate with the other lines.) la-RBPF outperforms both PF and RBPF, even considering its greater
computational expense per particle. This demónstrales its usefulness for real-time applications. Each data point
shows the average and standard deviation computed from 25 independen! runs. Each run has 1,000 time steps.

too high, la-RBPF may not be able to work in real-time. There are some possible solutions for this problem:
parallel computing or more efficient languages6.

• Time responde
la-RBPF requires less time to diagnose/estimate a discrete mode.

• Very low probabilities.
Faulty conditions usually have very low probabilities. Standard numerical approximations have trouble with
this situation because a very small number of particles are assigned to a faulty discrete mode, despite the
observations. However, la-RBPF samples the possible discrete modes from their true posterior distribution,
capturing evidence of faulty conditions and allowing them to be identified.

• Variance.
la-RBPF gives lower variance than standard PF and RBPF per number of particles. This advantage, based on
the Rao-Blackwell formula, grows as the number of particles is increased.

• Real time applications.
la-RBPF generated better results than standard PF and RBPF in real-time. However, if the number of discrete
modes or the model complexity (nx, ny, nu ) grows, la-RBPF may have to work off-line.

• Noise environment.
If the signáis have high noise levéis, looking ahead a single time-step does not tell you much about the next
possible discrete mode, especially at high sampling rales. In this case Ihe look-ahead is just extra work for no

6The algorithms tested were written ¡n Matlab versión 6.0.



Look-ahead Rao-B¡ackweHized Partióle Füteríng 73

benefit. Often, however, we can apply a very simple moving-average filter to the data, restoring la-RBPF's
advantage.

4.5 Summary
In the first part of this chapter, the modelling problem was defined. An algorithm for learning the Jump Markov Lin-
ear Gaussian model's parameters was proposed. This algorithm has two iterative stages. In the first stage, the Least
Squares Estimation method is used to compute some parameters, i.e. the deterministic state space representation
of each continuous dynamic model. In the second stage, the deterministic state space representation is used as an
initial approximation for the Expectation-Maximization method, and the full parameters of the Jump Markov Linear
Gaussian model are calculated. The proposed algorithm was tested in many real Ufe applications, and the results
are sufficiently good. Specifically, for our diagnosis/estimation purposes the results are excellent. There are many
opportunities to improvement the proposed algorithm, as many time-consuming steps were manually implemented.
Moreover, some crucial information, such as the number of discrete modes and their transition matrix, must be
engineered using process knowledge.

For the inference task, we presented our main contribution the look-ahead Rao-Blackwellized Partióle Filtering
algorithm in the second part of this chapter. la-RBPF is a Particle Filtering variant that represents the continuous
variables in a compact manner and reduces the number of particles required. la-RBPF samples the discrete modes
directly from the posterior probability distribution and selects the fittest particles before the transition step. These
two main changes make la-RBPF a more efficient algorithm. Results for some industrial processes showed low
diagnosis error with very low variance even for faulty discrete modes (characterized by very low prior probabilities).
la-RBPF can be computationally expensive; specifically, if the number of discrete modes grows, it may be limited
to off-line applications.



Chapter 5

Experimental implementation

5.1 Introduction

We tested the Particle Filtering and Rao-Blackwellized Particle Filtering algorithms described in Chapter 3, and
the new look-ahead Rao-Blackwellized Particle Filtering algorithm presented in Chapter 4, with four real-world
systems1:

- industrial dryer

- level-tank

- industrial heat exchanger

- mobile robot

Each domain has different characteristics that we want to analyze and exploit, such as non-linear dynamics, noisy
signáis, different kinds of input/output variables, etc. Some domains have industrial characteristics, and their results
are therefore 100 % transferable to similar systems; other domains have pilot-plant characteristics only. However,
all of them have industrial instrumentation. The main results to show for each domain relate to:

- Jump Markov Linear Gaussian (JMLG) modelling

- Inference performance of the Particle Filtering algorithms

In this chapter, we give the main results; however, detailed discussions are deferred until Chapter 7. Each domain
is described in four basic sections:

1. Description. A brief description of the process and our motivation for choosing it. We also define the discrete
modes that can occur.

2. Modelling. The main modelling results, e.g. the JMLG parameters.

3. Diagnosis/estimation tests. The transition matrix, initial distribution, and random sequence chosen. Basically,
the procedure to genérate the experimental data set. We also valídate the JMLG model.

1 We thank Francisco Calleja for his support during the experimental tests at ITESM, campas Monterrey.
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4. Resitlts. Plots that show diagnosis error versus number of partióles and computing time. For some domains
we show other interesting graphical results.

For trie first domain, the industrial dryer, we describe each step in detail. For the other domains we give only the
final results.

Some domains are suitable for fault detection and diagnosis, whereas others are appropriate for state estimation
only. We do not focus on that distinction here.

As our goal is to perform diagnosis/estimation for real time applications, we use 1 second as our reference
sampling rate. This is typical of most of the domains we are testing; however, the sampling rale is domain depended.

In order to test Úiejump Markov linear Gaussian model and the Particle Filtering inference algorithms in more
domains, having different characteristics, we developed a simulator. This also allowed us to increase the complexity
of our domains. Several simulations are shown in Chapter 6, in which we manipulated features such as the number
of discrete modes and the nonlinear regimes.

5.2 Industrial dryer
To test our inference algorithms, we started with a common real-world process. An industrial dryer was adapted for
experimental purposes, so that faults points could be repeatedly implemented.

5.2.1 Description

The industrial dryer is a thermal process that converts electricity to heat. The dryer is able to control the exit air
temperature by changing its shooting angle. It has digital communication with a personal computer using a data
acquisition system, [Valles et al., 1998]. The generated faults were implemented using:

• fan speed: low/high

• fan grill: closed/opened

• dryer exit vent: clear/obstructed

Figure 5.1 shows a picture of this process. Figure 5.2 shows a basic diagram with the faulty points. Four possible
experimental conditions can be implemented in the dryer; details are shown in Table 5.1 [Morales et al., 2001 ].

Table 5.1: Industrial dryer. Operating Conditions.

Zt

1
2
3
4

Model ñame
Normal operation

Faulty fan
Faulty grill

Faulty fan and grill

fan speed
low
high
low
high

dryer grill
opened
opened
closed
closed

exit vent
clear
clear
clear
clear
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Figure 5.1: Industrial dryer. This dryer uses a motor-driven fan and a heating coil to transform electrical energy into
convective heat.

5.2.2 Modelling

Parametric identification was carried out based on the Least Squares Estimation algorithm [Ljung, 1987]. Exper-
imental step changes were applied by altering the input signal from 15 % to 25 % and vice versa using 1 sec as
the sampling time. The transient response follows a first order plus dead time (FOPDT) model, equation (5.1)
[Smith and Corripio, 1997].

Y(s) Ke~e'sG»<s> = m= ^TT <5-»
where:

- Gp(s) represents the transfer function

- Y(s) is the output signal, e.g. temperature

- U(s) is the input signal, e.g. current percentage

- K is the process gain, e.g. A aTurr^n"7^

- T is the process lag constant, in seconds

- 9' is the process dead time, in seconds

- s is the Laplace Transform operator

Table 5.2 shows the experimental FOPDT models. uss and yss represen! the input and output steady states, respec-
tively.
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Figure 5.2: Industrial dryer (diagram). Using only measurements taken with the temperature sensor, we want to
diagnose on-line the most probable faulty point at each time step.

Table 5.2: Industrial dryer. Experimental FOPDT models.

Zt

1
2
3
4

Model ñame
Normal operation

Faulty fan
Faulty grill

Faulty fan and grill

uss

15
15
15
15

2/ss

50.52
44.16
54.76
46.99

K
1.94
1.44
2.34
1.61

T

30.45
25.10
41.68
32.96

6'
0
0
0
0
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Using the inverse Laplace transform, we get the differential equations for each model. After that we can obtain
the deterministic discrete state space representador!2, choosing a sampling rate of 1 sec. Next, having the determin-
istic model3, we can obtain the stochastic model. We determine the process and measurement noise matrices (B(-)
and -D(-)) and refine the deterministic matrices (A(-), C(-), F ( - ) , G(-)) using the Expectation-Maximization (EM)
algorithm [Ghahramani and Hinton, 1996]. The deterministic model is used as a good initial approximation for the
EM algorithm in order to avoid convergence to local máxima . Equations (5.2-5.3) represen! the JMLG model. The
matrices and initial state conditions for this application are shown in Table 5.3.

xt+i
= C(zt}xt + D(zt)vt + G(zt)ut

(5.2)

(5.3)

Table 5.3: Industrial dryer. JMLG parameters.

Zt

1
2
3
4

xo(zt)
50.52
44.16
54.76
46.99

A(zt)
0.9676
0.9609
0.9762
0.9701

B(zt)
0.05
0.05
0.05
0.05

C(zt)
1
1
1
1

D(zt)
0.05
0.05
0.05
0.05

F(zt)
1.6321
1.7247
1.2981
1 .4042

G(zt)
0
0
0
0

Some intermedíate results of this modelling procedure (for the industrial heat exchanger) are given in Ap-
pendix D section D.3.1.

5.2.3 Diagnosis/estimation tests

More trian 20 random sequences were physically implemented in this domain. These sequences were designed using
the transition matrix and prior probabilities shown in equation (5.4). Figure 5.3 shows a graphical representation of
this transition matrix.

P(zt\zt-i) =

0.994 0.002 0.002 0.002
0.002 0.994 0.002 0.002
0.002 0.002 0.994 0.002
0.002 0.002 0.002 0.994

P(z0) = [ 0.988 0.004 0.004 0.004 ] (5.4)

Table 5.4 shows a typical random sequence4, consisting of 6 time intervals. In each interval a condition (faulty
or normal) was physically generated. During the first time interval (1-70 time steps), the dryer was working under
normal operating conditions. In the second interval (71-238), a faulty fan condition was introduced, etc. We obtained
data points for 1,000 time steps; air temperature was the observable variable { y t } for each faulty condition {zt}.

Also, following the same random sequence in Table 5.4, and using the JMLG model parameters, we simulated
the JMLG model behaviour. Figure 5.4 compares the real and simulated data for the industrial dryer5. The upper

2Also, using the z-Transform [Ogata, 1995], we can conven Gp(s) and then get the state space representation.
3We thank Jorge Limón-Robles and Ricardo Ramírez-Mendoza (ITESM) for their excellent discussions regarding state space representation.
4A11 the results in this section refer to this sequence.
5For clarity in tríese comparisons, we always omit the noise matrices in the JMLG model.
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Figure 5.3: Industrial dryer. Transition matrix

graph shows how the discrete mode z¿ changes over time; the lower graph shows how the air temperature (real and
simulated data) changes for each discrete mode.

Three more random sequences for the industrial dryer are given in Appendix D section D. 1.1, in order to further
validate the JMLG model's performance.

Table 5.4: Industrial dryer. Random sequence No. 1.

Step
1
2
3
4
5
6

Interval
(1 , 70)

(71 , 238)
(239, 365)
(366,513)
(514,705)

(706,1,000)

Zt

1
2
3
1
3
2

Model ñame
Normal operation

Faulty fan
Faulty grill

Normal operation
Faulty grill
Faulty fan

Fan speed
low
high
low
low
low
high

Dryer grill
opened
opened
closed
opened
closed
opened

Exit vent
clear
clear
clear
clear
clear
clear

5.2.4 Results

Given the real observations (air temperature in this domain) and the discrete modes over time, we tested the three
Particle Filtering algorithms. Table 5.5 shows the performance of each algorithm using random sequence No. 1.
Each algorithm was tested with different numbers of particles, TV. We define diagnosis error as the percentage of
time steps during which the discrete mode was not identified properly. We use the Máximum A Posteriori (MAP) in
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Figure 5.4: Industrial dryer. Random sequence No. 1. The upper graph shows the discrete modes over time. The
lower graph compares the real temperature and the synthetic data obtained using thejump Markov linear Gaussian
model for the same discrete mode changes.

order to define the most probable discrete mode over time.

Diagnosis error = Time steps having discrete mode wrongly identified
x 100%Total number of time steps

A 10 % diagnosis error for 1,000 data points means that the algorithm identified the discrete mode for 900
time steps correctly, and 100 incorrectly. Because Particle Filtering is a stochastic algorithm, we performed 25
independent runs of 1,000 time steps each. With this data we computed the mean and standard deviation (SD) of the
diagnosis error for each algorithm for diiferent numbers of particles. These numerical results are shown in Table 5.5.

In Figure 5.5 we show the same results graphically. In the left graph, we plot the diagnosis error mean versus
the number of particles; we include the standard deviation around each mean data point.

Since RBPF and la-RBPF require more computing time per time step, a better comparison is diagnosis error
mean versus computing time per time step. The right graph in Figure 5.5 shows this. Again, we include the standard
deviation around the mean data points, and we draw a vertical line at 1 sec to sepárate on-line and off-line diagnosis.
Note that the exact location of this boundary depends on the application.

There is a baseline error rate resulting from human error in timing the discrete mode changes. These changes
were manually implemented in all real (non-simulated) domains.

Figures (5.6-5.7) show the Máximum A Posteriori (MAP) estímate over time. Each graph shows the truc discrete
mode and the MAP estímate for each Particle Filtering algorithm. The overall diagnosis error for each algorithm
is also given; note that this represents a single run, not an average. The upper plots for each graph correspond to
standard Particle Filtering, the middle plots to RBPF, and the lower plots to look-ahead RBPF.

The left graphs in Figure 5.6 were generated using 50 particles, while the right graphs used 100. In Figure 5.7
we used 200 and 400 particles, respectively. As we can see, standard Particle Filtering improves as the number of
particles grows; however, for RBPF and la-RBPF the improvement is small because fewer particles are required for
better estimates. (Recall there is a baseline error rate resulting from human error.)

More results are included in Appendix D section D.1.2.
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Table 5.5: Industrial dryer. Diagnosis error for random sequence No. 1.

Particles
N
1
4
10
25
50
100
200
400
800
1600

% Diagnosis error, mean
PF

75.13
77.81
68.35
50.50
40.06
24.20
17.02
13.77
13.99
13.07

RBPF
75.61
57.69
39.07
21.61
14.78
10.20
7.99
7.50
7.53
7.42

la-RBPF
26.02
18.82
13.55
9.08
7.76
7.28
6.87
6.79
6.79
6.75

% Diagnosis error, SD
PF

10.20
8.38
16.11
11.04
9.99
7.16
5.03
3.97
1.93
2.14

RBPF
14.17
9.98
12.03
7.18
5.06
3.77
0.55
0.30
0.19
0.15

la-RBPF
7.79
5.74
5.62
3.49
2.16
1.15
0.29
0.18
0.09
0.10
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Figure 5.5: Industrial dryer. Diagnosis error for random sequence No. 1. The left graph shows diagnosis error
versus number of particles, while the right graph shows diagnosis error versus computing time per time step. A
vertical line appears where the computing time is 1 sec. To the left of this boundary, the number of particles is low
enough to allow the Particle Filtering algorithms to be implemented on line.
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Figure 5.6: Industrial dryer. MAP estimation for random sequence No. 1. Each plot shows the truc discrete mode
and the MAP estímate generated by each PF algorithm. The overall diagnosis error for each algorithm is also given.
We used 50 particles for the left plots and 100 particles for the right ones.

• í]lili 1 1
JÜ U

18.5 % Diagnosis error

I

100 ZOO 300 400 500 600 700 900 1000

8.2 % Diagnqsis erroe

100 200 300 400 500 600 700 800 900 1000

7.1 % Diagnosis error

100 200 300 400 500 600 700 800 900 1000

time steps

100 200 300 400 500 600 700 900 1000

8.3 % Diagnosis error^

100 ZOO 300 400 500 600 700 800 900 1000

6.6 % Diagnosis error¡ j

_j— T~ \\ 1!
t

100 200 300 400 500 600 700 800 900 1000

time steps

Figure 5.7: Industrial dryer. MAP estimation for random sequence No. 1. Each plot shows the true discrete mode
and the MAP estimate generated by each PF algorithm. The overall diagnosis error for each algorithm is also given.
We used 200 particles for the left plots and 400 particles for the right ones.
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Variation in the transition matrix

To test the robustness of our Partióle Filtering algorithms, we created some variations in the transition matrix prob-
abilities, Equation (5.4). Despite these changes, the diagnosis error remained the same; see Tables (D.4-D.5)6 in
Appendix D, section D.1.2.

These results were expected because Particle Filtering obeys Bayes' theorem. Basically, prior distribution and
likelihood functions relating to the observations are combined in order to get the posterior distribution. All inference
is based on the posterior distribution. The posterior distribution is proportional to the likelihood times the prior, and
is updated as data become available. Inference is implemented on-line where the observations (evidence) arrive
sequentially; the prior distribution becomes less important over time.7

5.3 Level tank

The level tank is a widely studied system because it can represen! the dynamic behaviour of many industrial pro-
cesses, such as a boiler drum, part of a distillation column, part of an evaporator, etc.

5.3.1 Description

The pilot plant that we used is shown in Figure 5.8. See Figure 5.9 and Table 5.6 for a simple yet complete
description of the industrial instrumentation in this experimental system. The instruments have standard analog (4-
20 mA) and digital communication with a Honeywell UDC 6300 Controller (not shown), which in turn has digital
communication with a computer using the Honeywell LeaderLine PC software.

A manual bypass valve, Vi, is used to physically implement some faulty feed-water pump behaviours. There
is another manual valve, V¿, at the output pipe. There are more accessories and devices (e.g. air filters, pumps,
solenoids, etc.), but they were omitted from the diagrams for simplicity.

We designed two sets of discrete modes to test this domain. Each test is analyzed separately in the following
sections.

• 4 discrete modes

• 5 discrete modes

Table 5.6: Level tank. Instrumentation.

Tag-name
FT-100
FV-100
LT-100
FT-200

Functional ñame
Flow sensor/transmitter
Flow valve
Level sensor/transmitter
Flow sensor/transmitter

Description
Input flow measurement
Input flow control valve
Level tank measurement
Output flow measurement

Units
%
%
cm
%

6Faults have very low prior probabilities.
7See [Poole et al., 1998] for a nice overview of Bayesian inference.
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Figure 5.8: Level Tank Process. The instrumentation shown has industrial characteristics. We are using orífice
piales as sensors, and pressure differential transmitters.

5.3.2 Modelling

4 Discrete modes.

We engineered four discrete operational modes under conditions shown in Table 5.7. Manual valves (Vi and V2)
satisfy O < Oí < <92 < 100% and O < O3 < 100%. Oí, O2 and O3 were adjusted to work in linear regimes.

Following the same mathematical methods (described for the industrial dryer), we get the JMLG parameters,
Table 5.8.

5 Discrete modes.

To increase the complexity a little, we added another discrete operating state, shown in Table 5.9. The JMLG
parameters for the new system are given in Table 5.10. Ideally, the parameters for the first four states (zt = 1, . . . , 4)
would have been the same for both systems; however, due to difficulties in maintaining certain conditions we could
only reproduce approximate valúes. This is an interesting point to discuss later, but for the time being, this variability
in the process allows us to test the robustness of the Particle Filtering algorithms.
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Figure 5.9: Level Tank. Instrumentaron diagram. Using only the level sensor/transmitter (LT-100), we want to
diagnose the diíferent discrete modes.

Table 5.7: Level tank (4 discrete modes). Operating Conditions.

zt
1
2
3
4

Model ñame
Low In-Flow

Médium In-Flow
High In-Flow
Low Out-Flow

V!

100%
Oí % (partly open)

Oí % (almost closed)
100%

FV-100
40%
40%
40%
40%

V2

100%
100%
100%

Oz % (partly open)

Table 5.8: Level tank (4 discrete modes). JMLG parameters.

Zt

1
2
3
4

xo(zt)
15.54
31.40
68.84
27.61

A(zt)
0.9801
0.9829
0.9910
0.9872

B(zt)
0.008
0.008
0.008
0.008

C(zt)
1
1
1
1

D(zt)
0.08
0.08
0.08
0.08

F(zt)
0.3099
0.5368
0.6163
0.3544

G(zt)
0
0
0
0
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Table 5.9: Level tank (5 discrete modes). Operating Conditions.-

Zt

1
2
3
4
5

Model ñame
Low In-Flow

Médium In-Flow
High In-Flow

Low-In/Low-Out
Medium-In/Low-Out

Vi
100%

02 % (partly open)
Oí % (almost closed)

100%
Ü2 % (partly open)

FV-100
40%
40%
40%
40%
40%

V2

100%
100%
100%

Os % (partly open)
Os % (partly open)

Table 5.10: Level tank (5 discrete modes). JMLG parameters.

Zt

1
2
3
4
5

zo(zt)
15.93
30.61
69.00
24.39
41.52

A(zt)
0.9864
0.9886
0.9880
0.9894
0.9925

B(zt)
0.05
0.05
0.05
0.05
0.05

C(zt)
1.0
1.0
1.0
1.0
1.0

D(zt)
0.05
0.05
0.05
0.05
0.05

F(zt)
0.2169
0.3484
0.8285
0.2574
0.3114

G(zt)
0
0
0
0
0

5.3.3 Diagnosis/estimation tests

Several random sequences were implemented in order to obtain real data for both groups of discrete states.

4 Discrete modes.

More than 20 random sequences were implemented using the following transition matrix and initial prior probabili-
ties, equation (5.5). A representative sequence and modelling results are given in Figure 5.10.

P(zt\zt-i) =

0.996 0.002 0.00 0.002
0.002 0.996 0.002 O

O 0.004 0.996 O
0.002 O O 0.998

0.99
0.001
0.001
0.008

(5-5)

5 Discrete modes.

More than 15 random sequences were implemented using the following transition matrix and initial probabilities,
equation (5.6). Figure 5.11 shows a representative random sequence and modelling results.

P(zt\zt-i) =

' 0.995
0.001
0.001
0.001
0.0

0.002
0.997
0.002

0.0
0.001

0.002
0.001
0.997
0.0
0.0

0.001
0.0
0.0

0.998
0.001

0.0
0.001
0.0

0.001
0.998

0.996
0.001
0.001
0.001
0.001

Other random sequences for the level tank system are included in Appendix D section D.2.1.

(5.6)
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Figure 5.10: Level tank (4 discrete modes). Random sequence No. 1. The upper graph shows the discreta modes
over time, while the lower graph compares the real level with the synthetic data obtained using the JMLG model for
the same discrete modes.
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time (=) sec

800 1000

200 400 600
time (=) sec

800 1000

Figure 5.11: Level tank (5 discrete modes). Random sequence No. 1.



5.3.4 Results

4 Discrete modes.

Figure 5.12 depicts diagnosis error versus number of particles, and diagnosis error versus computing time per time-
step, respectively, for random sequence No. 1. Numerical data for these figures and other results for this domain are
included in Appendix D section D.2.2. It is importan! to note that we used a differential pressure sensor-transmitter
in the level tank. This kind of instrument usually has high noise levéis.

100
90

80

70

60

50

40

30

20

10

O

la-RBPF

10" 10 10 10
Number of particles

10" 10 10" 10
Computing time per time step (=) sec

Figure 5.12: Level tank (4 discrete modes). Diagnosis error for random sequence No. 1. The left graph shows
diagnosis error versus number of particles, while the right graph shows diagnosis error versus computing time per
time step.

To ¿Ilústrate the variability of the diagnosis error, we show the same results as a box and whisker plot in Fig-
ure 5.13. The boxes nave lines at the lower quartile, median, and upper quartile valúes. The whiskers are lines
extending from each end of a box to show the extent of the rest of the data. The boxes are notched. Notches rep-
resent a robust estímate of the uncertainty about the medians for box-to-box comparison. Outliers are data valúes
beyond the ends of the whiskers; outliers are shown as circles. Note how the la-RBPF quartiles are closer than the
Particle Filtering and Rao-Blackwellized Particle Filtering quartiles.

5 Discrete modes.

Figure 5.14 shows diagnosis error versus number of particles and diagnosis error versus computing time per time
step, respectively, for random sequence No. 1.

Other results are included in Appendix D section D.2.2.
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Figure 5.13: Box and whisker plots for each Particle Filtering algorithm. la-RBPF always works significantly better
than regular PF and RBPF for each number of particles.

5.4 Industrial heat exchanger

5.4.1 Description

We used an industrial heat exchanger in a horizontal arrangement, model BEU-660, with 11 Cu-Ni (90-10) 3/4 inch
external diameter tubes, BWG-20 triangular arrangement, Figure 5.15. This exchanger heats 10 gpm of water in
the range of 25°C to 70°C with steam at 5 Kg/cm2. The container is 6 inches in external diameter and 70 inches
in length. The equipment is operated automatically by a distributed industrial control system, the Honeywell TDC
3000. Figure 5.16 is a conceptual diagram; the main instrumentation is described in Table 5.11.

These instruments have analog (4-20 mA) communication with a Honeywell TDC 3000 Distributed Control
System, which in turn has digital communication with a computer through the PCIM (Personal Computer Interface
Module) [Morales-Menéndez, 1992]. This was our data acquisition system. Additionally, we configured two PID
controllers (FIC-202 and FIC-203) to control the input water flow and the steam flow during the tests. There
are many additional accessories and devices, but we omit them from the instrumentation diagram for the sake of
simplicity.

5.4.2 Modelling

The heat exchanger is a nonlinear process. Based on the input water flow, fixed by the FIC-203 controller, we found
five different operating regimes, Table 5.12. The JMLG parameters for these regimes are shown in Table 5.13. Some
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Figure 5.14: Level tank (5 discrete modes). Diagnosis error for random sequence No. 1. The left graph shows
diagnosis error versus number of particles, while the right graph shows diagnosis error versus computing time per
time step.

Table 5.11: Heat exchanger. Instrumentation.

Tag-name
FT-203
TT-203
FV-203
FIC-203
FT-202
FV-202
FIC-202
TT-201

Functional ñame
Flow sensor/transmitter
Temperature sensor/transmitter
Flow val ve
Flow indicator controller
Flow sensor/transmitter
Flow val ve
Flow indicator controller
Temperature sensor/transmitter

Description
Input water flow measurement
Input water temperature
Input water control valve
Water flow PID controller
Steam flow measurement
Steam flow control valve
Steam flow PID controller
Output water temperature measurement

Units
%
°C
%

%
%

°c
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Figure 5.15: Industrial heat exchanger. This exchanger heats 10 gpm of water in the range of 25°C to 70°C with
steam at 5 Kg/cm2.

intermedíate results from the Expéctation-Moximizations method are shown in Appendix D section D.3.1.

Table 5.12: Heat exchanger. Operating conditions.

Zt

1
2
3
4
5

Model ñame
Very high flow

High flow
Normal flow

Low flow
Very low flow

Input flow
65%
57%
49%
41 %
33%

Steam flow
32%
32%
32%
32%
32%

Water temperature
39.69 oC
41.68oC
44.05 oC
47.26 oC
51.40oC

5.4.3 Diagnosis/estimation tests
We implemented 20 random sequences using the transition matrix and initial probabilities given in equation (5.7).
Figure 5.17 shows a representative random sequence, called random sequence No. 1 for this domain. The upper
graph represents the discrete modes implemented, and the lower graph shows how the real output water temperature

8We thank Zoubin Ghaharamani (University College London) for his linear dynamic system EM code and his suggestions.
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Flow
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Tempera ture
sensor

Condénsate
return

Figure 5.16: Industrial heat exchanger. Instrurnentation diagram. Two PID controllers (FIC-203 and FIC-202) were
configured to control the input water flow and the steam flow during experiments.

changed over time. The lower graph also shows synthetic data which was generated for comparison. Another similar
random sequence is included in Appendix D section D.3.2.

0.997
0.001

0.0005
0.00025

0.0

0.0015
0.997
0.002

0.00075
0.0005

0.001
0.001
0.997
0.001
0.001

0.0005
0.00075

0.001
0.997
0.0015

0.0
0.00025

0.0
0.001
0.997

0.0005
0.001
0.997
0.001
0.0005

(5.7)

Table 5.13: Heat exchanger. JMLG parameters.

•Zt

1
2
3
2
2

xo(zt)
39.63
41.69
44.03
47.23
51.44

A(zt)
0.9818
0.9817
0.981

0.9858
0.9786

B(zt)
0.005
0.005
0.005
0.005
0.005

C(zt)
1.0
1.0
1.0
1.0
1.0

D(zt)
0.05
0.05
0.05
0.05
0.05

F(zt)
0.7209
0.7591
0.7970
0.6695
1.0999

G(zt)
0
0
0
0
0
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Figure 5.17: Industrial heat exchanger. Random sequence No. 1. The upper graph shows the discrete modes over
time, while the l.ower graph compares the real level with the synthetic data obtained using the JMLG model for the
same discrete modes.

5.4.4 Resulte

Figure 5.18 shows the diagnosis error for random sequence No. 1. The left graph shows diagnosis error versus num-
ber of particles for the three Particle Filtering algorithms; the right graph shows diagnosis error versus computing
time per time step. Other results for this domain are included in Appendix D section D.3.3.

Box and whisker plots (Figure 5.19) are another interesting way to look at the results. Note how the la-RBPF
quartiles are closer than those of the Particle Filtering and Rao-Blackwellized Particle Filtering algorithms.

A more complete way to show the Particle Filtering results is to plot the probability distribution p(zt\y\-.t) over
time. Figures 5.20 show the probability distribution p(zt\yi-.t) every 25th time step. The upper graph shows the
results for Particle Filtering, while the lower graph shows Rao-Blackwellized Particle Filtering. Both used N = 5
particles.

Figures 5.21 show the results for la-RBPF. The upper graph shows the results using the same TV = 5 particles,
while the lower graph was built using 400 particles.

Variation in the transition matrix

A very simple robustness test was implemented for the three Particle Filtering algorithms. Some variations were
realized in the probabilities of

• Prior distribution of the discrete modes P(ZQ)

• The less representative discrete mode (zt = 1) in the transition matrix

• The most representative discrete mode (zt = 3) in the transition matrix

However, as we expect there is no change in the diagnosis error, see Table D.7 in Appendix D, section D.3.3
where the probabilities of the most representative discrete mode were modified.
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Figure 5.18: Heat exchanger. Diagnosis error for random sequence No. 1. The left graph shows diagnosis error
versus number of particles; the right graph shows diagnosis error versus computing time per time step.
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Figure 5.19: Box and whisker plots for each Particle Filtering algorithm. la-RBPF always works significantly better
than regular PF and RBPF for each number of particles.
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Particle Filtering
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Time steps
0 Discreta modes, z(

Rao-Blackwellized Particle Filter

Time steps
Discrete modes, z,

Figure 5.20: Probability distribution p ( z t \ y \ - t ) over time. The upper graph shows p(zt\y\-.t) as approximated by
the standard Particle Filtering algorithm, while the lower graph uses Rao-Blackwellized Particle Filtering. Both
approximations used five particles.
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Figure 5.21: Probability distribution p(zt\yi-.t) over time. Both graphs were generated with the look-ahead Rao-
Blackwellized Particle Filtering algorithm. For the upper graph we used 5 particles; the lower graph was built using
400 particles.
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5.5 Mobile robot
The previous industrial processes have normal and faulty states, while robots must further deal with changing envi-
ronmental states.

5.5.1 Description

José9, Figure 5.22, is a Real World Interfaces B-14 mobile robot with a B-12 base. José resides at the Laboratory
for Computational Intelligence10 at the University of British Columbia, Canadá.

Figure 5.22: José, the mobile robot. José, winner of the 2001 AAAI Hors d'Oeuvres competition
[Elinas el ai, 2002], is a Real World Interfaces B-14 mobile robot with a B-12 base.

The base unit contains two sepárate motors, one for translation and one for rotation. The translational motor
drives all three wheels, resulting in excellent traction. The rotational motor turns all three wheels in unisón, so they
are always pointing the same way. Thus there is no concept offront or back wheels - a given wheel can end up in

9He's named after José Narváez, the first European to explore Georgia Strait, BC, Canadá.
10We thank Don Murray (University of British Columbia) for getting us started with José.
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the front (relative to the direction of travel), at the back, or anywhere in between. José can move along curved paths
by simultaneously translating and rotating.

The B-12's motors are stepping motors, controlled by a varying pulse width. Actual translation and rotational
speed are measured by optical shaft encoders - one for translation and one for rotation. Individual wheels do not
have sepárate encoders, so are assumed to all be translating or rotating at the same speed. There are commands to
set the desired speed and acceleration. A feedback control loop monitors the actual valúes and adjusts the motor
pulse width to achieve the desired valúes. Simpler open-loop commands are also available - these bypass the control
loop and send a fixed pulse width directly to the motors. José also has a stereo camera and bump, infrared, and sonar
sensors.

Software

José's on-board computer runs Linux, BaseServer base-unit control software, Triclops depth-mapping software, and
a number of higher-level custom modules for localization, path planning, etc. A shared memory architecture allows
the simultaneous running of múltiple high-level modules, Figure 5.23.

High Level Modules

Shared Memory
Commands / Status Info / Images

RobotServer

Collector2

ImageServer

BaseServer Triclops Library

o
Stereo

0 Camera0

Figure 5.23: José's software architecture.

An on-line monitoring system generally requires access to low-level Information and commands (such as mo-
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tor currents and shaft velocities) that other modules do not care about. This functionality was not available in the
RobotServer/shared memory architecture, so for the purposes of our experiments a stand-alone program was writ-
ten". Collector2 talks directly to BaseServer and the Triclops library, allowing us to queue any commands, set any
sampling rate, and get any available data.

5.5.2 Modelling

We chose to monitor states involving movement, specifically, states in which there is an extra load, see Table 5.14.
Normal operation conditions corresponds to a nuil extra load. A change to another state can occur if José bumps
into or snags something. To simúlate these states repeatably, we manually introduced the loads.

We implemented these conditions for movement across a smooth floor, Table 5.14, and also for a tiled floor.
José's speed was the observable variable yt; we monitored this variable every 0.1 sec.

Table 5.14: José. Operating conditions.

Zt

1
2
3
4

Model ñame
Normal

Low load
Médium load

High load

Extra load
0

0.8 kg
1.6kg
2.4 kg

Floor
Smooth
Smooth
Smooth
Smooth

Table 5.15 shows the JMLG parameters for the smooth floor. Parameters were also obtained for the tiled floor.

Table 5.15: José on the smooth floor. JMLG parameters.

Zt

1
2

3
4

xo(zt)
0.56187

0.5037

0.4265

0.35805

A(zt)
0.72977

0.7385

0.69264

0.74912

B(zt)
0.005

0.005

0.005

0.005

C(zt)
1.0
1.0
1.0
1.0

D(zt)
0.005

0.005

0.005

0.005

F(zt)
0.15183

0.13171

0.13108

0.08982

G(zt)
0

0
0
0

5.5.3 Diagnosis/estimation tests

We engineered a transition matrix P(zt\zt-\) and initial state P(ZQ), equation (5.8).

0.99425 0.005 0.0005 0.00025

0.005 0.9895 0.005 0.0005

0.0005 0.005 0.9895 0.005

0.00025 0.0005 0.005 0.99425

0.9825

0.01
0.005

0.0025

(5.8)

" We thank Jim Mutch (University of British Columbia) for developing this interface, and for his invaluable support during the experimental
tests.
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More than 30 random sequences were implemented on the smooth and tiled floors, in which we physically
changed the robot's operating conditions (load) at random times. Figure 5.24 shows two representative sequences
for both floors. We can see that the JMLG model successfully describes the behaviour on both surfaces. The upper
graphs show the discrete mode of operation over time, and the lower graphs show the real and simulated data (JMLG
model). The left graphs correspond to the smooth floor and the right graphs to the tiled floor. Note the noisy signal
for the bumpy, tiled floor.

High load

Normal Médium load

Low load

Normal

100 200 300 400
time (=) 1/10 sec

500 50 100 150 200 250 300 350 400
time (=) 1/10 sec

0.45
5

0.4

&vfta.i.-. J ¿At -..'j¿¿'_'

100 200 300 400
time (=) 1/10 sec

500 O 50 100 150 200 250 300 350 400
time (=) 1/10 sec

Figure 5.24: José. Random sequences for smooth and tiled floor. The upper graphs show the discrete mode over
time, while the lower graphs show the real speed and synthetic data (JMLG model) for tríese discrete modes. The
left graphs correspond to the smooth floor, and the right graphs to the tiled floor. (Note the noisy signal for the tiled
floor.)

5.5.4 Resulte

As for previous domains, we show diagnosis error versus number of particles, and diagnosis error versus computing
time per time step, Figure D.22. Both graphs are for the smooth floor. Additional results for the mobile robot are
included in Appendix D section D.4.1.

5.5.5 Summary

The proposed learning procedure for thejump Markov linear Gaussian parameters was tested with several real data
sets taken from four real-world systems. From the modelling point of view, the results had acceptable residuals;
however, for the inference task (our main goal), the results were excellent.

Intermedíate results indícate that the proposed learning procedure, which is iterative, has several time consuming
steps. There is an opportunity to improve the overall procedure by automating or integrating some steps. Implement-
ing recursive versions of the Least Squares Estimation and Expectation-Moximization algorithms would provide
great advantages, especially during model maintenance, in which we must train, learn and test the JMLG models
continuously. Recursive versions would also allow us to adapt and capture the changing conditions of industrial
processes or the changing environments of autonomous systems such as mobile robots.
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Figure 5.25: José. Diagnosis error on smooth floor. The left graph shows diagnosis error versus number of particles;
the right graph shows diagnosis error versus computing time per time step. For this domain, 0.1 sec is the máximum
computing time allowed per time step for real time diagnosis.

The three Particle Filtering inference algorithms were tested and compared in terms of diagnosis error versus
number of particles and computing time per time step. look-ahead Rao-Blackwellized Particle Filtering significantly
outperformed PF and RBPF in the four real-world domains. Generally speaking, la-RBPF gives lower diagnosis
error and lower variance, both per number of particles and computing time per time step.

The implementation of faulty conditions is difficult and highly risky in real-world domains. In the following
Chapter 6, we use simulation to test our inference algorithms in more complex conditions.



Chapter 6

Simulated systems

6.1 Introduction

In order to test our inference algorithms on specific aspects not shown in the experimental ímplementations, we
simulated two systems, a Continuous Stirred Tank Reactor (CSTR) and the previous mobile robot system. Basically,
we increased:

• the number of discrete modes

• the number of continuous state space variables

• the noise level in process and measurement signáis

The CSTR system is a highly nonlinear process. It has several interesting features and has been used by other
researchers [Chen and Howell, 2001; Dash et al., 2003] to test fault diagnosis.

As in Chapter 5, each domain is presented in four sections: description, modelling, diagnosis/estimation tests,
and results.

Finally a summary is included at the end of this chapter.

6.2 Continuous Stirred Tank Reactor

6.2.1 Description

In the jacketed chemical reactor (CSTR) shown in Figure 6.1, a second-order exothermic reaction (2A —> B) takes
place, in which 2 components A react irreversibly and at specific reaction rate k to form a product, B. The reaction
rate constant k follows the Arrhenius equation (6.1). According to this equation, the effect of temperature, Tr(t),
on the specific reaction rate k is usually exponential. This exponential temperature dependence represents one of
the most severe nonlinearities in chemical engineering systems. The overall reaction rate R is defined as the rate of
change of moles of any component per volume due to chemical reaction divided by that component's stoichiometric
coefficient. Because of this reaction, we have R = kC\. Then, the overall rate R will vary with temperature, TT(t),
and with the concentration of the reactant CA raised to the 2nd power (second-order reaction). As we can see, this

102
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term R is highly nonlinear.

6.2.2 Modelling

The mathematical model for this CSTR involves a mass balance on A, in which the flow of moles of componen! A
into the system, minus the flow of moles of A out of the system, plus the rate of formation of moles of A componen!
form chemical reactions is equal to time rate of change of moles of A componen! inside system. This concept is
expressed by equation (6.2), commonly known as a component continuity equation [Smith, 1972].

The first law of thermodynamics puts forward the principie of conservaron of energy. The mathematical model
must include an enlhalpy balance on reacting mass, and an enthalpy balance onjacket (water is flowing through the
jacket). In this case, the flow of internal energy into the system, minus the flow of internal energy out of the system,
plus the heat added to the system by reaction is equal to the rate of change of internal energy inside the system. The
balance on reacting mass is given by equation (6.3), and the balance on the jacket by equation (6.4).

(6-2)
ai,
dT

(6.4)-~J"P3 j ,al

Some assumptions were made to derive these equations; see [Smith, 1972] and [Luyben, 1989] for a full ex-
planation. These equations represent a very simplified nonlinear CSTR model (the t functionality was omitted for
clarity). Nevertheless, this simpler model captures the nonlinearity we are interested in [Luyben, 1989]. We only
measure the following 3 variables: the output concentration CA(Í), the reactor temperature Tr(t), and the output
jacket temperature Tj0(t). See Appendix E, Table E. 1 for a complete definition of the variables; Figure 6.1 conveys
their meaning graphically.

Figure 6.1 also shows some instruments for monitoring and control purposes. Table 6.1 gives a complete de-
scription of this instrumentation.

The nonlinear model described by equations (6.2-6.4) was linearized to build the JMLG model (Appendix E
section E. 1.2). Then two group of discrete modes were tested:

• Group 1: 4 discrete modes

• Group 2: 10 discrete modes

4 discrete modes.

We consider a fouled surface (dirty surface) in the jacket as a possible faulty point (of course, there are many
possible faulty points [Chen and Howell, 2001] in this system). A fouled surface can be caused by normal operating
conditions over an extended time, or by stochastic problems such as cooling water with a high concentration of
minerals or salts. Surface fouling reduces the global heat transfer coefficient U(t) in the mathematical model. We
defined four of the possible discrete modes for this nonlinear multi-variable system, Table 6.2.
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Figure 6.1: Continuous Stirred Tank Reactor process. A second-order exothermic reaction takes place: two compo-
nents A react irreversibly to form product B. Water flows through the jacket to control the reactor temperature.

We obtain the sampled state-space representation using the continuous state-space representation [Ogata, 1995].
The continuous state-space is generated by the system of linear differential equations, see Appendix E, section E. 1.2
for a complete derivation1.

For the "normal" discrete mode, zt — 1:

xt+i = A(zt+i)xt + B(zt+i)it+i + F(zt+l)ut+i

yt = C(zt)xt + D(zt)vt + G(zt)ut

(6.5)

(6.6)

where:

xt =
' CA(t) '

TT(t)
Tjo(t) _

yt =
r cA(t) '

Tr(t]

Tjo(t)
Ut =

' ui(í) "
«2(t)

. U3(í) .

'See [Chen and Howell, 2001] for a similar application.
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Table 6.1: CSTR instrumentation. Description.

Tag-name
FT-100
FT-200
FV-100
FV-200
TT-100
TT-200
XT-100

Functional ñame
Flow sensor/transmitter
Flow sensor/transmitter
Control valve
Control valve
Temperature sensor/transmitter
Temperature sensor/transmitter
Analyzer sensor/transmitter

Description
Input reactants flow
Input water flow
Reactants flow valve
Water flow valve
Reactor temperature
Output water temperature
Output producís concentration

Table 6.2: CSTR (4 discrete modes). Operating conditions.

Zt

1
2
3
4

Model ñame
Normal

Fouling-1
Fouling-2
Fouling-3

Description
Clean heat transfer área
Dirty heat transfer área
Dirty heat transfer área
Dirty heat transfer área

Variation
none

5 % fouling
10%fouiing
15 % fouling

and vt are the process and measurement noises; both follow jV(0,1). The matrices are:

A(zt = 1) =
0.9752 -0.000214 -3.55(10)"7

0.2376 0.9943 0.00325
0.00176 0.01465 0.9596

F(zt = 1) =
0.1299 O O

-0.1635 O O

2.0560 O O

B(zt = l)= nprocess/3x3, C(zt = 1) = /3x3, D(zt = 1) = nmeasurementl3*3, G(zt = 1) = 03x3. The valúes
for nprocess and nmeasurement are fixed for each test. Corresponding results were obtained for each faulty discrete
mode (zt = 2,3,4); see Appendix E section E.l .2 for details.

10 Discrete modes.

In order to increase the complexity, another 6 possible faulty conditions were considered; see Table 6.3. The
equations (JMLG model) for these new discrete modes are also shown in Appendix E section E. 1.4.

Note that we do not have to learn the JMLG model parameters via the Expectation-Maximization algorithm. We
simply compute and assign them. The modelling procedure is simplified to three basic steps:

1. Definition of each discrete mode.

2. Linearization around the discrete mode condition.

3. Definition of the measurement and process noises.
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Table 6.3: CSTR (10 discrete modes). Operating conditions.

Zi

1
2
3
4
5
6
7
8
9
10

Model ñame
Normal

Fouling-1
Fouling-2
Fouling-3

Concentration- 1
Concentration-2

Water- 1
Water-2
Jacket-1
Jacket-2

Description
Normal operating conditions
Dirty heat transfer área
Dirty heat transfer área
Dirty heat transfer área
Concentration of reactant A
Concentration of reactant A
Water cooling rate at jacket
Water cooling rate at jacket
Inlet jacket temperature
Inlet jacket temperature

Variation
none
5 % fouling
10%fouling
15 % fouling
10 % less mass
20 % less mass
5 % less water
10 % less water
5 % colder
10%colder

6.2.3 Diagnosis/estimation tests

4 Discrete modes.

Because the linearized model in each discrete mode is only sectionally valid, one must expect some modelling
errors. Figure 6.2 shows a simulation of the nonlinear system and compares it to the corresponding linearized JMLG
model. These simulations were designed using the transition matrix and prior probabilities shown in equation (6.7).

P(zt\zt_l) =

0.9983 0.001
0.001 0.9975
0.0005 0.001

0.00025 0.0005

0.0005 0.00025
0.001 0.0005
0.9975 0.001
0.001 0.9983

0.9983
0.001
0.0005

0.00025

(6.7)

10 Discrete modes.

Figure 6.3 shows a simulation of the nonlinear system and the corresponding linearized JMLG model. Additional
random sequences are shown in Appendix E sections (E.1.3-E.1.4).

6.2.4 Resulte

4 Discrete modes.

Figure 6.4 plots the diagnosis error for the CSTR (4 discrete modes) system. The left graph shows diagnosis
error versus number of particles, while the right graph shows diagnosis error versus computing time per time step.
Figure 6.5 plots results for a similar test in which the noise level in the measurement signal was increased 100 %.
Note the resulting increase in diagnosis error.

To better illustrate the variability in these results, Figure 6.6 again shows diagnosis error for the CSTR (4 discrete
modes, normal noise level), but as a box and whisker plot. As we can see, la-RBPF outperforms the PF and RBPF
algorithms.
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Figure 6.2: CSTR (4 discrete modes). Nonlinear and JMLG simulation. The top plot shows the discrete modes over
time. The remaining plots show the corresponding output concentration of A, reactor temperature, and water jacket
temperature. The linearized JMLG model is also plotted. The main difference between the nonlinear system and the
linearized one appears at the beginning.
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Figure 6.3: CSTR (10 discrete modes). Nonlinear and JMLG simulation. The top plot shows the discrete modes
over time. The remaining plots show the corresponding output concentration of A, reactor temperature, and water
jacket temperature. The linearized JMLG model is also plotted. The main difference between the nonlinear system
and the linearized onee appears at the beginning.
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Figure 6.4: CSTR (4 discrete modes). Diagnosis error, low noise level.
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Figure 6.5: CSTR (4 discrete modes). Diagnosis error, high noise level.
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Figure 6.6: CSTR (4 discrete modes). Diagnosis error. Using a box and whisker plot for each Particle Filtering
algorithm, we can better appreciate the variability.

10 Discrete states.

Figures (6.7-6.8) show diagnosis error for the CSTR (10 discrete modes) system. The left plots show diagnosis
error versus number of particles, while the right plots show diagnosis error versus computing time per time step.
Figure 6.8 was generated using a measurement signal 100 % noiser than that in Figure 6.7.
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Figure 6.7: CSTR (10 discrete modes). Diagnosis error, low noise level.
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Figure 6.8: CSTR (10 discrete modes). Diagnosis error, high noise level.

6.3 Simulated Mobile Robot
In order to evalúate how the number of discrete modes affects the inference process, we combined our two real
JMLG models for the mobile robot (smooth and tiled floor) into a single model. We also played with the process
and measurement noises.

6.3.1 Modelling

8 Discrete modes.

Table 6.4 shows the complete JMLG model parameters for the 8 discrete mode system. We defined the process noise
np, and chose the measurement noises nm = np, 2np, 4np.

Table 6.4: Simulated Mobile Robot. JMLG parameters.

Zt

1
2
3
4
5
6
7
8

xo(zt)
0.5619
0.5037
0.4265
0.3581
0.5240
0.4645
0.4028
0.3179

A(zt)
0.7298
0.7385
0.6926
0.7491
0.6101
0.7032
0.8194
0.8430

B(zt)
np

np

np

np

np

np

np

np

C(zt)
1
1
1
1
1
1
1
1

D(zt)
nm

nm

nm

nm

nm

nm

nm

nm

FM
0.1518
0.1317
0.1311
0.0898
0.2043
0.1379
0.0727
0.0499

G(zt)
0
0
0
0
0
0
0
0
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Figure 6.9: CSTR (10 discrete modes). Probability distribution p(zt\y\-.t)- The upper plot shows p(zt\yi-.t)
approximated by the standard PF algorithm; the lower plot shows RBPF. Both approximations used 10 particles.
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Figure 6.10: CSTR (10 discrete modes). Probability distribution p(zt\yi:t). Both plots show p(zt\y\-i) as approxi-
mated using la-RBPF. The upper plot used 10 particles; the lower plot used 1,600 particles.
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18 Discrete modes.
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We also tested the Particle Filtering algorithms with an 18 discrete mode JMLG model. We defined this system as
follows:

• Three kind of floor: smooth (low noise level), tiled (médium noise level), and terrain (high noise level).

• For each floor, six different loads, resulting in different speeds.

For the smooth floor, we have zt = {1, ... ,6} where zt = 1 runs faster than zt = 6. For the tiled floor
(zt = {7 ____ , 12}), zt — 7 runs faster than zt = 12. For the terrain floor (zt = {13, . . . , 18}), zt = 13 runs faster
than zt = 18.

6.3.2 Diagnosis/estimation tests

8 Discrete modes.

Several random sequences were generated using the transition matrix and initial prior probabilities shown in equa-
tion (6.8).

0.99
0.005
0.0005
0.00025
0.00005
0.0
0.0
0.0

0.9825

0.005
0.9895
0.005
0.0005
0.0
0.0
0.0
0.0

0.0005
0.005
0.9895
0.005
0.0
0.0
0.0
0.0

0.00025
0.0005
0.005
0.99425
0.0
0.0
0.0
0.0

0.01 0.005 0.0025 0.0

0.00425
0.0
0.0
0.0

0.9942
0.005
0.0005
0.00025

0.0 0.0

0.0
0.0
0.0
0.0
0.005
0.9895
0.005
0.0005

0.0 ]

0.0
0.0
0.0
0.0

0.0005
0.005
0.9895
0.005

0.0
0.0
0.0
0.0

0.00025
0.0005
0.005
0.99425

(6.8)

Figure 6.11 shows two representative sequences. The upper plots show the discrete mode over time; the lower
plots show the mobile robot's speed. For the right graph we used a noisier measurement signal. Appendix E
section E.2.1 shows another random sequence.

18 Discrete modes

Figure 6.12 shows two representative random sequences. The upper plots show the different discrete modes that the
robot was in. Discrete modes 1-6 correspond to smooth floor, 7-12 to tiled floor, and 13-18 to terrain floor. The
lower plots show the robot's resulting speed. In the left graph, the robot spent a lot of time on the smooth floor,
typically a low noise level condition. The right plot mainly involves the tiled floor, which has a médium noise level.

Appendix E section E.2.1 shows another random sequence forboth groups of discrete modes.

6.3.3 Results

8 Discrete modes.

Figures (6.13-6.14) show diagnosis error versus number of particles, and diagnosis error versus computing time per
time-step, respectively, for the simulated mobile robot (8 discrete modes).
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Figure 6.11: Mobile robot (8 discrete modes). Random sequences. The upper plots show the discrete mode over
time; the lower plots show the resulting speed as simulated by the JMLG model. The right plots were implemented
using a higher noise level.
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Figure 6.12: Mobile robot (18 discrete modes). Random sequences. The upper plots show the discrete modes, and
the lower plots show the robot speed simulated by the JMLG model. The discrete modes are classified into smooth,
tiled and terrain floor. In the left graphs the robot mainly walks on the smooth floor; the right graphs mostly involve
the tiled floor.
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Figure 6.13: Mobile robot (8 discrete modes). Low noise level. The left plot shows diagnosis error versus number
of particles, while the right plot shows diagnosis error versus computing time. The noise level in the measurement
signal was low.
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Figure 6.14: Mobile robot (8 discrete modes). High noise level. The left plot shows diagnosis error versus number
of particles, while the right plot shows diagnosis error versus computing time. The noise level in the measurement
signal was high.
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Figure 6.15 shows a box and whisker plot of the above results. The left graphs correspond to a low noise leve!,
and the right graphs to a high noise level.
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Look-ahead RBPF Look-ahead RBPF
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Number of Partióles

16 25 50 100 200 400
Number of Partióles

Figure 6.15: Mobile robot (8 discrete modes). Comparison. Box and whisker plots show the diagnosis error versus
number of partióles for the three Partióle Filtering algorithms. The left plots correspond to a low noise level while
the right plots represen! a high noise level.

18 Discrete modes

Figures (6.16-6.17) show diagnosis error versus number of particles, and diagnosis error versus computing time per
time-step, respectively, for the simulated mobile robot (18 discrete states).
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Figure 6.16: Mobile robot (18 discrete modes). High noise level.
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Figure 6.17: Mobile robot (18 discrete modes). Low noise level.
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Figure 6.18: Mobile robot (18 discrete modes). MAP estimation comparison. The left graphs correspond to high
noise level, while the right graphs correspond to low noise level.
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6.4 Summary

We worked with two simulated domains, the Continuous Stirred Tank Reactor (CSTR) and an extended versión of
the mobile robot system. We compared three Particle Filtering algorithms in these domains, testing greater numbers
of discrete modes, more continuous state space variables, and different proportions of measurement vs. process
noise.

Preliminary results indícate that all three Particle Filtering algorithms can work in these conditions; however,
as the number of discrete modes grows, RBPF and especially la-RBPF require excessive computing time per time
step. If such domains demand quick diagnosis, la-RBPF will be limited to working off-line.

If one only compares the results based on number of particles, la-RBPF always outperforms PF and RBPF.
la-RBPF gives lower diagnosis error and lower variance.

Generally, noisy signáis2 have an adverse effect on Particle Filtering algorithms. In this case, la-RBPF performs
extra processing with no benefit. In a high noise level system, PF and RBPF perform better than la-RBPF in terms
of computing time per time step. We could overeóme this situation using parallel computing, but this would affect
operating costs.

We can conclude that la-RBPF works well in these domains, but it could be restricted to off-line operation when
the number of discrete modes grows.

2We are assuming that the noisy signáis cannot be filtered.



Chapter 7

Conclusions and Future Work

7.1 Introduction

In this chapter, we compare, discuss and summarize the main results we obtained for the experimental domains
(Chapter 5) and simulated systems (Chapter 6) using the new la-RBPF algorithm (Chapter 4). Our discussions
cover both the JMLG model and the la-RBPF algorithm. Based on these discussions, we derive our conclusions. We
divide our conclusions into main contributions and limitations. Finally, possible future directions for this research
are proposed.

7.2 Related work

Fault diagnosis for autonomous operation systems such as spacecraft and planetary rovers demands efficient and
any time algorithms. As we discussed, Particle Filters have a number of properties that make a practical algorithm
for diagnosis in this domain. Specifically, it is very attractive for planetary rovers because their anytime properties.

[Hutter and Dearden, 2003b] introduced the Gaussian Particle Filter (GPF), an efficient variant of the Particle
Filtering algorithms for non-linear hybrid systems. Like la-RBPF [Morales-Menéndez et al., 2002], GPFz achieves
improved performance by:

• Sampling directly from the posterior distribution, and

• Resampling before the transition

The new improved algorithm GPF2 only differs from la-RBPF^ in that is calling an unscented Kalman filter updated
[van der Merwe et al, 2001] instead of Kalman filter updated.

Some experiments on a suspensión system of the K-9 planetary rover at NASA Ames research center show
impressive results. The K-9 planetary rover is a six-wheeled rover with a rocker-bogey suspensión, Figure 7.1. The
suspension's response to driving over rocks and other obstacles was modelled to anticipate faulty situations. The
model has six discrete modes and six continuous variables, with non-linear dynamics in three discrete modes, two
of which are observable.

Experiments were performed on a simple model of K-9. Graphs similar to ours show that GPFi (Gaussian
Particle Filter based on la-RBPF's features) outperforms standard Particle filters in severa! ways, such as:

'Originally named RBPF? during its testing phase

119



120

Figure 7.1: K-9 planetary rovers. K-9 is a six-wheeled rover with a rocker-bogey suspensión. Pictures provided by
Tom Trower, NASA Ames Research Center.

• Diagnosing continuous parameters of hybrid systems.

• Achieving a significantly lower mean square error (MSE) for the continuous parameters.

Based on real data from the K-9 planetary rover, GPF? successfully identifies all the discrete modes before the
standard Particle Filter does. See [Hutter and Dearden, 2003a] for a extended versión of this application.

Our approach was based on previous works of De Freitas [Doucet et ai, 2000a; de Freitas, 2001] in different
domains. Other applications of Particle Filtering in diagnosis were discussed in Chapter 2, section 2.6; however,
their domains and modelling frameworks are different from ours.

7.3 Discussions

7.3.1 Jump Markov Linear Gaussian model

The proposed JMLG leaming algorithm generated good results for each experimental domain (see Chapter 5):

• Industrial dryer, Figure 5.4
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• Level tank, Figures 5.10 and 5.11

• Heat exchanger, Figure 5.17

• Mobile robot, Figure 5.24

The above graphs show real and synthetic data. The synthetic data were generated using the JMLG model. For
clarity these graphs omit the noise matrices (i.e. B = O and D = 0).

We validated the JMLG model by following this procedure:

1. Simúlate the Markov chain

2. Physically implement the discrete modes (e.g. faults or operating conditions) in the process

3. Collect input/output variables

4. Simúlate the JMLG model under same physical conditions

5. Compare the measurement and synthetic data

We could use a formal comparison procedure such as residual analysis (Appendix C, section C. 1.4); however,
we are not looking for the best dynamic representation; we want a good model in order to diagnose/estimate the
process. Our comparison was mainly visual analysis based on some statistics such as variance and sum-of-squares
errors, plus a lot of experimental work (more than 30 tests on average per domain).

Our main comments about the JMLG model shown in Chapter 5 and Appendix D are:

• The JMLG model successfully represents the dynamic behaviour of the process. For each discrete mode the
synthetic data and observations have the same general behaviour (increasing/decreasing).

• For some processes, the JMLG model presented a small difference in the final steady valué. Figure 7.2 (same
Figure 5.10) shows this difference as an Error.

200 400 600
time (=) sec

800 1000

Figure 7.2: Level tank. Comparison between real data and the JMLG model. The shown error is mainly generated
because the non-linear characteristics of the process.

This difference occurs because we are trying to capture the non-linear behaviour of this process using linear
models. The absolute global change in the level tank when we open the input flow valve X% is different to
the absolute global change in level when we cióse the input flow valve X%. The nonlinear actuator in the
control valve explains this situation. We have the same situation with the heat exchanger. We can solve this
problem if we break the process into more linear models, however this unnecessarily increases the number of
discrete modes. The original model gives good practical results.
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• The initial conditions sometimes were not properly estimated. Figure 7.3 (same Figure 5.11) shows this
difference as an Error.

200 400 600
time (=) sec

800 1000

Figure 7.3: Level tank. Modelling error in initial conditions. There is a small difference between the real and
synthetic data at í = 0.

However, this error has no significan! impact. The error occurs because it is very difficult to keep the same
operating conditions during the experimental tests (e.g. the steam thermodynamic properties for the heat
exchanger, or the ambient air conditions for the industrial dryer).

• Dead time is the elapsed time between the application of an action and the process reacting. Sometimes it
was difficult to estimate, as Figure 7.4 shows (same Figure 5.4). Often, this difference was also generated by
human error in timing the state changes. This error is higher for runs with more state changes, especially for
the mobile robot where the sampling rate is 0.1 sec.

200 400 600
time (=) sec

800 1000

Figure 7.4: Industrial dryer. Error in dead time estimation. Time delay in process is caused by transportation lag,
a phenomenon also commonly known as dead time. Dead time is the elapsed time between the application of an
action and the process reacting. Dead time has a negative effect in control systems.

For each domain, we learned the JMLG model parameters several times with different training data. Then we
evaluated the model using additional test data. We found that the training data needs to adequately represen!
the transient response. If too much data from steady conditions is used, the JMLG model parameters become
more representative of steady state conditions and we lose the transient dynamic information.
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7.3.2 Look-ahead Rao-Blackwellized Particle Filtering algorithm

The PF, RBPF and la-RBPF algorithms were tested with real industrial applications (Chapter 5) and simulated
processes (Chapter 6). Basically, given the observable data {ut, yt}T--i tr|e inference algorithms must estímate the
most probable hybrid state, where the most importan! variable is the discrete mode {£t}£Lj. We can compare this
estímate with the true valué, {zt}£Lj, and genérate a basic performance characterization : diagnosis error.

The diagnosis error is the percentage of time steps during which the discrete mode was not identified properly.
We computed the average and standard deviation of this indicator over 25-30 independen! runs for different number
of particles. Usually, each run has 1,000 time steps. The results are represented in two graphs:

1. Diagnosis error versus number of particles. We plotted this graph starting with one particle, then nz (máxi-
mum number of discrete modes) particles, then 100 % more particles each time. The diagnosis error scale is
decimal and the number of particles scale is logarithmic.

2. Diagnosis error versus computing time. Each algorithm demands different computing time per particle, so we
also plotted diagnosis error versus computing time for the same numbers of particles as the first graph.

Based on these graphs for each domain we find the following features:

• Diagnosis error versus number of particles.
For the three Particle Filtering algorithms the diagnosis error decreases as the number of particle increases.
Usually, PF and RBPF show the same diagnosis error for one particle, but as the number of particles increases
the diagnosis error for the RBPF algorithm decreases more quickly than for PF. As we can see, for all the
graphs the proposed la-RBPF algorithm always works significantly better than the regular PF and RBPF.
la-RBPF gives a very low diagnosis error per number of particles.

Figure 7.5 (same information in Figure 5.18) shows a sepárate box and whisker plot for each Particle Filtering
algorithm for different numbers of particles. The boxes have lines at the lower quartile, median, and upper
quartile valúes. The whiskers are lines extending from each end of a box to show the extent of the rest of
the data. The boxes are notched. Notches represent a robust estimate of the uncertainty about the medians
for box-to-box comparison. Outliers are data valúes beyond the ends of the whiskers; outliners are shown as
circles. Note how the la-RBPF quartiles are closer than the PF and RBPF quartiles.

• Diagnosis error versus computing time.
The number of computational steps per particle is different for each algorithm, so their computing times are
different. la-RBPF is the most expensive algorithm, RBPF is the second most expensive algorithm and PF is
the cheapest one. However, la-RBPF showed lower diagnosis error than PF and RBPF per unit of computing
time. Standard RBPF gave lower diagnosis error than PF.

• Prior probabilities offaults.
Fault diagnosis is a difficult task in general because the prior probabilities of faults usually are very low. The
task is more difficult when we use approximation methods such as particle filtering because particle generation
is strongly based on these prior probabilities. We can get high diagnosis error results despite the observations.
As we show in Chapter 4, la-RBPF can genérate samples of the discrete modes zt based on the true posterior
distribution. The posterior distribution captures the evidence every time step, so if the observations show
faulty conditions, la-RBPF can identify the faulty states despite the low prior probabilities.
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Figure 7.5: Box and whisker plots for each PF algorithm. The la-RBPF algorithm always works significantly better
than the regular PF and RBPF for each number of particles.

• Real time applications.
On average, we consider 1 sec to be the borderline between real time and off line diagnosis. This is a base
reference only. For some domains, such as the heat exchanger, 1 sec is too short; we can make decisions and
take action every 2 sec. However, for the industrial dryer, 1 sec is too long; this process has a faster time
response and we have to take actions faster too. If we have limited computational resources or a specified
computing time, la-RBPF provides lower diagnosis error. For example, in the level tank domain (Figure 5.12),
if we are limited to 0.5 sec computing time, la-RBPF produces a 2 % diagnosis error, RBPF a 25 % diagnosis
error, and PF a 35 % diagnosis error.

• Diagnosis error variance.
la-RBPF shows lower variance than standard PF and RBPF per number of particles. This advantage, based
on the Rao-Blackwell formula, grows as the number of particles is increased. As we can see in Figure 7.5,
taking 50 particles as an example, la-RBPF shows closer quartiles than PF and RBPF. This feature is very
important for stochastic algorithms.

• Number ofdiscrete modes nz.
If the number of discrete modes grows, the la-RBPF's advantage in diagnosis error per number of parti-
cles remains practically unchanged. However, the diagnosis error versus computing time plot is strongly
affected. Computing the importance weights in this algorithm requires us to evalúate the following term
Af(E(yt}yt-i),cov(yt\yi:t-i)) for each discrete mode.

Originally, we were looking for an efficient algorithm that works in a distributed environment. Specifically,
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an industrial process would be broken -into small sections or áreas to keep the number of discrete modes nz

small. Here, la-RBPF would be an excellent distributed alternative. However, if we cannot keep the number
of discrete modes small and we have to work on line, there are other possible solutions such as:

- Parallel computing. Particle Filtering algorithms are easily implemented in parallel.

- Better software. The three PF algorithms were tested using Matlab v 6.0, because of its mathematical
and graphical tools; other software like C would be more efficient.

• Types of discrete modes.
The number of discrete modes can grow for two main reasons:

- Qualitative models. When different operating conditions or faults appear for the process, and the dy-
namic behaviour is qualitatively different.

- Discretization. For a specific qualitative model, we have to break the process into several simple models
in order to work with non-linear systems.

We tested the PF algorithms with a small number of different qualitative models for the experimental domains
due to physical limitations. However, we were able to test discretization by building a non-linear CSTR sim-
ulator (Chapter 6, section 6.2). We tested the algorithm with 10 discrete modes, observing similar results and
limitations. We also found similar results for the simulated mobile robot with 18 discrete modes (Chapter 6,
section 6.3).

• Number ofcontinuous states nx.
If the number ofcontinuous states nx grows, we have problems similar to those when nz grows. The number
of continuóos states has a direct effect on two importan! steps of the la-RBPF algorithm:

- Computing the data likelihood for the importance weights (here the effect is multiplicative with nz)

- Kalman updating

where there is a matrix inversión computation which depends on the number of continuous states. This
computation represents almost 35 % of the total computing time. However, we can apply solutions similar to
those for the nz-problem.

• Noise environment.
If the signáis are very noisy, such as the mobile robot walking on the tiled floor (see Figure 5.24), looking
ahead a single time step does not tell us much about the dynamic behaviour, especially at high sampling rales.
For the mobile robot domain the sampling rate was 0.1 sec.

Figure 7.6 shows diagnosis error when the mobile robot walks on a tiled floor. In general, the three Particle
Filtering algorithms present similar patterns to previous plots. The upper left graph in Figure 7.6 shows
diagnosis error versus number of particles. In this graph la-RBPF still gives lower diagnosis error than PF and
RBPF. The lower left graph measures la-RBPF's improvement2 in diagnosis error over standard RBPF, but
this improvement is significan! only for fewer particles. As the number of particles increases the improvement
disappears. Furthermore, the computing time that la-RBPF requires for this improvement is not justified.
Taking 10 particles as an example, la-RBPF shows 10 % improved diagnosis error, but demands 450 % more

2Improved diagnosis error = ErrorRBPF - Errorla-RBPF



126

computing time. When we plot diagnosis error versus computing time (right graph in Figure 7.6), la-RBPF
shows poor performance. la-RBPF has higher diagnosis error than PF and RBPF. In this case the look-ahead
is just extra work for insufficient reward.

Number of particles
40

230

1Í20
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10 10 10

Computing time per time steps (=) sec

Figure 7.6: Mobile Robot. Diagnosis error on tiled floor. Tiled floor environment has very noisy signáis. High noise
level represents a traditional problem for Particle filters that requires enormous number of particles to cope with.
The upper left graph shows diagnosis error versus number of particles, while lower left graph measures la-RBPF's
improvement in diagnosis error over standard RBPF. The right graph shows diagnosis error versus computing time
per time steps for this noisy domain.

In this environment, la-RBPF's only remaining advantage is its low variance, as Figure 7.7 shows. Using
la-RBPF we get less variance for 25 particles than RBPF does with 50 particles.

We can apply a moving-average filter to the raw data3 in order to get a practica! solution. Figure 7.8 shows
the raw and the filtered signáis.

Using the filtered signal, la-RBPF's advantage is restored, as Figure 7.9 shows. The overhead of the extra
processing per particle is once again more than compensated for by the decrease in error.

We tested this hypothesis further via some simulations using the JMLG model for the mobile robot (18 discrete
modes). As we can see, when the mobile robot walks in high level noise environments, Figure 6.16, la-RBPF
has limited advantage. For low level noise environments, Figure 6.17, its advantage is recovered.

Tracking performance.
Figure 7.10 shows the tracking performance for the heat exchanger domain. The upper subgraphs in both plots
represent the true discrete mode of the process. The left graphs show the MAP estimation for each algorithm
using 50 particles, while the right graphs show the same information for 1,600 particles. Note la-RBPF gets
the same percentage of diagnosis error with 50 particles that standard PF gets with 1,600 particles.

Even with 1,600 particles, all three algorithms in Figure 7.10 show high variability in the máximum a posterior
(MAP) estimation between time steps 350í/l and 500t/l. This variability occurs because the algorithms are

3We did not perform a formal signal processing analysis
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Figure 7.7: Mobile robot. Diagnosis error variance on noisy environment. Box and whisker plots show la-RBPF's
advantage in variance and median reduction per number of particles.
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Figure 7.8: Mobile robot. Raw and filtered signal. A moving-average filter was used for the noisy raw signal.
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Figure 7.9: Mobile robot. Diagnosis error using the filtered signal. la-RBPFs advantage is restored. la-RBPF shows
lower diagnosis error for a specific computing time. Note, it has good performance for the real-time side.
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diagnosing the process mode during transient behaviour. Figure 7.11 shows the heat exchanger data used
during this estimation. The lower graph shows how the temperature changes for the different discrete modes
(upper graph) during this period. Note that after the 500t/l time step the process is almost in steady state and
the MAP estimation is better. Performance for the discrete mode changes between the 800th and l,000t/l

time steps is similar.

100 200 300 400 500 600 700 800 900 1000

200 400 600
Time steps

800 1000

Figure 7.11: Discrete modes and transient response of the heat exchanger. The upper graph shows the different true
discrete modes (operating conditions) of the process. The lower graph shows the output water temperature for the
different operating conditions. The sampling rate was 2 sec per time step

Figure 7.12 shows a representative example of the tracking performance of the three algorithms when a dis-
crete mode change occurs. By this stage, PF has lost track entirely, and RBPF fails to recover when the
change occurs. la-RBPF, on the other hand, recovers reasonably quickly.

7.4 Conclusions

7.4.1 Contributions

• Our main contribution is the look-ahead Rao-Blackwellized Partióle Filtering algorithm, which is an efficient
inference algorithm for the estimation/diagnosis task. la-RBPF is a Particle Filtering variant which can be
used in real-time applications for technical processes. Practical problems in the control engineering commu-
nity and others fields can be tackled efficiently using la-RBPF.

• The most importan! la-RBPF features are:

- Low diagnosis error: One-step look-ahead selects good sampling regions, but extra processing must be
performed per particle in order to decrease the diagnosis error.

- Less variance: Based on the Rao-Blackwell theorem, statistically it can be proven that the diagnosis
error results have lower variance than standard Particle Filtering algorithms.
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305

Figure 7.12: Heat exchanger. Tracking when a discrete mode changes. When the discrete mode change occurs, PF
has lost track entirely, RBPF fails to recover, but la-RBPF recovers quickly (three time steps).

- Low prior probabilities: la-RBPF is sampling from the true posterior distribution; it can follow the
evidence every time step and detect low probability discrete modes.

• la-RBPF has great potential due to the ever-increasing performance of computing hardware and software.

• The jump Markov linear Gaussian JMLG model is a special case of a hybrid graphical model in which observ-
able time series data are modelled in terms of unobservable discrete and continuous variables. The proposed
learning algorithm, which.combines traditional optimization tools such as Least Squares Estimation and the
Expectation-Maximization method, showed good results for inference purposes in real technical processes.
This is an additional contribution of this research.

7.4.2 RIACS/NASA Ames Research Center applications

The following results are specially considered because allow us to valídate the la-RBPF's features in different
domains, but mainly for external researches*

Testing la-RBPF with K-9 planetary rover

The suspensión system of the K-9 planetary rover (described in section 7.2) has a non-linear behaviour; however,
under some considerations [de Freitas et ai, 2003], it could be modelled as a linear system and la-RBPF can be
applied for real-time diagnosis, [de Freitas et ai, 2003] showed with synthetic and real data that la-RBPF presented
excellent results (see Appendix F, section F. 1.1 for some results with real data.)

Testing la-RBPF with Marskohod planetary rover

Marsokhod is medium-sized planetary rover built on a Russian chassis that has been used in field tests from 1993-99
in Russia, Hawaii, and deserts of Arizona and California, [Dearden and Clancy, 2001; Washington, 2000]. The rover

4We specially thank Frank Hutter for his observations and recommendations about the la-RBPF code.
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has six independently driven wheels. Some results with real data presented in [de Freitas et ai, 2003] are shown in
Appendix F, section F. 1.2.

7.4.3 Limitations

• Manual learning algorithm.
The proposed learning algorithm is strongly based on good process knowledge and experience; basically the
designer must identify and model all the possible discrete modes and their combinations. During this heavy
task the designer isolates the faulty conditions and classifies the different operating conditions; la-RBPF do
the diagnosis/estimation based on the JMLG model and the observations.

• JMLG model maintenance.
La-RBPF generales accurate diagnosis/estimation with the JMLG model while the faulty states or operating
conditions do not change. If a new faulty state appears or operating conditions change, la-RBPF can continué
detecting based on the observations, but it is impossible to isolate/classify the new fault state/condition. We
have to recompute the model to accommodate new states.

For the technical process domain we can visualize the possible operating conditions or faulty states. However,
the mobile robot domain has the added burden of a changing environment. Currently, learning each model
involves a lot of manual work; automating any part of this process would be of great benefit. A robot could
periodically enter certain states voluntarily in order to update the model parameters for those states. This
could be useful as parís age or are replaced.

There are recursive versions of the Least Squares Eslimale (LSE) and ihe Expeclalion-Maximizalion (EM)
melhods. An on-line versión would be useful. Otherwise, a one-slep algorilhm (LSE/EM) lo find all the
malrices for a given discrele mode would be very helpful.

• Number of discrete modes nz.
Normally, induslrial processes are operaled in a dislribuled fashion, so diagnosis and eslimalion lasks have
lo be done in Ihe same way. Small seclions are analyzed and Ihen Ihe resulls are inlegrated. However, some
processes (e.g. mobile robots) have a large number of discrete modes nz and Ihey have lo be analyzed as
a whole. la-RBPF can only work off line in Ihis context. Parallel compuling or fasler software could be a
possible solution to this problem, however this option has to be evalualed in praclical and economic lerms.

• Linear equations.
The Kalman filler is used lo compule the conlinuous slales so Ihal we can represenl Ihem efficiently. However,
Ihe Kalman filler is reslricted lo syslems in which Ihe slate equations are linear. We can almost always break
up non-linear processes into linear models, but the number of discrele modes nz grows and the dimensión of
Ihe problem can become inlraclable (Ihe previous limilalion).

• Gaussian noise.
The Kalman filler is also restricled to Gaussian noise.

• High dimensión in continuous state spaces.
The number of particles required for good represenlalions (approximalions) of distribulions grows exponen-
lially wilh the dimensionalily of Ihe conlinuous slales nx.
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• Markovian property.
The discrete mode variable zt must follow the Markovian property.

• Autonomous transition matrix.
The proposed JMLG model does not permit autonomous transition probabilities. Mode transitions that depend
on the continuous behaviour of the system are called autonomous. The probability of each mode transition
changes dynamically based on the continuous behaviour of the system and has to be recomputed at every time
step.

• Type offaults.
The state space representation in the JMLG model considers only permanent abrupt faults. We do not consider
incipient or intermittent faults. Indeed, the proposed la-RBPF algorithm is restricted to diagnosis/estimation
of conditions that can be modelled by the JMLG model. This model is powerful but cannot cover all cases.

• Simultaneous faults.
Each combination offaults is considered through a new discrete mode. As the number of possible faults grows,
the number of simultaneous faults grows exponentially. However, heuristic information in some domains
could be used in order to reduce the number of discrete modes.

• Operating conditions
Same comments that we did for type of faults.

7.5 Future Work
It is our hope that this research demónstrales the usefulness of Particle Filtering algorithms for fault diagnosis using
the jump Markov linear Gaussian model. Nevertheless, there is still room for much work to be done. In addition to
solving some of the above-mentioned limitations, there are other interesting potential future directions, such as:

7.5.1 Particle Filtering and Qualitative Reasoning

look-ahead RBPF only uses information from the probability distribution and a limited number of observations over
time. However, humans can provide very important qualitative information about the state of the system. Qualitative
Reasoning seems like the right technique to combine these approaches.

7.5.2 Types offaults

Our experiments concentrated on diagnosing abrupt faults. However, drift faults, which occur slowly over long
periods of time, are not detectable within the time periods used in this research. An important issue is the combined
problem in which abrupt and drift faults coexist.

7.5.3 JMLG learning procedure

The parameter estimation is a time-consuming process. Integrating some steps and implementing recursive algo-
rithms could greatly improve things, especially when processes change continuously due to plant demands.
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7.5.4 Control system

We are not interested in fault diagnosis by itself, but rather as a part of a control system. We presented a probabilistic
approach to state estimation and control [Morales-Menéndez et al., 2003] in which la-RBPF estimates were used
to drive an automatic control system. The experimental domain was the heat exchanger presented in Chapter 5
section 5.4. Preliminary simulated results look great; see Figure 7.13. However, there are many issues to be
researched, such as robustness, adaptability and stability, as well as the physical implementation.

Temperatura Controller

Temperatura
sensor

Condénsate
return

200 300 400 500 600 700 800 900 1000 1100
Timestep

Figure 7.13: Temperature feedback control system. The left plot is a conceptual diagram of a heat exchanger. A
feedback control system is shown, where TIC201 represents a PID controller. This controller regúlales the output
water temperature around a set-point by manipulating the steam flow. The right plot shows the discrete modes of the
process over time and the transient responses using the standard PID control system and the improved la-RBPF-PID
strategy. la-RBPF-PID provides a better transient response, less overshoot, and shorter settling time. In contrast,
the standard PID control system became unstable in some discrete modes.

7.5.5 Factored Particle Filtering
This follows the ideas of [Ng et ai, 2002] and David Poole. When the number of discrete modes grows, la-RBPF
is restricted to off-line applications. However, it is possible [Ng et ai, 2002] to represen! the belief state in the form
of sets of factored particles, essentially a divide-and-conquer strategy.

7.5.6 Unknown discrete modes
PF, RBPF and la-RBPF work with a JMLG model in which the number of discrete modes is specified and remains
constant. However, processes change over time. Research into coping with this situation could be very useful. Some
advances are shown in [Hofbaur and Williams, 2002].
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7.5.7 Hybrid observer

For the jump Markov linear Gaussian (JMLG) model, it is sometimes difficult or impractical to genérate faults
and build dynamic models during these faulty conditions. However, we can model the process in different normal
operating conditions which characterize the full process performance.

In this context, one could use the la-RBPF inference algorithm as a typical hybrid observer, Figure 7.14. This
hybrid observer could be part of a standard Fault Detection and Isolation (FDI) system. la-RBPF can compute the
most likely discrete modes zt, continuous states xt and expected observations yt based on the JMLG model. A
residual signal can be generated, et — yt - í/t- The FDI system would work by considering both the residual signal,
et, and the estimated modes ~zt. Using both residuals and modes, the FDI system would valídate among hybrid
states, i.e. residual behaviour (exceeding some limit) after a mode transition does not necessarily correspond to a
fault.
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Figure 7.14: Look-ahead RBPF as a hybrid observer. Having both the residual signal et = yt - yt and estimated
modes z¿ allows better FDI performance.
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Appendix A

Diagnosis in Dynamic Systems

A.l Definitions

Some important definitions in dynamic systems are:

1. Static versus dynamic systems.
A system is static if its outputs at any time depend only on its inputs acting at the same time. In contrast, the
outputs of a dynamic system are affected by present and/or past inputs. The model of a static system consist
oí algébrale equations while dynamic systems are described by differential or difference equations. Dynamic
systems in their steady state can also be characterized by static models.

2. Linear versus non-linear models.
A linear model, static or dynamic, is one to which the principie of superposition applies, that is, where
the response to combination of input is the same as the sum of the individual responses. This implies that
algebraically the model contains only terms which are linear in the variables. Nonlinear models have terms
which are nonlinear in the variables, such as square of a variable. A system is linear if it can be exactly
characterized by a linear model. While most physical systems are, in fact, non-linear, approximate linear
models can usually be derived which are valid in the vicinity of an operating point. We exploit this idea
through this research, in order to keep as simple as possible the modelling task.

3. Continuous-time versus discrete-time models.
Continuous-time variables are those which exist (their valúes are defined) for any valué of time. In contrast,
Discrete-time variables exist (are defined) only for certain time instants. Continuous-time models relate con-
tinuous variables to each other while discrete-time models relate discrete-ones. Continuous models are differ-
ential equations or other model forms derived from the latter, discrete models are difference equations or their
derivatives. Most physical systems are continuous by nature. However, in the computational equipment and
algorithms monitoring, their variables are represented by their sampled valúes which are discrete. Therefore
in many cases discrete models are developed for those continuous systems, describing the relationship among
their sampled variables.
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A.2 The Qualitative Model Representation
Like an ordinary differential equation, a qualitañve differential equation (QDE) model consists of a set of variables
related by constraints. A variable represents a continuously differentiable function over the extended real number
line, v : 5R* —> Sí", including +00 . However, in a QDE model, the range of each variable, including the independen!
variable time, is described qualitatively by a quantity space. A quantity space is a finite , totally ordered set of
symbolic landmark valúes representing qualitatively importan! valúes in the real number line. Every quantity space
includes landmarks for zero and positive and negative infinity.

A purely qualitative model specifies only the ordinal relations among landmarks, semi-quantitative extensions
may provide bounds on the possible real valúes corresponding to a landmark. The algébrate and differential con-
straints in a QDE are simple and familiar equations, universally quantified over t, see Table A. 1.

Table A. 1: Algebraic and differential constraints in a QDE

(add x y z) = x ( t ) + y(t) = z ( t )
( m u l t x y z ) = x ( t ) . y ( t ) = z ( t )
(minus x y) - y(t) = —x(t)
(d/dtxy) = ±x(t) --
(constant x) = ^¡x(t) -

Since they are asserted as individual constraints, rather than composed as hierarchical expressions in traditional
algebra, a QDE must include explicit variables for subexpressions. However, a QDE may also include constraints
representing unknown functions in the set M+ of monotonically increasing continuously differentiable functions,
see Table A.2.

Table A.2: Monotonic constraints in a QDE

( M + x y ) =
( M - x y ) =

The M+ and M constraints make it possible to express a QDE model including functions whose explicit form
is not known, and which are only described in terms of monotonicity. An algebraic or functional constraint may
specify corresponding valúes, which are tupies of landmark valúes known to satisfy the constraint. A QDE may
also explicitly describe the boundaries of its domain of applicability by specifying transition conditions that carry
the behaviour into a different model.

The qualitative magnitude of a variable is described either as a landmark valué or as an open interval between
two adjacent landmarks in the quantity space of that variable. The qualitative valué of a variable is described as its
qualitative magnitude and the sign of its derivative (its direction of change: inc, std or dec). A qualitative state of a
model is a tupie of associations of qualitative valúes to each variable in the model.

Time is describe in the same way as every other variable. Since its direction of change is always inc, time
progresses through an alternating sequence of landmark valúes (called time-points) and open intervals between
adjacent time-points. The time-points are defined as those points in time when the qualitative state of the model
changes.
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A qualitative behaviour is a sequence of qualitative states, where each state is the immediate successor of the
one before it. Because of the qualitative representation, it is possible for a finite sequence of qualitative states to
represen! the behaviour of a system from its initial state a t = O to a final state at í = oo.



Appendix B

Fundamentáis

B.l JMLG model

B.1.1 Notation

Table B.l: JMLG model. Variables.

Symbol
Vt

y\-.t
zt

X0:t

ut

Ul-.t

Zt

zo-.t
7t
vt

Size
ny x 1
ny x t
nx x 1
nx x t
nu x 1
nu x í
n2 x 1
nz x í
nx x 1
ny x 1

Description
Observation vector at time t
Sequence of observation vectors [3/1 , 3/2 , • • • > í/t]
State vector at time í
Sequence of state vectors [x\ , X2, • • • , xt]
Input observation at time t
Sequence of input observations [ui , u2, . . . , ut]
Switching state variable at time í
Sequence of state vectors [zi , z2, . . . , zt]
Process noise, A/"(0, /)
Measurement noise, A/"(0, /)
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Table B.2: JMLG model. Parameters.

Symbol
A
B
C
D
F
G
Q
TI
Mo
Eo

P(ZO)
P(zt zt-i)

Size
nx x nx

nx x n7

ny x nx

ny x nv

nx x nu

n,, x nu

nx x nx

ny x ny

nx x 1
nx x nz

n2 x 1
nz x nz

Description
State transition matrix
Noise state matrix
Output state matrix
Noise output matrix
Input matrix
Nuil matrix
State noise covariance matrix
Output noise covariance matrix
Initial state mean
Initial state noise covariance matrix
Initial state probabilities for switch variable zt

State transition matrix for switch variable zt

Table B.3: JMLG model. Dimensions.

Symbol Description
ny

nx

nu

Size of observation vector
Size of state vector
Size of input vector
Number of discrete modes
Number of process noise
Number of measurement noise
Length of a sequence of observation vectors

Table B.4: JMLG model. Miscellaneous.

Symbol
A'
\A\
iid

Description
Matrix transpose of A
Determinan! of A
Independen! and identically distributed
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B.1.2 EM : Optimization algorithm

MStep

Givcn the probability model p(y\-.T, XI :T|#), we can average over X\-T to remove the randomness (because x\-T is
not observed) using an averaging distribution q(x\:T yi-.r)- We can define the expected complete log likelihood1

,:ci:r|0) (B.l)
Xl-.t

The M step maximizes the expected complete log likelihood as follows

Equation (B.3) shows that maximizing C(q(xi:T\yi:T), ^) w'th respect to 9 is equivalen! to maximizing
E q ( X l . T \ y ¡ : T ) [ l c ( 0 ; yi:t,xi-.t)} with respect to 9, because the second term is independent of 9.

E Step

If we usep(xi:T|yi:T,^) as an averaging distribution q^ t+1^(xi :r|yi:T) in equation (B.2), wehave

(B.4)
Xl;í

(B.5)

= logp(yi:T\0w) (B.6)
(B.7)

Equation (B.7) shows that C(q(xi:T\yi-.T),Q') is maximized, because /(0;yi :r) is an upperbound for

The EM algorithm uses the best possible distribution to calcúlate an expectation of the complete log likelihood.
The M step maximizes this expected complete log likelihood with respect to the parameters to yield new valúes
#(t+i) The £ step uses a better guess p(zi:T|yi:T,^t+1^). which is then used as the averaging distribution in a
subsequent iteration.

B.1.3 Least Squares Estimation

Notation

Table B.5 describes the ARX model's parameters and variables.

X1 , meáis marginalization
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Table B.5: Auto-Regressive with eXogenous variable model. Parameters and Variables.

Symbol

Vt

6,
na

nb

Description
Output variable at time t
Input variable at time £
Constant coefficients, auto-regressive terms
Constant coefficients, exogenous terms
Number of a¿ coefficients
Number of 6¿ coefficients

Definitions

Some definitions accepted by the control engineering community [Ogata, 1995] are:
State. The state of a dynamic system is the smallest set of variables such that the knowledge of these variables

at í = Í0, together with the knowledge of the input for t > t0 completely determines the behaviour of the system
for the time í > Í0-

State variables. If at least n variables #1, X2, • • • , xn are needed to completely describe the behaviour of a
dynamic system, then such n variables are a set of state variables. State variables need not be physically measurable
or observable quantities; however, it is convenient to choose measurable quantities because optimal control laws
require the feedback of all state variables.

State vector. A state vector x has n components, which represent the n state variables. This vector uniquely
determines the system state x(í) for any time t > to, once the state at t = Í0 is given and the input u(í) for t > to is
specified.

State space. The n-dimensional space whose coordínate axes consist of the xi axis, x2 axis, ..., xn axis is
called the state space. Any state can be represented by a point in the state space.

State space equations. There are three types of variables that are involved in the modelling of dynamic systems:
input variables, output variables, and state variables. There are different state-space representations of the same
system but the number of state variables is the same. The dynamic system must involve elements that memorize the
valúes of the input for í > ti. In a continuous-time control integrators serve as memory devices; the outputs of such
integrators can be seen as the variables that define the internal state of the dynamic system. Consider a multiple-input
multiple-output system involving n integrators, whose outputs are state variables xi(í), xa(í), • • • ,xn(í). Assume
also that there are r inputs Ui(í),u2(í), • • • ,uT(t) and m outputs yi(t),y2(t), • • • ,ym(t). The system may be
described by
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where the first equation is the state equation and the last is the output equation. If vector functions fstate and/or
foutput involve t explicitly, then the system is called a time-varying system. If these equations are linearized about
the operating state, then we have the following linearized state equation and output equation:

(B.14)

(B.15)

where A(í) is called the state matrix, F(í) is called the input matrix, C(í) is the output matrix, and G(í) the direct
transmission matrix. If vector functions f and g do not involve time t explicitly then the system is called a time-
invariant system:

(B.16)
(B.17)

This is the deterministic continuous-time versión of the model shown in Chapter 3, section 3.2.1.
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Observability

A represented system by Equations (B.16-B.17) has a discrete-time equivalen! representation given by (for different
equivalent representation see [Ogata, 1 995]).

(B.18)

(B.19)

This system is completely observable if every initial state xt=o can be determined from the observation of yt

over a finite number of sampling periods. The system, therefore, is completely observable if every transition of the
state eventually affects every element of the output vector.

The concept of observability is useful in solving the problem of reconstructing unmeasurable state variables.
Complete observability means that given yo, yi, ..., yt', it is possible to determine xo2. This requires that the
following nxny x nx matrix (called the Observability matrix ) be of rank nx, (see details in [Ogata, 1995] of this
standard concept, also for alternative forms of the condition for complete observability).

Matrix Representation

Consider the following auto-regressive with exogenous variable model where na = 2 and nt, = 2

Vt + aij/t-i + a22/t-2 = b0ut + biUt-i + a2ut-2

If we have n¿ata data points {y,, u¿}™=i ta, we can predict the following observations

(B.20)

(B.21)
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Least Squares Estimation Properties

One can define equation errors as e = y — X& . The least squares estímate of 9 is defined as the vector 6 that
minimizes the loss function

V(d) = \e'e=\\\e\f (B.23)

where \\e\\ denotes the Euclidean vector norm. The corresponding minimum valué of V(0) can be obtained when
the gradient of V(9) is equal to zero. The least squares estímate, 9, can then be expressed as

OLS = (X'xy'x'y (B.24)

Least squares optimality has several attractive features for the purposes of identification. Large errors are heavily
penalized, it can be obtained by straightforward matrix algebra, and the optimization criterion is related to statistical
variance, so the properties of the solution can be analyzed according to statistical criteria.

Assuming that the noise components are uncorrelated with the regressors and that E(t> ) = O and E(t/u) = a2!
(white noise), the least squares estimate has the following statistical properties:

- OLS is an unbiased estimate of 0.
It is easy to show that 9 = (X'X)-1X'(X6 + v) = 9 + (X'X)~lX'v. It then follows from the assumptions
(white noise) that E[0] = E[0 + (X'X^X'v] =6+ (X'X)'1 X'E[v] = 9.

- The covariance matrix of OLS - &2

- An unbiased estimate of a2 - ndata_,¿n{nit,nb}V(ff)

B.2 Particle Filtering

B.2.1 Fundamentáis

Perfect Monte Cario simulation

A set of weighted samples called particles, drawn from the posterior distribution, is used to map integráis to discrete
sums. The posterior can be approximated by the following empirical estimate

where the random particles {XQ**}^! are drawn from the posterior distribution and 6 <o (\o-.t) denotes the Dirac-delta
function. Therefore, any expectations of the form

E(g t(XO:t)) = /gt(XO:t)P(X0:t|yi : t)<fco:t (B.26)

can be approximated by the following estimate

___ i N

: t))-^^gí(x^) (B.27)
1=1
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where the particles x^j are assumed to be independen! and identically distributed (i.i.d) for the approximation to
hold. According to the law of large numbers

)) —»?^oo E(g t(x0: t)) (B.28)

where —>w^*oo means altnost sure convergence.
If the posterior variance ofg t(x0 :í)isbounded (wp(.|yi t )(g f(x0 : t)) < oo) then the central limit theorem holds

where denotes convergence in distribution.

Bayesian importante sampling

According to equation (B.28), as the number of particles N increases, expectations (equation B.25) can be mapped
into sums. However, it is often impossible to sample directly from the posterior density function. Nevertheless, we
can sample from a known proposal distribution <?(xo:t|yi;t) based on the following manipulation in equation (B.26):

E(gt(XO:t)) =

y j : t)
g t(xO:t)

where wt(\0.t) are the unnormalized importance weights

The normalizing density p(y1:() in equation (B.30) can be eliminated as follows

(B.30)

(B.31)

We can approximate the expectations that we are interested in by drawing particles from the proposal distribution
function <?(xo:t|y1:t) and using the following estimate
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where wt(x£/t) are the normalized importance weights

= :
The estimate equation (B.33) is biased (ratio of estimates), but under these assumptions:

• XQ t are i.i.d partióles drawn from the proposal distribution q(\o:t y^t), the support of the proposal distribution
includes the support of the posterior distribution, and E(g t(xo :t)) exists and is finite.

• Expectations of wt (XQ. j ) and wt (XQ* ¿ )g^ (x[, t̂ ) over the posterior distribution exist and are finite. (The variance
of g t(xo*f) and wt(x^)t] must be bounded [Crisan and Doucet, 2000]).

[Doucet, 1998] demonstrated that it is possible to obtain asymptotic convergence and a central limit theorem. So the
posterior density function can be approximated arbitrarily well by the point-mass estimate

Sequential importance sampling

The proposal distribution must have the following form:

<?(X0:t|yi:t) — 9(XO:t-l|yi:t-l)<?(Xt|XO:t-l,y1: t) (B.36)

because we do not want to modify the previously simulated states XCH-I (it would be too computationally expen-
sive). We can compute the sequential estimate of the posterior distribution over time using equation (B.36).

Considering that the model fpllows the Markov property

' p(Xi |Xj_i) (B.37)
¿=i

and the observations are i.i.d.

t
t¿) (B.38)

The unnormalized importance weights equation can be obtained by substituting equations (B.36-B.38) into
equation (B.31).

wt = wt-!——¡ r- .<?(x t |xo:í_i,y1:t)
We can compute the importance weights sequentially using equation (B.39). We only have to choose the right

proposal distribution q(\t\xo-.t-i,yi-t) and sample from it. This procedure is known as Sequential Importance
Sampling (SIS).

Choice of proposal distribution. This is one of the most critica! design tasks in SIS algorithms. [Doucet, 1997]
recommends proposal functions that minimize the variance of the importance weights. [Doucet et ai, 1999] showed
that <?(xt|xo:t-i,y1: t) = p(x t |xo : t_i,y1: t) minimizes the variance of the importance weights, so thisp(-|-) is called
the optimal proposal distribution.
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However, the transition prior, g(x t |xo :t-i , y¡-t) = í>(x t |x t - i )> is the most popularchoice [Isard and Blake, 1996;
Kitagawa, 1996]. The transition prior is usually easier to implement, but it has higher variance than the optimal pro-
posalp(x t |xo:t-i,yi : t) because itdoes not include the latest available information [Doucet, 1998; Liu and Chen, 1998].

Degeneracy of the SIS algorithm. We can re-write equation (B.31) and show that the variance of the importance
weights increases stochastically over time.

P(yi:t xO:t)XxO:t) Pijl-.t^O-.t)
—q(x0:ty1:t)

oc (B.40)
9(X0 :t|yi:t)

The ratio3 shown in equation (B.40) is called th importance ratio; [Doucet and Gordon, 1999; Kong et ai, 1994]
showed that its variance increases over time. The degeneration or depletion of samples caused by the variance
increase can be monitored through the importance weights. After a few iterations, one of the normalized importance
weights tends to one and the others to zero. This problem is the main reason for the Selection or Resampling step.

B.2.2 Selection Step

Sampling Importante Resampling (SIK)

Re-sampling involves mapping the Dirac random measure {XQ.|, w^' }4 into an equally weighted random measure
[\ot, jf}. This can be accomplished by sampling uniformly from the discrete set {x^/J^ with probabilities
{w\ í }£Lj [Gordon et al, 1993]. Figure B.l shows a way of sampling from this discrete set. After constructing
the cumulative distribution of the discrete set, a uniformly drawn sampling Índex í is projected onto the distribution
range and then onto the distribution domain. The new sample Índex j is the intersection with the domain. In other
words, the vector \Q.'t is accepted as the new sample. As we can see in Figure B.l, the vectors with larger sampling
weights will end up with more copies after the re-sampling process.

Sampling N times from the cumulative discrete distribution £)i=1 íüj ¡ ¿x(o(dxo:t) is equivalen! to drawing

{NÍ}^L1 from a multinomial distribution with parameters N and wj.1' . [Doucet, 1998; Pitt and Shephard, 1999;
Ripley, 1987] showed that this procedure can be implemented in O(N) operations. var(Nl) = ]Vü;^(l - w\ í ) is
the variance of this procedure (multinomial distribution).

Residual Resampling

We can implement this scheme in three steps [Higuchi, 1997; Liu and Chen, 1998]:

1. Define TV, =

2. Perform a Sampling Importance Resampling (SIR) procedure to select the remaining Nt = N - £¿=i
samples with new weights w'^' = Nt (w[ N - NÍ

3. Add the results to the current NÍ
3p(yj. () is aconstant.
4 For simplicity, we only work with {Xg.J, wj. } instead of {XQ*;, ZQ.t,w\ }.
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Cumulative distribution function Sampling
índex

B.3 Rao-Blackwellized Particle Filtering

B.3.1 Rao-BlackwelI formula

The Rao-Blackwell theorem [Casella and Robert, 1996] shows how to improve upon any given estirnator under
every convex loss function. The theorem says

var f(x,z) J = uarME(f(x,z)|z)j + EUar(f(x,z)|z) (B.41)

where f(x, z) is an estirnator of x and z. Henee, var(E(f(x, z)|z)) < var(f(x,z)J, so we can conclude that
E(f(x, z)|z) is a lower variance estirnator. If we can genérate particles of z and analytically evalúate the expec-
tation of x given z, we will need less particles for a given accuracy.

If we sample in a small discrete space (z), instead of a large hybrid space (z, x), the performance has to be much
better.
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B.3.2 Variance reduction

If we were able to sample N i.i.d random particles,
estímate of this distribution would be given by

^j, according to p(z0:í, x0:í|y1:t), then an empirical

(B.42)

where d , ( í } ^¡,\ (z0:t, x0:t) denotes the Dirac delta function located at (z^(, x£|) . The expected valué of any func-
tion gf of the hidden variables with respect to this distribution, E(gt), using

E(gt) = / gí(zo:í,xo:t)pN(zo:t,xo:t|y

could be approximated by the following estimate

(B.43)

CB.44)
=

this estimate is unbiased, and follows conditions given by equations (B.28-B.29). Using the Bayesian importance
sampling method (Section B.2.1) wecan introduce an arbitrary easy-to-sample importance distribution q(zo:t, xo:(|yj.().
Then

where the importance weight is equal to

- - -. - - - TT
E<7(zo: t ,xo: t |y1 : l)(Wt(ZO:t,X0 : t))

(B.46)

Given TV ¿.¡'.¿samples {zo*(,Xo*(}¿=1 distributed according tog(zo : t ,xo :t |y1 : (), a Monte Cario estimate of J(gt)
is given by the following (see equations B.33-B.34):

E1 ÍB 1 -^ ^tJ -
JO (0-1

where the normalizad importance weights w^' are equal to

(B.48)
_
E1(gt) is biased for finite A', but converges toward E(gt), equations (B.28-B.29). Consider the case where

we can marginalize out x0:t analytically. We can propose an alternative estimate for E(g() with reduced variance.
Asp(zo:t,xo: t|y1:t) = p(zo:t|yi:t)p(xo:t|y1:t,z0:t) (Rao-Blackwell formula, Section B.3.1), where p(x0:t|yi.t,z0:t)
is a distribution that can be computed exactly, then an approximation of p(z0:t|y1:t) yields straightforwardly an
approximation oí p(z0.t,\0.t\y1.t'). If Ep(Xo.[|y j Z o ( ) (gt (zo :t,x0: t)) can be evaluated in a closed-form expression,
then the following alternative importance sampling estimate of E(gt) can be used

E2(g,) =v&t; (B
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where

•*<-> - y _
The following two propositions demónstrate [Doucet et al., 2000a] that E2(g t) will require a reduced number

N of samples over E1 (g t), as we only need to sample from a lower-dimensional distribution.
Proposition 1 The variances ofthe importance weights, the numerators and the denominators satis/y for any N

)) (B.52)

)) (B.53)

[Bernardo and Smith, 1994] showed that if uarp(ZO: t jXO: t |yi . t)(g t(zo :t ,xo:t)) < +00 and w(zo:t,x0:t) < +00 for
any (zo :t,x0:t), then E1(gt) satisfies the Central Limit Theorem (CLT). E2(g t) also satisfies a CLT.

Proposition 2 Under the assumption given above, E1 (gt) and E2(gt) satisfy a CLT



Appendix C

Look-ahead Rao-Blackwellized Particle
Filtering

C.l System Identification

C.l.l General Procedure of System Identification

An Identification experiment is performed by exciting the system and observing its input and output over a time
interval. These signáis are recorded in a computer. It is importan! to consider the application context, i.e. the
intended purpose ofmodelling, such as, simulation models, fault detection models, and control system analysis.

The design of experiments includes selection and determination of several factors, like input signáis, sampling
time, identification time, open or cjosed loop identification, off-line or on-line identification, equipment for the signal
generation, signal filtering, etc. The most theoretical part of the system identification procedure is the selection of
model. A priori knowledge and engineering intuition and insight must be combined with mathematical properties
of the models.

The unknown parameters of the model are then determined using some statistically based parameter estimation
method. To measure the goodness of the model fit a criterion needs to be specified. Often the sum of squares of
error signáis (residuals) is used as a criterion. In practice, the selection of structure and the estimation of parameters
are often done iteratively. Finally, model validation means the testing whether the estimated model is sufficiently
good for the intended use of the model.

C.1.2 Preliminary experiments

A standard procedure for identification is to start with some preliminary experiments; further experiments are then
conducted for model estimation. The preliminary experiments are aimed at the rough modelling of the process
and can provide a basic qualitative understanding of the system. In general two types of simple experiments are
considered:

• Step response techniques [Smith and Corripio, 1997] to test the range of linearity of the process, and to find
the static gains and a rough estimation of the largest relevant time constant. Step change signáis are applied to
the selected candidate process inputs. The time interval of the step change should allow the process to reach

163
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its steady state. The steady state linearity of the process then can be checked by fitting a basic model. Here
one can find nonlinear behaviour.

• White noise experiments can be applied for determining the process bandwidth and time delays. The inputs
are supplied with mutually independen! white noise signáis. The estimations are based on the spectral and
correlation analysis of input and output signáis [Ljung, 1987; Zhu and Backx, 1993]. An appropriate broad
band periodic signal, either a PRBS (pseudo random binary sequence) or multi-sine, can also be applied.

C.1.3 Design of input signáis

The input signáis used in an identification experiment can have a significant effect on the resulting parameter es-
timates. The design of input signáis involves both the selection of the form of the signal and the choice of its
amplitude.

In practice most processes are nonlinear and linear models can henee only be an approximation. A linearization
of the nonlinear dynamics will be valid only in some región. Toestimate the parameters of the linearized model, too
large an input amplitude should be avoided.

On the other hand, an improvement in the accuracy of the estimates can be expected when the input amplitude
is increased. This is natural since by increasing the input, the signal-to-noise ratio will increase and the disturbances
will have less impact. A rule of thumb for choosing a minimum amplitude is that the effect of the input on the output
in a diagram must at least be perceptible to the eye.

Good parameter identification requires the applicatíon of a frequency-rich input signal. In order to guarantee that
the estimation algorithm has unique solutions, some minimum requirement should be imposed on the test signáis.
This is called the persisten! excitation condition. A single variable discrete signal is said to be persistent exciting of
order n if the following limit exists:

Ruu(r) = Jim V]u(í)u(í - r) (C.l)
N— >oo ¿—^í

t=l

where the matrix
Ruu(0) Ruu(l) • • • ñuu(n- l )

Uu(l-n) ... Ruu(0)
is positivo definite and consequently, invertible. It can be shown that a necessary condition for consistent estimation
of an nth order linear process is that the test signal is persistently exciting of order In. The step function based on
Equation (C. 1 ) is persistently exciting of order 1 only. Sum ofsinusoid signáis, filtered white noise signáis and PRBS
are the most frequently used in identification practice. We used PRBS signáis; we describe them in the following
section.

Pseudo Random Binary Sequence (PRBS)

Pseudo random binary sequences are sequences of rectangular pulses, modulated in width, that approximate a
discrete-time white noise and thus have a spectral contení rich in frequencies. They have produced excellent re-
sults in the control engineering community1. They are called pseudo random because they are characterized by a

'Personal communication with lan D. Landau, 1989.
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sequence length within which the variations in pulse width vary randomly; however, they are periodic over a large
time horizon, the period being defined by the length of the sequence.

The PRBS can be generated by means of shift registers with feedback. The máximum length of a sequence
is 2N ~ 1 in which TV is the number of cells of the shift register. Figure C.l shows the generation of a PRBS of
length 31 (= 25 - 1) obtained using a 5-cell shift register, Figure C.2. Table C.l [Landau, 1990] shows the structure
enabling a máximum length PRBS to be generated for different numbers of cells. A simple choice for the clock
period of the PRBS generator TPRBS is to use the sampling time Tsampiing of the system. The máximum duration
of a PRBS pulse is equal to the number of cells [Landau, 1990] (a very important characteristic).

PRBS

1

Sequence length = 31

NT,PRBS

Time steps

Figure C.l: PRBS of length 31 generated by means of a 5-cells shift register. After the 31st time-step the PRBS
becomes periodic. The máximum duration of a PRBS pulse is equal to

PRBS

Exclusive OR

Figure C.2: PRBS generator with 5-cells shift register. Using an exclusive OR, bits 3 and 5 must be added and
fed-back to bit 1, then bit 1 moves to bit 2, and so on.

In order to correctly identify the steady-state gain of the process, the duration of at least one of the PRBS pulses
must be greater than the rise or settling time Tsettung oí the process, see Figure C.3.

This condition can result in fairly large valúes of TV corresponding to a sequence length of prohibitive duration.
Therefore, in a large number of practical situations, a múltiple of the sampling time Tsampung is chosen as the clock
period for the PRBS generator (it is recommended that a multiplier less than or equal to 4 be chosen).

Choosing the sampling interval involves a trade-off. These are the primary considerations:

• In many cases the final application of the model defines the possible choices of sampling interval.
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Table C.l: Generation of máximum length PRBS. This table gives the structure enabling a máximum length PRBS
to be generated for different numbers of cells, i.e. using a 5-cell shift register (adding 3 and 5 bits), the máximum
length PRBS is 31.

Number
of cells

2
3
4
5
6
7
8
9
10
11

Sequence
length

3
7
15
31
63
127
255
511
1023
2047

Bits
to add
1
1
3
3
5
4
2
5
7
9

2
3
4
5
6
7
8
9
10
11

Figure C.3: Condition for correct identification of the steady-state process gain. The duration of at least one of the
PRBS pulses must be greater than the rise or settling time TsettHng of the process.

The information loss due to sampling is best described in the frequency domain. It is well known that a sinu-
soid with a frequency higher than half of the sampling frequency cannot, when sampled, be distinguished from
a sinusoid under this frequency. Consequently the part of the signal spectrum that corresponds to higher fre-
quencies will be interpreted as contributions from lower frequencies. This is the so called alias phenomenon.
It also means that the spectrum of the sampled signal will be a superposition of different parts of the original
spectrum.
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• As a rule of thumb, 5 to 15 samples per settling time Tsettnng should be taken. It may often be much worse
to select the sampling interval too large than too small.

Another aspect to consider when using a PRBS test signal is that in order to cover the entire frequency spectrum
generated by a particular PRBS, the length of the test must be at least equal to the length of the sequence. In general,
using periodic signáis such as a PRBS, the duration of the test should be a number of complete periods or sequences
[Landau, 1990].

Once data have been collected, there are several possible deficiencies that can appear, such as

• high frequency disturbances in the data record

• bursts and outliers

• drifts

• offset and low frequency disturbances

• numerical valúes of different signáis are not in the same order of magnitude

• presence of significan! time delays

• etc

see [Morales-Menéndez, 1992] for more details.

C.1.4 Some guidelines for model validation

Model validation means checking whether the learned model agrees with the real process behaviour. Experimental
validation is the most important test, i.e. to evalúate whether the inference problem that motivated the learning
model task can be solved using the obtained learned model. However it is often impossible, costly or dangerous
to test all possible learned models with their intended use, especially when we are trying to infer faults. Instead,
confidence in the learned model is developed in other ways. The two main methods are:

1. Verification of a priorí assumptions.

• Linearity: comparison of learned models obtained for different input amplitudes. Comparison of learned
models with measured transient functions in both directions.

• Time variance: comparison of models built from different training data sets.

• Residuals must be statistically independen! with zero expectation, and independen! from the input signal.

• Input signáis must be persistently excited, without outliers.

• Variance and covariance matrices of the parameter estimates must decrease with increasing number of
samples.

2. Verification ofthe input-output behaviour. A final judgement of the learned model is obtained by comparing
the real data and predicted input-output behaviour. This can be done by:

• Comparison ofthe real data, {t/,}™^'", and the synthetic data, {?/¿}™=ito generated by the Jump Markov
Linear Gaussian model. Using the training data and different types of input signáis.
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• Comparison of the cross correlation function based on the real data and on synthetic data generated by
the JMLG model.

• Cross-checking, i.e. the verification of the learned model using different testing data.

C.2 Rao-Blackwell theorem. Fundamentáis
We presented a short definition of the Rao-Blackwell theorem in Appendix B; however, we are including a complete
description here.

Based on the Rao-Blackwell theorem, we can say that sufficient statistics play an important role in finding good
estimators for parameters. If 9 is an unbiased estimator for O and if U is a statistic that is sufficient for 6 then there
is a function of U that is also an unbiased estimator for 6 and has no larger variance than 9. If we seek unbiased
estimators with small variances, we can restrict our search to estimators that are functions of sufficient statistics (as
in la-RBPF).

Rao-Blackwell Theorem. Let O be an unbiased estimator for 9 such that V(0) < oo. If U is a sufficient statistic
for 0, define Q* = E(0\U). Then for all 0,

E(0*)=0 and V(9") <V(9]

Proof. Since U is sufficient for O, the conditional distribution of any statistic, given U, does not depend on 9.
Thus 0* = E(0\U) is not a function of 9 and is therefore a statistic. Since O is an unbiased estimator for 0, it implies
that

E(0*) = E(E(0\U)) = E(0) = 0

Thus, 0* is an unbiased estimator for 0. Also

V(0) = V(E(0\U))+E(V(0\U))

= V(9')+E(V(é\U))

Since V(B\U = u) > O for all u, it follows that E(V(6\U)) > O and therefore V(0") < V(0). G
This theorem implies that an unbiased estimator for 0 with a small variance is a function of a sufficient statistic.

Since many statistics are sufficient for a parameter 0 associated with a distribution, we have to define which sufficient
statistic should be applied. For the distributions that we use in this research, the factorization criterion typically
identifies a statistic U that best summarizes the information in the data about the parameter 0. Such statistics are
called minimal sufficient statistics.

These statistics have an important property (completeness) guaranteeing that, if we apply the Rao-Blackwell
theorem using U, we obtain an unbiased estimator for 9 with Mínimum Variance. Such an estimator is called a
Mínimum Variance Unbiased Estimator (MVUE) [Casella and Berger, 1990].

Direct computation of conditional expectations can be difficult. However, if U is the sufficient statistic that best
summarizes the data and some function of U, f ( U ) , can be found such that E(/((/)) — 9 , it follows that /(£/) is
the MVUE for 0.
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Factorization-criterion. Let U be a statistic based on the random sample YI . V2, . . . , Yn. Then U is a sufficient
statistic for the estimation of parameter O if and only if the likelihood L can be factored into two nonnegative
functions,

y2,---,yn\0) = 9(u,0) x h(yi,y2, . . . ,yn) (C.2)

where g(u, 6) is a function only of u and Q and h(yi,y2, • • • , yn) is not a function of 0.



Appendix D

Experimental Implementation

D.l Industrial dryer

D.l.l Diagnosis/estimation tests
Tables (D.1-D.3) show other representative designs of random sequences for the industrial dryer. We generated
1,000 data points' for each, where air temperature was the observable variable {yt} for each faulty condition {zt}.
Figures (D.1-D.2) compare the experimental and the simulated results (JMLG model) for these random sequences.
Random sequences No. 2 and No. 4 contain simultaneous faults.

Table D.l: Industrial dryer. Random sequence No 2.

Step
1
2
3
4
5
4

Interval
(1 , 204)

(205, 266)
(267,310)
(311,334)
(335, 894)

(895, 1,000)

Zt

1
2
3
4
3
2

Model ñame
Normal operation

Faulty fan
Faulty grill

Faulty fan and grill
Faulty grill
Faulty fan

Fan speed
low
high
low
high
low
high

Dryer grill
opened
opened
closed
closed
closed
opened

Exit vent
clear
clear
clear
clear
clear
clear

D.l.2 Results
Figures (D.3-D.5) show diagnosis error results for random sequences No. 2, 3, and 4.

Variation in the transition matrix

Table D.4 shows the diagnosis error mean for different percentages of variation in transition matrix probabilities
p(zt\zt-i) for the standard RBPF algorithm. Table D.5 shows the corresponding information for la-RBPF.

170
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Table D.2: Industrial dryer. Random sequence No. 3.

Step
1
2
3
4
5
6

Interval
(1,421)

(422, 686)
(687,721)
(722, 846)
(847, 974)

(975, 1,000)

Zt

1
3
1
2
1
3

Model ñame
Normal operation

Faulty fan
Normal operation

Faulty fan
Normal operation

Faulty grill

Fan speed
low
low
low
high
low
low

Dryer grill
opened
closed
opened
opened
opened
closed

Exit vent
clear
clear
clear
clear
clear
clear

Table D.3: Industrial dryer. Random sequence No. 4.

Step
1
2
3
4
5
6
7
8
9

Interval
(1,222)

(223, 274)
(275, 475)
(476, 534)
(535,810)
(811,876)
(877, 916)
(917,936)

(937, 1,000)

Zt

1
2
1
2
1
4
3
1
4

Model Ñame
Normal operation

Faulty fan
Normal operation

Faulty fan
Normal operation

Faulty fan and grill
Faulty grill

Normal operation
Faulty fan and grill

Fan speed
low
high
low
high
low
high
low
low
low

Dryer grill
opened
opened
opened
opened
opened
closed
closed
opened
closed

Exit vent
clear
clear
clear
clear
clear
clear
clear
clear
clear

Figure D.l: Industrial dryer. Random sequence No. 2 and No. 3. The upper graphs show the discrete mode over
time, while the lower graphs show the corresponding real temperature and synthetic data (JMLG model). The left
graphs are random sequence No. 2; the right graphs are random sequence No. 3.
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Figure D.2: Industrial dryer. Random sequence No. 4. The upper graph shows the discrete mode over time; the
lower graph shows the real temperature and the synthetic data.

10" 10 10"
Computing time per time step (=) sec

Figure D.3: Industrial dryer. Diagnosis error. Random sequence No. 2. The left graph shows diagnosis error versus
number of particles, while the right graph shows diagnosis error versus computing time per time step.
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Figure D.4: Industrial dryer. Diagnosis error. Random sequence No. 3.
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Figure D.5: Industrial dryer. Diagnosis error. Random sequence No. 4.

Table D.4: Diagnosis error for variations i n p ( z t \ z t - i ) using RBPF

Particles
TV
1
4
10
25
50
100
200

Percentage of variation
0%
78.3
66.2
31.7
21.9
19.8
8.5
8.2

5%
78.3
64.6
29.9
21.5
17.3
8.4
8.1

10%
72.6
61.1
29.5
17.7
16.7
8.2
8.1

20%
72.0
63.6
29.1
16.8
13.7
8.2
8.0

40%
74.0
55.7
27.0
15.4
12.4
9.1
8.0

80%
71.9
41.4
27.7
14.5
11.6
8.4
7.7

160%
72.5
38.5
20.2
11.3
9.5
7.9
7.9

320%
72.8
24.2
17.1
11.0
9.7
8.2
8.2
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Table D.5: Diagnosis error-for variations mp(zt\zt-i) using la-RBPF

Particles
TV
1
4
10
25
50
100
200

Percentage of variation
0%

27.38
19.12
12.04
7.80
6.80
6.86
6.70

5%
27.34
18.98
12.04
7.70
6.78
7.02
6.78

10%
27.08
19.00
12.04
7.64
6.76
7.00
6.76

20%
27.72
18.64
12.06
8.78
6.94
7.06
6.80

40%
27.78
18.04
10.32
7.74
7.00
6.82
6.84

80%
28.10
17.68
10.36
7.62
7.20
7.00
7.00

160%
28.58
14.92
9.30
7.82
7.18
7.04
7.02

320%
25.42
9.02
8.58
7.78
7.16
7.26
7.20

D.2 Level tank

D.2.1 Diagnosis/estimation tests

The left graph in Figure D.6 shows a random sequence for the level-tank (4 discrete modes); the right graph shows
another random sequence for 5 discrete modes.

Figure D.6: Level tank. Random sequences and JMLG model performance. The upper graphs show the discrete
mode over time. The lower graphs show the corresponding real tank level and synthetic data (JMLG model). The
left graphs are for 4 discrete modes; the right graphs are for 5 discrete modes.

D.2.2 Results

Table D.6 shows the numerical results for the three Particle Filtering algorithms using different numbers of particles
for random sequence No. 1, (Chapter 5, Figure 5.12).

Figure D.7 shows diagnosis error versus number of particles, and diagnosis error versus computing time per
time-step, respectively, for random sequence No. 1 (Chapter 3, section 5.3.3). This data was collected using more
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Table D.6: Level tank (4 discrete modes). Random sequence No. 1.

Partióles
N
1
4
10
25
50
100
200
400
800
1600

Diagnosis error, %, mean
PF

76.10
76.62
69.78
64.02
54.81
49.87
47.54
40.49
30.91
20.92

RBPF
64.72
57.89
57.15
49.39
42.16
34.13
31.35
23.60
13.32
8.44

la-RBPF
37.51
15.16
17.49
7.89
4.42
3.19
2.14
1.84
1.81
1.77

Diagnosis error, %, SD
PF

17.69
16.08
13.23
14.69
10.34
11.91
8.94
13.08
14.75
16.52

RBPF
21.08
23.47
23.71
22.89
23.82
23.44
23.73
22.68
15.60
10.57

la-RBPF
15.09
15.52
17.72
8.62
2.35
2.08
0.95
0.23
0.10
0.06

precise sensors1. Note the difference between this figure and Figure 5.10.
Figure D.8 shows diagnosis error versus number of partlcles, and diagnosis error versus computing time per time

step, respectively, for random sequence No. 2, in which noisy sensor-transmitters were used.

10 10'
Number of partióles

10" 10" 10
Computing time per time step (=) seo

10

Figure D.7: Level tank (4 discrete modes). Diagnosis error. Random sequence No. 1.

Figures (D.9-D.10) show diagnosis error versus number of particles, and diagnosis error versus computing time
per time step, respectively, for random sequences No. 2 and No. 3 using 5 discrete modes. For these tests, well
calibrated sensor-transmitters were used.

1 Sensor-transmitters were re-calibrated.
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Figure D.8: Level tank (4 discrete modes). Diagnosis error. Random sequence No. 2.
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Figure D.9: Level tank (5 discrete modes). Diagnosis error. Random sequence No. 2.
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Figure D.IO: Level tank (5 discrete modes). Diagnosis error. Random sequence No. 3.
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D.3 Industrial heat exchanger

D.3.1 Modelling
We present some intermedíate results of the proposed procedure for learning the model parameters of one discrete
mode. Except for the Expecíation-Maximization (EM) method, we are using standard identification tools from the
control engineering community.

First, we show a step change test and its results using the EM alogrithm. Then, we implement a Pseudo Random
Binary Sequence (PRBS) test and learn the parameters using the Least Squares Estimaüon (LSE) method followed
by the EM method.

Step response test

The following Figure D.l 1 shows a step response in one discrete mode for this domain. The upper graph indicates
that the chosen input variable was increased 15 % and then decrease 15 %, while the lower graph indicates the
output variable response. The process is slightly nonlinear. As we can see in the lower graph, the responses to the
positive and negative steps are different. They have different transient responses and different final steady states.
However, for simplicity in this discrete mode, we nevertheless considered it a linear system. This decisión could
increase diagnosis error.

- 7 0

•E 65

ZC.

'

100 200 300 400 500 600 700

44

43

3 42
o.

I 41

40

39
100 200 300 400 500

Time steps (=) see
600 700

Figure D.l 1: Heat exchanger. Step response. The upper graph shows the input step change in both directions. The
lower graph shows the transient response. As we can see, the dynamic responses are different. Also, the final steady
state is different from the initial one, with different settling time.

Expectation-Maximization Method using a Step Change test

We use the Expectation-Maximization method to model the stochastic state space representation of each discrete
mode. Figures (D. 12-D. 13) show some intermedíate results. In this example, we tried two valúes for the continuous
state space dimensión, nx. The two left plots in Figure D.l2 show the results when nx = 1 (one dimensión). These
plots represent log likelihood and convergence versus number of iterations, respectively; at most 100 iterations were
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permitted. The right plots in Figure D.12 show the input and output variables used in the EM algorithm. Note that
we used deviation variables in both cases. The real output and the simulated data (JMLG model) are compared in
the lower right plot. The modelling procedure gives good results using only one dimensión (nx = 1).

Figure D.13 shows the results when nx = 2. By simple visual analysis, we can see that one dimensión for the
continuous state space is enough; it gives better results than nx = 2.

Note that we must try different valúes of nx for each discrete mode, using a different experimental data set, in
order to get each of the nz individual models that form the JMLG model.
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Figure D.12: Expectation-Maximization Method, nx = 1. The two left graphs represen! log likelihood and conver-
gence versus number of iterations, respectívely. We model the data using nx = 1 dimensión for the continuous state
variables. The right graphs show the real input and output data versus time. The lower right graph also compares
the real and simulated data (JMLG model).

PRBS test / Least Squares Estimation

The following Figure D.14 shows an experimental PRBS test. The left graph shows the data generated by the PRBS.
This PRBS test was implemented using a 9-cell shift register. 545 data points were collected every 10 sec. The upper
left plot shows the input signal, while the lower left plot shows the output signal. Both signáis are deviation variables.
The right graph compares the real data and the synthetic data. The synthetic data were generated using an ARX
model. The ARX parameters were learned by the Least Squares Estimation method. For clarity, we plot only 100
data points; the rest of the comparison has the same pattern.

Figure D.15 shows the autocorrelation function of residuals (upper graphs) and the cross correlation (lower
graphs) between the residuals and the input. All these response curves should be small. In both cases, we show 99
% confidence regions (shadowed áreas) around the zero limits for these valúes. For a model to pass the residual test,
the curves should ideally be inside these regions. However, for practical purposes a región between [-0.2, +0.2]
(95 % confidence) is enough. The correlation functions are given up to lag 25.

The left graphs in Figure D.15 show a model structure which fails the test; in the right graphs the model passes
the residual test. We considered a 95 % confidence región, [-0.2, +0.2].
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Figure D. 13: Expectation-Maximization Method, nx = 2. The two left graphs represen! log likelihood and con-
vergence versus number of iterations, respectively. We used nx = 2 dimensions for the continuous state variables.
The right graphs show the real input and output data versus time. The lower right graph also compares the real and
simulated data (JMLG model).
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Figure D.14: Pseudo Random Binary Sequence test. A PRBS test was designed using a 9-cell shift register; 545
data points were collected every 10 sec. The left graphs show the input and output signáis (deviation variables). The
right graph compares the real and synthetic data (ARX model) for this data set.
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Figure D.15: Residuals test. The upper plots show the autocorrelation function of residuals, and the lower plots
show the cross Correlation. The shadowed áreas represent 99 % confidence regions around zero limits for these
valúes. The Correlation functions are given up to lag 25. The left graphs show a model that failed the test, while in
the right graphs the test was passed, using 95 % confidence.

Expectation-Maximization Method using a PRBS test

The ARX model allows us to build a deterministic model, where the signáis are corrupted by noise. In order to get
a stochastic model for this process, we must use the EM method with the same experimental data generated by the
PRBS test, but also learn the noise matrices. We use the learned parameters for the deterministic state space model
as an initial approximation.

Figure D.16 shows preliminary results. In this example, we used one dimensión for continuous state space vari-
ables, nx = 1. The two left plots represent log likelihood and convergence versus number of iterations, respectively.
The number of iterations was limited to 100, and the convergence to 0.00001. The right plots show a small interval
of the input and output variables. The complete input/output data set is shown in Figure D.14. The real output and
the simulated data (JMLG model) are compared in the lower right plot.

D.3.2 Diagnosis/estimation tests

D.3.3 Results

Variation in the transition matrix

Table D.7 shows the diagnosis error mean for different percentage of variations in probabilities of the most repre-
sentative discrete mode of the transition matrix p(zt\zt-i) for the la-RBPF algorithm. Variation in the less the less
representative discrete mode of the transition matrix p(zt Zt-i) and in the prior distribution of the discrete mode do
not show.
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Figure D.16: Expectation-Maximization Method using a PRBS test. The two left graphs represen! log likelihood
and convergence versus number of iterations, respectively. We model this data using nx = 1 dimensión for the
continuous state space variables. The right graphs show the real input and output data per time step. The lower right
graph also compares the real and simulated output (JMLG model).
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Figure D.17: Heat exchanger. Random sequence No. 2.
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Figure D.18: Heat exchanger. Diagnosis error. Random sequence No. 2.
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Figure D.19: Heat exchanger. Diagnosis error. Random sequence No. 3.
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Figure D.20: Heat exchanger. Diagnosis error. Random sequence No. 4.
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Table D.7: Diagnosis error for variations in p(zt\zt-i) using la-RBPF

Partióles
N
1
4
10
25
50
100
200

Percentage of variation
0%

38.72
10.40
8.44
5.16
5.48
4.06
3.18

5%
38.72
10.40
8.44
5.10
5.48
4.04
3.18

10%
41.42
10.40
8.44
4.98
5.48
4.08
3.18

20%
41.42
10.40
8.20
5.00
5.48
4.08
3.16

40%
41.42
10.24
8.12
5.00
5.06
4.40
3.16

80%
40.70
9.06
8.06
4.96
5.02
4.42
3.06

160%
40.70
9.06
8.18
4.76
5.14
4.44
3.04

320%
35.60
9.00
7.86
4.76
5.00
4.18
3.22

D.4 Mobile robot

D.4.1 Results

Figures (D.21-D.23) show some results from the smooth and tiled floors. Diagnosis error is plotted versus number
of particles and computing time per time step.

10
Number of particles

10" 10"
Computing time per time step (=) sec

10

Figure D.21: Random sequence, smooth floor.
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Appendix E

Simulated Systems

E.l Continuous Stirred Tank Reactor (CSTR)

In the jacketed chemical reactor CSTR, described in Chapter 6 section 6.2, a second-order exothermic reaction
2A —» B takes place. The reaction rate constant was considered to follow the Arrhenius equation (E.l). Table E.l
defines the variables in this system, and gives their valúes at steady state.

k ( T r ( t } } = k0e(-T'-w+™> (E.l)

E.1.1 Nonlinear model

The following equations represen! a simplified non-linear model:
Mass Balance on A

v = W(CM(Í] _ CA(I]] _ kC\(t)Vp (E.2)
di

Enthalpy Balance on reacting mass

VpCp^l = W(t)Cp(Tn(t) - T r ( t ) ) - UA(Tr(t) - T j o ( t ) ) + (-AH)VkC2
A(t) (E.3)

Enthalpy Balance on Jacket

MjCpj^g^ = UA(Tr(t) - T j o ( t ) ) - Wi(t)Cpj(Tjo(t) - Tjt(T)) (E.4)

E.1.2 Linear model

In this system, we consider that the following variables change over time: CA(t), Tr(t), CAÍ(Í), W(t), Tji(t),
Tri(i), Tjo(t) and Wj(t). The mass balance on A given by equation (E.2) can be linearized, as we show:

t) (E.5)lat V p
dCA(t) _ W(t)CM(t] W(t)CA(t)

A(t)} + f3[Tr(t),CA(t)} (E.6)

185
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TableE.l: Variables.

Var
CA

CAÍ

a
k

Ko

-A//
cp
CPJ

A
P
U

T •¿n

Tr
T±rm
TJ - j o
TJ-]i

V

W

W3

M}

Valué
3.5955

10.8
2,560

0.0278
1.43
867
0.9
1.0

500
80
1.2
150

190.0611
190.0611
120.0222

80
250

1,000
1,050
4,000

Units
lb/ft3

lb/ft3

°R
ft3 /Ib - min
ft3 /Ib - min

Btu/lbA

Btu/lb°F
Btu/lb°F

ft2

lb/ft3

Btu/min ft2 °F
°F
°F
°F
°F
°F
ft3

Ib/min
Ib/min

Ib

Definitions
Concentration of reactant A in reactor and exit stream
Concentración of reactant A in feed
Constant in Arrhenius expression for reaction rate
Reaction rate constant
Constant in Arrhenius expression
Heat of reaction
Specific heat of reacting mixture
Specific heat of water
Effective jacket transfer área
Density of reacting mixture
Heat transfer coefficient
Input reactants temperature
Reactor temperature
Measured reactor temperature
Outlet Jacket temperature
Inlet Jacket temperature
Reactor volume
Feed mass flow rate
Water cooling rate at jacket
Mass of jacket water

The linear model of each term (/1( /2 and /3) in the previous equation is obtained by Taylor series expansión.
We only present the detailed derivation for term f\ :

fi[W(t),CAi(t)} =

fi[W(t),CAi(t)} =

Al (W(t) -

wcAÍ cAi(W(t) - w) w(cAl(t) - cAl)
Vp Vp Vp

t \™ru\ n it\\ vvi^Ai . <-'-4¿T;r//'¿\ , KK r> ih\W(t),CAi(t}\ = —--- + —W(t) + —CAi(

where W = W(t = 0) and CAÍ = CAi(t = 0). The linear model for /2 is:

hmt),cA(t)} = -vf + ̂ w(t} + -
where CA = CA(t = 0). Finally, the linear model for /s is:

[(CM(t)-CAi) (E.7)

(E.8)

(E.9)

(E. 10)
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f3[Tr(t),CA(t)} = f3[Tr,CA] + d/3^^A] (Tr(t) - Tr) + ̂ ^'^ (CA(t) - C A) (E.ll)

iC^-í T j — rvQC

2 .=

/3prr(í),CU(í)] = k(Tr)CA + " A r) (r r(f) - fr) + 2CAfc(Tr)(CA(¿) - C^)

where Tr = Tr(í = 0). The original nonlinear differential eqüation (E.2) (mass balance on A) becomes

dCA(t)
~dT = ai' (E. 13)

Vp

-a
O¿^r) =

Vp
— —

+'2k(Tr)CA

(Tr + 460)2

ñ W

Y?
Q C AÍ — C A
P13 - - TT -Vp

Using a similar procedure, eqüation (E. 3), which describes the enthalpy balance in the reactor, becomes

«W ~ TrW - UA(Tr(t) - T j o ( t ) ) + (-&H)Vk(Tr(t))C2
A(t)

= a2+a21CA(t)+a22Tr(t)+a23Tjo(t)+022Tri(t) + /323W(t) (E. 14)

W(Tr-Tri) r
+

«21 =

«23 =

Vp pCp [ (7Y + 460)5

2(-AH)k(Tr)CA

W a(-AH)k(Tr)C2
A UA

-I-

Vp PCP(TT + 460)2 VpCp

UA
VpCp

fí w

Y?
T — Ta J- n J- T

P23 = Í7Vp

Eqüation (E.4), which describes the enthalpy balance in the jacket, has the following linear form:
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' dt
dTJO(t)

dt

UA(Tr(t) - Tjo(t}} - W}(t)CPJ(TJO(t)

a3 + a32Tr(t) + a33TJO(t) (E.15)

UA

«3 =

«32 = -r

«33 = ~

8 - j
034 - M~

jCpj + U A

T • — T* ji ^ jo

One can re-write equations (E. 13-E.15) and'group the constant terms (initial conditions included):

dCA(t)
dt

dTr(t)

dt

Using matrix notation:

= auCA(t) + a12Tr(t)

d C A ( t )
dt

dTr(t)
dt

dT,0(t)
dt

«11 «12 O CU (O

«21 «22 «23 Tr(t)

O «32 «33 J [ Tj0(t)

Equation (E. 16) can be represented as aJMLG model:

a23TJO(í) + {a2

a2

(323W}

+ •(E. 16)

= Axt + Bwt+i + Fut+i
yt = Cxt + Dvt + Gut

with these definitions:

and Vt are A^(0,1). The matrices are defined as:

r dCA(t) i
dt

dTr(t)
dt

dT,0(t)
dt

Vt =

' CA(t) '
Tr(t)

. T j o ( t ) _
ut =

' «i(í) "

«2(0

. «3(0 .

QH ai2 O
Q21 "22 0123

O «32 «33

F =

ai + 0nC_Ai + PiaW O O
«2 + í32zTT1 + (323W O O

O O

(E. 17)
(E. 18)
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B = nprocess/3x3, C = 73x3, D = nmeasurementI3x3, G = 03x3 . nprocess and nmeasurement are the process
and measurement noises. One can get the sampled state space representaron from the continuous one using standard
control engineering theory [Ogata, 1995]. The continuous state space representaron for normal operating conditions

A(zt = 1) =
-0.2504 -0.002182 O

2.413 -0.05706 0.03333
O 0.15 -0.4125

F(zt = 1) =
1.3150 O O

-1.8319 O O
21.0 O O

(E. 19)

the matrices { B(zt = 1), C(zt = 1), D(zt = 1), G(zt = 1) } do not change.

E.1.3 4 Discrete modes

The sampled state space representaron for normal operating conditions (zt = 1), using 0.1 min as a sampling rate,
is:

A(zt = 1) =
0.9752
0.2376

0.001767

-0.0002149 -3.55(10)-7

0.9943 0.003256
0.01465 0.9596

F(zt = 1) =
0.1299 O O

-0.1635 O O
2.056 O O

(E.20)

We changed some operating conditions in order to simúlate faulty behaviours. Assuming only U (the heat
transfer coefficient) changes, we built 3 new discrete modes (zt = 2,3,4) whose sampled state space matrices are:

A(zt = 2) =
0.9752
0.2386

0.001686

-0.0002144 -3.36(10)-7

0.9945 0.003095
0.01393 0.9603

F(zt = 2) =
0.1301 O O

-0.1662 O O
2.057 O O

(E.21)

A(zt =3) =
0.9751
0.2397

0.001605

-0.000214 -3.18(0)-7

0.9946 0.002933
0.0132 0.961

F(zt = 3) =
0.1303 O O

-0.1689 O O
2.058 O O

(E.22)

A(zt = 4) =
0.975 -0.0002134
0.2408 0.9948

0.001523 0.01247

-3(10)-7

0.002771
0.9618

F(zt = 4) =
0.1305 O O

-0.1719 O O
2.058 O O

(E.23)

B(zt) = nprocess/3x3, C(zt) = J3x3, D(zt) = nmeasurementl3*3, and G(zt) = 03x3 where zt = 2,3,4.
Figure E.l shows a simulation of the nonlinear system and the JMLG model.

E. 1.4 10 Discrete modes

Based on equations (E.20-E.23) we added 6 more discrete modes represented by equations (E.24-E.29). These new
discrete modes were described in Chapter 6 section 6.2.2.
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Figure E.l: CSTR (4 discrete modes). Nonlinear and JMLG simulation.

A(zt = 5) =
0.977 -0.0002 -3(10)~7

0.2168 0.994 0.0033
0.0016 0.0147 0.9596

F(zt = 5) =
0.1142 O O

-0.03978 O O
2.057 O O

(E.24)

A(zt = 6) =
0.9787 -0.0002 -2(10)~7

0.1959 0.9938 0.0033
0.0015 0.0147 0.9596

F(zt = 6) =
0.0988 O O
0.0802 O O
2.058 O O

(E.25)

A(zt = 7) =
0.9752 -0.0002 -4(10)~7

0.2382 0.9943 0.0033
0.0018 0.0147 0.9609

F(zt = 7) =
0.13 O O

-0.1653 O O
1.954 O O

(E.26)

A(zt = 8) =
0.9751 -0.0002 -4(10)-7

0.2388 0.9943 0.0033
0.0018 0.0147 0.9621

F(zt = 8)
0.1301 O O
-0.1668 O O
1.853 O O

(E.27)

A(zt = 9) =
0.9753 -0.0002 -4(10)-7

0.2365 0.9943 0.0033
0.0018 0.0147 0.9596

F(zt = 9)
0.1296 O O
-0.1608 O O
1.953 O O

(E.28)

A(zt = 10) =
0.9754 -0.0002 -4(10)~7

0.2354 0.9943 0.0033
0.0018 0.0147 0.9596

F(zt = 10) =
0.1294 O O
-0.1584 O O
1.85 O O

(E.29)
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Again, B(zt) = nprocessl3*3, C(zt) = 73x3, D(zt) = nmeQStíremení/3x3, and G(zt) = 03x3 where zt =
5 , . . . , 10.

Figure E.2 shows a simulation of the nonlinear system and the JMLG model (10 discrete modes). The left graphs
were generated with less measurement noise than the right ones.
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Figure E.2: CSTR (10 discrete modes). Nonlinear and JMLG simulation. The top plots show the discrete mode over
time. The remaining plots show the corresponding concentration of A, reactor temperature, and jacket temperature.
The non-linear model and the JMLG model are compared for each variable. The right system has a higher noise
level than the left one.

E.1.5 Resulte

Figure E.3 shows an example with measurement noise level nmeasurement — Qnprocess. Diagnosis error versus
number of particles and computing time is graphed for each inference algorithm.

E.2 Simulated Mobile Robot

E.2.1 Diagnosis/estimation tests
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Appendix F

NASA experiments

F.l RIACS/NASA Ames Research Center

F.l.l la-RBPF in the K-9 planetary rover

A linearized model of the suspensión system of the K-9 planetary rover was applied to detect rocks using real data.
This data was generated by driving the K-9 rover over three different rocks in an outdoor sandbox at NASA Ames.
During this experimental test, the rocker and bogey angles were measured. Based on this data, the discrete mode was
estimated using both standard PF and la-RBPF, using 32 and 4 partióles respectively. These numbers of partióles
allow us to get results in real-time. Table F.l describes the different discrete modes for this domain.

Table F. 1: K-9 planetary rovers. Discrete modes description

Description
Fíat driving
Driving over a rock with the front wheel
Driving over a rock with the middle wheel
Driving over a rock with the rear wheel
There are rocks between the front and the middle wheels
There are rocks between the middle and the rear wheels

It is clear from the continuous data (rocker and bogey angles) when the rover is driving over a rock, Figure F.l.
The logical discrete mode sequence is 1,2,5,3,6,4 for each of these three rocks (starting at time steps 60, 140 and
210 approximately). The la-RBPF algorithm successfully detects the discrete mode sequence for the first and third
rocks. However, it makes some diagnosis errors on the second rock; discrete mode 4 is missed. This may be due to
the linearized model that was used. The PF algorithm almost misses the third rock; and it makes some diagnosis
errors when discrete mode 1 is evident.

Several tests using K-9 planetary rover clearly show that la-RBPF outperforms RBPF and PF, Figure F.2. Fig-
ure F.3 shows the mean squared error (MSE) between the continuous variables of the system and the estimation
of them (by JMLG model). Note the extreme differences between the three Particle Filtering algorithms. With a
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Figure F. 1: K-9 rover. Discrete mode estímate on real data. The upper plots show the discrete mode estimates for
PF and la-RBPF, while the lower plots represen! the measured rocker and bogey angles when the rovers drive over
the three rocks. Graph provided by Frank Hutter, /VASA Ames Research Center.

MSE of the continuous variables which is between 103 and 105 times higher than that of la-RBPF, it is clearly
outperformed.

F.1.2 la-RBPF in Marsokhod planetary rover

Diagnosis was performed with the wheel model of the Marsokhod planetary rovers, Figure F.4. Diagnosis is run
independently on each of the six wheels. 22 discrete modes are used, 9 of which are normal operational modes,
with the others representing faulty conditions. Examples of faulty conditions are: stalled motor, a broken gear, and
a broken gear and encoder, see [Washington, 2000; Dearden and Clancy, 2001] for more details. la-RBPF was used
to diagnose the broken gear and encoder in the right rear wheel [de Freitas et al., 2003]. The rover was set to an
idle state and then given the command to start. Figure F.5 plots the number of measurements the algorithms needed
to settle on the diagnosis versus the computing time required. The first point in this graph (for each algorithm)
corresponds to 1 particle, then 2 , 4 , 2 f e , . . . , 215.

The máximum number of measurements after the start command is issued was 46; if the fault is never diagnosed
then 46 is taken by default. Figure F.5 shows that la-RBPF can diagnose efficiently using less measurements with
less computing time. Only RBPF and la-RBPF are able to get good results in real-time for this 22 discrete mode
domain. Additionally, the la-RBPF estimation variance is significantly lower even for fewer particles.
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Figure F.2: K-9 rover. Diagnosis error. The left graph shows diagnosis error versus number of particles, while the
right graph shows diagnosis error versus computing time per time step. Graphs provided by Frank Hutter, NASA
Ames Research Center.
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Figure F.3: K-9 rover. Mean squared error. Note the logarithmic scale for both the axes Graphs provided by Frank
Hutter, NASA Ames Research Center.
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Figure F.4: Marsokhod planetary rovers. Marsokhod is a medium-sized planetary rover built on a Russian chassis.
The rover has six independently driven wheels. Pictures provided by Tom Trower, NASA Ames Research Center.
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Figure F.5: Marsokhod rover. Number of measurements needed to diagnose a fault. For each algorithm the data
points represent the average and standard deviation based on 25 independen! runs. Graph provided by FrankHutter,
NASA Ames Research Center.






