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Abstract 

 

The Economic Lot Scheduling Problem (ELSP) is a well known problem that focuses on 

scheduling the production of multiple items on a single machine such that inventory and 

setup costs are minimized.  In this thesis the ELSP is extended to include price 

optimization with the objective to maximize profits.  Two variants are proposed: a 

deterministic version which will be known as the PELSP and the stochastic version 

which is called the SPLSP. A solution methodology based on column generation and 

integer programming is proposed and is shown to produce very close to optimal results 

with short solution times. Computational testing is performed to evaluate the 

methodology. The results are discussed and recommendations for further research are 

provided. 
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Chapter 1. General Context 
 
 
 
1.1 Introduction  

 

The Economic Lot Scheduling Problem (ELSP) has been studied since about 50 years 

ago. The ELSP deals with the problem of scheduling the production of a multi product 

system. The problem itself includes a capacity restriction for the whole system to remain 

feasible, so there are restrictions on the time needed to produce each product as well as 

the periods in which they will be scheduled to be produced. In a few words, the purpose 

of the ELSP is to solve the problem of how to maintain cyclic production patterns based 

on lot scheduling while minimizing costs. 

 

There are numerous of methods that seek to produce an approximation to cyclic 

coordination. The Basic Period approach (BP) is one of the most known and assumes that 

the production runs of all products must be realized in a production period that is 

sufficiently big enough for that purpose. This constraint is the one that creates some 

problems because some solutions can be become suboptimal. There is also the Extended 

Basic Period approach (EBP) which removes the basic constraint of the BP approach and 

admits the possibility that on a certain period of time, some products and not necessarily 

all can be produced. This relaxation is an important variant that influences the possible 

solutions to the problem. It is important to notice that for this thesis, the Basic Period 

approach will be used. 
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Regarding the optimization of the ELSP, it is important to notice that all the prior authors 

have used a wide variety of optimization methods to propose feasible and optimal 

solutions: some have used heuristics, branch and bound algorithms, integer programming 

and genetic algorithms, but none of them have worked with the column generation 

technique with mixed integer programming. This technique has been used on different 

problems and areas. 

 

The purpose of this thesis is to use the column generation technique as an optimization 

tool that helps to achieve feasible solutions to the ELSP problem with price optimization.  

In chapter 2, a literature review is presented to place this thesis within the proper context. 

 

Then, chapter 3 will be focused on the development of the mentioned problem but with 

two variants: the deterministic model of the ELSP with pricing (the so called 

“deterministic lot scheduling problem with price optimization” or just “PELSP”); and the 

stochastic version of the ELSP with pricing (the “stochastic lot scheduling problem with 

price optimization”, or just “SPLSP”).Basically, the PELSP presents the basic 

formulation of the ELSP where both the price and the production schedule are found in 

order to maximize profit. In the case of the SPLSP, the production times and cyclic 

periods of each product are the decision variables and price is a recourse variables which 

is not directly optimized. Chapter 3 will also be focused on describing the solution 

methodology used for the models developed while Chapter 4 will present and discuss the 

experiments designed to test the robustness of the optimization method. Chapter 5 will 

provide general conclusions. 
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1.2 Objectives 

 

As it was said in the introduction, the main purpose of the research on this thesis is to use 

the Column Generation Technique as an optimization method for the two models 

presented. In other words, the objectives are:   

• Formulate a complete optimization algorithm that finds the solution to the lot 

scheduling problem with price optimization, for both the deterministic and the 

stochastic versions, for a manufacturing system with multi products that includes 

prices, setup times and capacity restrictions 

• Use the Column Generation Technique to optimize the deterministic lot 

scheduling problem with price optimization (PELSP) 

• Use the Column Generation Technique to optimize the stochastic lot scheduling 

problem with price optimization (SPLSP) 

 

 

 

1.3 Hypothesis         
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Based on the objectives described above, it is clearly set that the general purpose of the 

thesis is to prove that the Column Generation Technique is a good and feasible method to 

optimize the lot scheduling problem with pricing. Accordingly, two basic hypotheses 

have been developed, which are the following: 

 

 

• The Column Generation technique produces results that are GOOD FEASIBLE 

SOLUTIONS near the optimal solution (on a 5% range),  for the deterministic lot 

scheduling problem with price optimization (PELSP) 

 

• The Column Generation technique produces results that are GOOD FEASIBLE 

SOLUTIONS near the optimal solution (on a 5% range),  for the stochastic lot 

scheduling problem with price optimization (SPLSP) 

 

 

1.4 Justification         

 

This thesis can be considered very important for the Operations Research community 

interested in the optimization of multi product production systems with Prices. The 

essential value of the models analyzed in this thesis is that the Column Generation 

technique works well for joint production and pricing problems. In fact, the solution 

methodology presented on the thesis is on certain way exploratory because up to date 

there haven’t been similar works which apply this technique to joint pricing and 

production problems. Finally, it is important to conclude saying that the results of the 
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thesis will help promote more research on lot scheduling production systems with 

pricing , as well as to set the bases for new projects that derivate from the thesis. 

 

 

 

 

 

 

1.5 Scope 

 

The research topic proposed for this thesis deals with an area of production systems 

optimization that has not been fully studied up to date. The whole topic is innovative and 

offers an opening in an area that is important to people on production and operations 

research. The experimentation that was conducted on Chapter 4 will help show the results 

of my proposal and indicate the following future directions of this optimization area. 
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Chapter 2. Literature Review 
 
 
 
2.1 The Economic Lot Scheduling Problem 

 

The Economic Lot Scheduling Problem (ELSP) is a well known problem, based on the 

single item Economic Production Quantity (EPQ) model, which focuses on scheduling 

the production of multiple items on a single machine such that inventory and setup costs 

are minimized. A great number of approaches to solving the ELSP have been proposed.  

Since the work on this thesis is directly related to two variants of the ELSP, it is 

important to understand where these variants fit and how they interact with other models 

in the existing literature. So, in this section, a review of the deterministic economic lot 

scheduling model is presented. 

 

One of the earliest models for economic lot programming is proposed by Manne [42], 

who focuses on the production of several items in a workshop. Rogers [46] continues that 

approach but looks further and realizes that in practice, when several items have to be 

manufactured, the situation becomes an economic lot scheduling problem. The author 

then provides the first models of the ELSP, developed to fit the production schedules of 

various items into a defined planning period. Later, other methods are developed to solve 

the ELSP. Bomberger [8] uses dynamic programming to solve the problem. Bomberger 

[8] is also the first author to propose that the cycle time for each product should be an 



Chapter 2. Literature Review 
 

7 

integer multiple of a Basic Period (B) which has to be long enough to allow all items to 

be produced in that period. 

 

Madigan [41] develops heuristic methods for the ELSP. Doll and Whybark [16] propose 

additional heuristics but focus on an iterative procedure that directly determines the 

production cycle for each product as an integer number. Haessler and Hoghe [30], basing 

their work on the Doll and Whybark [16] model, present an improved iterative procedure 

that guarantees a feasible solution, unlike previous heuristics. 

 

Elmaghraby [17] provides an extensive review of ELSP research and proposes what is 

known as the Extended Basic Period (EB) approach model. He also proposes an integer 

model that systematically achieves feasibility and facilitates determining the production 

multipliers. Haessler [29] continues the approach but proposes restricting the number of 

periods between production runs to integer powers of two, very quickly finding good 

solutions. Graves [27] advances on the mathematical programming front by developing a 

non linear mixed integer model that works strictly with integer multipliers and a non-

integer period. Dobson [15] continues the development of heuristics and develops a 

method that allows cycle time and lot size variations assuming that the setup costs vary 

with the number of setups and include only costs that would result in actual cash losses. 

The approach allows feasible solutions to be found more easily and the resulting 

solutions smooth the utilization of the facility.  
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Bretthauer et al. [10] proposes a general model and solution method that can be adapted 

to the ELSP model developed by Elmaghraby [17]. Their branch and bound algorithm 

produces better solutions than those produced using previous approaches. Another 

notable achievement, by Gallego and Shaw [24], is showing that the ELSP is NP hard. 

Their approach focuses on cyclic scheduling since non cyclic scheduling is a very hard to 

explain and evaluate.  Regarding the structure of the problem, Yao and Elmaghraby [61] 

study an ELSP model without capacity restrictions and consider the model’s behavior 

under a power-of-two policy originally proposed by Roundy [48] in another context. 

Their study concludes that the objective function is piece-wise convex. 

 

More recently, Wagner and Davis [57] propose a search heuristic for an ELSP with 

sequence dependent setups. Yao et al. [62] presents two improved linear models based on 

a heuristic that guaranteed feasibility for the EB ELSP. Cooke et al. [14] proposes an 

improved non linear mixed integer model that also considers production sequences. They 

also compare dynamic programming and genetic algorithm approaches. The most recent 

studies seem to be those by Yao and Huang [63], who propose a hybrid algorithm for 

deteriorating products using a power-of-two policy; Lin et al. [40], who also work with 

deteriorating products but use a common cycle approach; and Chang et al. [11], who 

develop a specialized model for fuzzy demand. 
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2.2 Stochastic lot scheduling problems 

 

The second of the ELSP variants proposed on this thesis is a stochastic version of the 

ELSP, which it is known as the “Stochastic Lot Scheduling Problem with Price 

optimization” (SPLSP). Following there is a review of work done on the area of 

stochastic lot scheduling problems. 

 

Sox et al. [53] proposed a complete review on stochastic lot scheduling problems. On 

their paper, they mention that the general SLSP model is the problem of scheduling 

production of multiple products, each with random demand, on a single facility with 

limited production capacity and changeover between products. They also mention that the 

SLSP does have two basic variants: the continuous time model which is known as the 

SELSP (Stochastic Economic Lot Scheduling Problem) and the discrete time version 

which is known as the SCLSP (Stochastic Capacited Lot Scheduling Problem). 

Following the prior classification, it can be said that the SPLSP cannot be particularly 

defined as a member of one of the two variants but it can be portrayed as a hybrid model 

because it shares some assumptions and characteristics of both models: regarding the 

SELSP, the model relates with it on the assumptions that the demand must be stationary 

and that the time horizon is infinite; regarding the SCLSP model, the model shares the 

assumption of discrete scheduling times.  

 

Having seen where the SPLSP fits on the current classification for stochastic lot 

scheduling models, it is time to explore some of the work done on the SELSP as well as 



Chapter 2. Literature Review 
 

10 

the SCLSP, taking into account that the focus is to depict the types of solution and 

general details about the models. 

 

As it was said before, the Stochastic Economic Lot Scheduling Problem (SELSP) is a 

developed extension of the deterministic Economic Lot Scheduling Problem (ELSP). The 

focus of the SELSP model is scheduling the production on a single machine multi 

product system, taking into account random demand and setup times while minimizing 

the total costs incurred. Winands et al. [59] propose a very complete an up to date review 

of the work done on the SELSP area. They analyze the different variants that arise from 

the basic SELSP model, including a classification based on the types of solution: 

production sequence (fixed and cyclical) and lot sizing policies (global or local). Finally, 

they present some lines of research for the future.  

Some of the papers that we are going to review can fit on the different categories: Qiu 

and Loulou[45] and Sox and Muckstadt[52] presented models that fit on the dynamic 

production sequence and global lot sizing category. Meanwhile, Altiok and Shiue[3][4] 

and Zipkin[64] fall into the dynamic production sequence and local lot sizing category. 

On the fixed production sequence and dynamic cycle length category with global lot 

sizing strategies we can see the works of Bourland and Yano[9], Gallego[22] and 

Markovitz[43] among others. Also, on the fixed production sequence and dynamic cycle 

length with local lot sizing strategies we can observe the papers of Anupindi and 

Tayur[5], Federgruen and Katalan[20] and Vaughan[56]. Finally, it can be observed the 

work of Erkip et al.[19] on the fixed production sequence and dynamic cycle length 

category with local lot sizing strategies. 
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Currently, the SPLSP fits on the “Fixed production sequence + fixed cycle length and 

Local Lot sizing strategy” category. Regarding this category, Winand et al. [59] tell us 

that the research work done on it has been insufficient and is a good line of work for 

future papers, which somehow validates the efforts towards contributing with new work 

on stochastic scheduling problems. As it will be seen later on the description of the 

SPLSP model, the fixed production sequence and fixed cycle length are going to be 

known as the design variables for the SPSLP. 

Also, it is important to notice that the SPLSP control system involves two policies: 

pricing and purchasing. These two policies characterize the singularity of the model and 

define how the production system is kept on balance while trying to maximize the 

expected profit. 

 

Another interesting aspect of the SPLSP, which is worth mentioning, is the fact that it 

works with a service level policy to control the occurrence of backorders. What it has 

been noticed is that the authors on stochastic lot scheduling problems use different ways 

to achieve a desired service level for the customer. Following is a comparison table 

regarding the inclusion of backorder/shortage costs and the type of service level strategies 

used by the authors reviewed: 
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Author 
Backorder / Shortage 

costs 
Service Level 

Altiok and Shiue [3] Backorder 
Average backorder level , probability of backorders due to 

average inventory levels 

Anupindi and Taylor [5] Backorder 
Expected fraction of orders filled immediately, response 

time for an order and backlog costs 

Bourland and Yano [9] No Reorder point on passing the safety stock levels 

Federgruen and Katalan 

[20] 
Backorder Lower bounds on the item’s fill rate 

Gallego [22] Backorder Service levels using backorder and holding costs 

Goyal [26] Shortage Probability of shortage occurring equal to a service level 

Leachman and Gascon 

[38] 
No 

Customer service policies (that avoid the happening of 

shortages) 

Markovitz et al. [43] Backorder Average server utilization 

Qui and Loulou [45] Backorder Probability of backorders (equal to constant value) 

Sox and Muckstadt [52] Backorder 
Fraction of total capacity required to meet the expected 

demand for all items through period t 

Vaughan [56] No Safety stock for a defined cycle service level 

Zipkin [64] Backorder 

Service rate (average number of batches processed per unit

while the server is busy), Constant Lower Bound for 

average backorder per item 

Table 1. Author Comparison for backorder/shortage costs and types of service level  

 

Goyal[26] started the approach on stochastic lot scheduling models by presenting a model 

for a single machine production system where he relaxed the assumption of deterministic 
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demand , including also shortage costs. Graves [28] was one of the first authors to work 

with the SELSP. His approach regards a Markov Decision Model for a one product 

problem, and using this method he develops a heuristic to solve the SELSP but with a 

periodic review policy. Gallego[22] proposed an interesting cyclic schedule model based 

on the original ELSP but including random demands with constant expected rates and 

backorders. He formulated his model as a control problem and established a linear 

recovery policy to help achieve feasible and near optimal results.  

 

Bourland and Yano [9] establish a different approach to stochastic lot scheduling 

problems through the design of a model with capacity slack as a form of flexibility. Their 

model is a very complete variety of the SELSP that considers capacity slack, safety 

stocks and overtime while minimizing the expected cost per unit time of inventory, 

overtime and if applicable, on setup costs. The model is based on a two level hierarchical 

solution approach with two variations: fixed capacity slack and variable capacity slack. 

The results of the paper have drawn some conclusions regarding the importance of 

carefully selecting the amount of capacity slack and the importance of optimizing the idle 

time on a complex model like the ELSP. 

 

Qiu and Loulou [45] formulated a model of the SELSP through a semi-Markov decision 

process, for a two product system. The functioning of the model seems to be almost equal 

to the one in Gallego[22] but the stochastic behavior of demand is recreated through a 

Poisson process and the unit processing time is known. This model includes setup time 

and setup costs. The objective of the model was minimizing the total expected cost with 
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discounting over an infinite horizon. The approach given by this model presented very 

good results such that the error bound of the authors model is much tighter than other 

error bounds they compared from normal SELSP models.  

 

Federgruen and Katalan [20] analyze the SELSP problem from the modeling perspective 

of Bourland and Yano [9] but propose a set of production and inventory strategies to 

minimize holding, backlogging and setup costs. The multi production system works with 

on a rotational cycle that includes to possibility of idle times. They also proposed the 

establishment of lower bounds for the optimal cost values and compare their results with 

the application on some deterministic ELSP problems. Their results show that the base-

stock policies proposed as strategies are efficient and rich in solutions and above all, are 

far better than the solutions given on the deterministic approaches. 

Markovitz et al. [43] consider two queuing problems, with a structure similar to the basic 

model proposed in Qiu and Loulou [45]: one that includes random setup costs and other 

that includes random setup times. In reality these structures are control problems that can 

be modeled like versions of the ELSP, but with backorders. Their approach is made 

through the heavy-traffic analysis method mentioned by Sox et al.[53]. Basically, their 

approach consists on approximating the scheduling problem through diffusion control. 

Their analysis gives as a result a dynamic lot sizing policy that gave new insights on the 

optimal solution for the SELSP: basically they concluded that the lot sizing policy 

depends if setup costs or setup times are incurred and the cost structure form for all the 

items.  
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Regarding the SCLSP model, Sox and Muckstadt [52] describe a finite horizon stochastic 

optimization model for a single stage multi product system, a dynamic model that bases 

on the SELSP. Their solution procedures were meant to find near optimal solutions. They 

work with a master problem solved through Lagrange decomposition algorithm and make 

the optimization using the Branch & Bound procedure.  

 

 

 

2.3 Pricing 

 

The literature on joint pricing and inventory optimization is also clearly related to the 

work on this thesis. One of the earliest papers on pricing and inventory is by Whitin [58], 

who proposes a link between pricing and inventory control. Kotler [34] shows that there 

exists an interaction between marketing policies and the economic order quantity. He first 

determines the optimal selling price that provides a maximal revenue for a given demand 

curve and then determines the EOQ considering the selling price and demand as fixed 

parameters. Kunreuther and Richard [35] develop two inventory models based on 

economic order quantity (EOQ) and economic production quantity (EPQ) models for 

determining the pricing and lot sizing policies for the case of the linear demand function. 

Later, a general inventory model in which demand is a function of a sales price that 

depends on pricing policies and the unit cost is presented by Ladany and Sternlieb [37]. 

Urban [55] develops an inventory model based on the EPQ model that considers learning 

effects and the possibility of defective goods in the fabrication process. It is used to 
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determine simultaneously the lot size, price mark-up, and advertisement expenditure 

when the demand for the goods is a deterministic function of the selling price. 

 

Several researchers have worked on joint pricing and inventory problems from a 

supplier’s point of view. For example, Monahan [44] analyzes the effect of a price 

discount offered by a supplier to its unique buyer with the main objective of increasing 

the supplier’s profit. A model for determining simultaneously the price and lot size for 

the supplier-buyer problem from the supplier’s point of view considering a scheme of 

quantity discounts is presented by Rosenblatt and Lee [47]. They show that the optimal 

order quantity for a supplier is an integer multiple of the buyer’s lot size. Abad [1,2] 

solves the problem of joint price and lot size determination faced by a retailer when 

purchasing an item for which the supplier offers an incremental and an all-unit quantity 

discount scheme considering the linear and constant elasticity demand functions. 

 

More recently, Lee [39] presents a geometric programming approach to determine a 

profit-maximizing price and order quantity for a retailer. He considers the demand as a 

nonlinear function of selling price with a constant elasticity. Also, Kim and Lee [33] 

present a study that focuses on fixed and variable capacity models for the joint setting of 

a product’s selling price and lot size for a profit maximizing organization considering 

constant but sales price-dependent demands over a planning horizon. Most recently, an 

EPQ inventory model that determines the production lot size, marketing expenditure and 

product’s selling price is developed by Sadjadi et al. [49] and an algorithm for 

simultaneous determination of the sales price and lot size in a make-to-order contract 
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production environment from the supplier’s perspective is developed by Banerjee [6]. A 

very recent contribution is the work by Haugen et al. [31], who develop a model for the 

Capacited Lot Sizing Problem (CLSP) that includes price optimization. The author’s 

name their model the PCLSP and their formulation and solution approach set the stage 

for further research on the topic. It is important to note that the PELSP variant proposed 

on the thesis, a model and solution method for an economic lot scheduling problem with 

pricing that uses the basic period approach is proposed, thus extending the work of 

Bomberger [8] along the lines advanced by Haugen et al. [31].  

 

Following, a review on some stochastic lot scheduling models that involve some kind of 

pricing technique will be made. Continuing with the classification proposed by Sox et al. 

[53] and adding the price optimization technique, we could basically encounter two 

stochastic lot scheduling problems with pricing: the SELSP with pricing for 1 product or 

multiproduct production systems, or the SCLSP with pricing for 1 product or a 

multiproduct production system. 

  

One of the earliest approaches of Pricing on production systems can be found on the 

work by Gallego and van Ryzin[23], who formulated a intensity control problem with 

dynamic pricing where demand is price sensitive and stochastic, and the main objective is 

to maximize expected revenues. The problem they present characterizes by two 

properties: the lack of short term control over inventory stock and the presence of due 

times for selling goods. As it was said before, the demand is a price sensitive stochastic 

point process that is a decreasing function of price and no backlogging is allowed. So 
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basically, they propose a multi product production system where the time horizon for 

planning and scheduling is finite.  

 

One example of a paper that resembles the SELSP with Pricing for a multi-product 

production system is the work done by Fransoo et al. [21]. They introduced a two level 

hierarchical model with an infinite time horizon and discrete scheduling times, whose 

objective was planning and scheduling multi products for a single machine production 

system that works with stationary stochastic demand, has capacity constraints and does 

not allow backorders. Their approach specialized on situations where demand levels are 

high compared to the available production capacity. They developed a heuristic to help 

produce target production cycles and target service levels for each product. The 

interesting part of this paper is that the focus is on allocating capacity to individual 

products in order to maximize the expected profit while keeping a desired service level 

target for each product. So, the objective function is to maximize profit at a service level 

constraint. 

 

Gallego and Van Ryzin[25] continued the line of pricing on stochastic lot scheduling 

models by proposing a finite horizon model for maximizing the expected profit , similar 

to their model on Gallego and Van Ryzin[23]. The difference is that this new approach 

includes two heuristics for solving the stochastic problem that are shown to be optimal as 

the expected sales volume tends to infinite. They also propose the establishment of an 

upper bound to compare the solutions using a deterministic version of the problem. 
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Most of the pricing stochastic production system models we have reviewed are 

multiproduct but following we can see two papers where the focus is the analysis of a 

system with one product. 

Chen and Simchi-Levi[12] proposed an infinite horizon, single product, periodic review 

model where pricing is made as a joint decision along with the scheduling of production, 

at the beginning of each working period. The model analyzed involves identically 

distributed independent random demands, and is also important to notice that demand 

distributions vary according to the product price. Backlogs are allowed and ordering costs 

include a fixed and variable cost. They conclude showing that their stationary (s,S,p) 

policy is optimal to maximize the expected discounted or expected average profit over 

the infinite planning horizon. The same authors extended their work by proposing a 

model, which can be seen at Chen and Simchi-Levi[13], where they analyze a finite 

horizon version. The assumptions regarding the demand and the joint decisions remain 

the same but now the objective is to find an inventory policy and pricing strategy that 

maximizes the expected profit over that finite horizon of time. As part of their 

conclusions on the model they propose, they say that if demand has an additive 

distribution, the profit functions are k-concave and the stationary review policy is optimal, 

but for other general demand distributions the profit functions are neither necessarily k-

concave nor optimal. 
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Chapter 3. Modeling and Solution Methodology 

 

 

3.1 Description of Models 

 

In the present chapter, the two ELSP variants proposed on the thesis will be described 

and also their solution methodologies will be depicted. 

 

 

3.1.1 PELSP  

Before presenting model formulations for the PELSP, the following basic notation is 

defined. Additional notation will be introduced and defined as needed. 

 

Parameters: 

 B: length of the basic period, in days 

iS : setup cost for product i, in dollars per setup 

ic : unit production cost for product i, in dollars per unit 

im : production rate for product i, in units per day 

iT : setup time for product i, in days 

ih : inventory carrying charge for product i, in % per day 

M:  number to products i 
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 τ :  available capacity in the basic period , in days  

 

Variables: 

id : demand for product i, in units per day 

ik : basic period multiplier for product i, a positive integer 

 

Notice that the inventory carrying charge (ih ) is allowed differ for different products.  

This is because inventory carrying charges include both financial opportunity cost and 

also operational (cash) costs.  These operational costs can vary between products.  For 

example, one product may require special handling or storage due to being more fragile 

or simply of a different size than another.  

 

In order to provide continuity with the non-pricing ELSP model, the ELSP model that 

applies the basic period approach is re-stated here. The objective is to minimize total cost 

per unit of time. The model is: 
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Where ik  is a strictly positive integer, B > 0 and 0 ≤ di ≤ mi.  In the ELSP, B is a decision 

variable and id  is a constant.  In contrast, in the PELSP formulation, B is a given 

constant and id  becomes a decision variable.  The demand rates id  become variables 

because the demand varies with a settable price.  A monopoly assumption is being made, 

which although not always realistic has been made in nearly all of the existing pricing 

and inventory literature. The benefits of pricing optimization and the factors driving 

developments in this area are documented in [18].  We assume that B is a constant for 

two reasons: 1) as a simplifying assumption, and 2) because in practice it is unlikely that 

a real firm will be willing to produce on a schedule that does not follow a pattern that fits 

commonly used units of time such as hours, days, or weeks.  For this last reason it seems 

more realistic to solve the problem for values of B that are deemed acceptable by the firm 

rather than let the length of B be determined by the solution method. 

 

In the PELSP, the firm can set sales prices and demand is modeled as a function of price.  

In the thesis, it is assumed that the demand function is of the exponential type given by: 

 

( )iiiii PRPd α−= exp)( ,                      (3) 

 

where iR  is a market size parameter for product i and iα  is a price scaling constant. 

These parameters are usually obtained using statistical estimation techniques in order to 

best fit the demand behavior of a given product. For examples of the use of the 

exponential demand function in previous pricing research see [36] and [51]. Since (3) is 

an invertible function, the price can be expressed as a function of demand given by:   
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( )iiiii dRdP ln)( α= .                             (4) 

 

The objective is to maximize profit.  The objective function is: 
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After substituting (4) into (5) we obtain the following formulation of the problem: 

 

( )[ ]∑ ∑
= =









+






 −
+







−=

M

i

M

i
ii

i

iiiiii

i

i
iiii dc

m

Bkddmhc

Bk

S
ddRU

1 1 2

)(
lnmax α     (6) 

s.t.  

∑∑
==

−≤
M

i
i

M

i i

ii T
m

Bkd

11

τ ,                                                       (7) 

 

with 0>id , and 0>ik and integer.  The decision variables are the id  and .ik  Notice 

that the right hand side of (7) is no longer B.  This new right hand side is introduced 

because in general the time available for setups and production need not equal the time 

span of the basic period.  From (6), it can be seen that B may be interpreted as the real 

time span (clock time) over which demand is realized.  In general, τ  may be less than the 

clock time.  For example, in a 24 hour period, the firm might operate for only one 8 hour 

shift. 
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3.1.2 SPLSP  

Before presenting model formulations for the SPLSP, the following basic notation is 

defined. Additional notation will be introduced and defined as needed. The design 

variables are Gi and ki, which will be depicted below.  

 

Parameters: 

 B: length of the basic period, in days 

τ: Time available for production in a basic period, in days 

iS : Setup cost for product i, in dollars per setup 

ic : Unit production cost for product i, in dollars per unit 

im : Production rate for product i, in units per day 

iT : setup time for product i, in days 

ih : Holding cost for product i, in % per day 

M:  number to products i 

Di (·): Demand function for product i, in units per day 

te : Random error for t periods 

iV : Vendor Price, for product i, in dollars per unit 

 

Variables: 

iG : Production time for product i, in days, a real > 0 

ik : Basic period multiplier for product i, an integer > 0 
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In order to provide continuity with the non-pricing ELSP model, the ELSP model that 

applies the basic period approach is re-stated here. The objective is to minimize total cost 

per unit of time. The model is: 
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where ik  is a strictly positive integer, 0>B  and ii md <≤0 .  In the ELSP, B is a 

decision variable. In the PELSP formulation showed on the prior section, B is a given 

constant and id  becomes a decision variable.  The demand rates id  become variables 

because the demand varies with a settable price.  

 

In the SPLSP formulation, B remains constant.  It is assumed that B is a constant for two 

reasons: 1) as a simplifying assumption, and 2) because in practice it is unlikely that a 

real firm will be willing to produce on a schedule that does not follow a pattern that fits 

commonly used units of time such as hours, days, or weeks.  For this last reason it seems 

more realistic to solve the problem for values of B that are deemed acceptable by the firm 

rather than let the length of B be determined by the solution method. 
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The SPLSP is a model which tries to solve the problem of determining the optimal values 

of  iG  and ik to maximize the Total Profit. This model works with a policy that requires 

the maintenance of a service level to the costumers, through two mechanisms:  

1. Control of Prices  

2. Buying when there is a backlog (The purchase is first done to cover the 

backlog and then to reach a certain inventory level)  

 

Note: The Price and the amount of products bought can be considered the recourse 

variables. 

 

In the SPLSP, the firm can set sales prices and demand is modeled as a function of price.  

So, it is assumed that the demand function is of the linear type given by: 

 

( ) ( )iiiii PabPD −=                                                                                                        (10) 

 

At first , an initial inventory of 0 units was supposed and a price was determined so that it 

could guarantee a certain probability of not having stock outs. Using (10), the price can 

now be expressed as a function of demand given by:   
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Where ai and bi are market size parameters defined for each product. 
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To control the desired price, a formula to produce for a given value of iG  (obtained 

through the optimization that will be explained on section 3.2.2) is used. This formula, 

known as the Required Production for product i ( iRP), is given by: 
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It’s important to notice that the Required Production for each product is aimed to control 

the inventory at a service level of 95%, given by the expression: 

 

( ) 95.00Pr ≥≥iI                                                                                                              (13) 

 

After the required production is done, we need to observe the Final Inventory, where 

there are two possible events: 

1. The Final Inventory is Positive, thus the control of  the price is continued for the 

next period of evaluation. 

2. The Final Inventory is Negative, thus buying product has to be done in order to 

solve the stock out.  Regarding this situation, there are two policies for 

determining the quantity that has to be bought: 

a. The amount bought is the difference between the Final Inventory of the 

actual period ( iIF ) and the Beginning Inventory of the prior period (1−iI ). 

The purpose of this policy is to ensure that a positive initial inventory 
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level will be reached, which is equal to the same initial inventory level on 

the prior period ;  So, the buy is then given by:  

ii IFI −= −1γ                                                              (14) 

 

b. The amount bought is calculated as the difference between the Final 

Inventory of the actual Period (iIF ) and an optimum level quantity ( *iQ ). 

This optimum level quantity represents the maximum amount of units that 

should be bought to maximize the total profit  ; the quantity is given by: 
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  Thus, the quantity bought is,    

ii IFQ −= *γ                                   (16) 

 

Is important to notice that because of the shape of*iQ , there are certain 

values of the design variableiG that produce negative values on Qi* , which 

means that is too expensive to buy that much quantity and is it better just 

to buy the amount that was not delivered to the client on the prior period. 

Thus, If *iQ  < 0, then Qi * = 0, and (16) changes like this: 

iIF−=γ                                         (17) 
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3.1.2.1 Estimating the Expected Profit 

As it was said before, the objective is to maximize the Expected value of the Total Profit, 

given by: 

 

( )[ ]ekG ,,ProfitEVMax =                                                                                 (18) 

 

Since the stochastic modeling is a bit more complicated than deterministic modeling, it 

was chose to estimate the expected profit using Simulation. The Simulation method 

consisted on recreating a certain number of working periods, each with the same amount 

of time and resources but with a probabilistic behavior given by an Error Value, and 

calculating the Total Profit Value for each Period. 

 

It is important to notice that the working mechanisms of the SPLSP, allow a basic model 

with two cases:  

a. Called “Case 1” implies that there is a surplus of finishing inventory, which 

means that the finish inventory was higher than expected. This is the most 

common case. 

b. Called “Case 2”, implies that there is a shortage of finishing inventory on the 

analyzed period, which means that the level of finished inventory was lower than 

expected resulting in negative numbers. If this happened, buying a certain amount 

of a product is allowed so to reach the beginning inventory level of the prior 

period, in order to maintain the same service level. This case happens just 5% of 
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the time. Since two policies for determining the amount to be bought have already 

been determined, there are also two versions of case 2: 

i. Case 2a. Corresponds to the policy where it is just needed to buy 

an amount in order to reach the same initial inventory level on the 

prior period 

ii. Case 2b. Corresponds to the policy where it is required to buy an 

amount in order to fulfill the lost order from the clients , the 

amount bought depends on the value of Qi* (it can either be 

restored the initial inventory level to 0 , if Qi* is negative ; or to 

some positive inventory level , if Qi* is positive ) 

 

Next is a graph that shows the two basic cases on a 4 period display (the dotted lines 

represent the inventory goals for each period): 

 

Figure 1. SPLSP cases graph 

 

The objective functions (Expected Profit) will now be defined for cases 1 and 2 (the two 

versions): 
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Case 2.b 
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Since each optimization is based on the evaluation of t periods, the Total Profit is equal to 

the sum of all Profit Formulations for each period: 
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And constrained by the following: 
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The decision variable isiG .  Notice that the right hand side of (23) is no longer B.  This 

new right hand side is introduced because in general the time available for setups and 

production need not equal the time span of the basic period.  From (19), (20) and (21), it 

can be seen that B may be interpreted as the real time span (clock time) over which 

demand is realized.  In general, τ  may be less than the clock time.  For example, in a 24 

hour period, the firm might operate for only one 8 hour shift. 

 

 

 

3.1.2.2 Limitations 

The stochastic version of the ELSP has some limitations due to its more complicated 

structure. Following some important issued will be explained: 
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A. Concavity:  

The deterministic model (PELSP) had a Profit Formulation with a Concave shape and 

the second derivative test was done at the moment so to validate this assumption. The 

test was done without further issues and strict concavity was a certain fact on the 

model. For the Stochastic model, it was assumed that the Profit Formula still had a 

Concavity shape, but a derivative test had to be done. In the model described on this 

section, the SPLSP´s second derivatives showed that the Hessian was negative 

semidefinite for certain values of the variables G and k, so it is not possible to 

guarantee that the Profit Formula has a concave shape.. 

At first, this result had a bit of impact because some manual experiments on computer 

worksheets (Microsoft Excel) were done and the results showed us that the Profit 

formula behaved most of the time as Concave function. Besides, since the formula 

expresses Maximization it should have a concave shape. 

 

B. Optimization for the subproblem :  

This issue has to do with the fact that there isn’t an analytic expression for the total 

profit for all the periods because the sequence of cases change due to the error 

instances and the variations on the quantities of production, which in other words 

means that it’s difficult to find the exact analytical expression for the total profit and 

the first partial derivatives.   For the prior reason, a numerical method with lineal 

search was chosen to optimize the subproblem.    
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The method does a sequential line search to find a near optimal solution.  Since an 

optimal solution is not obtained, the upper bound is not exact, just a good 

approximation to the real optimal value. 

 

C. Number of Periods 

This issue has to do with the establishment of a certain number of periods to evaluate 

the Profit formulations. There are many options that could be used as viable 

alternatives for the optimization: 

• 1 replica with a large number of periods ( > 100) 

• A group of replicas with a medium number of periods ( from 20 to 60) 

• A very large number of replicas with small number of periods (10 to 20) 

 

D. Bias 

This limitation has to do with a possible bias due to the way the simulation begins. It 

was decided to start the simulation with a beginning inventory of 0 units for each 

product. This assumption was made to simplify the start of the simulation but it  is not 

a realistic one.  

Other possibilities are: 

• Setting the Beginning Inventory on an Initial Fixed value, determined by a 

service level. This would mean that the beginning inventory would have to be 

equal to a desired goal level (desired finishing inventory) 

• Setting the Beginning inventory to any value above zero, just to allow it to be 

positive and also to allow a more random behavior. 
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E. Alternative Policies 

The actual way that the problem is done consists on the following: Whenever the 

finishing inventory of a product dips below zero (negative inventory), emerges the 

decision of making a buy to at least buy the amount not sold to the clients and 

depending on the chosen policy the next period begins with 0 units or another positive 

value. 

There are some other evaluation policies that can be used to emulate a more real 

behavior, such as: 

• Lost Sales: This alternative would work almost equally as the actual policy but 

the difference would be that if a finishing inventory dips below zero (negative 

inventory) then a penalty cost would be assumed for the quantity of product 

that was not sorted to the client on the moment he needed it. 

 

 

 

 

3.2 Solution Methodology 

 

The prior section presented the description of the two variants of the ELSP model. On 

this following section, the solution methodology chose for each variant will be depicted 

and explained. 
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3.2.1 PELSP 

In order to solve the PELSP, the problem is decomposed, formulating a master problem 

and subproblems.  The master problem is a linear programming model to which columns, 

generated by solving the subproblems, are added at each iteration v.  The master problem 

is solved to determine the values of the dual variables (shadow prices) which are, in turn, 

used to define the subproblems for the next iteration. 

 

The master problem for iteration v is: 
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with 10 ≤≤ ijX , ji,∀ . 

  Where: 

ijU : total profit for plan j of product i, in dollars, 

ijA : total production time available for plan j of product i, in days, 

ijX : proportions of use for plan j of product i, 

),( ivn :  number of columns for product i in the v th linear program. 
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The values of ijU  and ijA  are found using the following expressions:  
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where the ijd̂  and ijk̂  values are determined by solving a single item subproblem with 

costs augmented by the shadow prices found by the linear programming master problem.  

 

 

The formulation of the unconstrained subproblem is: 
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where λ  is the shadow price of (25). The solution procedure will be described in terms of 

a Main routine and the procedures performed at various steps.  A flow chart of the Main 

routine is shown in figure 2.  The Main routine proceeds as follows:   
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Figure 2. Flowchart of Routine Main. 
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Block 1 of Main: Initialize the master problem and set iteration count = 1.  In order to 

initialize the master problem, the subproblem (29) for each product is solved with λ = 0.  

Solving these subproblems yields initial values of id and ik  for each product.  Leaving 

the ik  values unchanged, the solution for each of the products is modified to obtain two 

sets of columns whose coefficients are found using (27) and (28).  To generate the first 

set of columns, the demand and production is scaled down in the solutions for each 

product so that if the master problem contained only this set of columns, (25) would be 

satisfied with a strict inequality.   

The second set of columns is generated by scaling up the demand and production in the 

solutions for each product so that if the master problem contained only this set of 

columns, (25) would be violated.  The reason for generating these two sets of columns is 

to guarantee that the master problem will be feasible and so that (25) will be tight in the 

solution of the master problem (24) – (26). This introduces inefficiency in the case that 

the unconstrained solutions of the subproblems for each product constitute a feasible (and 

therefore optimal) solution to the complete problem but it worked well in practice.  The 

scaling used in the implementation was to scale up by a factor of 1.75 and down by a 

factor of 0.25 with further scaling by 1.1 and 0.1, respectively performed if needed to 

obtain the desired initial columns. 

 

Block 2 of Main: Solve the LP master problem to obtain shadow prices and an upper 

bound.  Also record the objective value and update the value of the best upper bound 
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(BUB) if the current bound is the tightest so far. Each time the master problem is solved, 

an upper bound is computed using the following expression: 
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where, OV is the objective value given by (24) and iθ  is given by:  
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where iλ  is the shadow price of (26) for product i.  Each time an upper bound is 

computed, the value is compared with the BUB found so far.  If the latest upper bound is 

an improvement (lower), it is stored as the new BUB.  At the end of the solution 

procedure, the BUB is used to determine a percentage difference from BUB measure of 

the quality of the final integer solution.   

 

Block 3 of Main: For each product, solve an unconstrained subproblem (29) using the 

value of λ found in Block 2 of Main.  The subproblem involves finding values of demand 

(d) and the basic period multiplier (k) for a single product. The solution procedure is 

shown as a flowchart in figure 3.  The procedure SolveSub proceeds as follows: 
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Figure 3. Flowchart for Procedure SolveSub 

 

 

 Block 1 of SolveSub: Set k = 1. 

 

Block 2 of SolveSub: A modified bisection method is used to find the optimal 

value of d, holding k constant.   
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For information on the basic bisection method, see [32] for a simple explanation 

or [60] for an explanation and a computer program.  The search range for the 

routine needs to be specified with two values: a Lower Limit (LL) and an Upper 

Limit (UL). For the implementation of this routine the values set were: LL = 

0.001 and UL = value of m, the production capacity.  The value of LL was chosen 

to avoid division by zero in (29).  The value of UL is a natural limit that 

guarantees that the demand rate does not exceed the production rate.  This is a 

standard assumption of the EPQ, on which the ELSP and PELSP are based. 

 

The objective function is unimodal for a constant value of  k so it can be 

optimized using standard methods.  The routine we programmed is based on the 

one proposed in [60].  It assumes that the optimal objective value is to be found 

between the LL and UL and that the first derivative of the objective function has 

opposite sign at LL vs. UL. In the PELSP, this may not always be the case.  

 

Figures 4, 5, and 6 show examples of the possible form of the objective function 

between the LL and UL, LL being the leftmost value of d and UL the rightmost 

value. The figures are depicted on the following pages: 
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Figure 4. Case 1, B = 1, S = 33.5932, c = 20.6260, m = 3474.7896,  

T = 0.0683, h = .000295 
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Figure 5. Case 2, B = 1, S = 500, c = 1000, m = 1000,  

T = 0.0683, h = .0000833 
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Figure 6. Case 3, B = 1, S = 33.5932, c = 20.6260, m = 2500,  

T = 0.0683, h = .000295 

 

The three cases that need to be considered are: 

1. The first derivative of the objective function with respect to d is positive at 

both d = LL  and d = UL.  In this case, the optimal value of d is UL. See 

figure 4. 

2. The first derivative of the objective function with respect to d is negative 

at both d = LL  and d = UL.  In this case, the optimal value of d is LL. See 

figure 5. 

3. Otherwise, use the normal procedure [60]. See figure 6. 
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By considering the above cases explicitly, (29) could be solved correctly 

regardless of the positions of LL and UL relative to the objective function. 

 

 Block 3 of SolveSub: Record the value of the objective function. 

 

Block 4 of SolveSub: If the latest solution has the best objective function so far, 

continue to Block 5 of SolveSub, otherwise end. 

 

 Block 5 of SolveSub: Increment k by one and return to Block 2 of SolveSub. 

 

Block 4 of Main: Decide if the solution provides a column that may be added to the 

master problem.  To determine if a column is to be added to the master problem it is 

necessary to evaluate expression (31) for each product i.  If  0>iθ  and the value of (27) 

is positive, the new column may be allowed to enter the master problem.  In this 

implementation, adding columns with values of  iθ  below a threshold value of 0.1 was 

disallowed since it was found empirically that adding columns that did not significantly 

improve the objective value was inefficient. 

 

Block 5 of Main: Add the entering column.  Store the d and k values of the entering 

column. 

 

Block 6 of Main: Increment the product index, i, by one. 
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Block 7 of Main:  If subproblems for all products have been solved, proceed to Block 8 

of Main, otherwise return to Block 3 of Main to solve another subproblem. 

 

Block 8 of Main: Increment iteration count by one. 

 

Block 9 of Main: If the maximum iteration count has been reached continue to Block 10 

of Main, otherwise return to Block 2 of Main. This value corresponds to the number of 

iterations allowed for the problem to obtain the best solution available. A maximum 

count of 20 iterations was used in this implementation of the procedure. 

 

Block 10 of Main: Solve the problem as an IP, adding the integrality constraints: 

{ } jiX ij ,1,0 ∀∈ .          

 

Block 11 of Main: Check the % from best upper bound using the following expression: 

 

%100
BUB

SolutionCurrent BUB ×−
.       (32) 

 

Block 12 of Main: If expression (33) evaluates to more then a specified tolerance (5% in 

our implementation), continue to Block 13 of Main, otherwise end. 

 

Block 13 of Main: Reset the iteration count to 1 and return to step 2. Else, end. 
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3.2.2 SPLSP 

In order to solve the SPLSP, the problem is first decomposed, formulating a master 

problem and subproblems.  The master problem is a linear programming model to which 

columns, generated by solving the subproblems, are added at each iteration v.  The master 

problem is solved to determine the values of the dual variables (shadow prices) which are, 

in turn, used to define the subproblems for the next iteration. 

 

The master problem for iteration v is: 

 

∑ ∑
= =

=
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max                                                          (33) 
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with 10 ≤≤ ijX , ji,∀ . 

                                          

Where: 

ijU : total profit for plan j of product i, in dollars, 

ijA : total production time available for plan j of product i, in days, 

ijX : proportions of use for plan j of product i, 
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),( ivn :  number of columns for product i in the v th linear program. 

 

The values of ijU  and ijA  are found using the following expressions:  

 

=ijU  Sum of Profit Formulas (19), (20) and/or (21), for all t periods        (36) 

 

And 

ijij GA = ,                                                                     (37) 

 

Where the value of ijG is determined by solving a single item subproblem with costs 

augmented by the shadow prices found by the linear programming master problem. The 

formulation of the unconstrained subproblem is shown: 

 

ijijij GUU ⋅−= λmax                                                                                (38) 

 

where λ  is the shadow price of (33) and Gij is the use of capacity on the base period, for 

product i on production plan j 

The solution procedure will be described in terms of a Main routine and the procedures 

performed at various steps. 

 

 

 



Chapter 3. Modeling and Solution Methodology 
 

49 

 

3.2.2.1 Routine Main 

The flow of the main routine is as follows: 

1. Initialize the master problem (procedure explained below in subsection 

3.2.2.2).Set iteration count = 1. 

2. Solve the LP master problem to obtain shadow prices and an upper bound 

(procedure explained below in subsection 3.2.2.4).  Record best upper bound. 

3. For each product:  

a. Solve an unconstrained subproblem (procedure explained below in 

subsection 3.2.2.5). 

b. Decide if the solution provides a column that may be added to the master 

problem (procedure explained blow in subsection 3.2.2.3). 

4. Add the entering columns, if any.  Store the G and k values of the entering 

columns. 

5. Increment the iteration count by one. 

6. Return to step 2 unless a maximum iteration count is reached. This value 

corresponds to the number of iterations allowed for the problem to obtain the best 

solution available. We used a maximum count of 20 iterations in our 

implementation of the procedure. 

7. Solve the problem as an IP, adding the integrality constraints { } jiX ij ,1,0 ∀∈ . 

8. Check the % from best upper bound computed using the following expression: 

 

%100
Bound Best Upper

SolutionCurrent Bound Best Upper ×−
    (39) 
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9. If expression (39) evaluates to more then a specified tolerance (5% in our 

implementation), reset the iteration count to 1 and return to step 2. Else, end. 

 

 

3.2.2.2 Initialization 

In order to initialize the master problem, the subproblem for each product is solved with 

λ = 0.  The solutions determine the periods in which setups are made. Respecting the 

setup schedule, the solution for each of the products is modified to obtain two sets of 

columns whose coefficients are found using (36) and (37).  To generate the first set of 

columns, the demand and production is scaled down in the solutions of all products so 

that if the master problem contained only this set of columns, (34) would be satisfied with 

a strict inequality.  The second set of columns is generated by scaling up the demand and 

production in the solution of all products so that if the master problem contained only this 

set of columns, (34) would be violated.  The reason for generating these two sets of 

columns is to guarantee that the master problem will be feasible and so that (34) will be 

tight in the solution. This introduces inefficiency in the case that the unconstrained 

solutions of the subproblems for each product constitute a feasible (and therefore optimal) 

solution to the complete problem but it worked well in practice.  The scaling used in the 

implementation was to scale up by a factor of 1.25 and down by a factor of 0.25 with 

further scaling by 1.1 if needed to obtain the desired initial columns. 
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3.2.2.3 Column entry 

To determine if a column is to be added to the master problem we evaluate the following 

expression for a product i:   

 

 ,* ijiji GU λλθ −−=                                                                                           (40) 

 

Where iλ  is the shadow price of (33) for product i.  If  0>ijθ  and the value of (34) is 

positive, the new column may be allowed to enter the master problem.  In this 

implementation, adding columns with values of  iθ  below the threshold value of one was 

disallowed since it was found empirically that adding columns that did not significantly 

improve the objective value was inefficient. 

 

 

 

3.3.4 Computing upper bound 

Each time the master problem is solved, an upper bound is computed using the following 

expression: 

∑∑
= =

−=
n

i
ij

m

j

OVUB
1 1

θ ,                     (41) 

 

Where, OV is the objective value given by (33).  Each time an upper bound is computed, 

the value is compared with the best upper bound (BUB) found so far.  If the latest upper 
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bound is an improvement (lower), it is stored as the new BUB.  At the end of the solution 

procedure, the BUB is used to determine a % difference from BUB measure of the 

quality of the final integer solution using expression (39). 

 

 

 

3.3.5 Solving the subproblem 

The subproblem involves finding values of Production Time (G) and the basic period 

multiplier (k) for a single product. The solution procedure is the following: 

 

1. Set k = 1.  

2. Use a Manual Optimization method (explained on section 3.2.2.6) to find the 

optimal value of G, holding k constant. 

3. Record the value of the objective function. 

4. If the last solution has the best objective function so far, continue to step 5; 

else, stop. 

5. Increment k by one and return to step 2. 

6. Once the Optimal values of G and k are determined, another intern 

optimization is done 

7. Record the new optimal values of G and k 
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3.2.2.6 Search Optimization Method 

This method consists on evaluating a certain amount of periods beginning with a given 

value of the first variable, k. It is started by iterating with successive values of the G 

variable (using a Step Size of 0.1 units), in order to obtain the Expected Value of the 

Profit. The program stops when the Expected Profit of an n period has a lower value than 

the Expected Profit on the n-1 period. 

 

When the Method finds the best solution (values of k* and G*) another optimization 

routine is performed to further improve the solution. The routine consists on fixing the 

value of k and make a new optimization beginning on the (G* - 0.1) value and iterating 

with a more refined step size (0.01 units) until the program finds the Maximum Value of 

the Expected Profit. The limit for this iteration is the (G*+ 0.1) value. 
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Chapter 4. Experimentation 

 

 

4.1 PELSP computational experience 

 

In order to test the solution methodology proposed for the PELSP, on section 3.2.1, a full 

factorial experimental design was employed.  The factors varied systematically are 

number of products, length of B, and capacity restrictedness.  The number of products 

was set at 2, 10, or 30.  The length of the basic period was set at 1 day, 7 days, or 30 days. 

Capacity restrictedness was set as follows. In the ELSP problem, the values of B and 

τ are equal.  Here, however, the two values don’t have to be the same.  In order to 

include problems that differ in how constrained they are by capacity, problems with τ  

equal to 60%, 80%, or 100% of the B were generated. For example, if B = 7 days, then 

the three levels of τ  are 4.2 days, 5.6 days, and 7 days, respectively.  For each 

combination of three factor levels described above, five random instances were generated 

to obtain a total of 135 problem instances.   

 

The random problem instances were constructed by generating values of setup cost (S), 

unit cost (C), production rate (m), holding cost (h), elasticity (α ), market size (R) and 

setup time (t) for each product in the instance from uniform distributions.  The upper and 

lower limits of the uniform distribution used to generate values of the first six parameters 

are shown in table 2. 
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 Upper value Lower value Units 

S 50 30 $ / setup 

c 40 20 $ / unit 

m 4000 2000 units/day 

h 0.1 0.05 % / day 

α 40 20 -- 

R 100000 10000 units/day 

                                   Table 2. Value ranges for product parameters 

 

Table 2 shows the upper and lower limits on setup times used in the experiments. The 

distribution of the setup times was varied depending on the number of products and the 

length of the B in order to obtain a reasonable percentage of feasible problems.  Using 

long setup times in problems with many products or short basic periods caused many of 

the generated problems to violate constraint (7) .A day was assumed to equal 8 hours. 

 

As an example, consider a problem instance with 30 products and a B of 1 day.  When the 

lower limit of the distribution was set to 0.05 days and the upper limit of the distribution 

was set at 0.3, practically all the generated problem instances were infeasible with respect 

to (7).   With the lower limit at 0.04 and the upper limit at 0.07, 27% of the generated 

problems were feasible.  The values actually used are those shown in table 3. These 

values provided a reasonable percentage of feasible problems. 
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 B (days) 

# products 1 7 30 

2 [0.3, 0.05] [0.3, 0.05] [0.3, 0.05] 

10 [0.07, 0.04] [0.1, 0.05] [0.1, 0.05] 

30 [0.025, 0.01] [0.1, 0.05] [0.1, 0.05] 

Table 3. Setup time ranges for different sets of experiments (in days) 

 

The results of the experiments are summarized in tables 4, 5, and 6, corresponding to 

problem instances of size 2, 10, and 30, respectively. 

 

B (days) 1 7 30 

Capacity 

(days) 
0.6 0.8 1 4.2 5.6 7 18 24 30 

Average 

% from 

BUB 

0.227265 0.11310 0.076959 0.088093 0.06359 0.057011 0.098762 0.13289 0.097532 

Maximum 

% from 

BUB 

0.40659 0.20201 0.24944 

Table 4. Results for problems with 2 products. 
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B (days) 1 7 30 

Capacity 

(days) 
0.6 0.8 1 4.2 5.6 7 18 24 30 

Average 

% from 

BUB 

0.032717 0.00483 0.004402 0.003307 0.00310 0.002137 0.003682 0.00230 0.002423 

Maximum 

% from 

BUB 

0.092204 0.00641211 0.00583 

Table 5. Results for problems with 10 products. 

 

 

B (days) 1 7 30 

Capacity 

(days) 
0.6 0.8 1 4.2 5.6 7 18 24 30 

Average 

% from 

BUB 

0.010905 0.00415 0.002818 0.003344 0.00220 0.003347 0.001747 0.01464 0.001871 

Maximum 

% from 

BUB 

0.015521 0.008921 0.06559 

Table 6. Results for problems with 30 products. 

 

As can be seen in tables 4, 5, and 6, the proposed solution method finds solutions that are 

provably very close to optimal.  The performance appears to be generally better for 

problems with a larger number of products, with the maximum % from upper bound for 
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problems of 2, 10, and 30 products being 0.4066, 0.0922, and 0.0656, respectively.  The 

corresponding average % from upper bound values are 0.1061, 0.0065, and 0.0050.  This 

trend agrees with the observations of Trigeiro et al. [54] in regard to the Capacitated Lot 

Sizing Problem (CLSP), a discrete-time, finite horizon lot sizing problem.  Also, Haugen 

et al. [31] observe a similar behavior with a CLSP problem with pricing (PCLSP). In 

contrast to the non-pricing ELSP, the PELSP model seems relatively easy to solve. A 

similar observation is made by Haugen et al. [31] in regard to the PCLSP.  

Also, in the PELSP, The LP basis is of size n + 1 where n is the number of products; this 

implies that in the LP solution each product but one is represented by only one column 

and the last product is represented by a combination of two columns. In other words, the 

LP solution draws a result very near to the IP solution, which is why the solutions are 

provably very close to optimal. 

 

The sensitivity to the capacity restrictedness of the problems is difficult to characterize.  

For problems with 2 products it can be seen in table 4 that the behavior differs depending 

on the value of B.  For B = 1, the average % from upper bound decreases with increasing 

capacity.  This is also the case for B = 7.  However, for B = 30, the average % from upper 

bound first increases and then decreases with increasing capacity.  A similar behavior can 

be seen for problems with 10 products in table 5.  For problems with 30 products yet 

another behavior is observed. For B =1, the average % from upper bound decreases with 

increasing capacity.  However, for B = 7 and B = 30 the average % from upper bound 

first decreases and then increases with increasing capacity. The lack of a clear trend may 

be due to the fact that in the PELSP, demand can always be reduced by increasing the 



Chapter 4. Experimentation 
 

59 

price.  Hence, it is just as easy to find a near optimal solution when capacity is more 

restricted as when it is more abundant. The general conclusion is that the quality of the 

solution remains very good over a broad range of problem sizes and degrees of capacity 

restrictedness. The average solution computation times for problems of 2, 10, and 30 

products was 3.07, 6.35, and 13.36 seconds, respectively. 

 

The effect of varying the maximum number of iterations (see section 3.2.1, Block 9 of 

Main) and the tolerance (see section 3.2.1, Block 12 of Main) was studied by re-solving a 

subset of the test problems with these parameters set to different values.  In order to study 

the effect of reducing the number of iterations, five of the original test problems for each 

problem size where resolved with the number of iterations set to 5 and 30.  The original 

number of iterations was 20.  The tolerance was kept at the original 5% while solving 

these problems. The results are summarized in table 7. For all problem sizes, the number 

of iterations was found to directly affect solution time.  The effect of number of iterations 

was found to be that increasing the number of iterations to 30 did not improve the 

solution quality but reducing it to 5 did reduce the solution quality noticeably.  The 

original value of 20 iterations seems to be a good compromise between solution speed 

and quality.  

 

Problem size  2   10   30  

# iterations 5 20 30 5 20 30 5 20 30 

Avg. % from UB 0.9221 0.0769 0.0769 0.0308 0.0044 0.0044 0.0456 0.0028 0.0028 

Solution time 1.12 3.07 4.20 2.86 5.94 7.43 10.25 13.36 18.45 

Table 7. Effect of number of iterations. 
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The effect of varying the tolerance was studied by re-solving five randomly selected 

problems of each size with the tolerance set at 2% and 8% as compared to the original 

5%.  The number of iterations was kept at the original 20 while solving these problems. 

Varying this parameter was found to have no effect on the solution quality on any of the 

test problems.  The reason for this is that the procedure is finding solutions that are well 

below 2% from the upper bound.  The purpose of this parameter is to force the procedure 

to continue searching for better columns in the rare case that the first 20 iterations do not 

produce a within tolerance solution.  In our testing, we found that 20 iterations were 

sufficient for all the test problems. 

 

Also, in order to assess the performance of the methodology when the demand function is 

of a different type, a small set of problems were solved using a linear demand function 

instead of an exponential demand function.  The linear demand function is the following: 

 

iiiii PaRPd −=)( ,              (42) 

 

where iR  is a market size parameter for product i and ia  is a price scaling constant.  The 

single-item subproblems are slightly harder to solve with this function because the price 

has an upper bound of ii aR , beyond which the demand becomes negative.  Care must 

be taken not to exceed this maximum price while solving the subproblem.  The testing 

consisted of solving 15 problems with 2 products and 15 problems with 10 products.   
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The problem instances were constructed by randomly generating values of setup cost (S), 

unit cost (C), production rate (m), holding cost (h), price scaling factor  (a), market size 

(R) and setup time (t) for each product in the instance from uniform distributions.  The 

upper and lower limits of the uniform distribution used to generate values of the first six 

parameters are shown in table 8.  The setup times for the instances with 2 products and 10 

products were generated from uniform distributions with ranges (.05, .3) and (.04, .07), 

respectively.  The average percentages from upper bound were 0.0156 and 0.197 for 

problems with 2 and 10 products, respectively.   

The average CPU times were 4.33 and 18.05 seconds, respectively.  These limited tests 

show that the solution quality in terms of percentages from upper bound remains similar 

while the solution times increased somewhat while remaining short. 

 

 Upper value Lower value Units 

S 50 30 $ / setup 

c 40 20 $ / unit 

m 4000 2000 units / day 

h 0.1 0.05 % / day 

R 5000 4000 units / $   -- 

a 150 100 units / day 

Table 8. Value ranges for product parameters 
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4.1.1 Managerial Insights 

In order to gain managerial insights, the mathematical form of the model was examined 

and a series of computational experiments were performed.  It is important to emphasize 

that these observations are relevant to the base period solution form and may not apply to 

more general solution forms.  

 

The general behavior of the solutions and objective value was studied by solving two-

product problems.  A base problem was defined with all parameter values set at the 

midpoints of the ranges shown in table 2.  Modified problems where then solved to 

observe the changes in the objective value and the id  values.  The modified problems 

where identical to the base problem with the exception of a change in exactly one 

parameter, set to either the lower or upper limit of the range shown in table 2.   

 

The general behavior of the objective value is to increase (decrease) when R, ,α or m are 

increased (decreased) and to decrease (increase) when S, c, T, or h are increased 

(decreased).  This is not unexpected since a larger R increases the size of the market, a 

largerα allows a higher price to be charged for the same demand, and a larger m 

effectively increases the production capacity.  Likewise, an increase in the costs (S, c, h) 

would be expected to reduce the profit.  An increase in T effectively reduces available 

production capacity so a decrease in profit is also unsurprising. In terms of production 

rates, increasing R, ,α or m resulted in greater demand (d) for the changed product and 

reducing T resulted in greater demand for both products.  Reducing c resulted in greater 
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demand for the changed product as well.  The effect of changing S and h was very slight.  

Changes in the value of h tend to have little effect on demand because inventory carrying 

costs are relatively small compared to the gross profit (sales minus production costs) in 

an optimized solution.  The small effect of changing S can be understood by observing 

that the partial derivative of the objective function with respect to demand (d) does not 

include S.  Thus, demand is not affected by S unless the change in S prompts a change in 

k.  Also, notice that a decrease in S may prompt an increase in k, which will tend to 

further reduce the value of the setup cost term.  On the other hand, an increase in S may 

prompt a decrease in k, which will tend to amplify the increase in the setup cost term.  

However, if the original value of k is low (which is common in reasonably capacity 

constrained problems), the possible decrease in k is limited, thus limiting the effect of the 

change in S on demand (d).   

 

Additional investigations were focused on better understanding the effect of reducing 

setup times and setup costs. Both types of reductions were studied separately.  Setup time 

reductions will be addressed first.  By inspecting constraint (7) it is evident that 

decreasing setup times increases the available capacity in the base period.  Since this 

capacity increase results in a relaxed problem as compared to the problem before setup 

time reduction, the objective value will increase.  It is interesting to notice that the 

increase is completely independent of which product’s setup time is reduced.  For a 

manager using a base period schedule, this implies that setup time reduction projects 

should be selected based on cost efficiency (most reduction for the money) rather than on 

other criteria such as longest setup times first, most frequent setups first, etc.  
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In regard to setup cost reduction, a similarly interesting observation can be made by 

examining the objective function (6).  When all products have a k value equal to one, the 

increase in objective value resulting from setup cost reductions will be independent of 

which product’s setup cost is reduced.  This is due to two factors.  The first is that each 

product’s setup cost term in the objective function has the same denominator when k is 

equal to one for all products.  The second is that reducing setup costs will never change a 

k value in this case. This can be understood by observing that with k equal to one, the 

setups are already occurring as often as possible and a setup time reduction can only 

encourage more frequent setups.  The solution form with all k values equal to one is of 

particular importance because the optimal solution is often of this form when the problem 

becomes more capacity constrained.  This is to be expected because producing in every 

period minimizes the base period capacity requirements that are constrained by (7).  For a 

manager using a base period schedule with all values of k equal to one, this implies that 

setup cost reduction projects should be selected based on cost efficiency (most reduction 

for the money) rather than on other criteria such as largest setup costs first, most frequent 

setups first, etc.  

 

In order to better understand the effect of setup cost reduction when not all k values are 

equal to one, a number of two-product problem instances were found with optimal 

solutions with k not equal to one.  Each problem instance was then solved with different 

percentages of setup cost reduction applied first to one product and then the other (same 
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percent reduction applied to each product). No simple pattern was discovered. The 

following numerical example will illustrate the complexity. 

 

Product 1 parameters,α R, S, c, m, T, and h are 29.25, 42599.92, 67.0, 55.0, 35000.0, 

0.324, and 0.0501, respectively.  Product 2 parameters ,α R, S, c, m, T, and h are 37.90, 

27719.42, 31.98, 35.91, 35000.0, 0.311, and 0.0839, respectively.  The values of B and 

τ are both equal to 1.0. In this example, the solution of the original problem has k = 2 for 

product 1 and k = 1 for product 2.  Product 2 has a setup cost that is less than half that of 

product 1.  With a 14.77% setup cost reduction, it was found that reducing the setup cost 

for product 2 was better.  The same preference for product 2 was observed for setup cost 

reductions of 29.55, 44.32, 59.09, 73.87, 88.64%.  When a reduction of 96.03% was 

applied, however, it was more advantageous to apply the reduction to product 1.  The 

value of k for product 1 changed from 2 to 1 when the 73.87% reduction was applied to 

product 1. The following two points are of interest:   

 

1) Even though the setup cost for product 2 was less than half that for product 1, 

it was still the preferred choice over a wide range of percent reductions.  This 

was despite the fact that the value of k for product 1 did not change until a 

reduction of 73.87% was applied. This is hard to anticipate intuitively. 

 

2) At some point between a reduction of 88.64 and 96.03% it becomes more 

advantageous to apply the reduction to product 1.  This was despite the fact 
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that the value of k for product 1 changed to one when a reduction of 73.87% 

was applied. This switching of preference is hard to anticipate intuitively. 

 

This example illustrates that intuition can lead to incorrect decisions for this type of 

problem due to complex interactions.  This may have been anticipated based on the 

nonlinearity of the problem. When the current solution contains values of k greater than 

one, it is recommended to determine the effect of a proposed setup cost reduction by 

finding the (near) optimal solution using the method proposed in this paper rather than 

relying on intuition. 

 

 

 

 

4.2 SPLSP Computational Experience 

 

In order to test the solution method proposed for the SPLSP model, it was decided to 

perform a number of different experiments in order to validate the model and also to test 

its robustness. The SPLSP was tested using three different size problems: 2, 10 and 30 

products. The random problem instances were constructed by generating values of setup 

cost (S), unit cost (C), production rate (m), setup time (T), holding cost (h), market size 

parameters (a and b) and vendor price (V) for each product in the instance from uniform 

distributions. Different values of the instances for the three size problems were used so 

that the production schedules would be feasible. The upper and lower limits of the 
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uniform distribution used to generate values of the first six parameters are shown in 

tables 9, 10 and 11.   

 

 
Upper 

value 

Lower 

value 
Units 

S 60 40 $ / setup 

c 8 4 $ / unit 

m 250 125 units / day 

G 0.1 0.05 days 

h 0.25 0.2 % / year 

V 9 5 $ / units 

a 20 12 -- 

b 200 160 -- 

Table 9. Value ranges for parameters (2 products) 

 

 
Upper 

value 

Lower 

value 
Units 

S 60 40 $ / setup 

c 8 4 $ / unit 

m 500 400 units / day 

G 0.01 0.005 days 

h 0.25 0.2 % / year 

V 9 5 $ / units 

a 20 12 -- 

b 200 160 -- 

Table 10. Value ranges for parameters (10 products) 
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Upper 

value 

Lower 

value 
Units 

S 80 40 $ / setup 

c 8 4 $ / unit 

m 2000 1500 units / day 

G 0.006 0.003 days 

h 0.25 0.2 % / year 

V 9 5 $ / units 

a 20 12 -- 

b 200 160 -- 

Table 11. Value ranges for parameters (30 products) 

 

 

4.2.1 Algorithm Parameters 

The objective of this set of experiments was to observe the sensibility of the model due to 

changes on two algorithm parameters: the maximum number of iterations and the % 

deviation from UB threshold. The tests were done through the testing of 2 problems for 

each problem size (2, 10 and 30 products). Two other parameters had fixed values: the 

number of base periods (48) and the value of the standard deviation of the error instances 

(0.05). Initially, to proceed with the experiments, four levels for each parameter were 

tested. In the case of the maximum number of iterations these were the values used: 5, 10, 

20 and 30 iterations. Regarding the % deviation from UB threshold, the values used were: 

1%, 2%, 5% and 7.5%  
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Following (next page), in Tables 12, 13 and 14 it can be seen the results of the testing for 

the maximum number of iterations, for each problem size: 

 

 2 products Number of 

Iterations  1st set 2nd set 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 
5 

CPU time (seconds) 1.44 0.98 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 
10 

CPU time (seconds) 2.21 2.06 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 
20 

CPU time (seconds) 2.43 2.45 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 
30 

CPU time (seconds) 3.58 3.71 

Table 12. Maximum number of iterations testing results for 2 product problems 
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  10 products Number of 

Iterations   1st set 2nd set 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

5 

CPU time (seconds) 4.36 4.49 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

10 

CPU time (seconds) 5.94 5.83 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

20 

CPU time (seconds) 8.22 8.15 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

30 

CPU time (seconds) 10.65 10.43 

 

Table 13. Maximum number of iterations testing results for 10 product problems 

 

 



Chapter 4. Experimentation 
 

71 

 

 30 products Number of 

Iterations  1st set 2nd set 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 
5 

CPU time (seconds) 9.98 12.34 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 
10 

CPU time (seconds) 12.28 15.14 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 
20 

CPU time (seconds) 16.38 18.54 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 
30 

CPU time (seconds) 20.9 22.34 

 

Table 14. Maximum number of iterations testing results for 30 product problems 
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In general, the results observed on the prior tables allowed to conclude that the maximum 

number of iterations should be set to a value of 10 iterations since in all the problems 

tested there was no need of more than 10 iterations. In fact, the test problems show that 

the solutions obtained with 5 iterations were similar to the ones with 10 iterations. Since, 

the experiments with 10 iterations were solved almost in times similar to the 5 iterations 

experiments; it was decided to select 10 iterations to assure a more robust behavior. 

 

Tables 15, 16 and 17 show the results of the testing for the % deviation from UB 

threshold, for each problem size. (Note: for the realization of these experiments the 

number of iterations was fixed on a value of 10). The results – presented on the next 

pages - are: 
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 2 products % deviation from 

UB  1st set 2nd set 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 

1% 

CPU time (seconds) 2.2 30.54 (**) 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 

2% 

CPU time (seconds) 2.21 2.05 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 

5% 

CPU time (seconds) 2.22 2.05 

UB 1,215.43 1,229.03 

IP 1,207.71 1,215.91 

% deviation from UB 0.6352% 1.0675% 

7.5% 

CPU time (seconds) 2.2 2.05 

 

Table 15. % deviation from UB testing results for 2 product problems 
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 10 products % deviation from 

UB  1st set 2nd set 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

1% 

CPU time (seconds) 5.91 5.83 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

2% 

CPU time (seconds) 5.92 5.82 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

5% 

CPU time (seconds) 5.9 5.84 

UB 6,447.35 6,449.01 

IP 6,444.93 6,448.86 

% deviation from UB 0.0375% 0.0023% 

7.5% 

CPU time (seconds) 5.94 5.82 

 

Table 16. % deviation from UB testing results for 10 product problem 
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  30 products % deviation from 

UB   1st set 2nd set 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 

1% 

CPU time (seconds) 12.27 15.14 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 

2% 

CPU time (seconds) 12.28 15.13 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 

5% 

CPU time (seconds) 12.28 15.14 

UB 22,859.80 22,207.50 

IP 22,818.70 22,192.00 

% deviation from UB 0.1798% 0.0698% 

7.5% 

CPU time (seconds) 12.29 15.14 

 

Table 17. % deviation from UB testing results for 30 product problems 
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Regarding the % deviation from UB threshold, it was found that the best value that 

should be used as an algorithm fixed parameter is a 2% error threshold due to the fact that 

mostly all the solutions never went beyond the 1% threshold and just one of the random 

instance sets, corresponding to the second set of the 2 product problem size, had a % 

deviation from UB that was greater than 1% (1.0675%) 

 

 

 

4.2.2 Performance testing 

Finally, some experiments were done to test the performance of the method on a set of 

randomly generated problems. Two standard deviation values were used: 0.05 and 0.2. 

For these experiments, we generated 10 random instance problems for each standard 

deviation value within each problem size (2, 10 and 30 products) and recorded the % 

deviation from UB as well as the CPU times. A total of 60 random instance problems 

were generated. Also, some model’s parameters had fixed values: number of base periods 

(48) as well as number of iterations (10) and % deviation from UB threshold (2%).  

 

Regarding the experiments with standard deviation equal to 0.05, some interesting results 

were obtained. Table 18 contains a summary of the results. Basically, it can be seen that 

the mean % deviations from the UB are not greater than 1% (the greatest mean % value is 

0.855% corresponding to a 2 product system) which means that the solutions obtained are 

very close to the optimal values.  
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Products 
σ = 0.05 

2 10 30 

maximum CPU time (seconds) 2.320 6.150 15.140 

minimum CPU time (seconds) 2.100 5.770 11.690 

Mean CPU time (seconds) 2.233 5.938 13.106 

maximum % deviation from UB 1.1807 0.0897 0.4391 

minimum % deviation from UB 0.4371 0.0011 0.0073 

Mean % deviation from UB 0.8554 0.0270 0.1240 

Table 18. Results with σ = 0.05 

 

In the case of the experiments with standard deviation equal to 0.2, it is shown that the 

results are very similar to those found on the experiments with a standard deviation equal 

to 0.05. Table 19 shows the results. At first, it can be observed that the mean % 

deviations from the UB does not have very large values. In fact, the greatest value 

corresponds to a 1.0586% deviation from the UB from the 2 product system, and the 

lowest value corresponds to a 0.1151% deviation from the UB for the 30 product system.  

 

Products 
σ = 0.2 

2 10 30 

maximum CPU time (seconds) 2.540 6.980 14.670 

Minimum CPU time (seconds) 2.070 5.850 11.330 

Mean CPU time (seconds) 2.304 6.071 12.913 

Maximum % deviation from UB 1.8883 0.5199 0.2010 

Minimum % deviation from UB 0.0001 0.0036 0.0305 

Mean % deviation from UB 1.0586 0.2013 0.1151 

Table 19. Results with σ = 0.2 
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As a general conclusion, it can be said that since the % deviations from the UB of each 

random instance sets are not very large (all bellow 2%) it can be stated that the method 

has a solid overall performance.  Also, it can be seen in Tables 18 and 19 that the CPU 

times obtained show that the method is very fast since it only took less than 15 seconds of 

CPU time to solve a problem with 30 products. These fast CPU times demonstrate that 

the method works very well on the tested range of problem sizes. 

 

 

 

4.2.3 Robustness 

After the prior experiments were completed, it was decided to make some experiments to 

test the robustness of the solutions found with the proposed method. What continued was 

to generate 2 problems for each problem size (2, 10 and 30 products) along with 8 sets of 

random instance errors for each. The sets were designed to recreate 4 possible test 

scenarios involving two levels of each of the following parameters: the maximum number 

of base periods (48 or 60) and the standard deviation of the error instances (0.05 or 0.2). 

The 4 scenarios were:  

1. Two random instance sets with 48 base periods each and a σ of the error instances 

equal to 5% 

2. Two random instance sets with 48 base periods each and a standard deviation of 

the error instances equal to 20% 

3. Two random instance sets with 60 base periods each with a σ of the error 

instances equal to 5%  
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4. Two random instance sets with 60 base periods each and a standard deviation of 

the error instances equal to 20%. 

 

Then, solutions for each set (OV and UB) were obtained, and they were kept as 

comparison data. Next, 4 random problem instances (called “test problems”) were 

generated, one for each of the test scenarios explained above, in order to obtain the 

solution values of the design variables Gi and ki for each of the products. Consequently, 

in order to test robustness, the solution values of each “test problem” were put on their 

corresponding scenario sets, and using the same original random errors it was then 

proceeded to record the new solution given for those specific values of the variables.  The 

objective of the insertion of these values was to see how the solution changed and what 

how much it deviated respect to the solutions found on the “test problem”  

 

The following example illustrates the process. Let’s take into account the case of 2 

products and the first scenario: 48 base periods and a standard deviation of the error 

instances equal to 5%. The results for the “test problem” were: UB = 1211.66, OV = 

1200.93, % deviation from UB = 0.8856%, CPU time = 4.44 seconds; and the values of 

their design variables were: k1 = 2, G1 = 2.40, k2 = 1, G2 = 2.37. 

Then, two sets of random error instances were generated and their optimization solutions 

were obtained: UB1 = 1235.45, OV1 = 1230.41, % deviation from UB1 = 0.4079; UB2 = 

1222.70, OV2 = 1210.99, % deviation from UB2 = 0.9577. Each of the two sets had their 

own design variable solutions but in order to test robustness, the values of the design 

variables (k1, G1, k2, G2) were tested on the two sets to see how the OV would change. 
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The results obtained were the following: new Objective Value for the 1st set = 1224.17, 

and new Objective Value for the 2nd set = 1200.68   

Now, comparing the OV of the “test problem” with the new Objective Values of the two 

random error sets, it can be seen that on the case of the first random error instance set, the 

new Objective Value solution deviated 0.51% from the original OV; meanwhile, on the 

second random error instance set, the new Objective Value solution deviated 0.85% from 

the original solution. 

 

Now, taking a more general look into the general results, in the case of the 2 product 

system it was found that the instance sets with the inserted solutions produced results 

very close to the solution found on the proof set. The biggest mean deviation from the 

original solution (0.91%) was found on the case were 60 base periods were used and the 

standard deviation of the errors was 0.2. Following, in Table 20, the complete set of 

results can be seen: 

 

  Number of base periods 

 2 products 48 60 

0.05 0.68% 0.55% 
σ 

0.2 0.22% 0.91% 

Table 20. Mean deviations from original solution (2 products) 

 

Regarding the 10 product system, the results showed some improvement respect to the 

results on the 2 product system. The maximum deviation from the original solution was 

found to be a value of 0.33% (corresponding to the sets with 48 base periods and with 
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error’s standard deviation of 0.2). The complete results can be seen on Table 21, which 

follows: 

  Number of base periods 

 10 products 48 60 

0.05 0.11% 0.03% 
σ 

0.2 0.33% 0.25% 

Table 21. Mean deviations from original solution (10 products) 

 

Finally, regarding the 30 product system, the results varied more than the 2 or 10 product 

instances.  In this case, the biggest mean deviation was a 1.81% value and corresponded 

to the sets with 60 base periods and with the error’s standard deviation equal to 0.2. The 

complete set of results can be seen next on Table 22, as follows: 

 

  Number of base periods 

 30 products 48 60 

0.05 0.82% 1.74% σ 

0.2 0.14% 1.81% 

Table 22. Mean deviations from original solution (30 products) 

 

As a conclusion, it can be seen that the solutions obtained with the proposed method 

show robustness since the % deviations from the original solutions are not very large, and 

particularly aren’t greater than 1% ( in the case of the systems with 2 and 10 products) 

and 2% (in the case of the 30 product system). These results suggest that the column 

generation technique mixed with integer programming can produce robust solutions over 

a range of problem sizes and levels of variability. 
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General Note: All the problem instances for the PELSP and the SPLSP were solved on a 

Pentium IV 133Mhz processor. The programming was done in C++ and the mixed 

integer programming solver lp_solve 5.5.0.5 [7] was utilized to solve the master problem. 
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Chapter 5. Conclusions 
 
 
 

5.1 Conclusions 

 

The present thesis addresses two versions of the lot scheduling model with price 

optimization. Their solutions methods were based on the Column Generation technique 

mixed with Integer Programming and it was shown that the proposed methodology 

produces solutions very close to the optimal with fast computation times. 

 

It is also important to notice that computational experiments indicate that the 

deterministic lot scheduling problem with price optimization is relatively easy to solve in 

contrast to the standard economic lot scheduling problem. Also, the experiments 

conducted showed the effect of the parameters of the procedure on solution quality and 

computation time.  Managerial insights were also provided regarding deciding for which 

products to invest in setup time and setup cost reduction.  In general, the effect of setup 

cost reduction for individual product is hard to predict intuitively and it is recommended 

finding a (near) optimal solution using our proposed method 

 

Regarding the stochastic lot scheduling problem with price optimization it can also be 

concluded that the proposed methodology approach has been found to be very suitable 
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and helped achieve robust results. The solution method was tested using a range of 

factorial experiments which produced very close to optimal solutions approximations.   

 
 

 

5.2 Recommendations for further research 

 

There are some future lines of study regarding lot scheduling problems with price 

optimization and it is important to note that the present thesis can be extended in several  

directions that complement and make the formulation suitable for specific situations.  

 

One direct line of study relates to the modeling of the lot scheduling problem with price 

optimization including a lost sales policy, which is an alternative to the policies proposed 

on the current thesis. It is also interesting to extend the modeling of the same 

deterministic and stochastic models to consider lead times as part of the formulation. 

Also, in the specific case of the stochastic lot scheduling model, an important extension 

would be towards the inclusion of sequence dependent setups. 

 

Finally, one very interesting approach would be to extend the current work into game-

theoretic formulations that consider the effect of competition on demand and pricing. 

This type of modeling could help address a more complete view of scheduling on real 

environments where competition can lead to important policy changes. 
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Appendix 1. C ++ program for the PELSP (article 1) 
 
 
#include <stdio.h> 
#include <sys/types.h> 
#include <stdlib.h> 
#include <malloc.h> 
#include <math.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <time.h> 
 
#include "lp_lib.h" 
 
 
// declaracion de subrutina a utilizar en MAIN // 
double solve(double, double, double, double, double, double, double, double, double, 
double, double*, double*); 
 
 
 
// ********************** Programa Principal ****** ***************** // 
 
 
int main() 
{ 
 
 
// --- DECLARACION DE VARIABLES --- // 
 
bool condition; 
 
int productos; 
int i,xint,conteo,maxcount; 
 
//arrays// 
double *aS, *aC, *aM, *aA, *aR, *aT, *ah, *ahday; 
double *aMIN, *aMAX, *aAmin, *aAmax,*CoefLambda,*aNuevoCoef,*aNuevoCoefA; 
double *row0, *row1, *row2,*row3,*duals; 
double x,diferencia,Period,B,Capacidad,tolerancia,porcdif,obj,objentero,UB,bestUB; 
 
double d,k; //variables optimizadas de subrutina solve 
double dmin,dmax,dmin2; //variables de demanda , para coeficientes minimo y maximo 
 
double *columna1, *Comparacion; 
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double value,suma,E,Suma,SumaT; 
double duration,cputime; 
 
time_t start, finish; 
 
// --- FIN declaracion de variables --- // 
 
 
// comienza el reloj de C 
start = clock(); 
//time (&start); 
 
 
// -- INICIO -- Valores iniciales de algunos parametros // 
SumaT=0; 
maxcount=20; // conteo maximo del ciclo while  
tolerancia = 0.05; // tolerancia porcentual para error bound 
porcdif=1000000; // valor M para comenzar ciclo while externo 
value=1; // valor para la comparacion que ayuda a la generacion de columnas 
 
// -- FIN -- // 
 
 
 
 
/* Leer el archivo "datos.txt" para obtener los inputs requeridos */ 
 
ifstream ff("datos.txt"); 
 
ff >> x; 
xint = int(x); 
cout << " *****************************************  " << endl; 
cout << " *          ELSP with Prices             * " << endl; 
cout << " *****************************************  " << endl; 
cout << " " << endl; 
//cout << "El Sistema es de " << xint << " productos " << endl; 
 
 
// Definicion de algunos arreglos para almacenar valores // 
aA = (double *)calloc( xint ,sizeof( double ) ); 
aR = (double *)calloc( xint ,sizeof( double ) ); 
aS = (double *)calloc( xint ,sizeof( double ) ); 
aC = (double *)calloc( xint ,sizeof( double ) ); 
aM = (double *)calloc( xint ,sizeof( double ) ); 
aT = (double *)calloc( xint ,sizeof( double ) ); 
ah = (double *)calloc( xint ,sizeof( double ) ); 
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ahday = (double *)calloc( xint ,sizeof( double ) ); 
 
aMIN = (double *)calloc( xint ,sizeof( double ) ); 
aMAX = (double *)calloc( xint ,sizeof( double ) ); 
aAmin = (double *)calloc( xint ,sizeof( double ) ); 
aAmax = (double *)calloc( xint ,sizeof( double ) ); 
aNuevoCoef = (double *)calloc( xint ,sizeof( double ) ); 
aNuevoCoefA = (double *)calloc( xint ,sizeof( double ) ); 
 
CoefLambda = (double *)calloc( xint ,sizeof( double ) ); 
 
duals = (double *)calloc( 2 + xint, sizeof( double ) ); 
row0 = (double *)calloc( 1 + xint*2, sizeof( double ) ); 
row1 = (double *)calloc( 1 + xint*2, sizeof( double ) ); 
row2 = (double *)calloc( 1 + xint*2, sizeof( double ) ); 
row3 = (double *)calloc( 1 + xint*2, sizeof( double ) ); 
columna1 = (double *)calloc( xint*2+1, sizeof( double ) ); 
 
 
ff >> x; 
Period = int(x); 
//cout << " " << endl; 
//cout << " El tiempo anual disponible para la produccion es: " << Period << " dias " << 
endl; 
 
ff >> x; 
B = x; 
//cout << " " << endl; 
//cout << " El Periodo basico es de: " << B << " dias " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
 
ff >> x; 
Capacidad = x; 
//cout << " " << endl; 
//cout << " La Capacidad es de: " << Capacidad << " dias " << endl; 
//cout << " " << endl; 
 
 
//cout << " " << endl; 
 
 
  for (productos=0; productos<xint; productos++) 
  { 
 
   /* Leer y guardar los valores */ 
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   ff >> x;  aA[productos] = x;   
   //cout << " " << endl; 
   //cout << " La constante multiplicadora A para demanda exponencial: " << 
aA[productos] << "\n" << endl; 
    
   ff >> x;  aR[productos] = x;  
   //cout << " " << endl; 
   //cout << " Parametro R para la formula de demanda exponencial: " << 
aR[productos] << "\n" << endl; 
    
   ff >> x;  aS[productos] = x;   
   //cout << " " << endl; 
   //cout << " Costo de Setup ($), S es: " << aS[productos] << "\n" << endl; 
    
   ff >> x;  aC[productos] = x;  
   //cout << " " << endl; 
   //cout << " Costo Unitario ($/unidad), C es: " << aC[productos] << "\n" << endl; 
    
   ff >> x;  aM[productos] = x; 
   //cout << " " << endl; 
   //cout << " Tasa Diaria de Produccion (unidades/dia), m es: " << aM[productos] 
<< "\n" << endl; 
    
   ff >> x;  aT[productos] = x; 
   // 
   cout << " " << endl; 
   cout << " Tiempo de Setup (dias), T es: " << aT[productos] << "\n" << endl; 
    
   ff >> x;  ah[productos] = x; 
   //cout << " " << endl; 
   //cout << " Costo Anual de Holding , h es: " << ah[productos] << "\n" << endl; 
   //cout << " " << endl; 
    
   // Calculo de Holding Cost por dia // 
   ahday[productos] = ah[productos]/Period; 
   //cout << " El Holding Cost por dia ($/unidad*dia), es: " << ahday[productos] 
<< "\n" << endl; 
 
 
   E=0; // valor inicial para la variable de Lambda, es cero porque la 1era rutina de 
solve no la utiliza 
 
 
 
      // ****************************************** *** // 
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   // -- llamada a subrutina "solve" que me da los valores optimos de K y d para 
cada producto -- // 
   solve(E, B, 
aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],0,ah[productos
],ahday[productos],&d,&k); 
 
   //cout << " " << endl; 
   //cout << " ************************************ ***** " << endl; 
   //cout << " *    Valores exportados de SUBRUTINA    * " << endl; 
   cout << " ************************************** *** " << endl; 
   printf("D:\t%.20f",d); // Imprime el valor de la demanda con 20 decimales para 
mas precision 
   cout << " " << endl; 
   cout << "K: " << k << endl; 
   cout << " " << endl; 
 
      // -- Calculo de demandas para los dos planes iniciales -- // 
   //cout << " " << endl; 
   dmin=(1)*(d); // La demanda para el plan minimo es un 25% de la demanda 
optima 
   dmax=(1.75)*(d); // La demanda para el plan maximo es un 75% mas grande que 
la demanda optima 
   //cout << " Demanda bajo de capacidad: " << dmin << endl; 
   //cout << " Demanda por encima de capacidad: " << dmax << endl; 
   //cout << " " << endl; 
   //cout << " " << endl; 
   //cout << " --------------------------------------------------------------- " << endl; 
    
    
   // -*- Calcular Coeficientes para los planes iniciales del LP -*- // 
    
   // -- Coeficiente Minimo -- // 
   aMIN[productos]=(aA[productos]*log(aR[productos]/dmin)*dmin)-
(aS[productos]/(k*B))-((aC[productos]*ahday[productos]*(dmin)*(aM[productos]-
dmin)*k*B)/(2*aM[productos]))-(aC[productos]*dmin); 
   //cout << " El Coeficiente Minimo es: " << aMIN[productos] << "\n" << endl; 
 
   // -- Coeficiente Maximo -- // 
   aMAX[productos]=(aA[productos]*log(aR[productos]/dmax)*dmax)-
(aS[productos]/(k*B))-((aC[productos]*ahday[productos]*(dmax)*(aM[productos]-
dmax)*k*B)/(2*aM[productos]))-(aC[productos]*dmax); 
   //cout << " El Coeficiente Maximo es: " << aMAX[productos] << "\n" << endl; 
 
   // -- Coeficiente de Restriccion de Tiempo Minimo -- // 
   aAmin[productos]= aT[productos] + ((dmin*k*B)/aM[productos]); 
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   //cout << " Aprima es> " << ((dmin*k*B)/aM[productos]) << endl; 
   //cout << " El Coeficiente de tiempo Minimo es: " << aAmin[productos] << "\n" 
<< endl; 
 
   // -- Coeficiente de Restriccion de Tiempo Maximo -- // 
   aAmax[productos]=((dmax*k*B)/aM[productos]); 
      //cout << " El Coeficiente de tiempo Maximo es: " << aAmax[productos] << "\n" << 
endl; 
  
 
   SumaT=aT[productos]+SumaT; 
 
   cout << "SumaT> " << SumaT << endl; 
 
 
 
  } // end FOR 
 
 
 
// --- *** --- Procedimiento para Obtener la D minima "factible" para comenzar el LP --- 
*** --- // 
   
 
  Suma=0; 
  for (productos=0;productos<xint;productos++){  
   Suma = Suma + aAmin[productos]; 
   } //end for 
  //cout << " " << endl; 
  //cout << " --- *** Suma Minima de Capacidades para los productos: " << 
Suma << endl; 
  //cout << " " << endl; 
 
 
 while ( Suma > Capacidad){ 
   
  dmin2=dmin/10; 
  cout << " Demanda baja modificada: " << dmin2 << endl; 
 
  Suma=0; 
   
  for (productos=0;productos<xint;productos++){  
   
  // -- Coeficiente Minimo -- // 
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  aMIN[productos]=(aA[productos]*log(aR[productos]/dmin2)*dmin2)-
(aS[productos]/(k*B))-((aC[productos]*ahday[productos]*(dmin2)*(aM[productos]-
dmin2)*k*B)/(2*aM[productos]))-(aC[productos]*dmin2); 
   
  // -- Coeficiente de Restriccion de Tiempo Minimo -- // 
  aAmin[productos]= aT[productos] + ((dmin2*k*B)/aM[productos]) ; 
  //cout << " setup2 : "<< aT[productos] << endl; 
     //cout << " A2 es: "<< ((dmin2*k*B)/aM[productos]) << endl; 
        //cout << " El Coeficiente de tiempo Minimo es: " << aAmin[productos] << "\n" << 
endl; 
 
 
  Suma = Suma + aAmin[productos]; 
   
  } //end for 
   
  //cout << " " << endl; 
  //cout << " --- *** Suma Minima de Capacidades para los productos: " << 
Suma << endl; 
  //cout << " " << endl; 
 
  dmin=dmin2; 
  
 }; //endwhile suma vs. capacidad 
 
 
 
 
 
// ----- 
*************************************************** *********************
** ----- // 
  
  // lp solve  comienza ... // 
 
  lprec *lp; 
  HINSTANCE lpsolve; 
 
  lpsolve = LoadLibrary("lpsolve55.dll"); 
 
  if (lpsolve == NULL) { 
    printf("Unable to load lpsolve shared library\n"); 
    return(FALSE); 
  } 
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  // 
*************************************************** *********************
** // 
  // Inicia el desarrollo de la estructura del programa // 
 
 
  lp=make_lp(0,xint*2); /* prods*2 variables, 0 restricciones */ 
   
  // Descripcion del sistema utilizado // 
  cout << " 
*************************************************** ******************** 
" << endl; 
  cout << " *                              LP SOLVE                               * " << endl; 
  cout << " 
*************************************************** ******************** 
" << endl; 
  cout << " * Description: Open Source (Mixed-Integer) Linear Programming System  * " 
<< endl; 
  cout << " * Language: Multi-Platform, pure ANSI C / POSIX Source Code           * " << 
endl; 
  cout << " * Official Name: lp_solve                                             * " << endl; 
  cout << " * Release Data: Version 5.5.0.5. , dated: October 2005                * " << endl; 
  cout << " * Co-developers: Michael Berkelaar, Kjell Eikland, Peter Notebaert    * " << 
endl; 
  cout << " * Licence Terms: GNU LGPL (Lesser General Public Licence)             * " << 
endl; 
  cout << " 
*************************************************** ******************** 
" << endl; 
  cout << " " << endl; 
  //cout << " " << endl; 
 
  set_maxim(lp); // Define el problema como MAXIMIZAR 
 
  set_lp_name(lp, "ELSPwP 1.0"); /* Pone el nombre al programa */ 
   
  
  for (productos=0; productos<xint; productos++) // FOR 1 
  { 
 
  // Estructuracion de la funcion objetivo // 
  row0[productos*2+1] = aMIN[productos]; 
  row0[productos*2+2] = aMAX[productos]; 
  set_obj_fn(lp, row0);  
 
  // Estructuracion de las restricciones del problema // 
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  set_add_rowmode(lp, TRUE); 
  row1[productos*2+1] = aAmin[productos] - aT[productos]; 
  row1[productos*2+2] = aAmax[productos]; 
   
  for (i=0; i<xint*2+1; i++) row2[i]=0; 
  set_add_rowmode(lp, TRUE); 
  row2[productos*2+1] = 1.0; 
  row2[productos*2+2] = 1.0; 
   
  set_add_rowmode(lp, FALSE); // concluye la adicion de nuevas restricciones 
 
  add_constraint(lp, row2, EQ , 1.0); 
 
  }  // end FOR 1 
   
   
  add_constraint(lp, row1, LE, Capacidad - SumaT); // agrega la restriccion de Capacidad 
   
 
 
  // Imprime la estructura del problema //  
  //cout << " " << endl; 
  print_lp(lp); 
  //cout << " " << endl; 
  //cout << " " << endl; 
  //cout << " *** Solucion *** " << endl; 
  //cout << " " << endl; 
 
  
  // Resuelve el problema y lo presenta en pantalla // 
  solve(lp); 
  //cout << " " << endl; 
  //cout << " " << endl;  
 
  obj=get_objective(lp); 
 
 
  // Obtiene los valores duales de la solucion // 
  get_dual_solution(lp,duals); 
  //cout << " " << endl; 
  //cout << " *** duales *** " << endl; 
  for (i=1; i<xint+2; i++) { 
  //cout << " Precio Sombra: " << duals[i] << endl; 
  } 
 
  // Imprime la solucion del problema . 1 = numero de columnas para poner valores // 
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  print_solution(lp,1); 
  //cout << " " << endl; 
  //cout << " " << endl; 
 
  // Imprime en pantalla los valores duales del problema // 
  print_duals(lp); 
  //cout << " " << endl; 
  //cout << " " << endl; 
  //cout << " *** FIN *** " << endl; 
  //cout << " " << endl; 
  //cout << " " << endl; 
 
 
  // condiciones para ciclo de comparacion // 
  condition = FALSE; 
  Comparacion = (double *)calloc( xint, sizeof( double ) ); 
 
 
 
  ////////////////////////////////////////////////////////////////////////////////  
  // *** --- Fase 2 > Subproblemas utilizando precios sombra --- *** //  
  //////////////////////////////////////////////////////////////////////////////// 
 
  for (productos=0; productos<xint; productos++) // FOR 2 
  { 
   
  E=duals[xint+1]; // guarda el valor de LAMBDA para la subrutina, bajo el nombre de E; 
  //cout << " El valor de lambda (variable E) es:  " << E << endl; 
 
  // llamada a subrutina para obtener los valores de D y K  y volver a calcular coeficientes 
// 
  
  // Nuevo Coeficiente con Lambda 
  CoefLambda[productos]=solve(E, B, 
aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],0,ah[productos
],ahday[productos],&d,&k); 
  //cout << " " << endl; 
  //cout << " El Coeficiente Modificado con Valores Sombra es: " << 
CoefLambda[productos] << "\n" << endl; 
  //cout << " " << endl; 
 
  //printf(" D es:\t%.20f",d); 
  //cout << " " << endl; 
  //cout << " K es: " << k << endl; 
  //cout << " " << endl; 
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  // Nuevo Coeficiente para plan entrante // 
  aNuevoCoef[productos] = (aA[productos]*log(aR[productos]/d)*d)-
((aS[productos])/(k*B))-((aC[productos]*ahday[productos]*(d)*(aM[productos]-
d)*k*B)/(2*aM[productos]))-(aC[productos]*d); 
  //cout << " *** El nuevo Coeficiente entrante es: " << aNuevoCoef[productos] << endl; 
  //cout << " " << endl; 
 
 
   if ( ( aNuevoCoef[productos] < 0 ))  
   CoefLambda[productos]=duals[productos+1]; 
 
  //cout << " " << endl; 
  diferencia = CoefLambda[productos] - duals[productos+1]; 
  //cout << " La diferencia es: " << diferencia << endl; 
  //cout << " " << endl; 
  //cout << " " << endl; 
  Comparacion[productos] = diferencia; 
   
 
 
  // Inicia condicion , una columna nueva entra si la diferencia es mayor a cero // 
  condition = (Comparacion[productos] > value) || condition; 
    
  if ((Comparacion[productos] > value) ) { 
   
  // Nuevo Coeficiente para plan entrante // 
  aNuevoCoef[productos] = (aA[productos]*log(aR[productos]/d)*d)-
((aS[productos])/(k*B))-((aC[productos]*ahday[productos]*(d)*(aM[productos]-
d)*k*B)/(2*aM[productos]))-(aC[productos]*d); 
  //cout << " El nuevo Coeficiente entrante es: " << aNuevoCoef[productos] << endl; 
  //cout << " " << endl; 
 
  // Nuevo Coeficiente de tiempo para plan entrante // 
  aNuevoCoefA[productos] = ((d*k*B)/aM[productos]);  
  //cout << " La restriccion de tiempo para el nuevo plan es: " << 
aNuevoCoefA[productos] << endl; 
  //cout << " " << endl; 
   
  for (i=0; i<xint+2; i++) columna1[i]=0; 
   
  if ((Comparacion[productos] > 0)) { 
   columna1[productos+1]=1.0; 
   columna1[0] = aNuevoCoef[productos]; 
      columna1[xint+1] = aNuevoCoefA[productos];    
   add_column(lp, columna1); 
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  } 
  //cout << " " << endl;    
  //cout << " " << endl; 
    
  } // end IF 
  //print_lp(lp); 
  
  } // end FOR 2 
   
 
  // ciclo para obtener el Upper Bound de la funcion // 
  suma=0; 
  for (i=0;i<xint;i++){  
   suma = suma + Comparacion[i];} 
  UB = obj + suma ; 
  bestUB = UB; 
   
  //cout << " ************************ " << endl; 
  cout << " *** *** **** UB : " << bestUB << endl; 
  //cout << " ************************ " << endl; 
 
  /////////////////////////////////////////////////////////////////////////////// 
 
   
 // comienza el WHILE externo // 
 while ( porcdif > tolerancia ) { 
 
  conteo=0; 
 
 
  // comienza el WHILE interno // 
  while  (condition && (conteo < maxcount)) { 
 
   conteo++; 
 
         // Solve LP // 
   
   solve(lp); 
 
   //print_solution(lp,1); 
  
   obj=get_objective(lp); 
 
   // Get dual values // 
   get_dual_solution(lp,duals); 
   //cout << " " << endl; 
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   //cout << " *** duales *** " << endl; 
   for (i=1; i<xint+2; i++) { 
   //cout << " Precio Sombra: " << duals[i] << endl; 
   }; // end FOR interno 
    
 
   for (productos=0; productos<xint; productos++) 
   { 
              
    
    E=duals[xint+1]; // guarda el valor de LAMBDA para la 
subrutina, bajo el nombre de E; 
    //cout << " 
******************************************* " << en dl; 
    //cout << " El valor entrante de lambda (variable E) es:  " 
<< E << endl; 
    //cout << " 
******************************************* " << en dl; 
    //cout << " " << endl; 
 
    // llamada a subrutina para obtener los valores de D y K  y 
volver a calcular coeficientes // 
  
    // Nuevo Coeficiente con Lambda 
    //cout << " 
***************************************** " << endl ; 
    //cout << " 
***************************************** " << endl ; 
    //cout << " LLAMADA A SUBRUTINA " << endl; 
     
    CoefLambda[productos]=solve(E, B, 
aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],0,ah[productos
],ahday[productos],&d,&k); 
    //cout << " El Coeficiente Modificado con Valores Sombra 
es: " << CoefLambda[productos] << "\n" << endl; 
    //cout << " " << endl; 
 
    printf(" D es:\t%.20f",d); 
    //cout << " " << endl; 
    cout << " K es: " << k << endl; 
     
    // Nuevo Coeficiente para plan entrante // 
    aNuevoCoef[productos] = 
(aA[productos]*log(aR[productos]/d)*d)-((aS[productos])/(k*B))-
((aC[productos]*ahday[productos]*(d)*(aM[productos]-d)*k*B)/(2*aM[productos]))-
(aC[productos]*d); 
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    //cout << " *** Evaluacion de Coef Entrante: " << 
aNuevoCoef[productos] << endl; 
    //cout << " " << endl; 
 
    if ( ( aNuevoCoef[productos] < 0 ))  
     CoefLambda[productos]=duals[productos+1]; 
     
 
    //cout << " " << endl; 
    diferencia = CoefLambda[productos] - duals[productos+1]; 
    //cout << " ----------------------------------------- " << endl; 
    //cout << " La diferencia es: " << diferencia << endl; 
    //cout << " " << endl; 
    //cout << " " << endl; 
    Comparacion[productos] = diferencia; 
   
   
 
 
    // Inicia condicion , una columna nueva entra si la 
diferencia es mayor a cero // 
    condition = (Comparacion[productos] > value) || condition; 
    
    if ((Comparacion[productos] > value)) { 
   
    // Nuevo Coeficiente para plan entrante // 
    aNuevoCoef[productos] = 
(aA[productos]*log(aR[productos]/d)*d)-((aS[productos])/(k*B))-
((aC[productos]*ahday[productos]*(d)*(aM[productos]-d)*k*B)/(2*aM[productos]))-
(aC[productos]*d); 
    //cout << " El nuevo Coeficiente entrante es: " << 
aNuevoCoef[productos] << endl; 
    //cout << " " << endl; 
 
    // Nuevo Coeficiente de tiempo para plan entrante // 
    aNuevoCoefA[productos] = ((d*k*B)/aM[productos]);  
    //cout << " La restriccion de tiempo para el nuevo plan es: " 
<< aNuevoCoefA[productos] << endl; 
    //cout << " " << endl; 
 
    for (i=0; i<xint+2; i++) columna1[i]=0; 
    if ((Comparacion[productos] > 0)) { 
    columna1[productos+1]=1.0; 
    columna1[0] = aNuevoCoef[productos]; 
    columna1[xint+1] = aNuevoCoefA[productos];    
    add_column(lp, columna1); 
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    } //end if 
      
    //print_lp(lp); 
  
   
    } // end IF condicional 
 
 
   } // end FOR 
  
   
 // ciclo para obtener el Upper Bound del LP // 
 suma=0; 
 for (i=0;i<xint;i++){  
   suma = suma + Comparacion[i]; 
  } //end for 
 UB = obj + suma ; 
  if ( UB < bestUB) 
  bestUB = UB; 
 
 cout << " *** *** **** UB : " << bestUB << endl; 
 
 print_lp(lp); 
 //cout << " " << endl; 
 
 //cout << " " << endl; 
 //cout << " 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@ " << endl; 
 cout << " @@@@ @@@@ CONTEO DE ITERACIONES: " << conteo << endl; 
 //cout << " 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@ " << endl; 
 cout << " " << endl; 
 
 
  };// end WHILE interno 
   
  
 
  for (i=1;i<=get_Ncolumns(lp);i++)  
  set_int(lp, i, TRUE); 
   
  // resuelve el nuevo LP con integer variables // 
  solve(lp); 
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  print_solution(lp,1); 
  cout << " " << endl; 
  cout << " " << endl; 
   
  // Obtiene el valor de la funcion objetivo entera = UB // 
  objentero=get_objective(lp); 
  cout << " El objetivo LP: " << obj << endl; 
  cout << " El objetivo entero: " << objentero << endl; 
 
  // Calculo de Upper bound // 
  cout << " El Upper Bound (UB) es: " << bestUB << endl; 
 
  // Calculo de diferencia porcentual // 
  porcdif = (bestUB-objentero)/(bestUB); 
  cout << " " << endl; 
  cout << " *************************************** ***************** " << 
endl ; 
  cout << " *                                                      * " << endl ; 
  cout << " * --------------     RESULTADO FINAL    -------------- * " << endl; 
  cout << " *                                                      * " << endl; 
  cout << " *  El porcentaje de error es:  " << porcdif*100 << endl; 
  cout << " *                                                      * " << endl ; 
  cout << " *************************************** ***************** " << 
endl ; 
 
  // Cambia las variables a no enteras para que vuelva a iterar sin ellas // 
  for (i=1;i<=get_Ncolumns(lp);i++)  
  set_int(lp, i, FALSE); 
 
}; // end WHILE externo 
 
 
 
// ** CPU TIME // 
//time (&finish); 
//duration = difftime (finish,start); 
 
finish = clock(); 
duration = (finish-start);  
 
cputime=duration/CLOCKS_PER_SEC;// se usa CLCOKS_PER_SEC porque cada 
unidad del clock dura 1/1000 de segundo. 
printf (" CPU time taken is:  %.2lf seconds.\n", cputime); 
  
// ** 
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delete_lp(lp); 
 
FreeLibrary(lpsolve); 
 
return (0); 
 
}; // end MAIN 
 
 
 
// 
*************************************************** *********************
*****// 
// *   Aca comienza la SUBRUTINA , para resolver el programa de K y d optimos. * 
// 
*************************************************** *********************
*****// 
 
double solve (double E, double B,double aS ,double aC ,double aM ,double aA ,double 
aR ,double aT ,double ah ,double ahday2 ,double *d ,double *k) 
{ 
 
// declaracion de variables // 
int count,j; 
double LB,UB,EB,xl,xu,xm; 
double F; // F = es la derivada parcial de U respecto a demanda, evaluado en lower bound 
double G; // F = es la derivada parcial de U respecto a demanda, evaluado en medium 
bound 
double U,Uant; // Funcion de Utilidad 
 
double Daa,Da,Dopt; 
 
j=1; 
 
 
//cout << " -------------------------------------------------------------- " << endl; 
//cout << " " << endl; 
 
//cout << " $$$ VALORES EXPORTADOS $$$ " << endl; 
//cout << " " << endl; 
//cout << " B: " << B << endl; 
 
//printf(" S es:\t%.20f",aS); 
//cout << " " << endl; 
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//printf(" C es:\t%.20f",aC); 
//cout << " " << endl; 
 
//cout << " M es: " << aM << "\n" << endl; 
//cout << " A es: " << aA << "\n" << endl; 
//cout << " R es: " << aR << "\n" << endl; 
//cout << " T es: " << aT << "\n" << endl; 
 
//printf(" H es:\t%.20f",ahday2); 
//cout << " " << endl; 
//cout << " " << endl; 
 
//cout << " --------------------------------------------------------------- " << endl; 
 
///cout << " " << endl; 
///cout << " " << endl; 
 
   count=1; 
   U=-1000000000; 
      Uant=-1000000000000000000; 
 
   Daa=0; 
   Da=0; 
   Dopt=0; 
 
 
   while( U > Uant){ 
       
  // valores iniciales // 
  LB=0.0001; // el lower bound para la demanda es igual a una tasa de 1 
unidad por dia 
  UB=aM-1; // el upper bound no puede exceder el tamano de la tasa de 
produccion M 
  EB=0.0001; // error bound 
 
  xl=LB; 
  xu=UB; 
  F= (-B*ahday2*count*(aM-2*xl)*aC)/(2*aM) - aC + (aA*log(aR/xl)) - 
aA - ((B*E*count)/aM); 
  //cout << " ********************************* " < < endl; 
  //cout << " " << endl; 
  //cout << " " << endl; 
 
  xm=xu; 
 



Appendix 1 
 

112 

  G= (-B*ahday2*count*(aM-2*xm)*aC)/(2*aM) - aC + (aA*log(aR/xm)) - 
aA -((B*E*count)/aM); 
 
 
  if ( ( F > 0 ) && ( G > 0 ) ) {   //  if 1 , ( Escenario , todos positivos ) 
    
   xl=UB; 
 
   Dopt=xl; 
 
   U=((aA*log(aR/Dopt)*Dopt)-(aS/(count*B))-
((aC*ahday2*(Dopt)*(aM-Dopt)*count*B)/(2*aM))-(aC*Dopt)-(aT*E)-
((Dopt*count*B*E)/aM)); 
   *d=Dopt; 
 
   //cout << " " << endl;  
   //cout << " El valor de U es: " << U << endl; 
   //cout << " ********************************* " << endl; 
   //cout << " " << endl; 
   //cout << " --------------------------------------------------------------- " 
<< endl; 
   //cout << " " << endl; 
   
   count++; 
 
   *k=count-1; 
   *d=Dopt; 
 
   //cout << " ************************************ ***** " 
<< endl; 
   //cout << " COMPROBACION DE VALORES (D,K) DE 
SUBRUTINA " << endl; 
   //cout << " k es: " << *k << endl; 
   //cout << " " << endl; 
   //cout << " d es: " << *d  << endl; 
   //cout << " " << endl; 
   //cout << " ************************************ ***** " 
<< endl; 
   //cout << " " << endl; 
 
   return(U); 
 
  } // end if 1 
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  if ( ( F < 0 ) && ( G < 0 ) ) {   //  if 2 , ( Escenario , todos negativos ) 
    
   xu=LB; 
 
   Dopt=xu; 
 
   U=((aA*log(aR/Dopt)*Dopt)-(aS/(count*B))-
((aC*ahday2*(Dopt)*(aM-Dopt)*count*B)/(2*aM))-(aC*Dopt)-(aT*E)-
((Dopt*count*B*E)/aM)); 
   *d=Dopt; 
 
   //cout << " " << endl;  
   //cout << " El valor de U es: " << U << endl; 
   //cout << " ********************************* " << endl; 
   //cout << " " << endl; 
   //cout << " --------------------------------------------------------------- " 
<< endl; 
   //cout << " " << endl; 
   
   count++; 
 
   *k=count-1; 
   *d=Dopt; 
 
   //cout << " ************************************ ***** " 
<< endl; 
   //cout << " COMPROBACION DE VALORES (D,K) DE 
SUBRUTINA " << endl; 
   //cout << " k es: " << *k << endl; 
   //cout << " " << endl; 
   //cout << " d es: " << *d  << endl; 
   //cout << " " << endl; 
   //cout << " ************************************ ***** " 
<< endl; 
   //cout << " " << endl; 
 
 
   return(U); 
 
  } // end if 2 
 
 
 
  while ( (xu-xl) >= EB) { 
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    G= (-B*ahday2*count*(aM-2*xm)*aC)/(2*aM) - aC + 
(aA*log(aR/xm)) - aA -((B*E*count)/aM); 
    //cout << " Valor de G: " << G << endl; 
 
    if (F*G < 0) 
     xu=xm; 
    else 
     xl=xm; 
 
    xm=(xl+xu)/2; 
     
  }; //end while interno 
 
 
  Daa=Da; 
  Da=Dopt; 
  Dopt=xm; 
 
  Uant=U; 
  U=((aA*log(aR/Dopt)*Dopt)-(aS/(count*B))-((aC*ahday2*(Dopt)*(aM-
Dopt)*count*B)/(2*aM))-(aC*Dopt)-(aT*E)-((Dopt*count*B*E)/aM)); 
  *d=Dopt; 
 
 
  //cout << " Uant " << Uant << endl; 
 
  //cout << " " << endl;  
  //cout << " El valor de U es: " << U << endl; 
  //cout << " ********************************* " < < endl; 
  //cout << " " << endl; 
  //cout << " --------------------------------------------------------------- " << endl; 
  //cout << " " << endl; 
   
  count++; 
 
   }; // end while externo  
 
  
*k=count-2; 
*d=Da; 
 
//cout << " *************************************** ** " << endl; 
cout << " COMPROBACION DE VALORES (D,K) DE SUBRUTINA " << endl; 
cout << " k es: " << *k << endl; 
//cout << " " << endl; 
cout << " d es: " << *d  << endl; 
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//cout << " " << endl; 
 
 
 
cout << " *****************************************  " << endl; 
//cout << " " << endl; 
 
 
 
return(Uant); 
 
};// end subrutina solve 
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Appendix 2. C++ program for the SPLSP (article 2) 
 
#include <stdio.h> 
#include <sys/types.h> 
#include <stdlib.h> 
#include <malloc.h> 
#include <math.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <time.h> 
 
#include "lp_lib.h" 
 
 
// INICIO - declaracion de subrutinas a utilizar en MAIN // 
 
/// optimizador de subproblema 
double solucion(int,int,int,double 
*E,double,double,double,double,double,double,double,double,double,double,double,dou
ble,double,double*,double*,double*); 
 
// evaluador de funcion de Utilidad 
double evaluar (int,int,int,double 
*E,double,double,double,double,double,double,double,double,double,double,double,dou
ble,double,double); 
 
// - FIN 
 
 
 
// ********************** Programa Principal ****** ***************** // 
 
int main() 
{ 
 
 
// --- DECLARACION DE VARIABLES --- // 
 
bool condition,agregadas; 
 
int productos; 
int i,b,xint,noise,conteo,maxcount,m,w; 
 
//arrays// 
double *aS, *aC, *aM, *aA, *aR, *aT, *ah, *ahday,*aV; 
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double *aMIN, *aMAX, *aAmin, 
*aAmax,*CoefLambda,*aNuevoCoef,*aNuevoCoefA,*Neg,*UpperSuma; 
double *row0, *row1, *row2,*row3,*duals,*aOPT,*aAopt; 
double x,diferencia,Period,B,Capacidad,tolerancia,porcdif,objentero,UB,bestUB,obj; 
 
 
double *E,*Et; // arreglo que guarda los ruidos del archivo ruidos.txt 
 
double t,k,z,S,Tuno; //variables optimizadas de subrutina solve 
double tmin,tmax,tmin2; //variables de demanda , para coeficientes minimo y maximo 
 
double *columna1, *Comparacion; 
double value,suma,F,Suma; 
 
double Tp,K; 
 
time_t start, finish; 
double duration, cputime; 
 
// --- FIN declaracion de variables --- // 
 
 
//* comienza el reloj de C 
start = clock(); 
//* 
 
// -- INICIO -- Valores iniciales de algunos parametros // 
 
maxcount=20; // conteo maximo del ciclo while  
tolerancia = 0.02; // tolerancia porcentual para error bound 
porcdif=100000000; // valor M para comenzar ciclo while externo 
value=0.000001; // valor para la comparacion que ayuda a la generacion de columnas 
 
z = 1.96; // correspondiente a un nivel de servicio del 95% 
 
b=1; 
 
// -- FIN -- // 
 
 
 
 
/* Leer el archivo "datos.txt" para obtener los inputs requeridos */ 
 
ifstream ff("datos.txt"); 
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ff >> x; 
xint = int(x); 
cout << " *****************************************  " << endl; 
cout << " *        Stochastic ELSP v 3.1.4        * " << endl; 
cout << " *****************************************  " << endl; 
cout << " " << endl; 
cout << "El Sistema es de " << xint << " productos " << endl; 
 
ff >> x; 
noise = int(x); 
cout << "El numero de ruidos por producto es: " << noise << endl; 
 
 
// Definicion de algunos arreglos para almacenar valores // 
aA = (double *)calloc( xint ,sizeof( double ) ); 
aR = (double *)calloc( xint ,sizeof( double ) ); 
aS = (double *)calloc( xint ,sizeof( double ) ); 
aC = (double *)calloc( xint ,sizeof( double ) ); 
aM = (double *)calloc( xint ,sizeof( double ) ); 
aT = (double *)calloc( xint ,sizeof( double ) ); 
ah = (double *)calloc( xint ,sizeof( double ) ); 
ahday = (double *)calloc( xint ,sizeof( double ) ); 
aV = (double *)calloc( xint ,sizeof( double ) ); 
//TO = (double *)calloc( xint ,sizeof( double ) ); 
 
Et = (double *)calloc( xint*noise ,sizeof( double ) ); // arreglo que almacena ruidos 
E = (double *)calloc( xint*noise ,sizeof( double ) ); // arreglo que almacena ruidos 
 
aMIN = (double *)calloc( xint ,sizeof( double ) ); 
aMAX = (double *)calloc( xint ,sizeof( double ) ); 
aOPT = (double *)calloc( xint ,sizeof( double ) ); 
aAopt = (double *)calloc( xint ,sizeof( double ) ); 
Neg = (double *)calloc( xint ,sizeof( double ) ); 
aAmin = (double *)calloc( xint ,sizeof( double ) ); 
aAmax = (double *)calloc( xint ,sizeof( double ) ); 
aNuevoCoef = (double *)calloc( xint ,sizeof( double ) ); 
aNuevoCoefA = (double *)calloc( xint ,sizeof( double ) ); 
 
CoefLambda = (double *)calloc( xint ,sizeof( double ) ); 
 
duals = (double *)calloc( 2 + xint, sizeof( double ) ); 
row0 = (double *)calloc( 1 + xint*3, sizeof( double ) ); 
row1 = (double *)calloc( 1 + xint*3, sizeof( double ) ); 
row2 = (double *)calloc( 1 + xint*3, sizeof( double ) ); 
row3 = (double *)calloc( 1 + xint*3, sizeof( double ) ); 
columna1 = (double *)calloc( xint*3+1, sizeof( double ) ); 
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UpperSuma = (double *)calloc( xint*3+1, sizeof( double ) ); 
 
 
ff >> x; 
Period = int(x); 
//cout << " " << endl; 
//cout << " El tiempo anual disponible para la produccion es: " << Period << " dias " << 
endl; 
 
ff >> x; 
B = x; 
//cout << " " << endl; 
//cout << " El Periodo basico es de: " << B << " dias " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
 
ff >> x; 
Capacidad = x; 
//cout << " " << endl; 
//cout << " La Capacidad es de: " << Capacidad << " dias " << endl; 
//cout << " " << endl; 
 
// valores iniciales de optimizacion : t , k 
Tp = 0.1;   
//cout << " El tiempo de produccion es: " << Tp << " dias " << endl; 
//cout << " " << endl; 
 
K = 1; 
//cout << " El periodo de produccion ,k, es: " << K << " dias " << endl; 
//cout << " " << endl; 
// 
 
 
//* Leer el archivo "ruidos.txt" para obtener los ruidos requeridos */ 
 
ifstream yy("ruidos.txt"); // archivo de donde lee los ruidos obtenidos 
 
for (m=0;m<(xint*noise);m++) 
{ 
 yy >> x; Et[m] = x; 
 //cout << " El ruido , Et { " << m << " } es: " << Et[m] << endl; 
} 
//* fin lectura de ruidos 
 
 
  //cout << " ^^^^^^^^^^^^^^^^^^^^ b es: " << b << endl; 
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  // ciclo para cada producto 
  for (productos=0; productos<xint; productos++) 
  { 
 
   /* Leer y guardar los valores */ 
    
   ff >> x;  aA[productos] = x;   
   //cout << " " << endl; 
   //cout << " Paramatro A para la formula de demanda lineal: " << aA[productos] 
<< "\n" << endl; 
    
   ff >> x;  aR[productos] = x;  
   //cout << " " << endl; 
   //cout << " Parametro B para la formula de demanda lineal: " << aR[productos] 
<< "\n" << endl; 
    
   ff >> x;  aS[productos] = x;   
   //cout << " " << endl; 
   //cout << " Costo de Setup ($), S es: " << aS[productos] << "\n" << endl; 
    
   ff >> x;  aC[productos] = x;  
   //cout << " " << endl; 
   //cout << " Costo Unitario ($/unidad), C es: " << aC[productos] << "\n" << endl; 
    
   ff >> x;  aM[productos] = x; 
   //cout << " " << endl; 
   //cout << " Tasa Diaria de Produccion (unidades/dia), m es: " << aM[productos] 
<< "\n" << endl; 
    
   ff >> x;  aT[productos] = x; 
   //cout << " " << endl; 
   //cout << " Tiempo de Setup (dias), T es: " << aT[productos] << "\n" << endl; 
    
   ff >> x;  ah[productos] = x; 
   //cout << " " << endl; 
   //cout << " Costo Anual de Holding , h es: " << ah[productos] << "\n" << endl; 
   //cout << " " << endl; 
 
   ff >> x;  aV[productos] = x; 
   //cout << " " << endl; 
   //cout << " El vendor Price V,  es: " << aV[productos] << "\n" << endl; 
   //cout << " " << endl; 
    
   // Calculo de Holding Cost por dia // 
   ahday[productos] = ah[productos]/Period; 
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   //cout << " El Holding Cost por dia ($/unidad*dia), es: " << ahday[productos] 
<< "\n" << endl; 
 
   //cout << " " << endl; 
   //cout << " " << endl; 
   //cout << " " << endl; 
   //cout << " a " << endl; 
 
   F=0; // valor inicial para la variable de Lambda, es cero porque la 1era rutina de 
solve no las subrutinas no la usan en la inicializacion 
 
 
 
      // ****************************************** *** // 
    
   S=0; 
 
   // -- llamada a subrutina "solve" que me da los valores optimos de K y Tp para 
cada producto -- // 
   
solucion(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR
[productos],aT[productos],ahday[productos],aV[productos],Tp,B,S,z,&k ,&t,&Tuno); 
   
 
   //cout << " " << endl; 
   //cout << " ************************************ ***** " << endl; 
   //cout << " *    Valores exportados de SUBRUTINA    * " << endl; 
   //cout << " ************************************ ***** " << endl; 
   //printf("T:\t%.20f",t); // Imprime el valor de la demanda con 20 decimales para 
mas precision 
   //cout << " " << endl; 
   //cout << "K es: " << k << endl; 
   //cout << "Tuno es: " << Tuno << endl; 
   //cout << " " << endl; 
 
    
   //TO[productos]=t; 
 
      // -- Calculo de tiempos para los dos planes iniciales -- // 
   //cout << " " << endl; 
   tmin=(0.25)*(t); // La demanda para el plan minimo es un 50% de la demanda 
optima 
   tmax=(1.25)*(t); // La demanda para el plan maximo es un 25% mas grande que 
la demanda optima 
   //cout << " Tiempo de Prod -- debajo de capacidad: " << tmin << endl; 
   //cout << " Tiempo de Prod -- encima de capacidad: " << tmax << endl; 
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   //cout << " " << endl; 
   //cout << " " << endl; 
   //cout << " --------------------------------------------------------------- " << endl; 
    
 
   //Evaluacion Previa con tmax, para no permitir coeficientes negativos 
  
   Tp=tmax; 
  // cout << " Tmax es: " << tmax << endl; 
    
 
   Neg[productos]= evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],Tp,k,B,S,z) ;  
    
   ///cout << " === INICIO > CICLO WHILE === " <<  endl; 
   //cout << " " << endl; 
 
   while ( Neg[productos] < 0 )  
   { 
    Tp=Tp/1.1; 
    //cout << " Tp es: " << Tp << endl; 
    Neg[productos]= evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],Tp,k,B,S,z) ;  
      // cout << " El Negativo es: " << Neg[productos] << "\n" << endl;    
       tmax=Tp; 
   } 
   
    //cout << " === FINAL > CICLO WHILE === " <<  endl; 
    //cout << " Tmax es: " << tmax << endl; 
 
 
   // -*- Calcular Coeficientes para los planes iniciales del LP -*- // 
 
   // -- Coeficiente Minimo -- // 
   Tp=tmin; 
   //cout << " Tmin es: " << Tp << endl; 
   aMIN[productos]= evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],Tp,k,B,S,z) ;    
   //cout << " **++ Error importado: " << *Et << endl; 
 
    
   //cout << " El Coeficiente Minimo es: " << aMIN[productos] << "\n" << endl; 
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   // -- Coeficiente Maximo -- // 
   Tp=tmax; 
   //cout << " Tmax es: " << Tp << endl; 
   aMAX[productos]= evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],Tp,k,B,S,z) ;  
   //cout << " El Coeficiente Maximo es: " << aMAX[productos] << "\n" << endl; 
 
   k=1; 
   Tp=1; 
   aOPT[productos]= evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],Tp,k,B,S,z) ;  
   //cout << " El Coeficiente Irrestricto es: " << aOPT[productos] << "\n" << endl; 
 
   aAopt[productos]= aT[productos] + Tuno; 
   //cout << " El Coeficiente de tiempo Irrestricto es: " << aAopt[productos] << 
"\n" << endl; 
 
 
  if ( aOPT[productos] < 0 ) 
   { 
   aOPT[productos] = 0; 
   aAopt[productos]=0; 
   } 
 
 
   // -- Coeficiente de Restriccion de Tiempo Minimo -- // 
   aAmin[productos]= aT[productos] + tmin; 
   //cout << " El Coeficiente de tiempo Minimo es: " << aAmin[productos] << "\n" 
<< endl; 
  //cout << " aT es: " << aT[productos] <<  "\n" << endl; 
  //cout << " D es: " << DE << endl; 
  //cout << " K es: " << k << endl; 
  //cout << " B es: " << B << endl; 
  //cout << " aM es: " << aM[productos] <<  "\n" << endl; 
 
    
   // -- Coeficiente de Restriccion de Tiempo Maximo -- // 
   aAmax[productos]= aT[productos] + tmax; 
      //cout << " El Coeficiente de tiempo Maximo es: " << aAmax[productos] << "\n" << 
endl; 
   //cout << " " << endl; 
   //cout << " ***** FIN ***** " << endl; 
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   //cout << " producto:  " << productos << endl; 
   
} // end FOR 
 
b=b+1; 
 
//cout << " b e: " << b << endl; 
   
 
 
// --- *** --- Procedimiento para Obtener la T minima "factible" para comenzar el LP --- 
*** --- // 
   
 
  Suma=0; 
  for (productos=0;productos<xint;productos++){  
   Suma = Suma + aAmin[productos]; 
   } //end for 
  //cout << " " << endl; 
  //cout << " --- *** Suma Minima de Capacidades para los productos: " << 
Suma << endl; 
  //cout << " " << endl; 
 
 
 while ( Suma > Capacidad){ 
   
  tmin2=tmin/2; 
  //cout << " Tiempo modificado: " << tmin2 << endl; 
 
  Suma=0; 
   
  for (productos=0;productos<xint;productos++){  
   
  // -- Coeficiente Minimo -- // 
  Tp=tmin2; 
  aMIN[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],Tp,k,B,S,z) ;  
     //cout << " El Coeficiente Minimo es: " << aMIN[productos] << "\n" << endl; 
  
   
  // -- Coeficiente de Restriccion de Tiempo Minimo -- // 
  aAmin[productos]= aT[productos] + tmin2; 
 
 
  if ( aMIN[productos] < 0 ) 
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   { 
   aMIN[productos] = 0; 
   aAmin[productos]=0; 
   } 
 
 
  Suma = Suma + aAmin[productos]; 
   
  } //end for 
   
  //cout << " " << endl; 
  //cout << " --- *** Suma Minima de Capacidades para los productos: " << 
Suma << endl; 
  //cout << " " << endl; 
 
  tmin=tmin2; 
  
 }; //endwhile suma vs. capacidad 
 
 
 
 
 
// ----- 
*************************************************** *********************
** ----- // 
  
  // lp solve  comienza ... // 
 
  lprec *lp; 
  HINSTANCE lpsolve; 
 
  lpsolve = LoadLibrary("lpsolve55.dll"); 
 
  if (lpsolve == NULL) { 
    printf("Unable to load lpsolve shared library\n"); 
    return(FALSE); 
  } 
   
  // 
*************************************************** *********************
** // 
  // Inicia el desarrollo de la estructura del programa // 
 
 
  lp=make_lp(0,xint*3); /* prods*3 variables, 0 restricciones */ 
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  // Descripcion del sistema utilizado // 
  cout << " 
*************************************************** ******************** 
" << endl; 
  cout << " *                              LP SOLVE                               * " << endl; 
  cout << " 
*************************************************** ******************** 
" << endl; 
  cout << " * Description: Open Source (Mixed-Integer) Linear Programming System  * " 
<< endl; 
  cout << " * Language: Multi-Platform, pure ANSI C / POSIX Source Code           * " << 
endl; 
  cout << " * Official Name: lp_solve                                             * " << endl; 
  cout << " * Release Data: Version 5.5.0.5. , dated: October 2005                * " << endl; 
  cout << " * Co-developers: Michael Berkelaar, Kjell Eikland, Peter Notebaert    * " << 
endl; 
  cout << " * Licence Terms: GNU LGPL (Lesser General Public Licence)             * " << 
endl; 
  cout << " 
*************************************************** ******************** 
" << endl; 
  cout << " " << endl; 
  cout << " " << endl; 
 
  set_maxim(lp); // Define el problema como MAXIMIZAR 
 
  set_lp_name(lp, "SPELSP 3.1.4"); /* Pone el nombre al programa */ 
   
  
  for (productos=0; productos<xint; productos++) // FOR 1 
  { 
 
  // Estructuracion de la funcion objetivo // 
  row0[productos*3+1] = aMIN[productos]; 
  row0[productos*3+2] = aMAX[productos]; 
  row0[productos*3+3] = aOPT[productos]; 
  set_obj_fn(lp, row0);  
 
  // Estructuracion de las restricciones del problema // 
  set_add_rowmode(lp, TRUE); 
  row1[productos*3+1] = aAmin[productos]; 
  row1[productos*3+2] = aAmax[productos]; 
  row1[productos*3+3] = aAopt[productos]; 
   
  for (i=0; i<xint*3+1; i++) row2[i]=0; 
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  set_add_rowmode(lp, TRUE); 
  row2[productos*3+1] = 1.0; 
  row2[productos*3+2] = 1.0; 
  row2[productos*3+3] = 1.0; 
   
  set_add_rowmode(lp, FALSE); // concluye la adicion de nuevas restricciones 
 
  add_constraint(lp, row2, EQ , 1.0); 
 
  }  // end FOR 1 
   
   
  add_constraint(lp, row1, LE, Capacidad); // agrega la restriccion de Capacidad 
   
 
 
  // Imprime la estructura del problema //  
  cout << " " << endl; 
   
  print_lp(lp); 
  //cout << " " << endl; 
  //cout << " " << endl; 
  //cout << " *** Solucion *** " << endl; 
  //cout << " " << endl; 
 
  
  // Resuelve el problema y lo presenta en pantalla // 
  solve(lp); 
  //cout << " " << endl; 
  cout << " " << endl;  
 
  obj=get_objective(lp); 
 
 
  // Obtiene los valores duales de la solucion // 
  get_dual_solution(lp,duals); 
  //cout << " " << endl; 
  //cout << " *** duales *** " << endl; 
  for (i=1; i<xint+2; i++) { 
  //cout << " Precio Sombra: " << duals[i] << endl; 
  } 
 
  // Imprime la solucion del problema . 1 = numero de columnas para poner valores // 
  print_solution(lp,1); 
  cout << " " << endl; 
  cout << " " << endl; 
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  // Imprime en pantalla los valores duales del problema // 
  print_duals(lp); 
  //cout << " " << endl; 
  //cout << " " << endl; 
  //cout << " *** FIN *** " << endl; 
  //cout << " " << endl; 
  //cout << " " << endl; 
 
 
  // condiciones para ciclo de comparacion // 
  condition = FALSE; 
  agregadas = FALSE; 
  Comparacion = (double *)calloc( xint, sizeof( double ) ); 
 
 
 
  ////////////////////////////////////////////////////////////////////////////////  
  // *** --- Fase 2 > Subproblemas utilizando precios sombra --- *** //  
  //////////////////////////////////////////////////////////////////////////////// 
 
for (productos=0; productos<xint; productos++) // FOR 2 
  { 
   
  F=duals[xint+1]; // guarda el valor de LAMBDA para la subrutina, bajo el nombre de E; 
  //cout << " El valor de lambda (variable F) es:  " << F << endl; 
 
  // llamada a subrutina para obtener los valores de D y K  y volver a calcular coeficientes 
// 
  
  //Tp=TO[productos]; // variable que asigna el valor optimo a Tp, para calcular el Coef 
entrante 
   
  // llamada a solve para obtener nuevos valores optimos para T y K 
  
solucion(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR
[productos],aT[productos],ahday[productos],aV[productos],Tp,B,S,z,&k ,&t,&Tuno);  
  //solve 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],Tp,B,S,z,&k ,&t,&Tuno); 
   
  //printf(" T es:\t%.20f",t); 
  //cout << " " << endl; 
  //cout << " K es: " << k << endl; 
  //cout << " " << endl; 
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  // Nuevo Coeficiente con Lambda 
  CoefLambda[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],t,k,B,S,z) ;  
                     //evaluar 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B,S,z) ; 
   
  //cout << " F(Lambda) es: " << F << endl; 
  //cout << " T es: " << t << endl; 
  //cout << " K es: " << k << endl; 
   
 
  //cout << " " << endl; 
  //cout << " El Coeficiente Modificado con Valores Sombra es: " << 
CoefLambda[productos] << "\n" << endl; 
  //cout << " " << endl; 
 
   
  F=0; 
 
 
  // Nuevo Coeficiente para plan entrante // 
  aNuevoCoef[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],t,k,B,S,z) ;   
                     //evaluar 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B,S,z) ; 
  //cout << " *** El nuevo Coeficiente entrante es: " << aNuevoCoef[productos] << endl; 
  //cout << "producto: " << productos+1 << endl; 
  //cout << " " << endl; 
 
 
   if ( ( aNuevoCoef[productos] < 0 ))  
   CoefLambda[productos]=duals[productos+1]; 
    //  cout << " 9999 Comprobacion de Coef Lamba es: " << CoefLambda[productos] << 
"\n" << endl; 
   
 
  //cout << " " << endl; 
  diferencia = CoefLambda[productos] - duals[productos+1]; 
  //cout << " La diferencia es: " << diferencia << endl; 
  //cout << " " << endl; 
  //cout << " " << endl; 



Appendix 2 
 

130 

  Comparacion[productos] = diferencia; 
 
  UpperSuma[productos] = Comparacion[productos]; 
   
 
 
  // Inicia condicion , una columna nueva entra si la diferencia es mayor a cero // 
  condition = (Comparacion[productos] > value) || condition; 
    
 
if (condition = TRUE) 
  { 
    agregadas = TRUE; 
  } 
 
 
 
  if ((Comparacion[productos] > value) ) { 
   
  // Nuevo Coeficiente para plan entrante // 
   
  aNuevoCoef[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],t,k,B,S,z) ;  
                     //evaluar 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B,S,z) ; 
  //cout << " El nuevo Coeficiente entrante es: " << aNuevoCoef[productos] << endl; 
  //cout << "producto: " << productos+1 << endl; 
  //cout << " " << endl; 
 
  // Nuevo Coeficiente de tiempo para plan entrante // 
  aNuevoCoefA[productos] = aT[productos] + (t);  
  //cout << " La restriccion de tiempo para el nuevo plan es: " << 
aNuevoCoefA[productos] << endl; 
   //cout << "producto: " << productos+1 << endl; 
   //cout << " " << endl; 
   
  for (i=0; i<xint+2; i++) columna1[i]=0; 
   
  if ((Comparacion[productos] > 0)) { 
   columna1[productos+1]=1.0; 
   columna1[0] = aNuevoCoef[productos]; 
      columna1[xint+1] = aNuevoCoefA[productos];    
   add_column(lp, columna1); 
  } 
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  cout << " " << endl;    
  cout << " " << endl; 
    
  } // end IF 
  //print_lp(lp); 
  
  } // end FOR 2 
   
 
 
for (w=0;w<xint;w++) 
{ 
 //cout << "Ub Suma [ " << w << " ] es : " << UpperSuma[w] << endl; 
} 
 
if ( UpperSuma[w] < 0){ 
 UpperSuma[w]=0; 
} 
 
  // ciclo para obtener el Upper Bound de la funcion // 
  suma=0; 
  for (w=0;w<xint;w++) 
  { 
   suma = suma + UpperSuma[w]; 
  } 
 
  if (suma < 0 ){ 
   suma=0; 
  } 
 
  //cout << " objetivo es: " << obj << endl; 
  UB = obj + suma ; 
  bestUB = UB; 
 
   
  //cout << " ************************ " << endl; 
  //cout << " *** *** **** UB : " << bestUB << endl; 
  //cout << " ************************ " << endl; 
 
  /////////////////////////////////////////////////////////////////////////////// 
 
   
 // comienza el WHILE externo // 
 while ( porcdif > tolerancia ) { 
 
  conteo=0; 
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  // comienza el WHILE interno // 
  while  (agregadas && (conteo < maxcount)) { 
 
   conteo++; 
 
         // Solve LP // 
   
   solve(lp); 
 
   set_timeout(lp, 20); 
 
   //print_solution(lp,1); 
  
   obj=get_objective(lp); 
   //cout << " 1111111111111111111 Obj> " << obj << endl; 
 
   // Get dual values // 
   get_dual_solution(lp,duals); 
   //cout << " " << endl; 
   //cout << " *** duales *** " << endl; 
   for (i=1; i<xint+2; i++) { 
   //cout << " Precio Sombra: " << duals[i] << endl; 
   }; // end FOR interno 
    
 
   for (productos=0; productos<xint; productos++) 
   { 
              
    
    F=duals[xint+1]; // guarda el valor de LAMBDA para la 
subrutina, bajo el nombre de E; 
    //cout << " 
******************************************* " << en dl; 
    //cout << " El valor entrante de lambda (variable F) es:  " 
<< F << endl; 
    //cout << " 
******************************************* " << en dl; 
    //cout << " " << endl; 
 
    // llamada a subrutina para obtener los valores de D y K  y 
volver a calcular coeficientes // 
    //Tp=TO[productos]; 
 
    // Nuevo Coeficiente con Lambda 
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    //cout << " 
***************************************** " << endl ; 
    //cout << " 
***************************************** " << endl ; 
    //cout << " LLAMADA A SUBRUTINA " << endl; 
     
   
 solucion(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[produc
tos],aR[productos],aT[productos],ahday[productos],aV[productos],Tp,B,S,z,&k ,&t,&Tu
no);  
    //solve 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,B,S,z,&k ,&t,&Tuno); 
   
    //printf(" T es:\t%.20f",t); 
    //cout << " " << endl; 
    //cout << " K es: " << k << endl; 
    
 
    CoefLambda[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],t,k,B,S,z) ;  
                       //evaluar 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B,S,z) ; 
    //cout << " El Coeficiente Modificado con Valores Sombra 
es: " << CoefLambda[productos] << "\n" << endl; 
    //cout << " " << endl; 
 
 
    F=0; // para recomenzar el ciclo de valores optimos de T y 
K 
    
    // Nuevo Coeficiente para plan entrante // 
    aNuevoCoef[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],t,k,B,S,z) ;  
                       //evaluar 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B,S,z) ; 
    //cout << " *** Evaluacion de Coef Entrante: " << 
aNuevoCoef[productos] << endl; 
    //cout << "producto: " << productos+1 << endl; 
    //cout << " " << endl; 
 
    if ( ( aNuevoCoef[productos] < 0 ))  
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     CoefLambda[productos]=duals[productos+1]; 
      //  cout << " 9999 Comprobacion de Coef Lamba es: " << 
CoefLambda[productos] << "\n" << endl; 
   
     
 
    //cout << " " << endl; 
    diferencia = CoefLambda[productos] - duals[productos+1]; 
    //cout << " ----------------------------------------- " << endl; 
    //cout << " La diferencia es: " << diferencia << endl; 
    //cout << " " << endl; 
    //cout << " " << endl; 
    Comparacion[productos] = diferencia; 
   
    UpperSuma[productos] = Comparacion[productos]; 
 
 
    // Inicia condicion , una columna nueva entra si la 
diferencia es mayor a cero // 
    condition = (Comparacion[productos] > value) || condition; 
    
 
    if (condition = TRUE) 
    { 
      agregadas = TRUE; 
    } 
 
 
 
    if ((Comparacion[productos] > value)) { 
   
    // Nuevo Coeficiente para plan entrante // 
    aNuevoCoef[productos] = evaluar 
(b,xint,noise,Et,F,aS[productos],aC[productos],aM[productos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos],t,k,B,S,z) ;  
                       //evaluar 
(F,aS[productos],aC[productos],aM[productos],aA[productos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B,S,z) ; 
    //cout << " El nuevo Coeficiente entrante es: " << 
aNuevoCoef[productos] << endl; 
    //cout << " " << endl; 
 
    // Nuevo Coeficiente de tiempo para plan entrante // 
    aNuevoCoefA[productos] = aT[productos] + (t);  
    //cout << " La restriccion de tiempo para el nuevo plan es: " 
<< aNuevoCoefA[productos] << endl; 
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    //cout << "producto: " << productos+1 << endl; 
    //cout << " " << endl; 
 
    for (i=0; i<xint+2; i++) columna1[i]=0; 
    if ((Comparacion[productos] > 0)) { 
    columna1[productos+1]=1.0; 
    columna1[0] = aNuevoCoef[productos]; 
    columna1[xint+1] = aNuevoCoefA[productos];    
    add_column(lp, columna1); 
      
    } //end if 
      
    //print_lp(lp); 
  
   
    } // end IF condicional 
 
 
   } // end FOR 
  
   
for (w=0;w<xint;w++) 
{ 
 //cout << "Ub Suma [ " << w << " ] es : " << UpperSuma[w] << endl; 
} 
 
if ( UpperSuma[w] < 0){ 
 UpperSuma[w]=0; 
} 
 
  // ciclo para obtener el Upper Bound de la funcion // 
  suma=0; 
  for (w=0;w<xint;w++) 
  { 
   suma = suma + UpperSuma[w]; 
  } 
 
  if (suma < 0 ){ 
   suma=0; 
  } 
 
  //cout << " ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZz objetivo es: " 
<< obj << endl; 
  UB = obj + suma ; 
  bestUB = UB; 
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 //cout << " *** *** **** UB : " << bestUB << endl;  
 
 print_lp(lp); 
 //cout << " " << endl; 
 
 //cout << " " << endl; 
 cout << " 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@ " << endl; 
 cout << " @@@@ @@@@ CONTEO DE ITERACIONES: " << conteo << endl; 
 cout << " 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@ " << endl; 
 //cout << " " << endl; 
 //cout << " " << endl; 
 
 
  };// end WHILE interno 
   
  
 
  for (i=1;i<=get_Ncolumns(lp);i++)  
  set_int(lp, i, TRUE); 
   
  // resuelve el nuevo LP con integer variables // 
  solve(lp); 
  print_lp(lp); 
  print_solution(lp,1); 
  cout << " " << endl; 
  cout << " " << endl; 
   
  // Obtiene el valor de la funcion objetivo entera = UB // 
  objentero=get_objective(lp); 
  cout << " El objetivo LP: " << obj / (48) << endl; 
  cout << " El objetivo entero: " << objentero / (48) << endl; 
 
  // Calculo de Upper bound // 
  cout << " El Upper Bound (UB) es: " << bestUB / (48) << endl; 
 
  // Calculo de diferencia porcentual // 
  porcdif = (bestUB-objentero)/(bestUB); 
  cout << " " << endl; 
  cout << " *************************************** ***************** " << 
endl ; 
  cout << " *                                                      * " << endl ; 
  cout << " * --------------     RESULTADO FINAL    -------------- * " << endl; 
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  cout << " *                                                      * " << endl; 
  cout << " *  El porcentaje de error es:  " << porcdif*100 << endl; 
  cout << " *                                                      * " << endl ; 
  cout << " *************************************** ***************** " << 
endl ; 
 
  // Cambia las variables a no enteras para que vuelva a iterar sin ellas // 
  for (i=1;i<=get_Ncolumns(lp);i++)  
  set_int(lp, i, FALSE); 
 
}; // end WHILE externo 
 
 
 
// ** CPU TIME // 
finish = clock(); 
duration = (finish-start);  
cputime=duration/CLOCKS_PER_SEC;// se usa CLCOKS_PER_SEC porque cada 
unidad del clock dura 1/1000 de segundo. 
printf (" CPU time taken is:  %.2lf seconds.\n", cputime); 
// ** 
 
set_timeout(lp, 30); 
 
delete_lp(lp); 
 
FreeLibrary(lpsolve); 
 
return (0); 
 
}; // end MAIN 
 
 
 
 
 
 
 
//////////////////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////////// 
// 
*************************************************** *********************
*****//// 
// *   2. SUBRUTINA para Subproblema , para resolver el asunto  K y d optimos. * /// 
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// 
*************************************************** *********************
*****//// 
//////////////////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////////// 
 
 
double solucion (int b, int xint, int noise, double *E, double F,double aSp, double aCp, 
double aMp, double aAp,double aRp ,double aTp ,double ahdayP ,double aVp,double Tp, 
double B,double S,double z,double *k ,double *t,double *Tuno) 
{ 
 
 int l,c,a; 
 double Utt,lb,ub,Tiempo,tiempo,Time,tempo; 
 double Uoptant,Utotal,Uprima,Ug; 
 double K,ka; 
 double Step,StepPe; 
 
 
// -- Inizio> algunos valores iniciales para el ciclo while externo 
c=1; 
l=1; 
K=1; 
a=1; 
Step=0.1; 
StepPe=0.01; 
Time=0; // variable que almacena Tps 
 
Utt= -1000000000000; 
Uoptant = -1000000000000000000; 
 
// -- Fine 
 
 
 
 
 
while ( Utt > Uoptant ) { ////// while EXTERNO , para optimizar K 
 
//cout << " " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
//cout << " ** [------------------------------------] ** " << endl; 
//cout << "      Comienza el ciclo de K = " << K << " : " << endl; 
//cout << " ** [------------------------------------] ** " << endl; 
//cout << " " << endl; 
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//cout << " " << endl; 
//cout << " " << endl; 
 
Uoptant=Utt; 
 
 
// -- Inizio> algunos valores iniciales para el ciclo while interno 
Utotal= -1000000000000; 
Uprima = -1000000000000000000; 
Tp = 0.1; // recomenzar el ciclo de K, usando valores de Tp desde el valor dado en esta 
parte 
// -- Fine 
 
 
while ( Utotal > Uprima ) { // while INTERNO 
  
//cout << " ##### ---- Inicio del While Interno" << endl; 
 
Uprima=Utotal; // Uprima asume el valor Utotal del periodo anterior para poder comparar 
//cout << "Uprima es : " << Uprima << endl; 
 
// llamada a tercera rutina, para obtener la evaluacion y el valor de Uopt 
Utotal = evaluar (b,xint,noise,E,F,aSp,aCp,aMp,aAp,aRp,aTp,ahdayP,aVp,Tp,K,B,S,z) ;  
 
tiempo=Tp-Step; 
 
Tp=Tp + Step ;   // Incrementa el ciclo de Conteo para Tp, usando Step fijo 
 
 
//cout << " " << endl; 
// -- Valores importantes para el ciclo de while interno 
//cout << " Valores de> While Interno" << endl; 
//cout << "Utotal es : " << Utotal << endl; 
//cout << "Uprima es : " << Uprima << endl; 
//cout << " " << endl; 
 
Ug = Utotal; 
 
 
 
}; // end WHILE interno 
 
 
 
//cout << " *  La utilidad optima es:  " << Uprima << endl; // es l-2 porque 2 posiciones 
mas se cuentan 
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//cout << " *  El tiempo optimo de Produccion es :  " <<  tiempo  << endl; 
//cout << " " << endl; 
 
//Topt[c]=tiempo; // almacena el valor optimo del Tiempo de Produccion, para la K 
correspondiente 
//cout << " *  El Tp  es:  " << tiempo << endl; 
//cout << " *  El Tiempo  es:  " << Time << endl; 
 
tempo=Time; 
 
K=K+1; // se agrega K y se recomienza el ciclo 
c=c+1; 
 
Utt=Uprima; 
 
Time=tiempo; // para guardar el valor correcto de Tp 
 
 
}; // end while externo 
 
 
c=c-1; 
K=K-1; 
 
//cout << " *  El tempo  es:  " << tempo << endl; 
 
//cout << " " << endl; 
//cout << " " << endl; 
//cout << " *************************************** ***************** " << 
endl ; 
//cout << " *                                                      * " << endl ; 
//cout << " * ------------   RESULTADO OPTIMIZADO    ------------- * " << endl; 
//cout << " *                                                      * " << endl ; 
//cout << " *  La utilidad Optima Global es:  " << Uoptant << endl; 
//cout << " *  La K optima es:  " << K-1 << endl; 
//cout << " *  El Tp optimo es:  " << tempo << endl; 
//cout << " *                                                      * " << endl ; 
//cout << " *************************************** ***************** " << 
endl ; 
 
//cout << " " << endl; 
//cout << " " << endl; 
 
////////////////////////////////////////////////////////////////////////////////////////// 
// ^^^^^ Conjunto de actividades adjuntas a la rutina, para lograr una mejor optimizacion 
// ^^^ La idea es calcular limites para volver a realizar una optimizacion mas fina 
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lb=tempo-0.1; // lower bound donde comienza la nueva optimizacion 
ub=tempo+0.1; // upper bound donde termina la nueva optimizacion 
 
//cout << " " << endl; 
//cout << " ^^ " << endl; 
//cout << " *^^  El LB optimo es:  " << lb << endl; 
//cout << " *^^ El UB optimo es:  " << ub << endl; 
//cout << " ^^ " << endl; 
//cout << " " << endl; 
 
//^^ 
Utotal= -1000000000000; 
Uprima = -1000000000000000000; 
Tp = lb ; 
l=1; 
//^^ 
 
ka=K-1; 
 
 
while ( Utotal > Uprima ) // WHILE q realiza la optimizacion requerida 
 
{ 
 
Uprima=Utotal; // Uprima asume el valor Utotal del periodo anterior para poder comparar 
//cout << "Uprima es : " << Uprima << endl; 
 
// llamada a tercera rutina, para obtener la evaluacion y el valor de Uopt 
Utotal = evaluar (b,xint,noise,E,F,aSp,aCp,aMp,aAp,aRp,aTp,ahdayP,aVp,Tp,ka,B,S,z) ;  
Tp=Tp + StepPe ; // Incrementa el ciclo de Conteo para Tp 
 
//cout << " " << endl; 
 
// Variable Ug[l] , para almancenar los valores de la Utilidad en cada Tp 
Ug  = Utotal; 
 
 
}; // end WHILE  
 
 
 
//cout << " *  La utilidad optima es:  " << Uprima << endl; // es l-2 porque 2 posiciones 
mas se cuentan 
//cout << " *  El tiempo optimo de Produccion es :  " <<  Tp - 0.02  << endl; 
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Tiempo = Tp - (StepPe*2); // almacena el valor optimo del Tiempo de Produccion, para 
la K correspondiente 
 
 
 
// -- Valores que se exportaran a main -- 
 
*k=K-1; // asignacion de valor optimo de K al apuntador correspondiente 
*t=Tiempo;  // asignacion de valor optimo de Tp al apuntador correspondiente 
 
*Tuno=tempo; 
 
//cout << " *************************************** ** " << endl; 
//cout << " COMPROBACION DE VALORES (K,Tp) DE SUBRUTINA " << endl; 
//cout << " " << endl; 
cout << " La K optima es: " << *k << endl; 
//cout << " " << endl; 
cout << " La Tp optima es: " << *t  << endl; 
//cout << " " << endl; 
//cout << " La D es: " << *Dd << endl; 
//cout << " " << endl; 
//cout << " *************************************** ** " << endl; 
//cout << " " << endl; 
 
return (0); 
 
} // end SUBPROBLEMA 
 
 
 
 
 
 
 
//////////////////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////////// 
// 
*************************************************** *********************
*****//// 
// *   3. SUBRUTINA Evaluadora , para obtener los valores de Utilidad por caso * /// 
// 
*************************************************** *********************
*****//// 
//////////////////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////////////////// 
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double evaluar (int b,int xint, int noise, double *E, double F,double aSp, double aCp, 
double aMp, double aAp,double aRp ,double aTp ,double ahdayP ,double aVp, double Tp, 
double K,double B,double S, double z) 
{ 
 
  
//cout << " $$$ --- SUBRUTINA --- $$$ " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
//cout << " $$$ VALORES EXPORTADOS $$$ " << endl; 
//cout << " " << endl; 
//cout << " F(Lambda) es: " << F << endl; 
//cout << " aSp es: " << aSp << "\n" << endl; 
//cout << " aCp es: " << aCp << "\n" << endl; 
//cout << " aMp es: " << aMp << "\n" << endl; 
//cout << " aSp es: " << aSp << "\n" << endl; 
//cout << " aAp es: " << aAp << "\n" << endl; 
//cout << " aRp es: " << aRp << "\n" << endl; 
//cout << " aTp es: " << aTp << "\n" << endl; 
//cout << " ahday2 es: " << ahdayP << "\n" << endl; 
//cout << " aVp es: " << aVp << "\n" << endl; 
//printf(" H es:\t%.20f",ahday2); 
//cout << " " << endl; 
//cout << " " << endl; 
//cout << " V es: " << aV << "\n" << endl; 
//cout << " b es: " << b << "\n" << endl; 
//cout << " xint es: " << xint << "\n" << endl; 
//cout << " noise es: " << noise << "\n" << endl; 
 
 
 
int i,w,a,indice; 
 
double d; 
double P; 
double Utres,Ucuatro; // Guardan los valores de utilidades para cada tipo de caso 
double Prod,meta,Sum; 
double Compra,Utotal,Uopt,UP,Usuma,Step; 
double q;      // inventario inicial 
double ku;     // inventario inicial para ciclo IF 
double Q;      // inventario final 
double s;      // Sigma para k=1, Sigma para cualquier valor de K 
 
double *EE; //arreglos de ruidos 
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/// algunos valores iniciales 
Step=0.1; 
/// 
 
EE = (double *)calloc( xint*noise ,sizeof( double ) ); 
// 
 
 
// --- FIN - declaracion de variables --- // 
 
 
//cout << " " << endl; 
//cout << " *************************************** ** " << endl; 
//cout << " *              3. EVALUACION            * " << endl; 
//cout << " *************************************** ** " << endl; 
//cout << " " << endl; 
 
for (a= (b-1)*noise ; a < noise + (b-1)*noise ;a++) 
{ 
 //cout << " El ruido exportado de main { " << a << " } es: " << E[a] << endl; 
} 
 
//cout << " *************************************** ** " << endl; 
 
// -- //  ciclo para almacenar los ruidos , segun la K , este es el ciclo importante 
 
 
 a=0; // inicializar variable que guarda ruidos 
 
 indice = (b-1)*noise; 
 
 //////////////////////// 
 for (i=0;i<(noise/K);i++)  
 { // inicia FOR , ciclo C 
 
  // inicializar variables en uso, b y sum 
  w=0; 
  Sum=0; 
 
  while ( w < K )  
  { // inicia WHILE, ciclo C 
 
   Sum = E[indice] + Sum; 
   indice++; 
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   w=w+1; 
 
  } // termina WHILE , ciclo C 
 
  //i=i-1; // arreglo para restar un periodo a la suma hecha en el ciclo anterior 
 
  //cout << " i es: " << i << endl; 
  //cout << " La suma: " << Sum << endl; 
  //cout << " " << endl; 
 
  EE[a]=Sum/K; // Arreglo que guarda el valor de los ruidos, segun la K 
  a=a+1; 
 
 } // termina FOR , ciclo C 
 //////////////////////// 
 
 //cout << " " << endl; 
 
// 
for (a=0;a<(noise/K);a++) 
{ 
 //cout << "El ruido E de k[ " << a << " ] es : " << EE[a] << endl; 
} 
// 
  
//- Periodo Inicial -// 
 
// *  algunas variables que se deben definir al comenzar cada periodo */ 
 
//cout << " " << endl; 
//cout << " *** " << endl; 
//cout << " " << endl; 
//cout << " CONDICIONES DE EVALUACION AL COMENZAR CADA PERIODO" 
<< endl; 
//cout << " " << endl; 
 
s = 0.05; // desviacion estandar 
S = s*sqrt(K); // valor real de sigma , para k mayor a 0 
 
ku=0; // inventario inicial  
 
// == ver algunos valores 
//cout << " ku es: " << ku << endl; 
//cout << " aMp es: " << aMp << endl; 
//cout << " Tp es: " << Tp << endl; 
//cout << " B es: " << B << endl; 
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//cout << " K es: " << K << endl; 
//cout << " z es: " << z << endl; 
//cout << " S es: " << S << endl; 
 
// Demanda 
d = ( (ku+(aMp*Tp)) ) / ( B *( K + z*S ) ) ;  
//cout << " La tasa de demanda , d , para este periodo es: " << d << " unidades por dia " 
<< endl; 
//cout << " " << endl; 
 
// Precio 
P = (aRp - d)/(aAp); 
//cout << " El precio, P , para este periodo es: " << P << " unidades por dia " << endl; 
//cout << " " << endl; 
 
// Cantidad de produccion 
Prod = Tp*aMp; 
//cout << " La produccion para el periodo sera de: " << Prod << " unidades " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
 
//inicializadores 
Utres=0; 
Ucuatro=0; 
 
 
 
///////////////////////////////////////////////////////////////////////// 
 
// Inventario Inicial para periodos subsecuentes , donde ku=I=z*s*m*t1 
 
 
q=0; // inicializador de variables 
 
 
 
//--{} Ciclo IF para determinar el valor del inventario Inicial 
 
if (q<0.0){ 
 ku= (z*S*aMp*Tp)/(K);} // Inventario Inicial puesto para cierto nivel de servicio , 
Se compra 
else 
{ 
 ku = q;}  // Inventario Inicial es igual el Inv. Final del periodo Anterior  
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//--{} Fin ciclo IF 
 
 
 
////////////////////////////////// 
Usuma=0; 
for ( a=0 ; a<(noise/K) ; a++ ) // ciclo FOR para simulaciones de periodos 
{ 
 
 //cout << " " << endl; 
  
 if ( ku < 0 ) 
  ku= (z*S*aMp*Tp)/(K); 
 
 d = ((ku+(aMp*Tp))/((B)*(K+(z*S)))); // calculo de demanda para cada periodo 
 
 
 P = (aRp - d)/(aAp); // calculo de precio , segun demanda 
 
 
 Q= Tp*aMp + ku - d*K*B*(EE[a]); // inv. final 
 //cout << " El ruido Ea es: " << E[a] << endl; 
 
 //cout << " El INVENTARIO INICIAL del periodo es: " << ku << endl; 
  
 //cout << " El INVENTARIO FINAL del periodo es: " << Q << endl; 
 
 
 meta= Tp*aMp - (d)*(K*B) + ku; // inventario inicial 
 //cout << " La META del periodo es: " << meta << " unidades " << endl; 
 
 
 
// ---- EVALUACION DE CASOS DEL ELSP ---- // 
 
// ** ciclos IF para los dos casos posibles // 
 
if ( ( ku >= 0.0 ) & ( Q > 0.0 ) )  
{  
  
 // Caso 3 // 
 Utres = P*(d)*(EE[a]*K)*B - aSp - aCp*aMp*Tp - (aCp*(ahdayP))*ku*K - 
(aCp*(ahdayP)*K)*(aMp*Tp)*(1-(Tp/(2*K*B))) + (aCp*(ahdayP)*K)*(EE[a]*B*d*0.5); 
    
 //cout << " price> " << P*(d)*(E[a]*K)*B << endl; 
 //cout << " setup> " << - aSp << endl; 
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 //cout << " prod> " << - aCp*aMp*Tp << endl; 
 //cout << " inv1> " <<- (aCp*(ahdayP/12))*ku*K << endl; 
 //cout << " inv2> " << - (aCp*(ahdayP/12)*K)*(aMp*Tp)*(1-(Tp/(2*K*B))) << 
endl; 
 //cout << " inv3> " << + (aCp*(ahdayP/12)*K)*(E[a]*B*d*0.5) << endl; 
  
 
 UP=Utres; 
 //cout << " ** Caso TRES ** " << endl; 
 //cout << " Utilidad del periodo " << a << " es: " << UP[a] << endl; 
 //cout << "  " << endl; 
 
 ku=Q; // inventario inicial del sig. periodo es mi inventario final en este periodo 
  
  
} 
 
if ( ( ku >= 0.0 ) & ( Q < 0.0 ) ) 
{ 
 
 // Caso 4 // 
 Ucuatro = P*(d)*(EE[a]*K)*B - aSp - aCp*aMp*Tp - 
aVp*((d*(EE[a]*K)*B)+(aMp*Tp)*(((z*S)/(K)) - 1)) - 
aCp*K*(ahdayP)*((Tp*Tp)/(2*B))*(((aMp*aMp)/(d*(((EE[a]))))) - (aMp/K))  - 
((aCp*K*(ahdayP)*(ku))/(B*d*((EE[a]))))*((Tp*aMp) + (ku/2)) ; 
 
 //cout << " 1: " << P*(d)*(E[a]*k)*B << endl; 
 //cout << " setup: " << -aS << endl; 
 //cout << "prod: " << -aC*aM*Tp << endl; 
 //cout << " v: " << - V*((d*(E[a]*k)*B) +(aM*Tp)*(((z*S)/(k)) - 1)) << endl; 
 //cout << " inv1 " << - aC*k*(aH/12)*((Tp*Tp)/(2*B))*(((aM*aM)/(d*(((E[a]))))) 
- (aM/k)) << endl;   
 //cout << " inv2 " << - ((aC*k*(aH/12)*(ku))/(B*d*((E[a]))))*((Tp*aM) + (ku/2)) 
<< endl; 
 
 UP=Ucuatro; 
 //cout << " ** Caso CUATRO ** " << endl; 
 //cout << " Utilidad del periodo " << i << " es: " << UP[a] << endl; 
  
 Compra = ((d)*(EE[a])*(K)*B)+(aMp*Tp)*(((z*S)/(K)) - 1); 
 //cout << " Se necesitan comprar: " << Compra << " unidades " << endl; 
 //cout << "  " << endl; 
 
 ku=Q; // Cambio de variable para que el Inv. Final del periodo Anterior sea el Inv. 
Inicial del periodo siguiente 
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} 
 
//Variable que va acumulando el valor de las utilidades 
Usuma = UP + Usuma; 
 
} // termina ciclo FOR 
 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////// 
// *** -- e. Resultado Final del PELSP  -- ***************************** // 
/////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
 
////////////// Ya no lo uso -- 21 jun06 ///////////////////// Ciclo FOR para suma de periodos 
//for ( a=1 ; a<(periodos/K) ; a++ ){ 
// Suma = UP[a] + Suma;} 
 
 
Utotal = Usuma - Tp*F - aTp*F; 
 
//cout << " " << endl; 
//cout << " " << endl; 
 
//cout << " * --------------     RESULTADO FINAL    -------------- * " << endl; 
//cout << " *                                                      * " << endl; 
//cout << " *  La utilidad total para la simulacion es:  " << Utotal << endl; 
//cout << " *  El tiempo de Produccion es :  " << Tp  << endl; 
//cout << " * ---------------------------------------------------- * " << endl; 
 
 
Tp=Tp + Step ; // Incrementa el ciclo de Conteo para Tp 
 
//valores que se transferiran: 
 
Uopt=Utotal; 
 
 
//cout << " --- Fin Tercera Rutina --- " << endl; 
//cout << " " << endl; 
//cout << " " << endl; 
 
 return (Uopt); 


