INSTITUTO TECNOLOGICO Y DE ESTUDIOS
SUPERIORES DE MONTERREY

) CAMPUS MONTERREY
DIVISION DE INGENIERIA'YY ARQUITECTURA
PROGRAMA DE GRADUADOS EN INGENIERIA

“Deterministic and Stochastic Profit MaximizatiorMions
of the Economic Lot Scheduling Problem with pricing
considerations”

TESIS
PRESENTADA COMO REQUISITO PARCIAL
PARA OBTENER EL GRADO ACADEMICO DE

MAESTRO EN CIENCIAS
CON ESPECIALIDAD EN CALIDAD Y PRODUCTIVIDAD

POR:
ING. LUCIANO SALVIETTI CIGNETTI

MONTERREY, N.L. DICIEMBRE 2006

INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES
DE MONTERREY

CAMPUS MONTERREY

DIVISION DE INGENIERIA Y ARQUITECTURA
PROGRAMA DE GRADUADOS EN INGENIERIA

Los miembros del Comité de tesis recomendamos @jyeelsente tesis del Ing.
Luciano Salvietti Cignetti sea aceptada como refguigarcial para obtener el
grado académico de Maestro en Ciencias con esipaciadn:

Sistemas de Calidad y Productividad

Comité de Tesis

Dr. Neale Ricardo Smith Cornejo
Asesor

Dr. José Luis Gonzélez Velarde Dr. Francisco Angel-Bello
Sinodal Sinodal

Aprobado:

Dr. Francisco Angel-Bello
Director del Programa de Graduados en Ingenieria
Mayo 2006

Dedicated to
To God, for giving me the opportunity to be at Memey doing this

Master’'s degree and also for being my guidancenayndornerstone through

life.

To my family, for their everlasting support andgh#éirough all these years.

Acknowledgments

To my thesis advisor, Dr. Neale Smith, for suppgytand guiding me on the

completion of this thesis.

To the doctors at the ITESM Extended EnterpriseMasss Customization
Research Chair in Industrial Engineering, for the&lp and guidance

through the research seminars during my studemsyea

This research thesis was supported by the ITESMrieldd Enterprise for
Mass Customization Research Chair in Industrial ike®ring (Fund

Number CAT025)

To all the people at the Quality and Manufacturicenter on ITESM

Monterrey Campus, thanks for their friendship amplp®rt.

Dedicated to
Acknowledgments

Table of Contents

List of Tables and Figures

Abstract

Chapter 1. General Context
1.1 Introduction

1.2 Objectives

1.3 Hypothesis

1.4 Justification

1.5 Scope

Chapter 2. Literature Review
2.1 The Economic Lot Scheduling Problem

2.2 Stochastic lot scheduling problems

2.3 Pricing

Table of Contents

Page

iii
Vi

viii

15

Chapter 3. Modeling and Solution Methodology

3.1 Description of Models

20

3.1.1 PELSP

3.1.2 SPLSP
3.1.2.1 Estimating the Expected Profit
3.1.2.2 Limitations

3.2 Solution Methodology

3.2.1 PELSP

3.2.2 SPLSP
3.2.2.1 Routine Main
3.2.2.2 Initialization
3.2.2.3 Colum entry
3.2.2.4 Computing upper bound
3.2.2.5 Solving the subproblem

3.2.2.6 Search optimization method

Chapter 4. Experimentation

4.1 PELSP Computational Experience
4.1.1 Managerial Insight

4.2 SPLSP Computational Experience
4.2.1 Algorithm parameters
4.2.2 Performance testing

4.2.3 Robustness

20

24

29

32

35

36

a7

49

50

51

51

52

53

54

62

66

68

76

78

Chapter 5. Conclusions

5.1 Conclusions

5.2 Recommendations for further research

References

Appendix 1. C ++ program for the PELSP

Appendix 2. C++ program for the SPLSP

83

84

85

94

116

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

List of Tables and Figures

Author Comparison for backorder/shortaggiscand types of service level 12

Value ranges for product parameters 55
Setup time ranges for different sets peexnents (in days) 56
Results for problems with 2 products 56
Results for problems with 10 products 57
Results for problems with 30 products 57
Effect of number of iterations 59
Value ranges for product parameters 61
Value ranges for parameters (2 products) 7 6
. Value ranges for parameters (10 products) 67
Value ranges for parameters (30 products) 68
Maximum number of iterations testing hssior 2 product problems 69

Maximum number of iterations testing hssior 10 product problems 70

Maximum number of iterations testing hssior 30 product problems 71

% deviation from UB testing results fgerdduct problems 73
% deviation from UB testing results fOrgroduct problem 74
% deviation from UB testing results fOriBoduct problems 75
Results with = 0.05 77

Vi

Table 19. Results with = 0.2 77

Table 20. Mean deviations from original solutiorpf@ducts) 80
Table 21. Mean deviations from original solutio@ @roducts) 81
Table 22. Mean deviations from original solutio@ @oducts) 81
Figures

Figure 1. SPLSP cases graph 30
Figure 2. Flowchart of Routindain 38
Figure 3. Flowchart for ProceduB®olveSub 41

Figure 4. Case B =1,S=33.5932¢ = 20.6260m = 3474.7896,
T=0.0683h=.000295 43
Figure 5. Case B = 1,S=500,c = 1000,m= 1000,

T=0.0683h=.0000833 43
Figure 6. Case 8 =1,S=33.5932¢ = 20.6260m = 2500,

T = 0.0683h = .000295 44

vii

Abstract

The Economic Lot Scheduling Problem (ELSP) is d Wwebwn problem that focuses on
scheduling the production of multiple items on g machine such that inventory and
setup costs are minimized. In this thesis the ELSRextended to include price
optimization with the objective to maximize profitsTwo variants are proposed: a
deterministic version which will be known as theUSP and the stochastic version
which is called the SPLSP. A solution methodologgddl on column generation and
integer programming is proposed and is shown taywwe very close to optimal results
with short solution times. Computational testing performed to evaluate the
methodology. The results are discussed and recoduatiens for further research are

provided.

viii

Chapter 1. General Context

Chapter 1. General Context

1.1 Introduction

The Economic Lot Scheduling Problem (ELSP) has Istadied since about 50 years
ago. The ELSP deals with the problem of schedulgproduction of a multi product
system. The problem itself includes a capacityrictgin for the whole system to remain
feasible, so there are restrictions on the timaeleédo produce each product as well as
the periods in which they will be scheduled to bedpiced. In a few words, the purpose
of the ELSP is to solve the problem of how to maimicyclic production patterns based

on lot scheduling while minimizing costs.

There are numerous of methods that seek to produmcepproximation to cyclic
coordination. The Basic Period approach (BP) isafrtee most known and assumes that
the production runs of all products must be redlize@ a production period that is
sufficiently big enough for that purpose. This doaisit is the one that creates some
problems because some solutions can be becometsnbbhere is also the Extended
Basic Period approach (EBP) which removes the lmasistraint of the BP approach and
admits the possibility that on a certain periodimfe, some products and not necessarily
all can be produced. This relaxation is an impdrtariant that influences the possible
solutions to the problem. It is important to notitat for this thesis, the Basic Period

approach will be used.

Chapter 1. General Context

Regarding the optimization of the ELSP, it is intpaot to notice that all the prior authors
have used a wide variety of optimization methodsptopose feasible and optimal
solutions: some have used heuristics, branch anddalgorithms, integer programming
and genetic algorithms, but none of them have wbnk&h the column generation

technigue with mixed integer programming. This teghe has been used on different

problems and areas.

The purpose of this thesis is to use the columreggion technique as an optimization
tool that helps to achieve feasible solutions ®ELSP problem with price optimization.

In chapter 2, a literature review is presentedacthis thesis within the proper context.

Then, chapter 3 will be focused on the developnoénhe mentioned problem but with
two variants: the deterministic model of the ELSRthwpricing (the so called
“deterministic lot scheduling problem with pricetopization” or just “PELSP”); and the
stochastic version of the ELSP with pricing (theothastic lot scheduling problem with
price optimization”, or just “SPLSP”).Basically, ¢h PELSP presents the basic
formulation of the ELSP where both the price anal phoduction schedule are found in
order to maximize profit. In the case of the SPL8#®, production times and cyclic
periods of each product are the decision variadahekprice is a recourse variables which
is not directly optimized. Chapter 3 will also becfised on describing the solution
methodology used for the models developed whilep@&rad will present and discuss the
experiments designed to test the robustness obplieization method. Chapter 5 will

provide general conclusions.

Chapter 1. General Context

1.2 Objectives

As it was said in the introduction, the main pugo$the research on this thesis is to use
the Column Generation Technique as an optimizatiethod for the two models
presented. In other words, the objectives are:

* Formulate a complete optimization algorithm thaidé the solution to the lot
scheduling problem with price optimization, for bahe deterministic and the
stochastic versions, for a manufacturing systerh witllti products that includes
prices, setup times and capacity restrictions

* Use the Column Generation Technique to optimize teterministic lot
scheduling problem with price optimization (PELSP)

* Use the Column Generation Technique to optimizestbehastic lot scheduling

problem with price optimization (SPLSP)

1.3 Hypothesis

Chapter 1. General Context

Based on the objectives described above, it iglglsat that the general purpose of the
thesis is to prove that the Column Generation Tieglenis a good and feasible method to
optimize the lot scheduling problem with pricingcadrdingly, two basic hypotheses

have been developed, which are the following:

* The Column Generation technique produces resudtisate GOOD FEASIBLE
SOLUTIONS near the optimal solution (on a 5% rangey the deterministic lot

scheduling problem with price optimization (PELSP)

» The Column Generation technique produces resudtisate GOOD FEASIBLE
SOLUTIONS near the optimal solution (on a 5% rang®r the stochastic lot

scheduling problem with price optimization (SPLSP)

1.4 Justification

This thesis can be considered very important fer @perations Research community
interested in the optimization of multi product guootion systems with Prices. The
essential value of the models analyzed in thisishis that the Column Generation
technique works well for joint production and pnigi problems. In fact, the solution
methodology presented on the thesis is on certaiy @xploratory because up to date
there haven't been similar works which apply théchnique to joint pricing and

production problems. Finally, it is important tonotude saying that the results of the

Chapter 1. General Context

thesis will help promote more research on lot sohedg production systems with

pricing , as well as to set the bases for new ptejthat derivate from the thesis.

1.5 Scope

The research topic proposed for this thesis dedls an area of production systems
optimization that has not been fully studied uglaéde. The whole topic is innovative and
offers an opening in an area that is importantdéopte on production and operations
research. The experimentation that was conductechapter 4 will help show the results

of my proposal and indicate the following futureeditions of this optimization area.

Chapter 2. Literature Review

Chapter 2. Literature Review

2.1 The Economic Lot Scheduling Problem

The Economic Lot Scheduling Problem (ELSP) is al Webwn problem, based on the
single item Economic Production Quantity (EPQ) modéich focuses on scheduling
the production of multiple items on a single maehsuch that inventory and setup costs
are minimized. A great number of approaches toisglthe ELSP have been proposed.
Since the work on this thesis is directly relatedtwo variants of the ELSP, it is
important to understand where these variants fitlaow they interact with other models
in the existing literature. So, in this sectiomeaiew of the deterministic economic lot

scheduling model is presented.

One of the earliest models for economic lot prograng is proposed by Manne [42],
who focuses on the production of several itemswoegkshop. Rogers [46] continues that
approach but looks further and realizes that irctore, when several items have to be
manufactured, the situation becomes an economisdioéduling problem. The author
then provides the first models of the ELSP, devedbio fit the production schedules of
various items into a defined planning period. Lat¢her methods are developed to solve
the ELSP. Bomberger [8] uses dynamic programmingotge the problem. Bomberger

[8] is also the first author to propose that theleyime for each product should be an

Chapter 2. Literature Review

integer multiple of a Basic Perio&)(which has to be long enough to allow all items to

be produced in that period.

Madigan [41] develops heuristic methods for the ELBoll and Whybark [16] propose

additional heuristics but focus on an iterative gedure that directly determines the
production cycle for each product as an integerbenmHaessler and Hoghe [30], basing
their work on the Doll and Whybark [16] model, pgasan improved iterative procedure

that guarantees a feasible solution, unlike pres/loeuristics.

Elmaghraby [17] provides an extensive review of BL®search and proposes what is
known as the Extended Basic Period (EB) approactieindie also proposes an integer
model that systematically achieves feasibility &acdilitates determining the production
multipliers. Haessler [29] continues the approachgdroposes restricting the number of
periods between production runs to integer powérsvo, very quickly finding good
solutions. Graves [27] advances on the mathemairogiramming front by developing a
non linear mixed integer model that works striathth integer multipliers and a non-
integer period. Dobson [15] continues the develauned heuristics and develops a
method that allows cycle time and lot size varii@ssuming that the setup costs vary
with the number of setups and include only cosa$ would result in actual cash losses.
The approach allows feasible solutions to be foumoke easily and the resulting

solutions smooth the utilization of the facility.

Chapter 2. Literature Review

Bretthauer et al. [10] proposes a general modelsahation method that can be adapted
to the ELSP model developed by Elmaghraby [17].iTheanch and bound algorithm
produces better solutions than those produced upnegious approaches. Another
notable achievement, by Gallego and Shaw [24]h@aving that the ELSP is NP hard.
Their approach focuses on cyclic scheduling sirareayclic scheduling is a very hard to
explain and evaluate. Regarding the structuréd@foroblem, Yao and Elmaghraby [61]
study an ELSP model without capacity restrictionsl @onsider the model’'s behavior
under a power-of-two policy originally proposed Byundy [48] in another context.

Their study concludes that the objective funct®piece-wise convex.

More recently, Wagner and Davis [57] propose adedreuristic for an ELSP with
sequence dependent setups. Yao et al. [62] presemimproved linear models based on
a heuristic that guaranteed feasibility for the EBSP. Cooke et al. [14] proposes an
improved non linear mixed integer model that algpnsiders production sequences. They
also compare dynamic programming and genetic dlgorapproaches. The most recent
studies seem to be those by Yao and Huang [63], prbpose a hybrid algorithm for
deteriorating products using a power-of-two politiy et al. [40], who also work with
deteriorating products but use a common cycle amtroand Chang et al. [11], who

develop a specialized model for fuzzy demand.

Chapter 2. Literature Review

2.2 Stochastic lot scheduling problems

The second of the ELSP variants proposed on tleisighis a stochastic version of the
ELSP, which it is known as the “Stochastic Lot Shhang Problem with Price
optimization” (SPLSP). Following there is a revievi work done on the area of

stochastic lot scheduling problems.

Sox et al. [53] proposed a complete review on sistib lot scheduling problems. On
their paper, they mention that the general SLSP e the problem of scheduling
production of multiple products, each with randoemand, on a single facility with
limited production capacity and changeover betwmeducts. They also mention that the
SLSP does have two basic variants: the continuoous tmodel which is known as the
SELSP (Stochastic Economic Lot Scheduling Problamj the discrete time version
which is known as the SCLSP (Stochastic Capacitédsicheduling Problem).

Following the prior classification, it can be sditht the SPLSP cannot be particularly
defined as a member of one of the two variantstlan be portrayed as a hybrid model
because it shares some assumptions and characteastboth models: regarding the
SELSP, the model relates with it on the assumptibasthe demand must be stationary
and that the time horizon is infinite; regarding tBCLSP model, the model shares the

assumption of discrete scheduling times.

Having seen where the SPLSP fits on the currengsifieation for stochastic lot

scheduling models, it is time to explore some efwork done on the SELSP as well as

Chapter 2. Literature Review

the SCLSP, taking into account that the focus islépict the types of solution and

general details about the models.

As it was said before, the Stochastic Economic &oheduling Problem (SELSP) is a
developed extension of the deterministic Econonat $cheduling Problem (ELSP). The
focus of the SELSP model is scheduling the prodactn a single machine multi
product system, taking into account random demantbsgtup times while minimizing
the total costs incurred. Winands et al. [59] ps®a very complete an up to date review
of the work done on the SELSP area. They analyzdliffierent variants that arise from
the basic SELSP model, including a classificatiaasdal on the types of solution:
production sequence (fixed and cyclical) and Iring policies (global or local). Finally,
they present some lines of research for the future.

Some of the papers that we are going to reviewfitam the different categories: Qiu
and Loulou[45] and Sox and Muckstadt[52] presentemtiels that fit on the dynamic
production sequence and global lot sizing categilganwhile, Altiok and Shiue[3][4]
and Zipkin[64] fall into the dynamic production seupce and local lot sizing category.
On the fixed production sequence and dynamic clagth category with global lot
sizing strategies we can see the works of Bourland Yano[9], Gallego[22] and
Markovitz[43] among others. Also, on the fixed puoton sequence and dynamic cycle
length with local lot sizing strategies we can aheethe papers of Anupindi and
Tayur[5], Federgruen and Katalan[20] and Vaughan[bthally, it can be observed the
work of Erkip et al.[19] on the fixed productiongeence and dynamic cycle length

category with local lot sizing strategies.

10

Chapter 2. Literature Review

Currently, the SPLSP fits on the “Fixed productgeguence + fixed cycle length and
Local Lot sizing strategy” category. Regarding tb&egory, Winand et al. [59] tell us
that the research work done on it has been inseffificand is a good line of work for
future papers, which somehow validates the effimgards contributing with new work

on stochastic scheduling problems. As it will berséater on the description of the
SPLSP model, the fixed production sequence andl foyecle length are going to be
known as the design variables for the SPSLP.

Also, it is important to notice that the SPLSP cohsystem involves two policies:

pricing and purchasing. These two policies charamehe singularity of the model and
define how the production system is kept on balawbde trying to maximize the

expected profit.

Another interesting aspect of the SPLSP, which astlvmentioning, is the fact that it
works with a service level policy to control thecaoence of backorders. What it has
been noticed is that the authors on stochastisdieéduling problems use different ways
to achieve a desired service level for the custorRellowing is a comparison table
regarding the inclusion of backorder/shortage caststhe type of service level strategies

used by the authors reviewed:

11

Chapter 2. Literature Review

Backorder / Shortage
Author Service Level
costs
Average backorder level , probability of backorders due to
Altiok and Shiue [3] Backorder
average inventory levels
Expected fraction of orders filled immediately, response
Anupindi and Taylor [5] Backorder
time for an order and backlog costs
Bourland and Yano [9] No Reorder point on passing dfiety stock levels
Federgruen and Katalan
Backorder Lower bounds on the item’s fill rate
[20]
Gallego [22] Backorder Service levels using backorder ardirtgotosts
Goyal [26] Shortage Probability of shortage occurengal to a service level
Leachman and Gascor Customer service policies (that avoid the happening pf
No
[38] shortages)
Markovitz et al. [43] Backorder Average server utilization
Qui and Loulou [45] Backorder Probability of backord@gual to constant value)
Fraction of total capacity required to meet the expected
Sox and Muckstadt [52] Backorder
demand for all items through period t
Vaughan [56] No Safety stock for a defined cycle service level
Service rate (average number of batches processed per unit
Zipkin [64] Backorder while the server is busy), Constant Lower Bound for
average backorder per item

Table 1. Author Comparison for backorder/shortaggcand types of service level

Goyal[26] started the approach on stochastic lloegualing models by presenting a model

for a single machine production system where hexesl the assumption of deterministic

12

Chapter 2. Literature Review

demand , including also shortage costs. GraveswW28]one of the first authors to work
with the SELSP. His approach regards a Markov Datidlodel for a one product

problem, and using this method he develops a heutts solve the SELSP but with a
periodic review policy. Gallego[22] proposed arenaisting cyclic schedule model based
on the original ELSP but including random demandkh wonstant expected rates and
backorders. He formulated his model as a controblpm and established a linear

recovery policy to help achieve feasible and ngdinal results.

Bourland and Yano [9] establish a different apphodo stochastic lot scheduling
problems through the design of a model with cageadéck as a form of flexibility. Their

model is a very complete variety of the SELSP ttatsiders capacity slack, safety
stocks and overtime while minimizing the expecte@stcper unit time of inventory,

overtime and if applicable, on setup costs. Theehdbased on a two level hierarchical
solution approach with two variations: fixed capaclack and variable capacity slack.
The results of the paper have drawn some conclsisiegarding the importance of
carefully selecting the amount of capacity slactt e importance of optimizing the idle

time on a complex model like the ELSP.

Qiu and Loulou [45] formulated a model of the SELtBRuUgh a semi-Markov decision
process, for a two product system. The functiomhtihe model seems to be almost equal
to the one in Gallego[22] but the stochastic betraef demand is recreated through a
Poisson process and the unit processing time isvkn®his model includes setup time

and setup costs. The objective of the model wasnmEimg the total expected cost with

13

Chapter 2. Literature Review

discounting over an infinite horizon. The approgien by this model presented very
good results such that the error bound of the asthwdel is much tighter than other

error bounds they compared from normal SELSP models

Federgruen and Katalan [20] analyze the SELSP enolitom the modeling perspective
of Bourland and Yano [9] but propose a set of potidn and inventory strategies to
minimize holding, backlogging and setup costs. firudti production system works with
on a rotational cycle that includes to possibilitiyidle times. They also proposed the
establishment of lower bounds for the optimal a@ties and compare their results with
the application on some deterministic ELSP problehieir results show that the base-
stock policies proposed as strategies are effi@eadtrich in solutions and above all, are
far better than the solutions given on the deteishmapproaches.

Markovitz et al. [43] consider two queuing problemgth a structure similar to the basic
model proposed in Qiu and Loulou [45]: one thatudes random setup costs and other
that includes random setup times. In reality thets@ctures are control problems that can
be modeled like versions of the ELSP, but with loadkrs. Their approach is made
through the heavy-traffic analysis method mentiobgdSox et al.[53]. Basically, their
approach consists on approximating the schedulmeglem through diffusion control.
Their analysis gives as a result a dynamic lonhgiziolicy that gave new insights on the
optimal solution for the SELSP: basically they doded that the lot sizing policy
depends if setup costs or setup times are incamedthe cost structure form for all the

items.

14

Chapter 2. Literature Review

Regarding the SCLSP model, Sox and Muckstadt [6&tdbe a finite horizon stochastic
optimization model for a single stage multi prodsgstem, a dynamic model that bases
on the SELSP. Their solution procedures were miaiitid near optimal solutions. They
work with a master problem solved through Lagrageomposition algorithm and make

the optimization using the Branch & Bound procedure

2.3 Pricing

The literature on joint pricing and inventory opimation is also clearly related to the
work on this thesis. One of the earliest paperpraing and inventory is by Whitin [58],
who proposes a link between pricing and inventamytiol. Kotler [34] shows that there
exists an interaction between marketing policia$ the economic order quantity. He first
determines the optimal selling price that providesaximal revenue for a given demand
curve and then determines the EOQ considering ¢limg price and demand as fixed
parameters. Kunreuther and Richard [35] develop tmaentory models based on
economic order quantity (EOQ) and economic productjuantity (EPQ) models for
determining the pricing and lot sizing policies the case of the linear demand function.
Later, a general inventory model in which demand ifunction of a sales price that
depends on pricing policies and the unit cost esented by Ladany and Sternlieb [37].
Urban [55] develops an inventory model based orER@ model that considers learning

effects and the possibility of defective goods e fabrication process. It is used to

15

Chapter 2. Literature Review

determine simultaneously the lot size, price mgyk-and advertisement expenditure

when the demand for the goods is a deterministictfan of the selling price.

Several researchers have worked on joint pricing aventory problems from a
supplier's point of view. For example, Monahan [4fjalyzes the effect of a price
discount offered by a supplier to its unique buyih the main objective of increasing
the supplier’'s profit. A model for determining siltameously the price and lot size for
the supplier-buyer problem from the supplier's padh view considering a scheme of
quantity discounts is presented by Rosenblatt se®l [47]. They show that the optimal
order quantity for a supplier is an integer mudigf the buyer’s lot size. Abad [1,2]
solves the problem of joint price and lot size deiaation faced by a retailer when
purchasing an item for which the supplier offersimremental and an all-unit quantity

discount scheme considering the linear and constasticity demand functions.

More recently, Lee [39] presents a geometric pnogning approach to determine a
profit-maximizing price and order quantity for aaker. He considers the demand as a
nonlinear function of selling price with a constaasticity. Also, Kim and Lee [33]
present a study that focuses on fixed and variedgbacity models for the joint setting of
a product’s selling price and lot size for a prafiaximizing organization considering
constant but sales price-dependent demands ovimnaipg horizon. Most recently, an
EPQ inventory model that determines the produdtibisize, marketing expenditure and
product’'s selling price is developed by Sadjadiatt [49] and an algorithm for

simultaneous determination of the sales price amdsikze in a make-to-order contract

16

Chapter 2. Literature Review

production environment from the supplier's perspects developed by Banerjee [6]. A
very recent contribution is the work by Haugenle{3l], who develop a model for the
Capacited Lot Sizing Problem (CLSP) that includeieep optimization. The author’s
name their model the PCLSP and their formulatiod solution approach set the stage
for further research on the topic. It is importemnote that the PELSP variant proposed
on the thesis, a model and solution method forcamemic lot scheduling problem with
pricing that uses the basic period approach is queg, thus extending the work of

Bomberger [8] along the lines advanced by Haugexh. ¢81].

Following, a review on some stochastic lot schedumodels that involve some kind of
pricing technique will be made. Continuing with ttlassification proposed by Sox et al.
[53] and adding the price optimization techniques would basically encounter two
stochastic lot scheduling problems with pricinge ®ELSP with pricing for 1 product or
multiproduct production systems, or the SCLSP witticing for 1 product or a

multiproduct production system.

One of the earliest approaches of Pricing on priodnicsystems can be found on the
work by Gallego and van Ryzin[23], who formulatedngensity control problem with
dynamic pricing where demand is price sensitive tndhastic, and the main objective is
to maximize expected revenues. The problem theysepte characterizes by two
properties: the lack of short term control overentory stock and the presence of due
times for selling goods. As it was said before, dieenand is a price sensitive stochastic

point process that is a decreasing function ofepead no backlogging is allowed. So

17

Chapter 2. Literature Review

basically, they propose a multi product productsystem where the time horizon for

planning and scheduling is finite.

One example of a paper that resembles the SELS® Rviting for a multi-product
production system is the work done by Fransoo .gal]. They introduced a two level
hierarchical model with an infinite time horizondadiscrete scheduling times, whose
objective was planning and scheduling multi produor a single machine production
system that works with stationary stochastic demaiad capacity constraints and does
not allow backorders. Their approach specializeditrations where demand levels are
high compared to the available production capadityey developed a heuristic to help
produce target production cycles and target serleels for each product. The
interesting part of this paper is that the focusors allocating capacity to individual
products in order to maximize the expected prohilevkeeping a desired service level
target for each product. So, the objective funci®to maximize profit at a service level

constraint.

Gallego and Van Ryzin[25] continued the line ofcprg on stochastic lot scheduling
models by proposing a finite horizon model for nmaizging the expected profit , similar
to their model on Gallego and Van Ryzin[23]. Th&eatence is that this new approach
includes two heuristics for solving the stochaptiablem that are shown to be optimal as
the expected sales volume tends to infinite. THeg propose the establishment of an

upper bound to compare the solutions using a detestic version of the problem.

18

Chapter 2. Literature Review

Most of the pricing stochastic production systemdeils® we have reviewed are
multiproduct but following we can see two paperswmhthe focus is the analysis of a
system with one product.

Chen and Simchi-Levi[12] proposed an infinite horizsingle product, periodic review
model where pricing is made as a joint decisiom@lwith the scheduling of production,
at the beginning of each working period. The mode&lyzed involves identically
distributed independent random demands, and isialportant to notice that demand
distributions vary according to the product priBacklogs are allowed and ordering costs
include a fixed and variable cost. They concludewshg that their stationary (s,S,p)
policy is optimal to maximize the expected discednbr expected average profit over
the infinite planning horizon. The same authorseeaed their work by proposing a
model, which can be seen at Chen and Simchi-Leji[dBere they analyze a finite
horizon version. The assumptions regarding the denaad the joint decisions remain
the same but now the objective is to find an inegnipolicy and pricing strategy that
maximizes the expected profit over that finite hon of time. As part of their
conclusions on the model they propose, they say ithdemand has an additive
distribution, the profit functions are k-concaveldhe stationary review policy is optimal,
but for other general demand distributions the ipfahctions are neither necessarily k-

concave nor optimal.

19

Chapter 3. Modeling and Solution Methodology

Chapter 3. Modeling and Solution Methodology

3.1 Description of Models

In the present chapter, the two ELSP variants mepon the thesis will be described

and also their solution methodologies will be deguic

3.1.1 PELSP
Before presenting model formulations for the PEL8#, following basic notation is

defined. Additional notation will be introduced adefined as needed.

Parameters:
B: length of the basic period, in days

S : setup cost for productin dollars per setup

C, : unit production cost for productin dollars per unit
m : production rate for productin units per day

T, : setup time for produdt in days

h, : inventory carrying charge for produgin % per day

M: number to products

20

Chapter 3. Modeling and Solution Methodology

7. available capacity in the basic period , in days

Variables:

d. : demand for produgt in units per day

k, : basic period multiplier for producta positive integer

Notice that the inventory carrying chargk X is allowed differ for different products.

This is because inventory carrying charges inclodén financial opportunity cost and
also operational (cash) costs. These operatiarsis @an vary between products. For
example, one product may require special handlmgtarage due to being more fragile

or simply of a different size than another.

In order to provide continuity with the non-pricii. SP model, the ELSP model that
applies the basic period approach is re-stated fieobjective is to minimize total cost

per unit of time. The model is:

min Z = ZT;HK?BJ-F[Q h (m ;nii)di i BJ:| W
S.t.
%{T. +di:; BJSB, o

21

Chapter 3. Modeling and Solution Methodology

Wherek is a strictly positive integer, B > 0 and@ < m;. In the ELSPB is a decision
variable andd, is a constant. In contrast, in the PELSP fornumatB is a given
constant andl, becomes a decision variable. The demand mjtdseecome variables

because the demand varies with a settable pricemo®opoly assumption is being made,
which although not always realistic has been madeeiarly all of the existing pricing
and inventory literature. The benefits of pricingtimization and the factors driving
developments in this area are documented in [Me assume thd is a constant for
two reasons: 1) as a simplifying assumption, anbdeZause in practice it is unlikely that
a real firm will be willing to produce on a scheelihat does not follow a pattern that fits
commonly used units of time such as hours, daysjesks. For this last reason it seems
more realistic to solve the problem for value8dhat are deemed acceptable by the firm

rather than let the length Bfbe determined by the solution method.

In the PELSP, the firm can set sales prices andaddns modeled as a function of price.

In the thesis, it is assumed that the demand fomési of the exponential type given by:

d, (R)=Rexd-PR/a), 3)

where R is a market size parameter for produ@nda; is a price scaling constant.

These parameters are usually obtained using statissstimation techniques in order to
best fit the demand behavior of a given productt Ewamples of the use of the
exponential demand function in previous pricingegesh see [36] and [51]. Since (3) is

an invertible function, the price can be expressed function of demand given by:

22

Chapter 3. Modeling and Solution Methodology

P (d))=a,In(R/d,). (4)

The objective is to maximize profit. The objectiuaction is:

maxU :iﬁ(di)mi —i|:[k§BJ+(Ci h (m Z_r:i)di ki Bj+ci di}) (5)

After substituting (4) into (5) we obtain the fallng formulation of the problem:

maxU = i‘[ai n(R /d.)d, - i{(k:SIBJ +(°ﬂ h (m z‘n‘:i)di k Bj ‘e di} (6)

S.t.

Y.d k B

yIKBor3T, ™

-1 m

with d; >0, andk;, > Oand integer. The decision variables are dheéndk; .Notice

that the right hand side of (7) is no lond&r This new right hand side is introduced
because in general the time available for setugspaoduction need not equal the time
span of the basic period. From (6), it can be ¢katB may be interpreted as the real
time span (clock time) over which demand is realizéh generaly may be less than the
clock time. For example, in a 24 hour period, fihm might operate for only one 8 hour

shift.

23

Chapter 3. Modeling and Solution Methodology

3.1.2 SPLSP
Before presenting model formulations for the SPL8MR, following basic notation is
defined. Additional notation will be introduced antkfined as needed. The design

variables are (@nd k, which will be depicted below.

Parameters:
B: length of the basic period, in days
7. Time available for production in a basic perioddays

S : Setup cost for productin dollars per setup

¢, : Unit production cost for productin dollars per unit
m : Production rate for productin units per day

T, : setup time for produdt in days

h.: Holding cost for produdt in % per day

M: number to producis
Di (-): Demand function for productin units per day

g : Random error fot periods

V.,: Vendor Price, for produgt in dollars per unit

Variables:

G, : Production time for product in days, a real > 0

k, : Basic period multiplier for product an integer > 0

24

Chapter 3. Modeling and Solution Methodology

In order to provide continuity with the non-pricii. SP model, the ELSP model that
applies the basic period approach is re-stated @ objective is to minimize total cost

per unit of time. The model is:

w80

Z[T + 8 BJSB, (©)

where k. is a strictly positive integer3>0 and0<d, <m . In the ELSPB is a

decision variable. In the PELSP formulation showedthe prior sectionB is a given

constant andl, becomes a decision variable. The demand mjtdseecome variables

because the demand varies with a settable price.

In the SPLSP formulatior8 remains constant. It is assumed thas a constant for two
reasons: 1) as a simplifying assumption, and 2alee in practice it is unlikely that a
real firm will be willing to produce on a schedulet does not follow a pattern that fits
commonly used units of time such as hours, daysjesks. For this last reason it seems
more realistic to solve the problem for value8dhat are deemed acceptable by the firm

rather than let the length Bfbe determined by the solution method.

25

Chapter 3. Modeling and Solution Methodology

The SPLSP is a model which tries to solve the @mobdf determining the optimal values

of G, andk to maximize the Total Profit. This model works wdtpolicy that requires

the maintenance of a service level to the costuniensugh two mechanisms:
1. Control of Prices
2. Buying when there is a backlog (The purchase & fitone to cover the

backlog and then to reach a certain inventory Jevel

Note: The Price and the amount of products boughtbe considered the recourse

variables.

In the SPLSP, the firm can set sales prices andciddns modeled as a function of price.

So, it is assumed that the demand function isefittear type given by:

Di(F)i):(bl _aipi) (10)

At first , an initial inventory of O units was supged and a price was determined so that it
could guarantee a certain probability of not hastagk outs. Using (10), the price can

now be expressed as a function of demand given by:

(11)

Whereg; andb; are market size parameters defined for each ptoduc

26

Chapter 3. Modeling and Solution Methodology

To control the desired price, a formula to prodiarea given value of5, (obtained

through the optimization that will be explaineds@ttion 3.2.2) is used. This formula,

known as the Required Production for produd®P), is given by:

Il +mG.
RP = M2 211

- Bl +{eoyk)

It's important to notice that the Required Prodoetior each product is aimed to control

the inventory at a service level of 95%, given g €xpression:

Pr(l, =0)= 095 (13)

After the required production is done, we need lbbseove the Final Inventory, where

there are two possible events:

1. The Final Inventory is Positive, thus the contrbltbe price is continued for the

next period of evaluation.
2. The Final Inventory is Negative, thus buying pradioas to be done in order to

solve the stock out. Regarding this situation,reha@re two policies for

determining the quantity that has to be bought:

a. The amount bought is the difference between thalRmventory of the
actual period [F,) and the Beginning Inventory of the prior peridg.).

The purpose of this policy is to ensure that a tp@siinitial inventory

27

Chapter 3. Modeling and Solution Methodology

level will be reached, which is equal to the sam®all inventory level on
the prior period ; So, the buy is then given by:
y=1.,4-1IF (14)

. The amount bought is calculated as the differemteden the Final

Inventory of the actual PeriodK;) and an optimum level quantit@))*

This optimum level quantity represents the maxinamount of units that

should be bought to maximize the total profit € tuantity is given by:

o :(B(za\/2k_|+ k)ﬁb _aV, (zak\/k_+ k)_ B(Zza:?k_6+ kf)}

(15)

Thus, the quantity bought is,

y=Q*-IF (16)

Is important to notice that because of the shajg of there are certain
values of the design varialiiethat produce negative values Qrf, which

means that is too expensive to buy that much quaatid is it better just
to buy the amount that was not delivered to thentlon the prior period.

Thus, IfQ * <0, thenQ;* = 0, and (16) changes like this:

y=- IF. (17)

28

Chapter 3. Modeling and Solution Methodology

3.1.2.1 Estimating the Expected Profit
As it was said before, the objective is to maxinttze Expected value of the Total Profit,

given by:

Max = EV[Profit(G,k,e)| (18)

Since the stochastic modeling is a bit more compdid than deterministic modeling, it
was chose to estimate the expected profit usingul@iton. The Simulation method
consisted on recreating a certain number of workiegods, each with the same amount
of time and resources but with a probabilistic hetragiven by an Error Value, and

calculating the Total Profit Value for each Period.

It is important to notice that the working mechamssof the SPLSP, allow a basic model
with two cases:

a. Called “Case 1" implies that there is a surplusfiofshing inventory, which
means that the finish inventory was higher thaneetgd. This is the most
common case.

b. Called “Case 27, implies that there is a shortagdiroshing inventory on the
analyzed period, which means that the level osfied inventory was lower than
expected resulting in negative numbers. If thispesyed, buying a certain amount
of a product is allowed so to reach the beginnimgemntory level of the prior

period, in order to maintain the same service leVhis case happens just 5% of

29

Chapter 3. Modeling and Solution Methodology

the time. Since two policies for determining theoammt to be bought have already
been determined, there are also two versions ef 2as
i. Case 2a. Corresponds to the policy where it isnesided to buy
an amount in order to reach the same initial inmgntevel on the
prior period
li. Case 2b. Corresponds to the policy where it isireduo buy an
amount in order to fulfill the lost order from thatients , the
amount bought depends on the value ¢f @ can either be
restored the initial inventory level to 0 , if*Qs negative ; or to

some positive inventory level , ififQs positive)

Next is a graph that shows the two basic cases érpeariod display (the dotted lines

represent the inventory goals for each period):

Figure 1. SPLSP cases graph

The objective functions (Expected Profit) will ndae defined for cases 1 and 2 (the two

versions):

30

Chapter 3. Modeling and Solution Methodology

Case 1l
k

M k M G DizetB
UzZP'D' B'EZet_z S+cmG +chk mGi(l_ | j"' i =

i=1 t=1 i=1 2k| 2
(19)
Case 2.a

S ‘ a mGi2 m _ Ii L'
0-$r0a%e-5]s camo e i) vank| 28 0 | pagal"
(20)
Case 2.b

M K M mGIZ m | | L.
U:;P‘D‘B';e‘_;S+qui+Vi(Qi*_”:i)+C|h|<i oB zzk:Q 1+DiBIZk:e![mGI+2j
(21)

31

Chapter 3. Modeling and Solution Methodology

Since each optimization is based on the evaluatioperiods, the Total Profit is equal to

the sum of all Profit Formulations for each period:

Profit(G, ,k;,e,)= iut (22)

t=1

And constrained by the following:

>Gr-T (23)

The decision variable ;. Notice that the right hand side of (23) is noderB. This

new right hand side is introduced because in gérleeatime available for setups and
production need not equal the time span of theclizeiiod. From (19), (20) and (21), it
can be seen th& may be interpreted as the real time span (clatike)tiover which
demand is realized. In general,may be less than the clock time. For exampla, 24

hour period, the firm might operate for only onbdr shift.

3.1.2.2 Limitations
The stochastic version of the ELSP has some limitatdue to its more complicated

structure. Following some important issued willdxlained:

32

Chapter 3. Modeling and Solution Methodology

A. Concavity:

The deterministic model (PELSP) had a Profit Foatiah with a Concave shape and
the second derivative test was done at the moneettt galidate this assumption. The
test was done without further issues atdct concavitywas a certain fact on the
model. For the Stochastic model, it was assumedthigaProfit Formula still had a
Concavity shape, but a derivative test had to beedtn the model described on this
section, the SPLSP’s second derivatives showed thgatHessian was negative
semidefinite for certain values of the variab@sand k, so it is not possible to
guarantee that the Profit Formula has a concavgesha

At first, this result had a bit of impact becausene manual experiments on computer
worksheets (Microsoft Excel) were done and the [tesshowed us that the Profit
formula behaved most of the time as Concave functBesides, since the formula

expresses Maximization it should have a concavpesha

B. Optimization for the subproblem :

This issue has to do with the fact that there ian'tanalytic expression for the total
profit for all the periods because the sequenceaskes change due to the error
instances and the variations on the quantitiesroflyction, which in other words
means that it’s difficult to find the exact anabgi expression for the total profit and
the first partial derivatives. For the prior reasa numerical method with lineal

search was chosen to optimize the subproblem.

33

Chapter 3. Modeling and Solution Methodology

The method does a sequential line search to findaa optimal solution. Since an
optimal solution is not obtained, the upper boumsdnot exact, just a good

approximation to the real optimal value.

C. Number of Periods

This issue has to do with the establishment ofreaitenumber of periods to evaluate
the Profit formulations. There are many optionst tobauld be used as viable
alternatives for the optimization:

» 1 replica with a large number of periods (> 100)

» A group of replicas with a medium number of peri¢d®m 20 to 60)

* Avery large number of replicas with small numbgperiods (10 to 20)

D. Bias

This limitation has to do with a possible bias doi¢he way the simulation begins. It
was decided to start the simulation with a begignimventory of O units for each
product. This assumption was made to simplify thet ®f the simulation but it is not
a realistic one.

Other possibilities are:

* Setting the Beginning Inventory on an Initial Fixedlue, determined by a
service level. This would mean that the beginnmgentory would have to be
equal to a desired goal level (desired finishingemtory)

» Setting the Beginning inventory to any value aboem, just to allow it to be

positive and also to allow a more random behavior.

34

Chapter 3. Modeling and Solution Methodology

E. Alternative Policies

The actual way that the problem is done consistshenfollowing: Whenever the
finishing inventory of a product dips below zeregative inventory), emerges the
decision of making a buy to at least buy the amawtt sold to the clients and
depending on the chosen policy the next periodrisaegith O units or another positive
value.
There are some other evaluation policies that cauded to emulate a more real
behavior, such as:
* Lost SalesThis alternative would work almost equally as #tgual policy but
the difference would be that if a finishing invemntalips below zero (negative
inventory) then a penalty cost would be assumedherquantity of product

that was not sorted to the client on the momemntdesled it.

3.2 Solution Methodology

The prior section presented the description ofttih@ variants of the ELSP model. On
this following section, the solution methodologyosk for each variant will be depicted

and explained.

35

Chapter 3. Modeling and Solution Methodology

3.2.1 PELSP

In order to solve the PELSP, the problem is decaagpformulating a master problem
and subproblems. The master problem is a lineagramming model to which columns,
generated by solving the subproblems, are addedddt iteratiorv. The master problem
is solved to determine the values of the dual éem(shadow prices) which are, in turn,

used to define the subproblems for the next itenati

The master problem for iteratioris:

M n(v,i)

maxU =Y YU, X, (24)
i=1 j=1

s.t.

M n(v,i) M

SSA X, <1-3T (25)

i=1 j=1 i=1

n(v,i))

ZX” =1 Ui, (26)

with 0< X; <1, i, j .
Where:

U, : total profit for planj of product, in dollars,
A, : total production time available for plaiof product, in days,
X; 1 proportions of use for plgnof product,

n(v,i): number of columns for produicin thev th linear program.

36

Chapter 3. Modeling and Solution Methodology

The values olJ; and A; are found using the following expressions:

A Y - ch(m-d)d k B .
U, =a, (R /d,)d, -2 - M -%)% k8 . d;.
k, B 2m (27)
and
_ aij lzij B

where the&ij and IEH. values are determined by solving a single itempsaliiem with

costs augmented by the shadow prices found byrtbarlprogramming master problem.

The formulation of the unconstrained subproblem is:

maxy = izljl‘,[ai In(R/d,)]di

S (E s

(29)

where A is the shadow price of (25). The solution proceduill be described in terms of
a Main routine and the procedures performed at variogpgsst A flow chart of thdlain

routine is shown in figure 2. Thdain routine proceeds as follows:

37

Chapter 3. Modeling and Solution Methodology

Set teration count= 1

[1. Initialize the master problem. }

(2. Solve the LP master problem to obtain shadow
* prices and upper bound. Eecord value of objective
L function and update best upper bound. 1= 1.

3. For product 1, solve
an unconstramed subproblem

Stere the values of d and k of

{ 5. Add the column. }
entering column

—Pl &, Increment 1 |

7. Al

products
done?

Yes

9, Mamimum

Iteration count
reached 7

| 10. Solve the Problem as IP |

I 11. Check the % from best upper bound computed using (14) I

f

12. Eq. (14)
more than
tolerance level 7

13, Reset iteration
count=1

End

Figure 2. Flowchart of Routindain.

38

Chapter 3. Modeling and Solution Methodology

Block 1 of Main: Initialize the master problem and set iteratiour@ = 1. In order to
initialize the master problem, the subproblem ({@®)each product is solved with= 0.

Solving these subproblems yields initial valuesdcdénd k; for each product. Leaving
the k; values unchanged, the solution for each of thelynts is modified to obtain two

sets of columns whose coefficients are found ugd1y and (28). To generate the first
set of columns, the demand and production is scdtedn in the solutions for each
product so that if the master problem contained ¢miks set of columns, (25) would be
satisfied with a strict inequality.

The second set of columns is generated by scapnifpel demand and production in the
solutions for each product so that if the mastasbl@m contained only this set of
columns, (25) would be violated. The reason faregating these two sets of columns is
to guarantee that the master problem will be féasibd so that (25) will be tight in the
solution of the master problem (24) — (26). Thigaduces inefficiency in the case that
the unconstrained solutions of the subproblemg#&oh product constitute a feasible (and
therefore optimal) solution to the complete problent it worked well in practice. The
scaling used in the implementation was to scaléwa factor of 1.75 and down by a
factor of 0.25 with further scaling by 1.1 and Oréspectively performed if needed to

obtain the desired initial columns.

Block 2 ofMain: Solve the LP master problem to obtain shadowegrand an upper

bound. Also record the objective value and uptfaesalue of the best upper bound

39

Chapter 3. Modeling and Solution Methodology

(BUB) if the current bound is the tightest so taach time the master problem is solved,

an upper bound is computed using the following eggion:

uszov—zn:eri , (30)

i=1

where, OV is the objective value given by (24) aédis given by:

6 :[Aln(R/di)]di

M S Hc.n(m —dodilss}cdM(deH_A (31)
k B 2m o m :

where A, is the shadow price of (26) for product Each time an upper bound is

computed, the value is compared with the BUB fosadar. If the latest upper bound is
an improvement (lower), it is stored as the new BUBt the end of the solution
procedure, the BUB is used to determine a percendéterence from BUB measure of

the quality of the final integer solution.

Block 3 of Main: For each product, solve an unconstrained subgnol{P9) using the
value of A found in Block 2 ofMain. The subproblem involves finding values of demand
(d) and the basic period multipliek)(for a single product. The solution procedure is

shown as a flowchart in figure 3. The procedbiodveSulproceeds as follows:

40

Chapter 3. Modeling and Solution Methodology

F

2. Find the optimal value of 4, holding k constant

e

T

S

4. Best objective Yes

value so far? 5. Increment k by one unit J

Mo

End

Figure 3. Flowchart for Procedug®lveSub

Block 1 ofSolveSubSetk = 1.

Block 2 of SolveSubA modified bisection method is used to find theimal

value ofd, holdingk constant.

41

Chapter 3. Modeling and Solution Methodology

For information on the basic bisection method, [82¢ for a simple explanation
or [60] for an explanation and a computer prograihe search range for the
routine needs to be specified with two values: wé&oLimit (LL) and an Upper
Limit (UL). For the implementation of this routinde values set were: LL =
0.001 and UL = value ah the production capacity. The value of LL was cimose
to avoid division by zero in (29). The value of U& a natural limit that
guarantees that the demand rate does not excequdtiection rate. This is a

standard assumption of the EPQ, on which the ELS8FP&LSP are based.

The objective function is unimodal for a consta@iue of k so it can be

optimized using standard methods. The routine wgrammed is based on the
one proposed in [60]. It assumes that the optwb@ctive value is to be found
between the LL and UL and that the first derivatdfehe objective function has

opposite sign at LL vs. UL. In the PELSP, this may always be the case.

Figures 4, 5, and 6 show examples of the possirla bf the objective function

between the LL and UL, LL being the leftmost vabfed and UL the rightmost

value. The figures are depicted on the followinggm

42

Chapter 3. Modeling and Solution Methodology

Profit

160000

140000 -

120000

100000

80000 -

profit

60000 -

40000 -

20000 -

0

-20000 -

500 1000 1500 2000 2500 3000 3500

4000

Figure 4. Case B =1,5=33.5932¢ = 20.6260m = 3474.7896,

0.0000000

T=0.0683h=.000295

0.00q

-5,000.0000000 -

-10,000.0000000 -

-15,000.0000000 -

-20,000.0000000 -

-25,000.0000000 -

-30,000.0000000 -

00 20.0000000 40.0000000 60.0000000 80.0000000 100.0000000

Figure 5. Case B =1,S=500,c = 1000,m= 1000,

T=0.0683h=.0000833

120.0000000

43

Chapter 3. Modeling and Solution Methodology

30000

25000 -

20000 -

15000 A

Profit

10000 A

5000 -

500 1000 1500 2000 2500 3000

-5000

Figure 6. Case B =1,S=33.5932¢ = 20.6260m = 2500,

T=0.0683h=.000295

The three cases that need to be considered are:
1. The first derivative of the objective function witkspect tal is positive at
bothd = LL andd = UL. In this case, the optimal valueafs UL. See
figure 4.
2. The first derivative of the objective function witbspect tal is negative
at bothd = LL andd = UL. In this case, the optimal valueafs LL. See
figure 5.

3. Otherwise, use the normal procedure [60]. SeediGur

44

Chapter 3. Modeling and Solution Methodology

By considering the above cases explicitly, (29) Idobe solved correctly

regardless of the positions of LL and UL relatiggtie objective function.

Block 3 of SolveSubRecord the value of the objective function.

Block 4 of SolveSublf the latest solution has the best objectivecfion so far,

continue to Block 5 oSolveSupotherwise end.

Block 5 of SolveSubincremenk by one and return to Block 2 8blveSub

Block 4 of Main: Decide if the solution provides a column that nisey added to the
master problem. To determine if a column is toadded to the master problem it is

necessary to evaluate expression (31) for eachuptad If 6 >0 and the value of (27)

is positive, the new column may be allowed to ernter master problem. In this

implementation, adding columns with values 8f below a threshold value of 0.1 was

disallowed since it was found empirically that adgicolumns that did not significantly

improve the objective value was inefficient.

Block 5 of Main: Add the entering column. Store tdeand k values of the entering

column.

Block 6 ofMain: Increment the product index, i, by one.

45

Chapter 3. Modeling and Solution Methodology

Block 7 of Main: If subproblems for all products have been salygdceed to Block 8

of Main, otherwise return to Block 3 dain to solve another subproblem.

Block 8 ofMain: Increment iteration count by one.

Block 9 of Main: If the maximum iteration count has been reacledicue to Block 10
of Main, otherwise return to Block 2 @flain. This value corresponds to the number of
iterations allowed for the problem to obtain thestbsolution available. A maximum

count of 20 iterations was used in this implemeaotadf the procedure.

Block 10 of Main: Solve the problem as an IP, adding the integratbnstraints:

X, 0{og i, j.

Block 11 ofMain: Check the % from best upper bound using the ofig expression:

BUB — CurrentSolution

x100%. (32)
BUB

Block 12 ofMain: If expression (33) evaluates to more then a §ipéciolerance (5% in

our implementation), continue to Block 13M&in, otherwise end.

Block 13 ofMain: Reset the iteration count to 1 and return to &tdplse, end.

46

Chapter 3. Modeling and Solution Methodology

3.2.2 SPLSP

In order to solve the SPLSP, the problem is firstanposed, formulating a master
problem and subproblems. The master problemiisear programming model to which
columns, generated by solving the subproblemsa@daded at each iteratian The master
problem is solved to determine the values of the slariables (shadow prices) which are,

in turn, used to define the subproblems for thd rexation.

The master problem for iteratioris:

maxU => >U; X, (33)
i=L j=1

S.t.

M n(v,i) M

SSA X, <1-3T (34)

i=L =L i=1

n(v,i))

2 X = Oi (35)

with 0< X, <1, 0, .

Where:

U, : total profit for planj of product, in dollars,
A, : total production time available for plaiof product, in days,

X; : proportions of use for plgnof product,

a7

Chapter 3. Modeling and Solution Methodology

n(v,i): number of columns for produicin thev th linear program.

The values olJ; and A; are found using the following expressions:

U, = Sum of Profit Formulas (19), (20) and/or (21), &irt periods (36)
And
A =G, (37)

Where the value of; is determined by solving a single item subprobleith wosts

augmented by the shadow prices found by the lipeagramming master problem. The

formulation of the unconstrained subproblem is sfow

maxU. =U, - A[G, (38)

where A is the shadow price of (33) a@ is the use of capacity on the base period, for
producti on production plap
The solution procedure will be described in terrhe Main routine and the procedures

performed at various steps.

48

Chapter 3. Modeling and Solution Methodology

3.2.2.1 Routine Main

The flow of the main routine is as follows:

1.

Initialize the master problem (procedure explainbdlow in subsection
3.2.2.2).Set iteration count = 1.
Solve the LP master problem to obtain shadow pried an upper bound
(procedure explained below in subsection 3.2.2RBcord best upper bound.
For each product:
a. Solve an unconstrained subproblem (procedure egudaibelow in
subsection 3.2.2.5).
b. Decide if the solution provides a column that mayadlded to the master
problem (procedure explained blow in subsection2332.
Add the entering columns, if any. Store tBeand k values of the entering
columns.
Increment the iteration count by one.
Return to step 2 unless a maximum iteration cosgntelached. This value
corresponds to the number of iterations allowedHerproblem to obtain the best
solution available. We used a maximum count of 2€rations in our
implementation of the procedure.

Solve the problem as an IP, adding the integrabtystraintsx; D{O,]} i, j .

Check the % from best upper bound computed usiedalfowing expression:

Best UppeBound- CurrentSolution
Best UppeBound

x100% (39)

49

Chapter 3. Modeling and Solution Methodology

9. If expression (39) evaluates to more then a spmetitolerance (5% in our

implementation), reset the iteration count to 1 eetdrn to step 2. Else, end.

3.2.2.2 Initialization

In order to initialize the master problem, the sulybem for each product is solved with
A= 0. The solutions determine the periods in wisekups are made. Respecting the
setup schedule, the solution for each of the prisdisc modified to obtain two sets of
columns whose coefficients are found using (36) @W. To generate the first set of
columns, the demand and production is scaled dowmthe solutions of all products so
that if the master problem contained only thissdetolumns, (34) would be satisfied with
a strict inequality. The second set of columngeserated by scaling up the demand and
production in the solution of all products so tlidhe master problem contained only this
set of columns, (34) would be violated. The reaBmngenerating these two sets of
columns is to guarantee that the master probleinbeifeasible and so that (34) will be
tight in the solution. This introduces inefficienay the case that the unconstrained
solutions of the subproblems for each product ¢iuteta feasible (and therefore optimal)
solution to the complete problem but it worked welpractice. The scaling used in the
implementation was to scale up by a factor of lJaBf down by a factor of 0.25 with

further scaling by 1.1 if needed to obtain the gbinitial columns.

50

Chapter 3. Modeling and Solution Methodology

3.2.2.3 Column entry
To determine if a column is to be added to the ergstoblem we evaluate the following

expression for a product

6,=U, -AG*- 4, (40)

Where 4, is the shadow price of (33) for product If &, >0 and the value of (34) is

positive, the new column may be allowed to entex thaster problem. In this

implementation, adding columns with values &f below the threshold value of one was

disallowed since it was found empirically that adgicolumns that did not significantly

improve the objective value was inefficient.

3.3.4 Computing upper bound
Each time the master problem is solved, an uppendd computed using the following

expression:

n m

uB=0v->> 6 , (41)

i=1 j=1

Where,OV is the objective value given by (33). Each timeugper bound is computed,

the value is compared with the best upper boundB)Bidund so far. If the latest upper

51

Chapter 3. Modeling and Solution Methodology

bound is an improvement (lower), it is stored asribw BUB. At the end of the solution
procedure, the BUB is used to determine a % diffeeefrom BUB measure of the

quality of the final integer solution using expliess(39).

3.3.5 Solving the subproblem
The subproblem involves finding values of Productime G) and the basic period

multiplier (k) for a single product. The solution proceduréesfollowing:

1. Setk=1.

2. Use a Manual Optimization method (explained onisec?.2.2.6) to find the
optimal value ofG, holdingk constant.

3. Record the value of the objective function.

4. If the last solution has the best objective funttsm far, continue to step 5;
else, stop.

5. Incrementk by one and return to step 2.

6. Once the Optimal values o6 and k are determined, another intern
optimization is done

7. Record the new optimal values®fandk

52

Chapter 3. Modeling and Solution Methodology

3.2.2.6 Search Optimization Method

This method consists on evaluating a certain amotiperiods beginning with a given

value of the first variable, k. It is started bgrdating with successive values of the G
variable (using a Step Size of 0.1 units), in orepbtain the Expected Value of the
Profit. The program stops when the Expected Pobfann period has a lower value than

the Expected Profit on the 1 period.

When the Method finds the best solution (valueskofind G*) another optimization

routine is performed to further improve the solntidhe routine consists on fixing the
value of k and make a new optimization beginninglmn (G* - 0.1) value and iterating
with a more refined step size (0.01 units) unt grogram finds the Maximum Value of

the Expected Profit. The limit for this iteratianthe (G*+ 0.1) value.

53

Chapter 4. Experimentation

Chapter 4. Experimentation

4.1 PELSP computational experience

In order to test the solution methodology propoeedhe PELSP, on section 3.2.1, a full
factorial experimental design was employed. Thetofg varied systematically are
number of products, length &, and capacity restrictedness. The number of mtsdu
was set at 2, 10, or 30. The length of the basiod was set at 1 day, 7 days, or 30 days.
Capacity restrictedness was set as follows. InBh8P problem, the values & and

r are equal. Here, however, the two values don’tehtavbe the same. In order to
include problems that differ in how constrainedyttage by capacity, problems with
equal to 60%, 80%, or 100% of tBewere generated. For exampleBif= 7 days, then
the three levels of are 4.2 days, 5.6 days, and 7 days, respectivdfpr each
combination of three factor levels described abéive,random instances were generated

to obtain a total of 135 problem instances.

The random problem instances were constructed bgrgéng values of setup co§),(
unit cost C), production rater(), holding costlf), elasticity @), market size) and
setup time t) for each product in the instance from uniforntrifigitions. The upper and
lower limits of the uniform distribution used torggate values of the first six parameters

are shown in table 2.

54

Chapter 4. Experimentation

Upper value Lower value Units

S 50 30 $ / setup
c 40 20 $ / unit
m 4000 2000 units/day
h 0.1 0.05 % / day
a 40 20 --

R 100000 10000 units/day

Table 2. Valaages for product parameters

Table 2 shows the upper and lower limits on setmgg used in the experiments. The
distribution of the setup times was varied depegdin the number of products and the
length of theB in order to obtain a reasonable percentage oftieaproblems. Using

long setup times in problems with many productstwort basic periods caused many of

the generated problems to violate constraint (7dag was assumed to equal 8 hours.

As an example, consider a problem instance witprd@ucts and 8 of 1 day. When the
lower limit of the distribution was set to 0.05 dagnd the upper limit of the distribution
was set at 0.3, practically all the generated gmlhstances were infeasible with respect
to (7). With the lower limit at 0.04 and the uppienit at 0.07, 27% of the generated
problems were feasible. The values actually ugedtl@ose shown in table 3. These

values provided a reasonable percentage of fegmibldems.

55

Chapter 4. Experimentation

B (days)
products 1 7 30
2 [0.3,0.05] [0.3,0.05] [0.3, 0.05]
10 [0.07,0.04] [0.1, 0.05][0.1, 0.05]

30 [0.025, 0.01] [0.1, 0.05] [0.1, 0.05]

Table 3. Setup time ranges for different sets peexnents (in days)

The results of the experiments are summarizedbtesad, 5, and 6, corresponding to

problem instances of size 2, 10, and 30, respdgtive

B (days) 1 7 30
Capacity
0.6 0.8 1 4.2 5.6 7 18 24 30
(days)
Average

% from 0.227265 0.11310 0.076959 0.088093 0.06359 0.057@QA98762 0.13289 0.097532

BUB
Maximum

% from 0.40659 0.20201 0.24944

BUB

Table 4. Results for problems with 2 products.

56

Chapter 4. Experimentation

B (days) 1 7 30
Capacity
0.6 0.8 1 4.2 5.6 7 18 24 30
(days)
Average

% from 0.032717 0.00483 0.004402 0.003307 0.00310 0.00218003682 0.00230 0.002423

BUB
Maximum
% from 0.092204 0.00641211 0.00583
BUB
Table 5. Results for problems with 10 products.
B (days) 1 7 30
Capacity
0.6 0.8 1 4.2 5.6 7 18 24 30
(days)
Average

% from 0.010905 0.00415 0.002818 0.003344 0.00220 0.00331001747 0.01464 0.001871

BUB
Maximum

% from 0.015521 0.008921 0.06559

BUB

Table 6. Results for problems with 30 products.

As can be seen in tables 4, 5, and 6, the propgsatdon method finds solutions that are
provably very close to optimal. The performanceegrs to be generally better for

problems with a larger number of products, with ti@imum % from upper bound for

57

Chapter 4. Experimentation

problems of 2, 10, and 30 products being 0.40682a2, and 0.0656, respectively. The
corresponding average % from upper bound value8.af%1, 0.0065, and 0.0050. This
trend agrees with the observations of Trigeirolef5d] in regard to the Capacitated Lot
Sizing Problem (CLSP), a discrete-time, finite koni lot sizing problem. Also, Haugen
et al. [31]observe a similar behavior with a CLSP problem watlcing (PCLSP). In
contrast to the non-pricing ELSP, the PELSP models relatively easy to solve. A
similar observation is made by Haugen et al. jB¥Egard to the PCLSP.

Also, in the PELSP, The LP basis is of size n +hkeren is the number of products; this
implies that in the LP solution each product bu¢ @ represented by only one column
and the last product is represented by a combmatidwo columns. In other words, the
LP solution draws a result very near to the IP tsah) which is why the solutions are

provably very close to optimal.

The sensitivity to the capacity restrictednesshef problems is difficult to characterize.
For problems with 2 products it can be seen iretdhihat the behavior differs depending
on the value oB. ForB = 1, the average % from upper bound decreasesingtbasing
capacity. This is also the case B 7. However, foB = 30, the average % from upper
bound first increases and then decreases withdsitrg capacity. A similar behavior can
be seen for problems with 10 products in tableFar problems with 30 products yet
another behavior is observed. Br1, the average % from upper bound decreases with
increasing capacity. However, fBr= 7 andB = 30 the average % from upper bound
first decreases and then increases with increasipgcity. The lack of a clear trend may

be due to the fact that in the PELSP, demand oaayal be reduced by increasing the

58

Chapter 4. Experimentation

price. Hence, it is just as easy to find a nedmugd solution when capacity is more
restricted as when it is more abundant. The gemamatlusion is that the quality of the
solution remains very good over a broad range oblpm sizes and degrees of capacity
restrictedness. The average solution computatimedifor problems of 2, 10, and 30

products was 3.07, 6.35, and 13.36 seconds, résglgct

The effect of varying the maximum number of itevati (see section 3.2.1, Block 9 of
Main) and the tolerance (see section 3.2.1, Block IMah) was studied by re-solving a
subset of the test problems with these paramegets slifferent values. In order to study
the effect of reducing the number of iterationge fof the original test problems for each
problem size where resolved with the number ofttens set to 5 and 30. The original
number of iterations was 20. The tolerance wag &ephe original 5% while solving

these problems. The results are summarized in fatffer all problem sizes, the number
of iterations was found to directly affect solutitbme. The effect of number of iterations
was found to be that increasing the number of timma to 30 did not improve the

solution quality but reducing it to 5 did reducee tholution quality noticeably. The

original value of 20 iterations seems to be a goochpromise between solution speed

and quality.
Problem size 2 10 30
iterations 5 20 30 5 20 30 5 20 30

Avg. % fromUB 0.9221 0.0769 0.0769 0.0308 0.0044 0.0044 0.045®028. 0.0028

Solution time 112 3.07 4.20 2.86 5.94 7.43 10.25 13.36 18.45

Table 7. Effect of number of iterations.

59

Chapter 4. Experimentation

The effect of varying the tolerance was studiedréisolving five randomly selected
problems of each size with the tolerance set ata®® 8% as compared to the original
5%. The number of iterations was kept at the nalgR0 while solving these problems.
Varying this parameter was found to have no eféecthe solution quality on any of the
test problems. The reason for this is that thegutare is finding solutions that are well
below 2% from the upper bound. The purpose ofgihrmmeter is to force the procedure
to continue searching for better columns in the G&se that the first 20 iterations do not
produce a within tolerance solution. In our tegtiwe found that 20 iterations were

sufficient for all the test problems.

Also, in order to assess the performance of théodetiogy when the demand function is
of a different type, a small set of problems werkvexd using a linear demand function

instead of an exponential demand function. Thedirdemand function is the following:

d,(R)=R-aPR, (42)

where R is a market size parameter for produahd a, is a price scaling constant. The

single-item subproblems are slightly harder to salth this function because the price

has an upper bound & /a, , beyond which the demand becomes negative. Cas¢ m

be taken not to exceed this maximum price whileinglthe subproblem. The testing

consisted of solving 15 problems with 2 productd 4B problems with 10 products.

60

Chapter 4. Experimentation

The problem instances were constructed by randgeerating values of setup coS}, (

unit cost C), production rater(), holding costlf), price scaling factor aj, market size

(R) and setup timet) for each product in the instance from uniformtrsitions. The

upper and lower limits of the uniform distributiosed to generate values of the first six

parameters are shown in table 8. The setup tiorahé instances with 2 products and 10

products were generated from uniform distributienth ranges (.05, .3) and (.04, .07),

respectively. The average percentages from uppend were 0.0156 and 0.197 for

problems with 2 and 10 products, respectively.

The average CPU times were 4.33 and 18.05 secoegjsectively. These limited tests

show that the solution quality in terms of percgetafrom upper bound remains similar

while the solution times increased somewhat wiahaaining short.

R

a

Upper value Lower value

50

40

4000

0.1

5000

150

30

20

2000

0.05

4000

100

Units
$ / setup
$ / unit
units / day
% / day
units /' $ --

units / day

Table 8. Value ranges for product parameters

61

Chapter 4. Experimentation

4.1.1 Managerial Insights

In order to gain managerial insights, the matheradform of the model was examined
and a series of computational experiments wereopadd. It is important to emphasize
that these observations are relevant to the bagsdmolution form and may not apply to

more general solution forms.

The general behavior of the solutions and object@iele was studied by solving two-
product problems. A base problem was defined althparameter values set at the
midpoints of the ranges shown in table 2. Modifgdblems where then solved to

observe the changes in the objective value andithalues. The modified problems

where identical to the base problem with the exoepbf a change in exactly one

parameter, set to either the lower or upper lirhthe range shown in table 2.

The general behavior of the objective value isntovease (decrease) whBm, or m are
increased (decreased) and to decrease (increasa) $hc, T, or h are increased
(decreased). This is not unexpected since a l&gecreases the size of the market, a
largera allows a higher price to be charged for the sammatel, and a largem
effectively increases the production capacity. elvise, an increase in the cossd h)
would be expected to reduce the profit. An inceemsT effectively reduces available
production capacity so a decrease in profit is alssurprising. In terms of production

rates, increasingr, a, or m resulted in greater demand) (for the changed product and

reducingT resulted in greater demand for both products. uRied c resulted in greater

62

Chapter 4. Experimentation

demand for the changed product as well. The effechangingSandh was very slight.
Changes in the value bftend to have little effect on demand because itorgrcarrying
costs are relatively small compared to the groséitpisales minus production costs) in
an optimized solution. The small effect of chaigg8ican be understood by observing
that the partial derivative of the objective functiwith respect to demand)(does not
includeS. Thus, demand is not affected $ynless the change Biprompts a change in
k. Also, notice that a decrease $hmay prompt an increase k) which will tend to
further reduce the value of the setup cost term.th@ other hand, an increaseSmay
prompt a decrease Kk which will tend to amplify the increase in theige cost term.
However, if the original value of is low (which is common in reasonably capacity
constrained problems), the possible decreagasiimited, thus limiting the effect of the

change irSon demandd).

Additional investigations were focused on bettedemstanding the effect of reducing
setup times and setup costs. Both types of rechgti@re studied separately. Setup time
reductions will be addressed first. By inspectiognstraint (7) it is evident that
decreasing setup times increases the availablecitapa the base period. Since this
capacity increase results in a relaxed problemoaspared to the problem before setup
time reduction, the objective value will increasdt is interesting to notice that the
increase is completely independent of which prddusétup time is reduced. For a
manager using a base period schedule, this imgiigs setup time reduction projects
should be selected based on cost efficiency (neoktation for the money) rather than on

other criteria such as longest setup times firsistfrequent setups first, etc.

63

Chapter 4. Experimentation

In regard to setup cost reduction, a similarly nes¢ing observation can be made by
examining the objective function (6). When all gwots have & value equal to one, the
increase in objective value resulting from setuptaeductions will be independent of
which product’s setup cost is reduced. This is @uevo factors. The first is that each
product’s setup cost term in the objective functh@s the same denominator wheis
equal to one for all products. The second is tbdticing setup costs will never change a
k value in this case. This can be understood by glrggethat withk equal to one, the
setups are already occurring as often as possittleaasetup time reduction can only
encourage more frequent setups. The solution feitm all k values equal to one is of
particular importance because the optimal solusasften of this form when the problem
becomes more capacity constrained. This is toxpeated because producing in every
period minimizes the base period capacity requirgmthat are constrained by (7). For a
manager using a base period schedule with all gsabfik equal to one, this implies that
setup cost reduction projects should be selectsddban cost efficiency (most reduction
for the money) rather than on other criteria suslaegest setup costs first, most frequent

setups first, etc.

In order to better understand the effect of setogi ceduction when not all values are
equal to one, a number of two-product problem msta were found with optimal
solutions withk not equal to one. Each problem instance was toked with different

percentages of setup cost reduction applied firstnee product and then the other (same

64

Chapter 4. Experimentation

percent reduction applied to each product). No Engattern was discovered. The

following numerical example will illustrate the cphaxity.

Product 1 parametensR, S, ¢, m, T, andh are 29.25, 42599.92, 67.0, 55.0, 35000.0,
0.324, and 0.0501, respectively. Product 2 pararseiR, S, ¢, m, T, andh are 37.90,

27719.42, 31.98, 35.91, 35000.0, 0.311, and 0.08&®ectively. The values & and

r are both equal to 1.0. In this example, the satutibthe original problem hds= 2 for
product 1 andk = 1 for product 2. Product 2 has a setup costishlass than half that of
product 1. With a 14.77% setup cost reductiomas found that reducing the setup cost
for product 2 was better. The same preferencermiduct 2 was observed for setup cost
reductions of 29.55, 44.32, 59.09, 73.87, 88.64%hen a reduction of 96.03% was
applied, however, it was more advantageous to ah@yreduction to product 1. The
value ofk for product 1 changed from 2 to 1 when the 73.8@#%uction was applied to

product 1. The following two points are of interest

1) Even though the setup cost for product 2 was ks half that for product 1,
it was still the preferred choice over a wide rangpercent reductions. This
was despite the fact that the valuekdbr product 1 did not change until a

reduction of 73.87% was applied. This is hard ticcgrate intuitively.

2) At some point between a reduction of 88.64 and 3.0t becomes more

advantageous to apply the reduction to productliis was despite the fact

65

Chapter 4. Experimentation

that the value ok for product 1 changed to one when a reduction 7%

was applied. This switching of preference is hardrticipate intuitively.

This example illustrates that intuition can leadinoorrect decisions for this type of
problem due to complex interactions. This may hbheen anticipated based on the
nonlinearity of the problem. When the current dolutcontains values & greater than

one, it is recommended to determine the effect pfaposed setup cost reduction by
finding the (near) optimal solution using the methmroposed in this paper rather than

relying on intuition.

4.2 SPLSP Computational Experience

In order to test the solution method proposed fhar $PLSP model, it was decided to
perform a number of different experiments in orttevalidate the model and also to test
its robustness. The SPLSP was tested using thfisgedit size problems: 2, 10 and 30
products. The random problem instances were canstitby generating values of setup
cost §), unit cost C), production rater(), setup time T), holding cost i), market size

parametersa andb) and vendor priceM) for each product in the instance from uniform
distributions. Different values of the instances tize three size problems were used so

that the production schedules would be feasiblee Tpper and lower limits of the

66

Chapter 4. Experimentation

uniform distribution used to generate values of fin& six parameters are shown in

tables 9, 10 and 11.

Upper
value
S 60
c 8
m 250
G 0.1
h 0.25
\% 9
a 20
b 200

Lower

value

40

125

0.05

0.2

5

12

160

Units

$/ setup
$ / unit
units / day
days
% / year

$ / units

Table 9. Value ranges for parameters (2 products)

Upper
value
S 60
c 8
m 500
G 0.01
h 0.25
\Y 9
a 20
b 200

Lower

value

40

4

400

0.005

0.2

5

12

160

Units

$/ setup
$ / unit
units / day
days
% / year

$ / units

Table 10. Value ranges for parameters (10 products)

67

Chapter 4. Experimentation

Upper Lower

Units
value value

S 80 40 $ / setup
c 8 4 $ / unit
m 2000 1500 units / day
G 0.006 0.003 days
h 0.25 0.2 % / year
\Y 9 5 $ / units
a 20 12 --
b 200 160 --

Table 11. Value ranges for parameters (30 products)

4.2.1 Algorithm Parameters

The objective of this set of experiments was tceobrs the sensibility of the model due to
changes on two algorithm parameters: theximum number of iterationsnd the%
deviation from UB thresholdrhe tests were done through the testing of 2lpnob for
each problem size (2, 10 and 30 products). Tworgtheameters had fixed valudgbe
number of base periods (48) and the value of thedstrd deviation of the error instances
(0.05). Initially, to proceed with the experiments, fouvdés for each parameter were
tested. In the case of theaximum number of iteratiortisese were the values used: 5, 10,
20 and 30 iterations. Regarding f#edeviation from UB thresholdhe values used were:

1%, 2%, 5% and 7.5%

68

Chapter 4. Experimentation

Following (next page), in Tables 12, 13 and 14t be seen the results of the testing for

themaximum number of iterationfor each problem size:

Number of 2 products
lterations 1st set 2nd set
UB 1,215.43 1,229.03
IP 1,207.71 1,215.91
5
% deviation from UB 0.6352% 1.0675%
CPU time (seconds) 1.44 0.98
UB 1,215.43 1,229.03
IP 1,207.71 1,215.91
10
% deviation from UB 0.6352% 1.0675%
CPU time (seconds) 2.21 2.06
UB 1,215.43 1,229.03
IP 1,207.71 1,215.91
20
% deviation from UB 0.6352% 1.0675%
CPU time (seconds) 2.43 2.45
UB 1,215.43 1,229.03
IP 1,207.71 1,215.91
30

% deviation from UB 0.6352% 1.0675%

CPU time (seconds) 3.58 3.71

Table 12. Maximum number of iterations testing hssior 2 product problems

69

Chapter 4. Experimentation

Number of 10 products
Iterations 1st set 2nd set
5 uUB 6,447.35 6,449.01
IP 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 4.36 4.49
10 uB 6,447.35 6,449.01
IP 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 5.94 5.83
20 uB 6,447.35 6,449.01
IP 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 8.22 8.15
30 uB 6,447.35 6,449.01
P 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 10.65 10.43

Table 13. Maximum number of iterations testing hssior 10 product problems

70

Chapter 4. Experimentation

Number of 30 products
Iterations 1st set 2nd set
UB 22,859.80 22,207.50
P 22,818.70 22,192.00
5
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 9.98 12.34
uUB 22,859.80 22,207.50
IP 22,818.70 22,192.00
10
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 12.28 15.14
uUB 22,859.80 22,207.50
IP 22,818.70 22,192.00
20
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 16.38 18.54
UB 22,859.80 22,207.50
P 22,818.70 22,192.00
30
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 20.9 22.34

Table 14. Maximum number of iterations testing hssior 30 product problems

71

Chapter 4. Experimentation

In general, the results observed on the prior sabll®wed to conclude that tineaximum
number of iterationshould be set to a value of 10 iterations sincalliihe problems
tested there was no need of more than 10 iteratlarfact, the test problems show that
the solutions obtained with 5 iterations were samib the ones with 10 iterations. Since,
the experiments with 10 iterations were solved alnio times similar to the 5 iterations

experiments; it was decided to select 10 iterattoresssure a more robust behavior.

Tables 15, 16 and 17 show the results of the tpdion the % deviation from UB
threshold for each problem size. (Note: for the realizatminthese experiments the
number of iterations was fixed on a value of 1e Tesults — presented on the next

pages - are:

72

Chapter 4. Experimentation

% deviation from 2 products
UB 1st set 2nd set
1% UB 1,215.43 1,229.03
IP 1,207.71 1,215.91

% deviation from UB 0.6352% 1.0675%

CPU time (seconds) 2.2 30.54 (**)
2% uB 1,215.43 1,229.03
IP 1,207.71 1,215.91

% deviation from UB 0.6352% 1.0675%

CPU time (seconds) 2.21 2.05
5% uB 1,215.43 1,229.03
IP 1,207.71 1,215.91

% deviation from UB 0.6352% 1.0675%

CPU time (seconds) 2.22 2.05
7.5% uB 1,215.43 1,229.03
IP 1,207.71 1,215.91

% deviation from UB 0.6352% 1.0675%

CPU time (seconds) 2.2 2.05

Table 15. % deviation from UB testing results fquraduct problems

73

Chapter 4. Experimentation

% deviation from 10 products
UB 1st set 2nd set
1% uUB 6,447.35 6,449.01
IP 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 5.91 5.83
2% uB 6,447.35 6,449.01
IP 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 5.92 5.82
5% uB 6,447.35 6,449.01
IP 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 5.9 5.84
7.5% uB 6,447.35 6,449.01
P 6,444.93 6,448.86

% deviation from UB 0.0375% 0.0023%

CPU time (seconds) 5.94 5.82

Table 16. % deviation from UB testing results fOrgroduct problem

74

Chapter 4. Experimentation

% deviation from

30 products

UB 1st set 2nd set
1% UB 22,859.80 22,207.50
IP 22,818.70 22,192.00
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 12.27 15.14
2% uB 22,859.80 22,207.50
IP 22,818.70 22,192.00
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 12.28 15.13
5% uUB 22,859.80 22,207.50
IP 22,818.70 22,192.00
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 12.28 15.14
7.5% UB 22,859.80 22,207.50
IP 22,818.70 22,192.00
% deviation from UB 0.1798% 0.0698%
CPU time (seconds) 12.29 15.14

Table 17. % deviation from UB testing results for@oduct problems

Chapter 4. Experimentation

Regarding thé% deviation from UB thresholdf was found that the best value that
should be used as an algorithm fixed parameteR® &rror threshold due to the fact that
mostly all the solutions never went beyond the h#é<ghold and just one of the random
instance sets, corresponding to the second sdteof tproduct problem size, had a %

deviation from UB that was greater than 1% (1.06Y5%

4.2.2 Performance testing

Finally, some experiments were done to test théopaance of the method on a set of
randomly generated problems. Two standard deviatadnes were used: 0.05 and 0.2.
For these experiments, we generated 10 randomnoestproblems for each standard
deviation value within each problem size (2, 10 &ddproducts) and recorded the
deviation from UBas well as the&CPU times A total of 60 random instance problems
were generated. Also, some model’s parametersixed ¥alues: number of base periods

(48) as well as number of iterations (10) and %aten from UB threshold (2%).

Regarding the experiments with standard deviatgqrakto 0.05, some interesting results
were obtained. Table 18 contains a summary ofdbalts. Basically, it can be seen that
the mean % deviations from the UB are not greatan 1% (the greatest mean % value is
0.855% corresponding to a 2 product system) whieama that the solutions obtained are

very close to the optimal values.

76

Chapter 4. Experimentation

Products
o =0.05
2 10 30

maximum CPU time (seconds) 2.320 6.150 15.140
minimum CPU time (seconds) 2.100 5.770 11.690
Mean CPU time (seconds) 2.233 5.938 13.106
maximum % deviation from UB 1.1807 0.0897 0.4391
minimum % deviation from UB 0.4371 0.0011 0.0073
Mean % deviation from UB 0.8554 0.0270 0.1240

Table 18. Results witb = 0.05

In the case of the experiments with standard dewviatqual to 0.2, it is shown that the
results are very similar to those found on the @rpents with a standard deviation equal
to 0.05. Table 19 shows the results. At first, @éncbe observed that the mean %
deviations from the UB does not have very largeuesl In fact, the greatest value
corresponds to a 1.0586% deviation from the UB friw® 2 product system, and the

lowest value corresponds to a 0.1151% deviatiom fitee UB for the 30 product system.

Products
6=0.2
2 10 30

maximum CPU time (seconds) 2.540 6.980 14.670
Minimum CPU time (seconds) 2.070 5.850 11.330
Mean CPU time (seconds) 2.304 6.071 12.913
Maximum % deviation from UB 1.8883 0.5199 0.2010
Minimum % deviation from UB 0.0001 0.0036 0.0305
Mean % deviation from UB 1.0586 0.2013 0.1151

Table 19. Results with = 0.2

77

Chapter 4. Experimentation

As a general conclusion, it can be said that sthee deviations from the UB of each
random instance sets are not very large (all beRé%) it can be stated that the method
has a solid overall performance. Also, it can &éensin Tables 18 and 19 that the CPU
times obtained show that the method is very fastesit only took less than 15 seconds of
CPU time to solve a problem with 30 products. Thies¢ CPU times demonstrate that

the method works very well on the tested rangerabblem sizes.

4.2.3 Robustness
After the prior experiments were completed, it wWiasided to make some experiments to
test the robustness of the solutions found withpfoposed method. What continued was
to generate 2 problems for each problem size (Ant0D30 products) along with 8 sets of
random instance errors for each. The sets weregymissito recreate 4 possible test
scenarios involving two levels of each of the faling parameters: the maximum number
of base periods (48 or 60) and the standard dewiati the error instances (0.05 or 0.2).
The 4 scenarios were:
1. Two random instance sets with 48 base periods aadlac of the error instances
equal to 5%
2. Two random instance sets with 48 base periods aadha standard deviation of
the error instances equal to 20%
3. Two random instance sets with 60 base periods eatth a ¢ of the error

instances equal to 5%

78

Chapter 4. Experimentation

4. Two random instance sets with 60 base periods aadha standard deviation of

the error instances equal to 20%.

Then, solutions for each set (OV and UB) were olgtdj and they were kept as
comparison data. Next, 4 random problem instancedlefl “test problems”) were

generated, one for each of the test scenarios iagplaabove, in order to obtain the
solution values of the design variabl@sand k for each of the products. Consequently,
in order to test robustness, the solution valuesach “test problem” were put on their
corresponding scenario sets, and using the sanggnalrirandom errors it was then

proceeded to record the new solution given forahsgeecific values of the variables. The
objective of the insertion of these values wase® Isow the solution changed and what

how much it deviated respect to the solutions foomdhe “test problem”

The following example illustrates the process. &dike into account the case of 2
products and the first scenario: 48 base periodsastandard deviation of the error
instances equal to 5%. The results for the “tesblem” were: UB = 1211.66, OV =
1200.93, % deviation from UB = 0.8856%, CPU timéd.44 seconds; and the values of
their design variables were; k 2, G =2.40, k=1, G = 2.37.

Then, two sets of random error instances were gégband their optimization solutions
were obtained: UB= 1235.45, OY = 1230.41, % deviation from UB- 0.4079; UB =
1222.70, O¥ = 1210.99, % deviation from YB- 0.9577. Each of the two sets had their
own design variable solutions but in order to tedtustness, the values of the design

variables (k, G, ko, G;) were tested on the two sets to see how the OMdwchange.

79

Chapter 4. Experimentation

The results obtained were the following: new ObjecValue for the T set = 1224.17,
and new Objective Value for thé%zet = 1200.68

Now, comparing the OV of the “test problem” withethew Objective Values of the two
random error sets, it can be seen that on theafdbke first random error instance set, the
new Objective Value solution deviated 0.51% frora triginal OV; meanwhile, on the
second random error instance set, the new Objedthee solution deviated 0.85% from

the original solution.

Now, taking a more general look into the generalits, in the case of the 2 product
system it was found that the instance sets withinkerted solutions produced results
very close to the solution found on the proof Jéte biggest mean deviation from the
original solution (0.91%) was found on the caseen@® base periods were used and the
standard deviation of the errors was 0.2. FollowimgTable 20, the complete set of

results can be seen:

Number of base periods

2 products 48 60
0.05 0.68% 0.55%
(g
0.2 0.22% 0.91%

Table 20. Mean deviations from original solutiorpf@ducts)

Regarding the 10 product system, the results shawsete improvement respect to the
results on the 2 product system. The maximum dewidtom the original solution was

found to be a value of 0.33% (corresponding togis with 48 base periods and with

80

Chapter 4. Experimentation

error’'s standard deviation of 0.2). The completulis can be seen on Table 21, which

follows:

Number of base periods

10 products 48 60
0.05 0.11% 0.03%
(g
0.2 0.33% 0.25%

Table 21. Mean deviations from original solutio@ (froducts)

Finally, regarding the 30 product system, the testdried more than the 2 or 10 product

instances. In this case, the biggest mean deriatas a 1.81% value and corresponded

to the sets with 60 base periods and with the 'sretandard deviation equal to 0.2. The

complete set of results can be seen next on Tahlasfollows:

Number of base periods

30 products 48 60
c 0.05 0.82% 1.74%
0.2 0.14% 1.81%

Table 22. Mean deviations from original solutio@ (&oducts)

As a conclusion, it can be seen that the solutmrtsined with the proposed method

show robustness since the % deviations from thggrai solutions are not very large, and

particularly aren’t greater than 1% (in the cabé¢he systems with 2 and 10 products)

and 2% (in the case of the 30 product system). &mesults suggest that the column

generation technique mixed with integer programnuag produce robust solutions over

a range of problem sizes and levels of variability.

81

Chapter 4. Experimentation

General NoteAll the problem instances for the PELSP and tR&SP were solved on a
Pentium IV 133Mhz processor. The programming wasedm C++ and the mixed

integer programming solvép_solve5.5.0.5[7] was utilized to solve the master problem.

82

Chapter 5. Conclusions

Chapter 5. Conclusions

5.1 Conclusions

The present thesis addresses two versions of thescleeduling model with price
optimization. Their solutions methods were basedhenColumn Generation technique
mixed with Integer Programming and it was shownt ttee proposed methodology

produces solutions very close to the optimal watst tomputation times.

It is also important to notice that computationatperiments indicate that the
deterministic lot scheduling problem with price ioptation is relatively easy to solve in
contrast to the standard economic lot schedulingblpm. Also, the experiments
conducted showed the effect of the parameterseoptbcedure on solution quality and
computation time. Managerial insights were alsovjgted regarding deciding for which
products to invest in setup time and setup cosiatoh. In general, the effect of setup
cost reduction for individual product is hard tegict intuitively and it is recommended

finding a (near) optimal solution using our propbseethod

Regarding the stochastic lot scheduling problenhpitice optimization it can also be

concluded that the proposed methodology approashbbBan found to be very suitable

83

Chapter 5. Conclusions

and helped achieve robust results. The solutiorhodetwvas tested using a range of

factorial experiments which produced very closegbmal solutions approximations.

5.2 Recommendations for further research

There are some future lines of study regardingskcheduling problems with price
optimization and it is important to note that thregent thesis can be extended in several

directions that complement and make the formulagigtable for specific situations.

One direct line of study relates to the modelinghaf lot scheduling problem with price
optimization including a lost sales policy, whichan alternative to the policies proposed
on the current thesis. It is also interesting tdeed the modeling of the same
deterministic and stochastic models to consided li@es as part of the formulation.
Also, in the specific case of the stochastic Idtestuling model, an important extension

would be towards the inclusion of sequence depdrsinps.

Finally, one very interesting approach would beextend the current work into game-
theoretic formulations that consider the effectcompetition on demand and pricing.
This type of modeling could help address a morepieta view of scheduling on real

environments where competition can lead to impaomaticy changes.

84

References

References

[1] P.L. Abad, Determining optimal selling pricedalot size when the supplier offers all-

unit quantity discounts, Decision Sciences 19 {3B8) 622-634.

[2] P.L. Abad, Joint price and lot-size determioatiwhen supplier offers incremental

guantity discounts, Journal of the Operational BeseSociety 39 (6) (1988) 603-607.

[3] T. Altiok, G.A. Shiue. Single-stage, multi-proct production/inventory systems with
backorders, IIE Transactions 26 (2) (1994) 52-61

[4] T. Altiok, G.A. Shiue. Single-stage, multi-proct production/inventory systems with
lost sales, Naval Research Logistics 42 (6) (188%9)913

[5] R. Anupindi, S. Tayur. Managing stochastic Njuibduct systems: model, measures,
and analysis, Operations Research 46 (3S) (19982)128

[6] A. Banerjee, Concurrent pricing and lot sizilog make-to-order contract production,

International Journal of Production Economics 93-B4(2005) 189-195.

[7] M. Berkelaar, Introduction to Ip_solve 5.5.0.Bttp://Ipsolve.sourceforge.net/5.5/,

Accessed on November 2, 2005.

[8] E.E. Bomberger, A Dynamic Programming Approacha Lot Size Scheduling

Problem, Management Science 12 (11) (1966) 778-784.

85

References

[9] K. Bourland, C. Yano. The strategic use of aayaSlack in the economic lot
scheduling problem with random demand, Managemer@nge 40 (12) (1994) 1690-
1704

[10] K. Bretthauer, B. Shetty, S. Syam, S. White,mddel for resource constrained

production and inventory management, Decision See5 (4) (1994) 561-580.

[11] P. Chang, M. Yao, S. Huang, C. Chen, A genetgorithm for solving a fuzzy
Economic Lot-Size Scheduling problem, Internatiohalirnal of Production Economics

in press (2005).

[12] X. Chen, D. Simchi-Levi. Coordinating InvenyoControl and Pricing strategies
with random demand and fixed ordering cost: thenitd horizon case, Mathematics of
Operations Reseach 29 (3) (2004) 698-723

[13] X. Chen, D. Simchi-Levi. Coordinating InvenyoControl and Pricing strategies
with random demand and fixed ordering cost: thadihorizon case, Operations Reseach
52 (6) (2004) 887-896

[14] D.L. Cooke, T.R. Rohleder, E.A. Silver, Findireffective schedules for the
economic lot scheduling problem: a simple mixedegetr programming approach,

International Journal of Production Research 422ap4) 21-36.

[15] G. Dobson, The economic lot-scheduling problechieving feasibility using time-

varying lot sizes, Operations Research 35 (5) (1984-771.

86

References

[16] L.C. Doall, C.D. Whybark, An iterative procedurfor the single-machine multi-

product lot scheduling problem, Management Sci@ficél) (1973) 50-55.

[17] S.E. Elmaghraby, The economic lot schedulimgbfem (ELSP): review and

extensions, Management Science 24 (6) (1978) 587-59

[18] W. Elmaghraby, P. Keskinocak, Dynamic priciimg the presence of inventory
considerations: research overview, current pragtiaad future directions, Management

Science 49 (10) (2003) 1287-1309.

[19] N. Erkip, R. Gullu, A. Kocabiyikoglu. A quasiith-and-death model to evaluate
fixed cycle time policies for stochastic multi-iteqproduction/inventory problem,
Proceedings of MSOM Conference, Ann Harbor, Michig2000)

[20] A. Federgruen, Z. Katalan. The ELSP: Cyclibake stock policies with idle times,
Management Science 42 (6) (1996) 783-796

[21] J.C. Fransoo, V. Sridharan, J.W.M. Bertrandhi@rarchical approach for capacity

coordination in multiple products single-machineogurction systems with stationary
stochastic demands, European Journal of Operatikesdarch 86 (1) (1995) 57-72

[22] G. Gallego. Scheduling the production of saV&ems with random demand in one
facility, Management Science 36 (12) (1990) 1579215

87

References

[23] G. Gallego, G. van Ryzin. Optimal Dynamic Rrg of inventories with stochastic
demand over finite horizons, Management Scienc@%Q.994) 999-1020

[24] G. Gallego, D.X. Shaw, Complexity of the EL8Rh general cyclic schedules, IIE

Transactions 29 (2) (1997) 109-113.

[25] G. Gallego, G. van Ryzin. A Multiproduct dynampricing problem and its
applications to network yield management, OperatiRasearch 45 (1) (1997) 24-41

[26] S.K. Goyal. Lot size scheduling on a singlechiae for stochastic demand,
Management Science 19 (11) (1973) 1322-1325

[27] S.C. Graves, On the deterministic demand mmrttduct single-machine lot

scheduling problem, Management Science 25 (3) (1976-280.

[28] S.C. Graves. The multi-product production ayglproblem, AIIE Transactions 12
(3) (1980) 233-240

[29] R.W. Haessler, An improved extended basic quenprocedure for solving the

economic lot scheduling problem, AIIE Transactiais4) (1979) 336-340.

[30] R.W. Haessler, S.L. Hoghe, A note on the snghchine multi-product lot

scheduling problem, Management Science 22 (8) (19086-912.

88

References

[31] K.K. Haugen, A. Obstad, B.I. Pettersen, Thefiprmaximizing capacitated lot-size

(PCLSP) problem, European Journal of OperationaeRech in press (2006).

[32] F.S. Hillier, G.J. Lieberman, Introduction ¢perations research, 7th ed., Mc Graw

Hill, New York, 2001.

[33] D. Kim, W.J. Lee, Optimal joint pricing andtl®izing with fixed and variable

capacity, European Journal of Operational ReseHd8n(1) (1998) 212-227.

[34] P. Kotler, Marketing decision making: a modlilding approach, Holt, Rinehart

and Winston, New York, 1971.

[35] H. Kunreuther, J.F. Richard, Optimal pricingdainventory decisions for non-

seasonal items, Econometrica 39 (1) (1971) 173-175.

[36] S. Ladany, Optimal market segmentation of haiems-the non-linear case, Omega

24 (1) (1996) 29-36.

[37] S. Ladany, A. Sternlieb, The interaction ofoeemic ordering quantities and

marketing policies, AlIE Trans 6 (1) (1974) 35-40.

89

References

[38] R.C. Leachman, A. Gascon. A heuristic poliay fmulti-item, single-machine
production systems with time-varying stochastic deds, Management Science 34 (3)
(1988) 377-390

[39] W.J. Lee, Determining order quantity and sejlprice by geometric programming:

optimal solution, bounds and sensitivity, Decisgmences 24 (1) (1993) 76-87.

[40] G.C. Lin, D.E. Kroll, C.J. Lin, Determining @mmon production cycle time for an
economic lot scheduling problem with deterioratiitgms, European Journal of

Operational Research in press (2005).

[41] J.G. Madigan, Scheduling a multi-product senghachine system for an infinite

planning period, Management Science 14 (11) (1968}719.

[42] A.S. Manne, Programming of economic lot sizddanagement Science 4 (2) (1958)

115-135.

[43] D. Markovitz, M. Reiman , L. Wein. The StochkiasEconomic Lot Scheduling
Problem: Heavy Traffic Analysis of dynamic cyclioligies, Operations Research 48 (1)
(2000) 136-154

[44] J.P. Monahan, A quantity discount pricing miode increase vendor profits,

Management Science 30 (6) (1984) 720-726.

90

References

[45] J. Qiu, R. Loulou. Multiproduct production/iemtory control under random
demands, IEEE Transactions, Automatic Control.2)q1995) 350-356

[46] J. Rogers, A computational approach to thenenuc lot scheduling problem,

Management Science 4 (3) (1958) 264-291.

[47] M.J. Rosenblatt, H.L. Lee, Improving profithtyi with quantity discounts under

fixed demand, IIE Transactions 17 (4) (1985) 388-39

[48] R. Roundy, Rounding off to powers of two imtimuous relaxations of capacited lot

sizing problems, Management Science 35 (12) (12893-1442.

[49] S. Sadjadi, M. Oroujee, M.B. Aryanezhad, Ogmtinproduction and marketing

planning, Computer Optimization and Applications(3p(2005) 1-9.

[50] Salvietti, L. and N. R. Smith. A profit-maxizing economic lot scheduling problem

with price optimization. To appear the European Journal of Operational Research.

[51] S.A. Smith, D. Achabal, Clearance pricing andentory policies for retail chains,

Management Science 44 (3) (1998) 285-300.

[52] C. Sox, J. Muckstadt. Optimization based piagrior the Stochastic Lot Scheduling
Problem, IIE Transactions 29 (5) (1997). 349-357

91

References

[53] C. Sox, P. Jackson, A. Bowman, J. Muckstadt review of the stochastic lot
scheduling problem, International Journal of Prdigunc Economics 62 (3) (1999) 181-
200

[54] W.W. Trigeiro, L.J. Thomas, J.O. McClain, Caftated lot sizing with setup times,

Management Science 35 (3) (1989) 353-366.

[55] T.L. Urban, Deterministic inventory models arporating marketing decisions,

Computers and Industrial Engineering 22 (1) (18293.

[56] T.S. Vaughan. The effect of correlated demandhe cyclical scheduling system,
International Journal of Production Research 4XZ0p3) 2091-2106

[57] B. Wagner, D.J. Davis, A search heuristic hoe sequence-dependent economic lot

scheduling problem, European Journal of OperatiBaesiearch 141 (1) (2002) 133- 146.

[58] T.M. Whitin, Inventory control and price thgorManagement Science 2 (1) (1955)

61-68.

[59] E. Winands, I. Adan, G. van Houtun. The StatitaEconomic Lot Scheduling
Problem: a survey, Technical University EidenhoJ@005)

[60] S. Yakowitz, F. Szidarovszky, An introductiodo numerical computations,

Macmillan Publishing Company, New York, 1986.

92

References

[61] M.J. Yao, S.E. ElImaghraby, On the economicsldteduling problem under power-

of-two policy, Computers and Mathematics with Applions 41 (2001) 1379-1393.

[62] M.J. Yao, S.E. Elmaghraby, I. Chen, On thesiiidity testing of the economic lot

scheduling problem using the extended basic pexjmutoach, Journal of the Chinese

Institute of Industrial Engineers 20 (5) (2003) 4888.

[63] M.J. Yao, J. Huang, Solving the economic Ildtexduling problem with deteriorating

items using genetic algorithms, Journal of Foodigegring 70 (3) (2005) 309-322

[64] P.H. Zipkin. Models for design and controlstbchastic multi-item batch production
systems, Operations Research. 34 (1) (1986) 91-104

93

Appendix 1

Appendix 1. C ++ program for the PELSP (article 1)

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#include <iostream.h>
#include <fstream.h>
#include <time.h>

#include "Ip_lib.h"
/I declaracion de subrutina a utilizar en MAIN //

double solve(double, double, double, double, dqudbeble, double, double, double,
double, double*, double*);

// kkkkkkkkkkkkkkkkkkkkkk P rog rama P rl nCI pal *kkkkk kkkkkkkkkhkkkkkkkk //

int main()

{

/| --- DECLARACION DE VARIABLES ---//
bool condition;

int productos;
int i,xint,conteo,maxcount;

Ilarraysl//

double *aS, *aC, *aM, *aA, *aR, *aT, *ah, *ahday;

double *aMIN, *aMAX, *aAmin, *aAmax,*CoefLambda,*atkevoCoef,*aNuevoCoefA,
double *row0, *rowl, *row2,*row3,*duals;

double x,diferencia,Period,B,Capacidad,toleranoiagif,obj,objentero,UB,bestUB;

double d,k; //variables optimizadas de subrutiraeso
double dmin,dmax,dmin2; //variables de demandaa paeficientes minimo y maximo

double *columnal, *Comparacion;

94

Appendix 1

double value,suma,E,Suma,Sumar;
double duration,cputime;

time_t start, finish;

/I --- FIN declaracion de variables --- //

/l comienza el reloj de C
start = clock();
[ltime (&start);

Il -- INICIO -- Valores iniciales de algunos pardros //
SumaT=0;

maxcount=20; // conteo maximo del ciclo while

tolerancia = 0.05; // tolerancia porcentual parardsound
porcdif=1000000; // valor M para comenzar ciclo Mt@xterno

value=1; // valor para la comparacion que ayudageheracion de columnas

Il -- FIN -- /I

/* Leer el archivo "datos.txt" para obtener losutgprequeridos */

ifstream ff("datos.txt");

ff >> x;

xint = int(x);

COUt << M kkkkkhkkhkkhhkkhhkkkhkkkhhkhkkhhkhkhhkhkhhkkhkhkhkkkhkkkikk n << endl
cout<<"* ELSP with Prices "&< endl;

COUt << M kkkkkhhkkhkkhhkkhhkkkhkkkhhkhkkhhkhkhhkhkhhkkhhkkhkkkhkkkhkk n << endl

cout << " " << endl
/lcout << "El Sistema es de " << xint << " prodwgto<< endl;

/I Definicion de algunos arreglos para almacenkorea //
aA = (double *)calloc(xint ,sizeof(double));
aR = (double *)calloc(xint ,sizeof(double));
aS = (double *)calloc(xint ,sizeof(double));
aC = (double *)calloc(xint ,sizeof(double));
aM = (double *)calloc(xint ,sizeof(double));
aT = (double *)calloc(xint ,sizeof(double));
ah = (double *)calloc(xint ,sizeof(double));

95

Appendix 1

ahday = (double *)calloc(xint ,sizeof(double));

aMIN = (double *)calloc(xint ,sizeof(double));
aMAX = (double *)calloc(xint ,sizeof(double));
aAmin = (double *)calloc(xint ,sizeof(double));
aAmax = (double *)calloc(xint ,sizeof(double));
aNuevoCoef = (double *)calloc(xint ,sizeof(doublg
aNuevoCoefA = (double *)calloc(xint ,sizeof(doabl);

CoefLambda = (double *)calloc(xint ,sizeof(doublg

duals = (double *)calloc(2 + xint, sizeof(doublg
row0 = (double *)calloc(1 + xint*2, sizeof(doublg;
rowl = (double *)calloc(1 + xint*2, sizeof(doub)e;
row2 = (double *)calloc(1 + xint*2, sizeof(doub)e;
row3 = (double *)calloc(1 + xint*2, sizeof(doub)e;
columnal = (double *)calloc(xint*2+1, sizeof(ddel));

ff >> x;

Period = int(x);

/lcout << " " << endl,

/lcout << " El tiempo anual disponible para la procion es: " << Period << " dias " <<
endl,

ff >> x;

B =x;

/lcout << " " << endl;

/lcout << " El Periodo basico es de: " << B << adgl' << endl;
/lcout << " " << endl;

/lcout << " " << endl;

ff >> x;
Capacidad = x;
/lcout << " " << endl;

/lcout << " La Capacidad es de: " << Capacidad dw@% " << endl;
llcout << " " << endl,

/lcout << " " << endl;
for (productos=0; productos<xint; productos++)

{

[* Leer y guardar los valores */

96

Appendix 1

ff >> x; aA[productos] = x;

/lcout << " " << endl;

/lcout << " La constante multiplicadora A paentnda exponencial: " <<
aA[productos] << "\n" << endl;

ff >> x; aR[productos] = x;

llcout << " " << endl;

/lcout << " Parametro R para la formula de detaaxponencial: " <<
aR[productos] << "\n" << endl;

ff >> x; aS[productos] = x;
llcout << " " << endl;
/lcout << " Costo de Setup ($), S es: " << a@]prtos] << "\n" << endl;

ff >> x; aC[productos] = x;
/lcout << " " << endl;
/lcout << " Costo Unitario ($/unidad), C es:< &C[productos] << "\n" << endl;

ff >> x; aM[productos] = x;

/lcout << " " << endl;

/lcout << " Tasa Diaria de Produccion (unidadi@3/ m es: " << aM[productos]
<<"\n" << end|,

ff >> x; aT[productos] = Xx;

1

cout << " " << endl

cout << " Tiempo de Setup (dias), T es: " <<padfluctos] << "\n" << endl;

ff >> x; ah[productos] = x;

/lcout << " " << endl;

/lcout << " Costo Anual de Holding , h es: " &k{productos] << "\n" << end|;
llcout << " " << endl;

/I Calculo de Holding Cost por dia //
ahday[productos] = ah[productos]/Period;

/lcout << " El Holding Cost por dia ($/unidad&lj es: " << ahday[productos]
<<"\n" << endl,

E=0; // valor inicial para la variable de Lambda cero porque la lera rutina de
solve no la utiliza

// kkkkkkkkkkkkkkkkkhkkkhkkhkkkkkkkkhkkkhkkkhkkkhkkkkkkkkkx *k%k //

97

Appendix 1

/I -- llamada a subrutina "solve" que me davlalsres optimos de Ky d para
cada producto -- //

solve(E, B,
aS[productos],aC[productos],aM[productos],aA[pradst,aR[productos],0,ah[productos
],ahday[productos],&d,&K);

/lcout << " " << endl;

//COUt << W kkkkkkkkkhhkkkkkhhkkkhkhkkkkkkkkhkkkkkkkkkk *kkkk N << endl’
/lcout << " * Valores exportados de SUBRUTINA " << endl;
COUt << W kkkkkhkkkkhkkkkkkhkkkkhkkkkkhkkkhkkkkkkkkkk *k%k U << endl,

printf("D:\t%.20f",d); // Imprime el valor de ldemanda con 20 decimales para
mas precision

cout << " " << endl

cout << "K: " << k << endl;

cout << " " << endl

/I -- Calculo de demandas para los dos plemesles -- //

llcout << " " << endl;

dmin=(1)*(d); // La demanda para el plan miniemoun 25% de la demanda
optima

dmax=(1.75)*(d); // La demanda para el plan maxes un 75% mas grande que
la demanda optima

/lcout << " Demanda bajo de capacidad: " << dwairendl;

/lcout << " Demanda por encima de capacidadk tmax << endl;

llcout << " " << endl;

/lcout << " " << endl;

JICOUL < e e " << endl;

/I -*- Calcular Coeficientes para los planesialies del LP -*- //

/I -- Coeficiente Minimo -- //

aMIN[productos]=(aA[productos]*log(aR[productédin)*dmin)-
(aS[productos]/(k*B))-((aC[productos]*ahday[prodas}*(dmin)*(aM[productos]-
dmin)*k*B)/(2*aM[productos]))-(aC[productos]*dmin);

/lcout << " EIl Coeficiente Minimo es: " << aMIploductos] << "\n" << end|;

/I -- Coeficiente Maximo -- //

aMAX[productos]=(aA[productos]*log(aR[productdsinax)*dmax)-
(aS[productos]/(k*B))-((aC[productos]*ahday[prodas}*(dmax)*(aM[productos]-
dmax)*k*B)/(2*aM[productos]))-(aC[productos]*dmax);

/lcout << " EIl Coeficiente Maximo es: " << aMAMpductos] << "\n" << end|;

/I -- Coeficiente de Restriccion de Tiempo Mioim //
aAmin[productos]= aT[productos] + ((dmin*k*B)/dproductos]);

98

Appendix 1

[lcout << " Aprima es> " << ((dmin*k*B)/aM[prodaios]) << endl;
/lcout << " EI Coeficiente de tiempo Minimo éss< aAmin[productos] << "\n"
<< endl;

Il -- Coeficiente de Restriccion de Tiempo Magim//
aAmax|[productos]=((dmax*k*B)/aM[productos]);

/lcout << " El Coeficiente de tiempo Maxims & << aAmax[productos] << "\n" <<
endl;

SumaT=aT[productos]+SumarT,;

cout << "SumaT> " << SumaT << endl;

}// end FOR

Il --- *** -—- Procedimiento para Obtener la D nmma "factible" para comenzar el LP ---
*kk ___ //

Suma=0;
for (productos=0;productos<xint;productos++){
Suma = Suma + aAmin[productos];
} /lend for
llcout << " " << endl;
/lcout << " --- *** Suma Minima de Capacidadesg#s productos: " <<
Suma << end!;

/lcout << " " << endl;
while (Suma > Capacidad){

dmin2=dmin/10;
cout << " Demanda baja modificada: " << dmin2esx|;

Suma=0;
for (productos=0;productos<xint;productos++){

/I -- Coeficiente Minimo -- //

99

Appendix 1

aMIN[productos]=(aA[productos]*log(aR[productadpin2)*dmin2)-
(aS[productos]/(k*B))-((aC[productos]*ahday[prodas}*(dmin2)*(aM[productos]-
dmin2)*k*B)/(2*aM[productos]))-(aC[productos]*dmin2

Il -- Coeficiente de Restriccion de Tiempo Minirmd/
aAmin[productos]= aT[productos] + ((dmin2*k*B)/gptoductos]) ;
/lcout << " setup?2 : "<< aT[productos] << endl;
llcout << ™ A2 es: "<< ((dmin2*k*B)/aM[produas]) << endl;
/lcout << " El Coeficiente de tiempo Miniree: " << aAmin[productos] << "\n" <<
endl;

Suma = Suma + aAmin[productos];

} /lend for

llcout << " " << endl,

/lcout << " --- *** Syuma Minima de Capacidadesg#s productos: " <<
Suma << end|,

llcout << " " << endl;

dmin=dmin2;

}; /lendwhile suma vs. capacidad

*kkkkkkkkkkkkhkkhkkkkhhhkkhhhhkkhhhhkkhhhhkhihhkkhhhkkhkhiikik *kkkkkkkkkkkkkhkkkkhikkk
g—

/Il'lp solve comienza ... //

Iprec *Ip;
HINSTANCE Ipsolve;

Ipsolve = LoadLibrary("lpsolve55.dll");
if (Ipsolve == NULL) {

printf("Unable to load Ipsolve shared librariin
return(FALSE);

}

100

Appendix 1

I
*kkkkkkkkkkkkkkkkkhhkkkhkhhkkkkhkhhhkkhkhkkhhkkhkkhhhkkhkhhhkkkhkhikkxk *kkkkkkkkkkkkhkkkkkkhikkk
*% //

/' Inicia el desarrollo de la estructura del peoga //

Ip=make_Ip(0,xint*2); /* prods*2 variables, 0 tesciones */

/I Descripcion del sistema utilizado //
cout << "
kkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkhkkkkhkkkkkkkkkkkkkk *kkkkkkkkkkkkkkkkkkk
" << endl;
cout << " * LP SOLVE *" << endl
cout << "
kkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkhkkhkkkkhkkkkkhkkkkkkkkk *kkkkkkkkkkkkkkkkkkk
" << endl;
cout << " * Description: Open Source (Mixed-InéegLinear Programming System *"
<< endl;

cout << " * Language: Multi-Platform, pure ANSI/®OSIX Source Code <<
endl;

cout << " * Official Name: Ip_solve *" << endl

cout << " * Release Data: Version 5.5.0.5. , da€ctober 2005 * " << endl;

cout << " * Co-developers: Michael Berkelaar, Kigkland, Peter Notebaert *" <<
endl,

cout << " * Licence Terms: GNU LGPL (Lesser Gaidétublic Licence) <<
endl,

cout <<
*kkkkkkkkkkkkkkkkkkkkkkhhkkkkhkhhkkkkhkkhkkkkkkkkkhkkkkkkkkk *kkkkkkkkkkkkkkkkkkk
" << endl;

cout << " " << endl;

/lcout << " " << endl;

set_maxim(lp); // Define el problema como MAXINAR

set_Ip_name(lp, "ELSPwP 1.0"); /* Pone el nonddrprograma */

for (productos=0; productos<xint; productos++#fOR 1

{
/I Estructuracion de la funcion obijetivo //
rowQ[productos*2+1] = aMIN[productos];

rowO[productos*2+2] = aMAX[productos];
set_obj_fn(lp, row0);

/I Estructuracion de las restricciones del pnoialée/

101

Appendix 1

set_add_rowmode(lp, TRUE);
rowl[productos*2+1] = aAmin[productos] - aT[pradas];
rowl[productos*2+2] = aAmax[productos];

for (i=0; i<xint*2+1; i++) row2[i]=0;
set_add_rowmode(lp, TRUE);
row2[productos*2+1] = 1.0;
row2[productos*2+2] = 1.0;

set_add_rowmode(lp, FALSE); // concluye la adiail@ nuevas restricciones
add_constraint(lp, row2, EQ , 1.0);

} /Il end FOR 1

add_constraint(lp, rowl, LE, Capacidad - Sum&Tggrega la restriccion de Capacidad

/I Imprime la estructura del problema //
/lcout << " " << endl;

print_Ip(Ip);

/lcout << " " << endl;

/lcout << " " << endl,

/lcout << " *** Splucion *** " << endl;
/lcout << " " << endl;

/I Resuelve el problema y lo presenta en panfalla
solve(lp);

/lcout << " " << endl;

llcout << " " << endl,

obj=get_objective(lp);

/I Obtiene los valores duales de la solucion //
get_dual_solution(Ip,duals);

/lcout << " " << endl;

/lcout << " *** duales *** " << endl;

for (i=1; i<xint+2; i++) {

/lcout << " Precio Sombra: " << duals[i] << endl;

}

/I Imprime la solucion del problema . 1 = numdeocolumnas para poner valores //

102

Appendix 1

print_solution(lp,1);
/lcout << " " << endl;
/lcout << " " << endl:

/I Imprime en pantalla los valores duales debjama //
print_duals(Ip);

llcout << " " << endl,

llcout << " " << endl;

llcout << " *** FIN *** " << end|;

llcout << " " << endl;

llcout << " " << end|,

/I condiciones para ciclo de comparacion //
condition = FALSE;
Comparacion = (double *)calloc(xint, sizeof(te1));

U T
/[*** --- Fase 2 > Subproblemas utilizando pecsombra --- *** //
e

for (productos=0; productos<xint; productos++#fOR 2
{

E=duals[xint+1]; // guarda el valor de LAMBDA pala subrutina, bajo el nombre de E;
/lcout << " El valor de lambda (variable E) << E << end|;

/I llamada a subrutina para obtener los valoeeB ¢ K y volver a calcular coeficientes
1

/l Nuevo Coeficiente con Lambda

CoefLambda[productos]=solve(E, B,
aS[productos],aC[productos],aM[productos],aA[pradst,aR[productos],0,ah[productos
],ahday[productos],&d,&K);

llcout << " " << endl,

/lcout << " EIl Coeficiente Modificado con Valor8smbra es: " <<
CoefLambda[productos] << "\n" << endl;

/lcout << " " << endl;

Ilprintf(" D es:\t%.20f",d);
/lcout << " " << endl;

/lcout << " K es: " << k << endl;
/lcout << " " << endl;

103

Appendix 1

/l Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] = (aA[productos]*log(aR[puatos]/d)*d)-
((aS[productos])/(k*B))-((aC[productos]*ahday[prartas]*(d)*(aM[productos]-
d)*k*B)/(2*aM[productos]))-(aC[productos]*d);

/llcout << " *** E| nuevo Coeficiente entrante €< aNuevoCoef[productos] << endl;

llcout << " " << endl;

if ((aNuevoCoef[productos] <0))
CoefLambda[productos]=duals[productos+1];

llcout << " " << end|;

diferencia = CoefLambda[productos] - duals[prdda¢1];
/lcout << " La diferencia es: " << diferencia erdl;
llcout << " " << endl;

llcout << " " << endl;

Comparacion[productos] = diferencia;

/I Inicia condicion , una columna nueva entria sliferencia es mayor a cero //
condition = (Comparacion[productos] > valuepjdition;

if ((Comparacion[productos] > value)) {

/I Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] = (aA[productos]*log(aR[puatos]/d)*d)-
((aS[productos])/(k*B))-((aC[productos]*ahday[prartas]*(d)*(aM[productos]-
d)*k*B)/(2*aM[productos]))-(aC[productos]*d);

/lcout << " El nuevo Coeficiente entrante es<"atNuevoCoef[productos] << endl;

/lcout << " " << endl;

/l Nuevo Coeficiente de tiempo para plan entrénte

aNuevoCoefA[productos] = ((d*k*B)/aM[productos]);

/lcout << " La restriccion de tiempo para el nuglan es: " <<
aNuevoCoefA[productos] << endl;

/lcout << " " << endl;

for (i=0; i<xint+2; i++) columnall[i]=0;

if ((Comparacion[productos] > 0)) {
columnal[productos+1]=1.0;
columnal[0] = aNuevoCoef[productos];
columnal[xint+1] = aNuevoCoefA[productos];
add_column(lp, columnal);

104

Appendix 1

}

/lcout << " " << endl;
/lcout << " " << endl;

}//end IF
llprint_Ip(Ip);

} /I end FOR 2
/I ciclo para obtener el Upper Bound de la funcio
suma=0;
for (i=0;i<xint;i++){
suma = suma + Comparacion[i];}
UB = obj + suma ;
bestUB = UB;
//COUt << I kkkkkkkkhkhkkkkkhhkkkkhihikkkhks 1 << endl,

COUt << " *xk xk kx| B 1 " << bestUB << endl;
//COUL << " FRkkkxkkdkk xRk xkERRRxE " < and|:

T T T
/I comienza el WHILE externo //
while (porcdif > tolerancia) {
conteo=0;
/I comienza el WHILE interno //
while (condition && (conteo < maxcount)) {
conteo++;
Il Solve LP //
solve(lp);
/Iprint_solution(Ip,1);
obj=get_objective(Ip);
/Il Get dual values //

get_dual_solution(lp,duals);
/lcout << " " << endl;

105

Appendix 1

/lcout << " *** duales *** " << endl,

for (i=1; i<xint+2; i++) {

/lcout << " Precio Sombra: " << duals[i] << endl|
}; I/ end FOR interno

for (productos=0; productos<xint; productos++)

{

E=duals[xint+1]; // guarda el valor de LAMBDAafa la
subrutina, bajo el nombre de E;

/llcout << "
*kkkkkkkkkkkkkkkkkhhhkkkhkkhhkkkhkhhhkkkhkhhkkkhkhkkkiksx << en dl,

/lcout << " El valor entrante de lambda (valeab) es: "
<< E << end;

/llcout << "

kkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkhkkhkkhkkhkhkkhhkkkhkkkhkkkhx 1! .
<< en dl;

/lcout << " " << endl;

/l llamada a subrutina para obtener los valdeeB y K y
volver a calcular coeficientes //

/I Nuevo Coeficiente con Lambda
/lcout << "

kkkkkkkkkkkkkhkkkkhkkkhkkkhkkkhkkhkkhkkkhhkkhhkkkhkkkhkk 1!
<< endl

/lcout << "

*kkkkkhkkhkhkkkkkkhkkkhkkkhkhkhkhkhkhkhkhkhhkhkkkkkkkkkiki 1 .
<< endl :

/lcout << " LLAMADA A SUBRUTINA " << endl;

CoefLambda[productos]=solve(E, B,
aS[productos],aC[productos],aM[productos],aA[pradst,aR[productos],0,ah[productos
],ahday[productos],&d,&K);

/lcout << " El Coeficiente Modificado con Vaés Sombra
es: " << CoefLambda[productos] << "\n" << endI;

/lcout << " " << endl;

printf(" D es:\t%.20f",d);
/lcout << " " << endl;
cout<<" Kes:"<<k<<endl

// Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] =
(aA[productos]*log(aR[productos]/d)*d)-((aS[prodosi)/(k*B))-
((aClproductos]*ahday[productos]*(d)*(aM[productedj*k*B)/(2*aM[productos]))-
(aC[productos]*d);

106

Appendix 1

/lcout << " *** Evaluacion de Coef Entrantex¥
aNuevoCoef[productos] << endl;
/lcout << " " << endl;

if ((aNuevoCoef[productos] < 0))
CoefLambda[productos]=duals[productos+1];

llcout << " " << endl;

diferencia = CoefLambda[productos] - duals[prctds+1];
H/COUt << ™ memememem e " << endl;
/lcout << " La diferencia es: " << diferencia endl;
/llcout << " " << endl;

/lcout << " " << endl;

Comparacion[productos] = diferencia;

/I Inicia condicion , una columna nueva enttla s
diferencia es mayor a cero //
condition = (Comparacion[productos] > valuepjpdition;

if ((Comparacion[productos] > value)) {

// Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] =
(aA[productos]*log(aR[productos]/d)*d)-((aS[prodosi)/(k*B))-
((aClproductos]*ahday[productos]*(d)*(aM[productedj*k*B)/(2*aM[productos]))-
(aC[productos]*d);

/lcout << " El nuevo Coeficiente entrante es<"
aNuevoCoef[productos] << endl;

llcout << " " << endl;

/l Nuevo Coeficiente de tiempo para plan eméah

aNuevoCoefA[productos] = ((d*k*B)/aM[product)s]

/lcout << " La restriccion de tiempo para eéwai plan es: "
<< aNuevoCoefA[productos] << endl;

llcout << " " << endl;

for (i=0; i<xint+2; i++) columnalli]=0;

if ((Comparacion[productos] > 0)) {
columnal[productos+1]=1.0;

columnal[0] = aNuevoCoef[productos];
columnal[xint+1] = aNuevoCoefA[productos];
add_column(lp, columnal);

107

Appendix 1

} llend if

Ilprint_Ip(Ip);

} // end IF condicional

}// end FOR

/[ciclo para obtener el Upper Bound del LP //
suma=0;
for (i=0;i<xint;i++){
suma = suma + Comparacion[i];
} /lend for
UB = obj + suma ;
if (UB < bestUB)
bestUB = UB;

cout << " FRx xRk xkxk | JB 1 " << bestUB << endl;

print_Ip(Ip);
/lcout << " " << endl;

/lcout << " " << endl;

/lcout << "
@eleelelclcelclejeiclclcelceieiciclcleleeiciclclclcleieicicicicleeecde)
QOR@P@@@ "<<endl

cout<<" @@@@ @@@@ CONTEO DE ITERACIONES: " <qteo << endl;

/lcout << "
@eleelelclclelclejeiciclcelceieiciclcleleeiciclclcleleieicicicicleeecde)
QOQR@@@@ "<<endl

cout << " " << endl;

}:/l end WHILE interno

for (i=1;i<=get_Ncolumns(Ip);i++)
set_int(Ip, i, TRUE);

Il resuelve el nuevo LP con integer variables //
solve(lp);

108

Appendix 1

print_solution(lp,1);
cout << " " << endl;
cout << " " << endl:

I/l Obtiene el valor de la funcion objetivo enteralB //
objentero=get_objective(Ip);

cout << " El objetivo LP: " << obj << end|;

cout << " El objetivo entero: " << objentero <rod

// Calculo de Upper bound //
cout << " El Upper Bound (UB) es: " << bestUB e&rd|;

/I Calculo de diferencia porcentual //
porcdif = (bestUB-objentero)/(bestUB);
cout << " " << endl,

COUt << I kkkkkhkhkkhkkkkhkhhhhkhkhhhhhkhkhhkhkhkkkdhkkhkhkikikhkhkx *kkkkkkkkkkkkkkkk I <<
endl ;

cout << "* *" << endl;

cout << " F* cmmmmmmeeee RESULTADO FINAL -------------- * " << endl;

cout << " * *" << endl;

cout << " * El porcentaje de error es: " <<qbf*100 << endl;

cout << " * *" << endl;

Cout << I kkkkkkkkkkhkhhkhkhkhkhkhkhkkhkkhkkkkkkkhkkkkhkhkhkhkhkhkkk kkkkkkkkkhkhkkkkkkkx I <<
endl ;

/l Cambia las variables a no enteras para queaasterar sin ellas //
for (i=1;i<=get_Ncolumns(Ip);i++)
set_int(Ip, i, FALSE);

}; /Il end WHILE externo

/[** CPU TIME //
[ltime (&finish);
/[duration = difftime (finish,start);

finish = clock();
duration = (finish-start);

cputime=duration/CLOCKS_PER_SEC;// se usa CLCOKR FH=C porque cada
unidad del clock dura 1/1000 de segundo.
printf (" CPU time taken is: %.2If seconds.\n"utme);

/**

109

Appendix 1

delete_Ip(Ip);
FreeLibrary(Ipsolve);
return (0);

}; /1l end MAIN

I

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkhkkhkk

*kkkk / /

/l'* Aca comienza la SUBRUTINA , para resolvepebgrama de K y d optimos. *
1

kkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkhkkhkk

*kkkk / /

double solve (double E, double B,double aS ,doalledouble aM ,double aA ,double
aR ,double aT ,double ah ,double ahday2 ,doubldddble *k)

{

/I declaracion de variables //

int count,j;

double LB,UB,EB,x|,xu,xm;

double F; /I F = es la derivada parcial de U retspacdemanda, evaluado en lower bound
double G; // F = es la derivada parcial de U respademanda, evaluado en medium
bound

double U,Uant; // Funcion de Utilidad

double Daa,Da,Dopt;

=1

[COUL << oo " << endl;
/lcout << " " << endl;

/lcout << " $$$ VALORES EXPORTADOS $$$ " << endl;

/lcout << " " << endl;

/lcout << " B: " << B << endl;

Ilprintf(" S es:\t%.20f",aS);
/lcout << " " << endl;

110

Appendix 1

[lprintf(" C es:\t%.20f",aC);
[lcout << " " << endl;

/lcout << " M es: " << aM << "\n" << endl;
llcout << " A es: " << aA <<"\n" << endl;
llcout << " R es: " << aR << "\n" << endl;
llcout <<" Tes: " <<aT <<"\n" << endl,

[lprintf(" H es:\t%.20f",ahday?2);
/lcout << " " << endl;
/lcout << " " << endl;

JICOUt << e " << endl

/llcout << " " << endl;
lllcout << " " << endl;

count=1;

U=-1000000000;
Uant=-1000000000000000000:

Daa=0;

Da=0;

Dopt=0;

while(U > Uant){

/I valores iniciales //

LB=0.0001; // el lower bound para la demandagaalia una tasa de 1

unidad por dia

UB=aM-1,; // el upper bound no puede excederrabhtzo de la tasa de

produccion M
EB=0.0001; // error bound

x|=LB;
xu=UB;

F= (-B*ahday2*count*(aM-2*xl)*aC)/(2*aM) - aC +aA*log(aR/xI)) -

aA - ((B*E*count)/aM);

//COUt << W kkkkkhkkhkkkhkhkkkkhkkhkkhkkkhkkkhkkkkhkkhkkhkkkx " < < endl’

/lcout << " " << endl;
/lcout << " " << endl;

XmM=Xu;

111

Appendix 1

G= (-B*ahday2*count*(aM-2*xm)*aC)/(2*aM) - aC +a@*log(aR/xm)) -
aA -((B*E*count)/aM);
f((F>0)&& (G>0)){ // ifl1,(Esenario, todos positivos)
xI=UB;

Dopt=xl;

U=((aA*log(aR/Dopt)*Dopt)-(aS/(count*B))-
((aC*ahday2*(Dopt)*(aM-Dopt)*count*B)/(2*aM))-(aC*Dpt)-(aT*E)-
((Dopt*count*B*E)/aM));

*d=Dopt;

/lcout << " " << endl;
/lcout << " El valor de U es: " << U << endl;

//COUt << M kkkkkhkkkkkhkkkhhkkkhkkkhkkkhkkkhkkkhkkkkk 1! << endl,

/lcout << " " << endl;

J1COUt << M mm e "
<< endl;

/lcout << " " << endl;

count++;

*k=count-1;

*d=Dopt;

//COUt << 1 okkkkkhkhkkkkkkkihhhkhhhhhhhkkkkkkikkikikikhkik *%k%k%k%k 1
<< endl;

/lcout << " COMPROBACION DE VALORES (D,K) DE
SUBRUTINA " << endl;

/lcout << "k es: " << *k << endl;

/lcout << " " << endl;

/lcout << " des:"<<*d << endl

/lcout << " " << endl;

//COUt << I kkkkkhkkkdhhhkkhhhkhhhkkhhhkhdhhhkkhiikk *kkk%k 1
<< endl;

/lcout << " " << endl;

return(U);

Hlendif 1

112

Appendix 1

if((F<0)&&(G<0)){ /I if2,(Esenario, todos negativos)

XU=LB;

Dopt=xu;

U=((aA*log(aR/Dopt)*Dopt)-(aS/(count*B))-
((aC*ahday2*(Dopt)*(aM-Dopt)*count*B)/(2*aM))-(aC*Dpt)-(aT*E)-
((Dopt*count*B*E)/aM));

*d=Dopt;

/lcout << " " << endl;
/lcout << " El valor de U es: " << U << endl;

//COUt << M kkkkkkhkhhkhkkkhkhhkkhkkhkhkhkhhkkhkhkkhkhkkkkk I << endl’

/lcout << " " << endl;

J1COUt << M mmm e e "
<< endl;

/lcout << " " << endl;

count++;

*k=count-1;

*d=Dopt;

//COUt << I kkkkkhkkkkkhkkkhhkkkhkkkhkkkhkkkhkkhkhkkhhkkkhkkk *kkkk I
<< endl;

/lcout << " COMPROBACION DE VALORES (D,K) DE
SUBRUTINA " << endl;

/lcout << "k es: " << *k << endl;

/lcout << " " << endl;

/lcout << " des:"<<*d << endl

/lcout << " " << endl;
//COUt << M kkkkkkkkhhkkhkhkkhkhkkhkkkhkhkkhhkkhkhhkkhkhhkkhkkkhkkk *kkkk

<< endl;
/lcout << " " << endl;

return(U);

}lendif 2

while ((xu-xl) >= EB) {

113

Appendix 1

G= (-B*ahday2*count*(aM-2*xm)*aC)/(2*aM) - aC +
(aA*log(aR/xm)) - aA -((B*E*count)/aM);
/lcout << " Valor de G: " << G << end];

if (F*G < 0)
XU=Xm;
else
Xl=xm;

xm=(xI+xu)/2;

}; llend while interno

Daa=Da,;
Da=Dopt;
Dopt=xm,;

Uant=U;

U=((aA*log(aR/Dopt)*Dopt)-(aS/(count*B))-((aC*alag2*(Dopt)*(aM-
Dopt)*count*B)/(2*aM))-(aC*Dopt)-(aT*E)-((Dopt*couttB*E)/aM));

*d=Dopt;

/lcout << " Uant " << Uant << end!;

/lcout << " " << endl;
/lcout << " El valor de U es: " << U << endl;

//COUt << I kkkkhkkkkhhhkkkhhhkkdhhhkkhhhhkkhikikkisx < < endl’
/lcout << " " << endl;
I COUL < o - "<< endl

/lcout << " " << endl;
count++;

}; /1l end while externo

*k=count-2;
*d=Da;

//COUt << W kkkkkkkkkkhkkkkhkkhkkhkkkkkkkkhkkhkkhkkhkkhkkkkkkk *% " << endl’

cout << " COMPROBACION DE VALORES (D,K) DE SUBRUTIN" << end];
cout << " kes: " << *k << endl;

/lcout << " " << endl;

cout<<"des:"<<*d <<endl

114

Appendix 1

llcout << " " << endl;

Cout << W kkkkkkkkkkhkkhkkhkkkkkhkkkkhkkhkkkkkkkkkkkkkhkkk

/lcout << " " << endl;

return(Uant);

}:/1 end subrutina solve

"<< endl;

115

Appendix 2

Appendix 2. C++ program for the SPLSP (article 2)

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#include <iostream.h>
#include <fstream.h>
#include <time.h>

#include "Ip_lib.h"

/I INICIO - declaracion de subrutinas a utilizarMAIN //

/Il optimizador de subproblema

double solucion(int,int,int,double

*E double,double,double,double,double,double,dadbigeble,double,double,double,dou
ble,double,double*,double*,double*);

/I evaluador de funcion de Utilidad

double evaluar (int,int,int,double

*E double,double,double,double,double,double,dadbigeble,double,double,double,dou
ble,double,double);

Il - FIN

// kkkkkkkkkkkkkhkhkhkhkkkkkx P rog rama P rl nCI pal *kkkkk k*kkkkkkkkkkkhkhkhkkkx //

int main()

{

I/ --- DECLARACION DE VARIABLES --- //
bool condition,agregadas;

int productos;
int i,b,xint,noise,conteo,maxcount,m,w;

Ilarrays//
double *aS, *aC, *aM, *aA, *aR, *aT, *ah, *ahday¥a

116

Appendix 2

double *aMIN, *aMAX, *aAmin,
*aAmax,*CoefLambda,*aNuevoCoef,*aNuevoCoefA,*NegpherSuma;

double *row0, *row1l, *row2,*row3,*duals,*aOPT,*aAdp

double x,diferencia,Period,B,Capacidad,toleranoiagif,objentero,UB,bestUB,obj;
double *E,*Et; // arreglo que guarda los ruidos aehivo ruidos.txt

double t,k,z,S,Tuno; //variables optimizadas de i solve
double tmin,tmax,tmin2; //variables de demandaa jgaeficientes minimo y maximo

double *columnal, *Comparacion;
double value,suma,F,Suma;

double Tp,K;

time_t start, finish;
double duration, cputime;

Il --- FIN declaracion de variables --- //

/[* comienza el reloj de C

start = clock();

I*

Il -- INICIO -- Valores iniciales de algunos pardroe //

maxcount=20; // conteo maximo del ciclo while

tolerancia = 0.02; // tolerancia porcentual parardsound

porcdif=100000000; // valor M para comenzar cichulesexterno

value=0.000001; // valor para la comparacion qu&laya la generacion de columnas
z = 1.96; // correspondiente a un nivel de sende&b95%

b=1;

Il -- FIN -- /I

[* Leer el archivo "datos.txt" para obtener losutgprequeridos */

ifstream ff("datos.txt");

117

Appendix 2

ff >> x;
xint = int(x);

COUt << W kkkkkkkkkkhkkhkkhkkkkkhkkkkhkkkhkkkkkkkkkkkkkhkkk " << endl’

cout<<"* Stochastic ELSP v 3.1.4 " <<endl;

COUt << W kkkkkkkkkkhkkhkkhkkhkkkhkkhkkkhkkkhkkkkkkkkkkkkkhkkk " << endl’

cout << " " << endl;
cout << "El Sistema es de " << xint << " productes< endl;

ff >> x;
noise = int(x);
cout << "El numero de ruidos por producto es: 'nofse << endl;

/I Definicion de algunos arreglos para almacenkorea //
aA = (double *)calloc(xint ,sizeof(double));
aR = (double *)calloc(xint ,sizeof(double));
aS = (double *)calloc(xint ,sizeof(double));
aC = (double *)calloc(xint ,sizeof(double));
aM = (double *)calloc(xint ,sizeof(double));
aT = (double *)calloc(xint ,sizeof(double));

ah = (double *)calloc(xint ,sizeof(double));
ahday = (double *)calloc(xint ,sizeof(double));
aV = (double *)calloc(xint ,sizeof(double));
/ITO = (double *)calloc(xint ,sizeof(double));

Et = (double *)calloc(xint*noise ,sizeof(doublg;)/ arreglo que almacena ruidos
E = (double *)calloc(xint*noise ,sizeof(doublg; Y/ arreglo que almacena ruidos

aMIN = (double *)calloc(xint ,sizeof(double));
aMAX = (double *)calloc(xint ,sizeof(double));
aOPT = (double *)calloc(xint ,sizeof(double));
aAopt = (double *)calloc(xint ,sizeof(double));

Neg = (double *)calloc(xint ,sizeof(double));
aAmin = (double *)calloc(xint ,sizeof(double));
aAmax = (double *)calloc(xint ,sizeof(double));
aNuevoCoef = (double *)calloc(xint ,sizeof(double
aNuevoCoefA = (double *)calloc(xint ,sizeof(doebl);

CoefLambda = (double *)calloc(xint ,sizeof(doublg

duals = (double *)calloc(2 + xint, sizeof(doublg
row0 = (double *)calloc(1 + xint*3, sizeof(doub)e;
rowl = (double *)calloc(1 + xint*3, sizeof(doub)e;
row2 = (double *)calloc(1 + xint*3, sizeof(doub)e;
row3 = (double *)calloc(1 + xint*3, sizeof(doub)e;
columnal = (double *)calloc(xint*3+1, sizeof(ddeb);

118

Appendix 2

UpperSuma = (double *)calloc(xint*3+1, sizeof(ddei));

ff >> x;

Period = int(x);

/lcout << " " << endl,

/lcout << " El tiempo anual disponible para la procion es: " << Period << " dias " <<
endl,

ff >> x;

B =x;

/lcout << " " << endl;

/lcout << " El Periodo basico es de: " << B << dgll' << endl;
/lcout << " " << endl;

[lcout << " " << endl,

ff >> x;

Capacidad = x;

llcout << " " << endl;

/lcout << " La Capacidad es de: " << Capacidad d#% " << endl;
llcout << " " << end|;

/[valores iniciales de optimizacion : t, k

Tp =0.1;

/lcout << " El tiempo de produccion es: " << Tp'<dias " << endl;
llcout << " " << endl;

K=1;

/lcout << " El periodo de produccion |k, es: " <K " dias " << endl;
/lcout << " " << endl;

I

I/[* Leer el archivo "ruidos.txt" para obtener lasdos requeridos */
ifstream yy("ruidos.txt"); // archivo de donde les ruidos obtenidos
for (m=0;m<(xint*noise);m++)

{ yy >> x; Et[m] = x;

/lcout << " El ruido , Et {" << m << "} es: " <&t[m] << endl;

}

/I* fin lectura de ruidos

//COUt << " ANNNNNNNNNNNNNNNNNNIN b es: "< b <end|

119

Appendix 2

/I ciclo para cada producto
for (productos=0; productos<xint; productos++)

{

[* Leer y guardar los valores */

ff >> x; aA[productos] = x;

llcout << " " << endl;

/lcout << " Paramatro A para la formula de dedaaimeal: " << aA[productos]
<<"\n" << endl,

ff >> x; aR[productos] = x;

/lcout << " " << endl;

/lcout << " Parametro B para la formula de demadineal: " << aR[productos]
<<"\n" << endl,

ff >> x; aS[productos] = x;
llcout << " " << endl;
/lcout << " Costo de Setup ($), S es: " << a@]prtos] << "\n" << endl;

ff >> x; aC[productos] = x;
llcout << " " << endl;
/lcout << " Costo Unitario ($/unidad), C es:< &C[productos] << "\n" << endl;

ff >> x; aM[productos] = x;

/lcout << " " << endl;

/lcout << " Tasa Diaria de Produccion (unidadi@3/ m es: " << aM[productos]
<<"\n" << endl;

ff >> x; aT[productos] = x;
/lcout << " " << endl;
/lcout << " Tiempo de Setup (dias), T es: " Igpaoductos] << "\n" << endl;

ff >> x; ah[productos] = x;

/lcout << " " << endl;

/lcout << " Costo Anual de Holding , h es: " a&{productos] << "\n" << endl;
llcout << " " << endl;

ff >> x; aV[productos] = x;

llcout << " " << endl;

/lcout << " El vendor Price V, es: " << aV[prados] << "\n" << end|;
llcout << " " << endl;

/I Calculo de Holding Cost por dia //
ahday[productos] = ah[productos]/Period;

120

Appendix 2

/lcout << " El Holding Cost por dia ($/unidad&lj es: " << ahday[productos]
<<"\n" << endl;

/lcout << " " << endl;
/lcout << " " << endl,
/lcout << " " << endl;
/lcout << " a" << endl;

F=0; // valor inicial para la variable de Lambda cero porque la lera rutina de
solve no las subrutinas no la usan en la inicieiora

// kkkkkkkkkkkkkkkkkkkhkkkkhkhkkkhkkkhkkkhhkkkhkkkhkkkhkk *%k% //
S=0;

Il -- llamada a subrutina "solve" que me davlalsres optimos de Ky Tp para
cada producto -- //

solucion(b,xint,noise,Et,F,aS[productos],aC[prodataM[productos],aA[productos],aR
[productos],aT[productos],ahday[productos],aV[prctds], Tp,B,S,z,&k ,&t,&Tuno);

/lcout << " " << endl;

//COUt << I kkkkkkkkkhhhkkhkhhkkkhhhkkkhhhkkkhhhkkkhiixk *kkkk 1 << endl’
/lcout << " * Valores exportados de SUBRUTINA " << endl;
//COUt << W kkkkkkkkkhkkkkkhkkkkhhkkkkkkkkhkhkkkkkkkk *kkkk N << endl’

[lprintf("T:\t%.20f"t); // Imprime el valor d&a demanda con 20 decimales para
mas precision

llcout << " " << endl;

/lcout << "K es: " << k << endl;

/lcout << "Tuno es: " << Tuno << endl;

/lcout << " " << endl;

[ITO[productos]=t;

/I -- Calculo de tiempos para los dos planesales -- //

/lcout << " " << endl;

tmin=(0.25)*(t); // La demanda para el plan minies un 50% de la demanda
optima

tmax=(1.25)*(t); // La demanda para el plan maxies un 25% mas grande que
la demanda optima

/lcout << " Tiempo de Prod -- debajo de capatida< tmin << endl;

/Icout << " Tiempo de Prod -- encima de capatida< tmax << endl;

121

Appendix 2

/lcout << " " << endl;
/lcout << " " << endl;
JICOUt << ! mmm e e " << endl;

/[Evaluacion Previa con tmax, para no permdgficientes negativos

Tp=tmax;
/l cout << " Tmax es: " << tmax << endl;

Neg[productos]= evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMffuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos]KIB,S,z) ;

/llcout << " === INICIO > CICLO WHILE ===" <<endl;
/lcout << " " << endl;

while (Neg[productos] < 0)
{
Tp=Tp/1.1,
llcout<<" Tpes: " << Tp <<endl
Neg[productos]= evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMfuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos)KIB,S,z) ;
Il cout << " El Negativo es: " << Neg[prodos} << "\n" << endl;
tmax=Tp;

}

/lcout << " === FINAL > CICLO WHILE ===" << mdl;
/lcout << " Tmax es: " << tmax << endl;

/[-*- Calcular Coeficientes para los planesialies del LP -*- //

Il -- Coeficiente Minimo -- //

Tp=tmin;

/lcout << " Tmin es: " << Tp << end|;

aMIN[productos]= evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMdfuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos]KI®B,S,z) ;

[lcout << " **++ Error importado: " << *Et << elf;

/lcout << " El Coeficiente Minimo es: " << aMIploductos] << "\n" << endl;

122

Appendix 2

Il -- Coeficiente Maximo -- //

Tp=tmax;

/lcout << " Tmax es: " << Tp << end;

aMAX[productos]= evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMffuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos]KI®B,S,z) ;

/lcout << " El Coeficiente Maximo es: " << aMAMXpductos] << "\n" << endl;

k=1,

Tp=1,

aOPT[productos]= evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMfuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productos)KIB,S,z) ;

/lcout << " EI Coeficiente Irrestricto es: " @OPT[productos] << "\n" << endl;

aAopt[productos]= aT[productos] + Tuno;
/lcout << " El Coeficiente de tiempo Irrestri@s: " << aAopt[productos] <<
"\n" << endl;

if (aOPT[productos] <0)

aOPT[productos] = 0;
aAopt[productos]=0;
}

Il -- Coeficiente de Restriccion de Tiempo Mioira //
aAmin[productos]= aT[productos] + tmin;
/lcout << " EI Coeficiente de tiempo Minimo &< aAmin[productos] << "\n"
<< endl;
/lcout << " aT es: " << aT[productos] << "\n" endl;
llcout << " D es: " << DE << end|;
/lcout << " K es: " << k << endl;
llcout << " B es: " << B << endl;
/lcout << " aM es: " << aM[productos] << "\n" <endl;

/I -- Coeficiente de Restriccion de Tiempo Magirn //
aAmax[productos]= aT[productos] + tmax;
/lcout << " EI Coeficiente de tiempo Maxims & << aAmax[productos] << "\n" <<
endl;
/lcout << " " << endl;
llcout << " FRRRk E|N Frkkx U << angl;

123

Appendix 2

/[cout << " producto: " << productos << endl;
} // endFOR
b=b+1;

/lcout<<"be:"<<b<<end;

/[--- *** --- Procedimiento para Obtener la T mim& "factible" para comenzar el LP ---
*kk ___ //

Suma=0;
for (productos=0;productos<xint;productos++){
Suma = Suma + aAmin[productos];

} /lend for
llcout << " " << end|;
/lcout << " --- *** Suma Minima de Capacidadesg#os productos: " <<

Suma << endl;
/lcout << " " << endl;
while (Suma > Capacidad){

tmin2=tmin/2;
/[cout << " Tiempo modificado: " << tmin2 << endl|

Suma=0;

for (productos=0;productos<xint;productos++){

Il -- Coeficiente Minimo -- //

Tp=tmin2;

aMIN[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMfuctos],aA[productos],aR[product

os],aT[productos],ahday[productos],aV[productos]KIB,S,z) ;
/lcout << " El Coeficiente Minimo es: " << aM[lproductos] << "\n" << endl;

Il -- Coeficiente de Restriccion de Tiempo Minimd/
aAmin[productos]= aT[productos] + tmin2;

if (aMIN[productos] <0)

124

Appendix 2

{
aMIN[productos] = 0;

aAmin[productos]=0;
}

Suma = Suma + aAmin[productos];

} /lend for

/lcout << " " << endl,

/lcout << " --- *** Suma Minima de Capacidadesg#s productos: " <<
Suma << end|,

llcout << " " << endl;

tmin=tmin2;

}; /lendwhile suma vs. capacidad

kkkkkkkkkkkkkkkkkkkkkkkhkhkhkhkkhkkhkkkkkkkkkkkkkhkhkhkhkkhkkkkkkk *kkkkkkkhkhkkkkkkkkkkkkk
g—

/l'lp solve comienza ... //

Iprec *Ip;
HINSTANCE Ipsolve;

Ipsolve = LoadLibrary("lpsolve55.dIl");

if (Ipsolve == NULL) {
printf("Unable to load Ipsolve shared librariin
return(FALSE);

}
I

kkkkkkkkhkkhkhkhkhkkkkkkhhhhkhkhkhkkkkkhhhhhhkhhkkkkkhhkhikhkikx *kkkkkkkkkhkhkhkhkkkkkkkkx

*% //
/I Inicia el desarrollo de la estructura del peoga //

Ip=make_Ip(0,xint*3); /* prods*3 variables, O tBsciones */

125

Appendix 2

Il Descripcion del sistema utilizado //
cout <<
*kkkkkkkkkkkkkkkkkhhkkkhkkhhkkkkhhhhkkhkkhkkhhkkhkkhhhkkkhkkhhhkkkhkhikkxk *kkkkkkkkkkkkkkkkkkk
" << endl;
cout << " * LP SOLVE *" << endl;
cout <<
*kkkkkkkkkkkkkkkkkhkkkhkhhkkkkhhhhkkhkhkhhkkhkkhhhkkhkhhhkkkhkhikkxk *kkkkkkkkkkkkkkkkkkk
" << endl;
cout << " * Description: Open Source (Mixed-InéggLinear Programming System *"
<< endl;

cout << " * Language: Multi-Platform, pure ANSI/®OSIX Source Code <<
endl;

cout << " * Official Name: Ip_solve *" << endl;

cout << " * Release Data: Version 5.5.0.5. , da€ctober 2005 *" << endl

cout << " * Co-developers: Michael Berkelaar, Kigikland, Peter Notebaert * " <<
endl;

cout << " * Licence Terms: GNU LGPL (Lesser Gaidtublic Licence) <<
endl;

cout <<"
kkkkkkkkkkkkkkkkkkkkkkkhhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkk
" << endl;

cout << " " << endl,

cout << " " << endl,

set_maxim(lp); / Define el problema como MAXINAR

set_Ip_name(lp, "SPELSP 3.1.4"); /* Pone el nadmprograma */

for (productos=0; productos<xint; productos++#OR 1
{

/I Estructuracion de la funcion obijetivo //

rowOQ[productos*3+1] = aMIN[productos];

rowQ[productos*3+2] = aMAX[productos];
rowO[productos*3+3] = aOPT[productos];
set_obj_fn(lp, row0);

/I Estructuracion de las restricciones del pnoialée/
set_add_rowmode(lp, TRUE);
rowl[productos*3+1] = aAmin[productos];
rowl[productos*3+2] = aAmax[productos];
rowl[productos*3+3] = aAopt[productos];

for (i=0; i<xint*3+1; i++) row2[i]=0;

126

Appendix 2

set_add_rowmode(lp, TRUE);
row2[productos*3+1] = 1.0;
row2[productos*3+2] = 1.0;
row2[productos*3+3] = 1.0;

set_add_rowmode(lp, FALSE); // concluye la adiail@ nuevas restricciones
add_constraint(lp, row2, EQ , 1.0);

} /Il end FOR 1

add_constraint(lp, rowl, LE, Capacidad); // agrkgrestriccion de Capacidad

/I Imprime la estructura del problema //
cout << " " << endl;

print_Ip(Ip);

/lcout << " " << endl;

/lcout << " " << endl;

/lcout << " *** Spolucion *** " << endl;
/lcout << " " << endl;

/I Resuelve el problema y lo presenta en panfalla
solve(lp);

llcout << " " << endl;

cout << " " << endl;

obj=get_objective(lp);

/I Obtiene los valores duales de la solucion //
get_dual_solution(Ip,duals);

/lcout << " " << endl;

/lcout << " *** duales *** " << endl;

for (i=1; i<xint+2; i++) {

/lcout << " Precio Sombra: " << duals[i] << endl;

}

/I Imprime la solucion del problema . 1 = numdeocolumnas para poner valores //
print_solution(Ip,1);
cout << " " << endl
cout << " " << endl;

127

Appendix 2

/l Imprime en pantalla los valores duales debjama //
print_duals(Ip);

llcout << " " << endl;

llcout << " " << endl,

llcout << " *** EIN *** " << end|;

llcout << " " << endl,

llcout << " " << endl;

/I condiciones para ciclo de comparacion //
condition = FALSE;

agregadas = FALSE;

Comparacion = (double *)calloc(xint, sizeof(the1));

U T
/[*** --- Fase 2 > Subproblemas utilizando pecsombra --- *** //
e

for (productos=0; productos<xint; productos++) QR 2

{

F=duals[xint+1]; // guarda el valor de LAMBDA zala subrutina, bajo el nombre de E;
/lcout << " El valor de lambda (variable F) éx< F << end|;

I/l llamada a subrutina para obtener los valoeeB ¢ K y volver a calcular coeficientes
1

/[Tp=TO[productos]; // variable que asigna elovaptimo a Tp, para calcular el Coef
entrante

/l llamada a solve para obtener nuevos valoregsiop para Ty K

solucion(b,xint,noise,Et,F,aS[productos],aC[prodsfaM[productos],aA[productos],aR
[productos],aT[productos],ahday[productos],aV[prctds], Tp,B,S,z,&k ,&t,&Tuno);
/Isolve
(F,aS[productos],aC[productos],aM[productos],aAfharctos],aR[productos],aT[product
os],ahday[productos],aV[productos],Tp,B,S,z,&k &Iuno);

lprintf(" T es:\t%.20f",t);

/lcout << " " << endl;

/lcout << " K es: " << k << endl;
/lcout << " " << endl;

128

Appendix 2

/ Nuevo Coeficiente con Lambda
CoefLambda[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMfuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productds&,S,z) ;
/levaluar
(F,aS[productos],aC[productos],aM[productos],aAfarctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B) S,z

/lcout << " F(Lambda) es: " << F << endl;
llcout<<" Tes:"<<t<<endl
/lcout << " K es: " << k << endl;

/lcout << " " << endl,

/lcout << " El Coeficiente Modificado con ValorBembra es: " <<
CoefLambda[productos] << "\n" << endl,

/lcout << " " << endl;

F=0;

/Il Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMfuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productds&,S,z) ;

/levaluar
(F,aS[productos],aC[productos],aM[productos],aAfhrctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B) S,z

/lcout << " *** E| nuevo Coeficiente entrante és<< aNuevoCoef[productos] << endl;
/lcout << "producto: " << productos+1 << endl;
llcout << " " << endl;

if ((aNuevoCoef[productos] <0))
CoefLambda[productos]=duals[productos+1];
/I cout << " 9999 Comprobacion de Coef Lambd' ec< CoefLambda[productos] <<
"\n" << endl;

/lcout << " " << endl;

diferencia = CoefLambda[productos] - duals[prdda¢1];
/lcout << " La diferencia es: " << diferencia erdl;
/lcout << " " << endl;

/lcout << " " << endl;

129

Appendix 2

Comparacion[productos] = diferencia;

UpperSumalproductos] = Comparacion[productos];

/I Inicia condicion , una columna nueva entria sliferencia es mayor a cero //
condition = (Comparacion[productos] > valuepjdition;

if (condition = TRUE)
{
agregadas = TRUE;
}

if ((Comparacion[productos] > value)) {
/Il Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMffuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productds&,S,z) ;

/levaluar
(F,aS[productos],aC[productos],aM[productos],aAffrctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B) S,z

/lcout << " El nuevo Coeficiente entrante esx"aiNuevoCoef[productos] << endl;
/lcout << "producto: " << productos+1 << endl;
/lcout << " " << endl;

/l Nuevo Coeficiente de tiempo para plan entrénte

aNuevoCoefA[productos] = aT[productos] + (t);

/lcout << " La restriccion de tiempo para el nuglan es: " <<
aNuevoCoefA[productos] << endl;

/lcout << "producto: " << productos+1 << endl;

llcout << " " << endl;

for (i=0; i<xint+2; i++) columnalli]=0;

if ((Comparacion[productos] > 0)) {
columnal[productos+1]=1.0;
columnal[0] = aNuevoCoef[productos];
columnal[xint+1] = aNuevoCoefA[productos];
add_column(lp, columnal);

130

Appendix 2

cout << " " << endl;
cout << " " << endl;

}lend IF
Ilprint_Ip(Ip);

}// end FOR 2

for (w=0;w<xint,w++)

{

}

if (UpperSumalw] < 01
UpperSumalw]=0;
}

/I ciclo para obtener el Upper Bound de la fundio
suma=0;
for (w=0;w<xint;w++)

{
}

if (suma <0){
suma=0;
}

llcout << " objetivo es: " << obj << endl;
UB = obj + suma ;
bestUB = UB;

/lcout << "Ub Suma [" << w << "] es: " << Up@malw] << endl;

suma = suma + UpperSumalw];

//COUt << M kkkkkhkkkhkkkhkkkhhkkkhkkhkkkkkx 1! << endl’

flcout << " **x *xx wxxk B 1 " << bestUB << endl;
//COUt << M kkkkkhkkkhkkkhkkkhkkkhkkhkkkhkkx 11 << endl’
i
/I comienza el WHILE externo //

while (porcdif > tolerancia) {

conteo=0;

131

Appendix 2

/I comienza el WHILE interno //
while (agregadas && (conteo < maxcount)) {

conteo++;

Il Solve LP //
solve(lp);
set_timeout(lp, 20);
/lprint_solution(Ip,1);

obj=get_objective(Ip);
/lcout << ™ 1111111111111111111 Obj> " << objerd;

/I Get dual values //
get_dual_solution(lp,duals);

llcout << " " << end|;

/lcout << " *** duales *** " << endl;

for (i=1; i<xint+2; i++) {

/lcout << " Precio Sombra: " << duals|i] << endlI
}; // end FOR interno

for (productos=0; productos<xint; productos++)

{

F=duals[xint+1]; // guarda el valor de LAMBDAafa la
subrutina, bajo el nombre de E;

/lcout << "
% n .
*kkkkkkkhkhkkkhkhkhkkhkkkkkkikkihkhkhkhkhhhhhhkhkhkkkkkkikk << en dl’

/lcout << " El valor entrante de lambda (valegb) es: "
<< F << endl

/lcout << "
% n .
*kkkkkkkhkhkkkkhkhkhkkhkkhkkkkikkihkhkhkhhhhhhkkhkkkkkikikk << en dl’

/lcout << " " << endl;

Il llamada a subrutina para obtener los valdeeB y K y
volver a calcular coeficientes //

/[Tp=TO[productos];

/I Nuevo Coeficiente con Lambda

132

Appendix 2

/lcout << "

kkkkkkkkkkkkkhkkkhkkkhkkkhkkkhkkkhkkhkkkhhkkhhkkkhkkkhkk 11
<< endl

/lcout << "

kkkkkkkkkkkkkhkkkkhkkkhkkkhkkkhkkkhkhkkkhhkkhhkkkhkkkhkk 1! .
<< endl X

/llcout << " LLAMADA A SUBRUTINA " << endl;

solucion(b,xint,noise,Et,F,aS[productos],aC[pradef;aM[productos],aA[produc
tos],aR[productos],aT[productos],ahday[productddpaoductos],Tp,B,S,z,&k ,&t,&Tu
no);
//solve
(F,aS[productos],aC[productos],aM[productos],aAffrctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,B,S,z,&k ,&T,&n0);

lprintf(" T es:\t%.20f",t);
/lcout << " " << endl;
/lcout << " K es: " << k << endl;

CoefLambda[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMffuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productds&,S,z) ;

/levaluar
(F,aS[productos],aC[productos],aM[productos],aAffrctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B)S,z

/lcout << " El Coeficiente Modificado con Vaés Sombra
es: " << CoefLambda[productos] << "\n" << endI;

/lcout << " " << endl;

F=0; // para recomenzar el ciclo de valoresogs de Ty

/Il Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMffuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productdsg,S,z) ;

/levaluar
(F,aS[productos],aC[productos],aM[productos],aAfhrctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B) S,z

llcout << " *** Evaluacion de Coef Entrantex&
aNuevoCoef[productos] << endl;

/lcout << "producto: " << productos+1 << endl;

/lcout << " " << endl;

if ((aNuevoCoef[productos] <0))

133

Appendix 2

CoefLambda[productos]=duals[productos+1];
/I cout << " 9999 Comprobacion de Coef Laraba" <<
CoefLambda[productos] << "\n" << endl,

llcout << " " << endl;

diferencia = CoefLambda[productos] - duals[prctds+1];
HCOUt << ™ memememem e " << endl;
/lcout << " La diferencia es: " << diferencia endl;
/lcout << " " << endl;

/lcout << " " << endl;

Comparacion[productos] = diferencia;

UpperSumalproductos] = Comparacion[productos];
/l Inicia condicion , una columna nueva entfa s

diferencia es mayor a cero //
condition = (Comparacion[productos] > valuepjpdition;

if (condition = TRUE)
{

}

agregadas = TRUE;

if ((Comparacion[productos] > value)) {

// Nuevo Coeficiente para plan entrante //

aNuevoCoef[productos] = evaluar
(b,xint,noise,Et,F,aS[productos],aC[productos],aMffuctos],aA[productos],aR[product
os],aT[productos],ahday[productos],aV[productds&,S,z) ;

/levaluar
(F,aS[productos],aC[productos],aM[productos],aAfhrctos],aR[productos],aT[product
os],ahday[productos],aV[productos],t,k,Period,B) S,z

/lcout << " El nuevo Coeficiente entrante es<"
aNuevoCoef[productos] << endl;
llcout << " " << endl;

/Il Nuevo Coeficiente de tiempo para plan eméah

aNuevoCoefA[productos] = aT[productos] + (t);

/lcout << " La restriccion de tiempo para eéwoi plan es: "
<< aNuevoCoefA[productos] << endl;

134

Appendix 2

//cout << "producto: " << productos+1 << endl;
llcout << " " << endl;

for (i=0; i<xint+2; i++) columnalli]=0;

if ((Comparacion[productos] > 0)) {
columnal[productos+1]=1.0;

columnal[0] = aNuevoCoef[productos];
columnalfxint+1] = aNuevoCoefA[productos];
add_column(lp, columnal);

}lend if

Illprint_Ip(Ip);
} // end IF condicional
}// end FOR

for (w=0;w<xint;w++)

{

}

if (UpperSumalw] < 01
UpperSumalw]=0;
}

/I ciclo para obtener el Upper Bound de la fundio
suma=0;
for (w=0;w<xint;w++)

{
}

if (suma <0){
suma=0;
}

llcout << " ZZZ7777777777777777777777777777777777Z777 objetivo es: "
<< obj << endl;

UB = obj + suma ;

bestUB = UB;

/lcout << "Ub Suma [" <<w << "]es:" << Up@rmalw] << endl;

suma = suma + UpperSumalwj];

135

Appendix 2

[lcout << ™ dxk ek B 1" << bestUB << endl;

print_lp(Ip);
[lcout << " " << endl;

/lcout << " " << endl;

cout << "
@lelelelelccelclelelclcaelcleelcldeleleleclcceleceielciciclcleeIe]e)
Q@OQER@Q@@@ "<<endl

cout<<" @@@@ @@@@ CONTEO DE ITERACIONES: " <qteo << endl;

cout << "
@lelelelelclcelclelelcldaelcleelcldelcleleclccelcleielciciclcleeIcde,
Q@OQER@Q@@@ "<<endl

[lcout << " " << endl;
/lcout << " " << endl;

}:/l end WHILE interno

for (i=1;i<=get_Ncolumns(Ip);i++)
set_int(lp, i, TRUE);

/] resuelve el nuevo LP con integer variables //
solve(lp);

print_Ip(Ip);

print_solution(Ip,1);

cout << "" << endl;

cout << " " << endl;

/I Obtiene el valor de la funcion objetivo enterdB //
objentero=get_obijective(Ip);

cout << " El objetivo LP: " << obj / (48) << end|

cout << " El objetivo entero: " << objentero Bj4&< endl;

/l Calculo de Upper bound //
cout << " El Upper Bound (UB) es: " << bestUBIBJ << endl;

/l Calculo de diferencia porcentual //
porcdif = (bestUB-objentero)/(bestUB);
cout << " " << endl;

COUt << I okkkkkhkhkhkhkhkkkkkhhhkhkhhhhhhkhkhkhkkkkikkihiikhkhkhk *hkkkkkkkkkhkkhkhkkkkkx 1! <<
endl ;

cout<< " * * " << endl;

COUt << " * mmmmmmeeeee RESULTADO FINAL ------------- *" << endl;

136

Appendix 2

cout << " * *" << endl

cout << " * El porcentaje de error es: " <<quif*100 << endl;

cout << " * *"<<endl;

COUt << I kkkkkkkkhkhhhkkhkhhkkkkhhhkkhkhhhkkhhhhkhkkhkhhkhkikhix kkkkkkkkkkkkkkhkikx 1! <<
endl ;

/[Cambia las variables a no enteras para queavadterar sin ellas //
for (i=1;i<=get_Ncolumns(Ip);i++)
set_int(Ip, i, FALSE);

}; Il end WHILE externo

/I ** CPU TIME //

finish = clock();

duration = (finish-start);

cputime=duration/CLOCKS_PER_SEC;// se usa CLCOKR FH=C porque cada
unidad del clock dura 1/1000 de segundo.

printf (" CPU time taken is: %.2If seconds.\n"ptme);

// *%

set_timeout(lp, 30);
delete_Ip(Ip);
FreeLibrary(Ipsolve);
return (0);

}, /1l end MAIN

o
o

I

*****////

/[* 2. SUBRUTINA para Subproblema , para resok®leasunto Ky d optimos. * ///

137

Appendix 2

I

*****////
T nn§ i
T T T T

double solucion (int b, int xint, int noise, doubske, double F,double aSp, double aCp,
double aMp, double aAp,double aRp ,double aTp ,doabdayP ,double aVp,double Tp,
double B,double S,double z,double *k ,double *tJoleu*Tuno)

{

int l,c,a;

double Utt,Ib,ub,Tiempo,tiempo, Time,tempo;
double Uoptant,Utotal,Uprima,Ug;

double K ka;

double Step,StepPe;

Il -- Inizio> algunos valores iniciales para ell@ia/hile externo
c=1;

[=1;

K=1;

a=1,

Step=0.1,

StepPe=0.01,;

Time=0; // variable que almacena Tps

Utt= -1000000000000;
Uoptant = -1000000000000000000;

/I -- Fine

while (Utt > Uoptant) { ////l while EXTERNO , pa optimizar K

/lcout << " " << endl;
/lcout << " " << endl;
/lcout << " " << endl;

Hlcout << " ** [ommmmmm oo] ** " << endl;
/lcout <<" Comienza el ciclo de K =" << K £«" << endl;
llcout << " ** [emmmmmm oo] ** " << endl;

/lcout << " " << endl;

138

Appendix 2

/lcout << " " << endl;
/lcout << " " << endl;

Uoptant=Utt;

Il -- Inizio> algunos valores iniciales para ell@iahile interno
Utotal=-1000000000000;

Uprima = -1000000000000000000;

Tp = 0.1; // recomenzar el ciclo de K, usando \edate Tp desde el valor dado en esta
parte

Il -- Fine

while (Utotal > Uprima) { // while INTERNO

[lcout << " ##t###H ---- Inicio del While Interno" <andl;

Uprima=Utotal; // Uprima asume el valor Utotal gekiodo anterior para poder comparar
/lcout << "Uprima es : " << Uprima << endl;

/I llamada a tercera rutina, para obtener la ecauay el valor de Uopt
Utotal = evaluar (b,xint,noise,E,F,aSp,aCp,aMp,aRp,aTp,ahdayP,aVp,Tp,K,B,S,z) ;

tiempo=Tp-Step;

Tp=Tp + Step ; // Incrementa el ciclo de Contamprl'p, usando Step fijo
/lcout << " " << endl;

Il -- Valores importantes para el ciclo de whileemo

/lcout << " Valores de> While Interno” << endl;

/lcout << "Utotal es : " << Utotal << endl;

/lcout << "Uprima es : " << Uprima << endl;

/lcout << " " << endl;

Ug = Utotal;

}; Il end WHILE interno

/lcout << " * La utilidad optima es: " << Uprim& endl; // es |-2 porque 2 posiciones
mas se cuentan

139

Appendix 2

/lcout << " * El tiempo optimo de Produccion e$<< tiempo << endl;
/lcout << " " << endl,

/[Topt[c]=tiempo; // almacena el valor optimo dé¢mpo de Produccion, para la K
correspondiente

llcout<<"* ElTp es: " << tiempo << endl;

llcout << " * El Tiempo es: " << Time << end];

tempo=Time;

K=K+1; // se agrega Ky se recomienza el ciclo
c=c+1,

Utt=Uprima;

Time=tiempo; // para guardar el valor correcto ge T

}; 1/ end while externo

/lcout << " * Eltempo es: " << tempo << end|;

/lcout << " " << endl;
/lcout << " " << endl;

//COUt << I kkkkkhkhkhkhkhkkkkikkhhhhkhhhhhkhkhkkkkkikkihikhkhkhkhk *kkkkkkkkkkkkkkikkx I <<
endl ;

/lcout << " * * " << endl ;

flcout << " F e RESULTADO OPTIMIZADO -------=----- * " << endl;
/lcout << " * * " << endl ;

/lcout << " * La utilidad Optima Global es: " {foptant << endl;
llcout << " * La K optima es: " << K-1 << endl;
/lcout << " * El Tp optimo es: " << tempo << endl

/lcout << " * * " << endl ;
//Cout << M kkkkkhkkkhkkkhkhkkhhkkhkhhkkhkhhkkhkhkhkhkkhkhhkkhkkkhhkkhkk *kkkkkkkkkhkkkkhkkkikk I <<
endl ;

/lcout << " " << endl;
/lcout << " " << endl;

HHTHHHTTTTTT T n§ T

[[M~ Conjunto de actividades adjuntas a lanautipara lograr una mejor optimizacion
/[™M~ La idea es calcular limites para volver aliar una optimizacion mas fina

140

Appendix 2

Ib=tempo-0.1; // lower bound donde comienza la augstimizacion
ub=tempo+0.1; // upper bound donde termina la no@tianizacion

/lcout << " " << endl,

llcout << " M " << endl;

/lcout << " * E| LB optimo es: " << Ib << end];
/lcout << " *"M E| UB optimo es: " << ub << endl;
llcout << " M " << endl;

llcout << " " << endl;

//\/\

Utotal= -1000000000000;
Uprima = -1000000000000000000;

Tp=1Ib;
=1;
///\/\
ka=K-1;

while (Utotal > Uprima) // WHILE q realiza la aptizacion requerida

{

Uprima=Utotal; // Uprima asume el valor Utotal gekiodo anterior para poder comparar
/[cout << "Uprima es : " << Uprima << endl;

/I llamada a tercera rutina, para obtener la ec@unay el valor de Uopt

Utotal = evaluar (b,xint,noise,E,F,aSp,aCp,aMp,aRp,aTp,ahdayP,aVp,Tp,ka,B,S,z) ;
Tp=Tp + StepPe ; // Incrementa el ciclo de Conte@ g p

llcout << " " << endl;

/I Variable Uq[l] , para almancenar los valoredaldtilidad en cada Tp

Ug = Utotal;

}; /1l end WHILE

/lcout << " * La utilidad optima es: " << Uprim endl; // es |-2 porque 2 posiciones
mas se cuentan
/lcout << " * EIl tiempo optimo de Produccion es<< Tp - 0.02 << endl;

141

Appendix 2

Tiempo = Tp - (StepPe*2); // almacena el valor mptidel Tiempo de Produccion, para
la K correspondiente

/I -- Valores gque se exportaran a main --

*k=K-1; // asighacion de valor optimo de K al apaghdr correspondiente
*t=Tiempo; // asignacion de valor optimo de Tmplntador correspondiente

*Tuno=tempo;

//Cout << I kkkkkkkkkkhkkhkkhkkhkkhkkkkkkkkhkkhkkhkkhkkkkkkkk *%k " << endl,

/lcout << " COMPROBACION DE VALORES (K, Tp) DE SUBRUNA " << endl;
/lcout << " " << endl;

cout << " La K optima es: " << *k << endl,

/lcout << " " << endl;

cout << " La Tp optima es: " << *t << end|,

/lcout << " " << endl;

/lcout << " La D es: " << *Dd << endl;

/lcout << " " << endl;

//COUt << W kkkkkkkkkkhkkhkhkkhkkhkkkkkkkkhkkhkkhkkkkkkkkkk *%k " << endl’

/lcout << " " << endl;
return (0);

}/ end SUBPROBLEMA

T |
o

1

kkkkkkkkkkkkkkkhkkhkkhkkhkkkkkhkkhkkhkkhkkhkkkkkkkkhkkhkkhkkkhkkkkk *kkkkkkkkkkkkhkkhkkhkkkhkk
*****////

/l'* 3. SUBRUTINA Evaluadora , para obtener l@adores de Utilidad por caso * ///
1

kkkkkkkkkkkkkkkhkkhkkhkkkkhkkkkkhkkhkkhkkkhkkkkkkhkkhkkhkkhkkkhkkkkk *kkkkkkkkkkkkkkhkkhkkkhkk
*****////

o
T L e | o

142

Appendix 2

double evaluar (int b,int xint, int noise, doubkg, double F,double aSp, double aCp,
double aMp, double aAp,double aRp ,double aTp ,E@oabdayP ,double aVp, double Tp,
double K,double B,double S, double z)

{

llcout << " $$$ --- SUBRUTINA --- 3 " << endl;
llcout << " " << endl;

/lcout << " " << endl,

/lcout << " $$$ VALORES EXPORTADOS $$3$ " << endl;
/lcout << " " << end|,

/lcout << " F(Lambda) es: " << F << endl;

/lcout << " aSp es: " << aSp << "\n" << endl,
llcout << " aCp es: " << aCp << "\n" << endl;
/lcout << " aMp es: " << aMp << "\n" << end|;
/lcout << " aSp es: " << aSp << "\n" << endl|;
/lcout << " aAp es: " << aAp << "\n" << endl,
llcout << " aRp es: " << aRp << "\n" << end|;
/lcout << " aTpes: " << aTp <<"\n" << endl;
/lcout << " ahday?2 es: " << ahdayP << "\n" << endl;
/lcout << " aVp es: " << aVp << "\n" << end|;
[lprintf(" H es:\t%.20f",ahday?2);

/lcout << " " << end|,

llcout << " " << endl;

llcout << "V es: " << aV <<"\n" << endl,

llcout << " bes: " << b <<"\n" << endl;

/lcout << " xint es: " << xint << "\n" << endl;
/lcout << " noise es: " << noise << "\n" << end];

int i,w,a,indice;

double d;

double P;

double Utres,Ucuatro; // Guardan los valores dalates para cada tipo de caso
double Prod,meta,Sum;

double Compra,Utotal,Uopt,UP,Usuma,Step;

double gq; // inventario inicial

double ku; // inventario inicial para ciclo IF

double Q; // inventario final

double s; /[Sigma para k=1, Sigma para cuatg@lor de K

double *EE; //arreglos de ruidos

143

Appendix 2

[/l algunos valores iniciales
Step=0.1;
1

EE = (double *)calloc(xint*noise ,sizeof(doublg;)
1

/I --- FIN - declaracion de variables --- //

/lcout << " " << endl;

//COUt << W kkkkkhkkkkkhkkhkkhkkhkkhkkkkkkkkhkkhkkhkkhkkkkkkkkk *%k " << endl’
llcout << " * 3. EVALUACION *" << endl
//COUt << W kkkkkkkkkkhkkhkhkkhkkhkkkkkkkkhkkhkkhkkhkkkkkkkkk *% " << endl’

llcout << " " << endl;
for (a= (b-1)*noise ; a < noise + (b-1)*noise ;a++)

/lcout << " El ruido exportado de main { " << a ¥¥es: " << E[a] << endl|,

}

//COUt << W kkkkkkkkkkhkkhkhkkhkkhkkkkkkkkhkkhkkhkkhkkkkkkkkk *%k " << endl’

Il -- Il ciclo para almacenar los ruidos , sequK |, este es el ciclo importante

a=0; // inicializar variable que guarda ruidos
indice = (b-1)*noise;
I
for (i=0;i<(noise/K);i++)
{/l'inicia FOR , ciclo C
/l inicializar variables en uso, b y sum
w=0;
Sum=0;

while (w <K)
{ /I inicia WHILE, ciclo C

Sum = E[indice] + Sum;
indice++;

144

Appendix 2

w=w+1;
} // termina WHILE , ciclo C
/li=i-1; I/ arreglo para restar un periodo auaa hecha en el ciclo anterior
llcout<<"jes:" <<i<<endl
/lcout << " La suma: " << Sum << endl;

/lcout << " " << endl;

EE[a]=Sum/K; /I Arreglo que guarda el valor ds taidos, segun la K
a=a+tl,

}// termina FOR , ciclo C
i

/lcout << " " << endl;

I
for (a=0;a<(noise/K);a++)
{
/lcout << "El ruido E de k[" << a << "] es : k<<EE[a] << end];
}
1

/I- Periodo Inicial -//
/[* algunas variables que se deben definir alewrar cada periodo */

/lcout << " " << endl;

/lcout << " *** " << endl;

/lcout << " " << endl;

/lcout << " CONDICIONES DE EVALUACION AL COMENZAR &DA PERIODO"
<< endl;

/lcout << " " << endl;

s = 0.05; // desviacion estandar
S = s*sqrt(K); // valor real de sigma , para k nag®

ku=0; // inventario inicial

/[== ver algunos valores

/lcout << " ku es: " << ku << endl;
/lcout << " aMp es: " << aMp << end|;
llcout << " Tpes: " << Tp << endl;
/lcout << " B es: " << B << endl;

145

Appendix 2

/lcout << " K es: " << K << endl;
/lcout << " z es: " << z << endl;
/lcout<<" Ses: " << S << endl

/l Demanda

d = ((ku+(@Mp*Tp))) / (B*(K +2z*S));

/lcout << " La tasa de demanda , d , para estegiegs: " << d << " unidades por dia "
<< endl;

/lcout << " " << endl,

/I Precio

P = (aRp - d)/(aAp);

/lcout << " El precio, P, para este periodo es<'P << " unidades por dia " << endl;
/lcout << " " << endl,

/I Cantidad de produccion

Prod = Tp*aMp;

/lcout << " La produccion para el periodo sera'des Prod << " unidades " << endl;
llcout << " " << end|;

llcout << " " << endl;

llcout << " " << endl;

/linicializadores

Utres=0;
Ucuatro=0;

T T |

/I Inventario Inicial para periodos subsecuentimnde ku=I=z*s*m*t1

g=0; // inicializador de variables

/[--{} Ciclo IF para determinar el valor del invemto Inicial

if (9<0.0){

ku= (z*S*aMp*Tp)/(K);} // Inventario Inicial puest para cierto nivel de servicio ,
Se compra
else

{

ku = q;} // Inventario Inicial es igual el Invirkal del periodo Anterior

146

Appendix 2

/I--{} Fin ciclo IF

M|
Usuma=0;
for (a=0 ; a<(noise/K) ; a++) // ciclo FOR pamslaciones de periodos

{

[lcout << " " << endl;

if (ku<0)
ku= (z*S*aMp*Tp)/(K);

d = ((ku+(@Mp*Tp))/((B)*(K+(z*S)))); // calculo delemanda para cada periodo
P = (aRp - d)/(aAp); // calculo de precio , segemanda

Q= Tp*aMp + ku - d*K*B*(EE[a]); // inv. final

/lcout << " El ruido Ea es: " << E[a] << end];

/lcout << " EI INVENTARIO INICIAL del periodo es: << ku << endl;

/lcout << " EI INVENTARIO FINAL del periodo es:<< Q << end];

meta= Tp*aMp - (d)*(K*B) + ku; // inventario iniei
/lcout << " La META del periodo es: " << meta <dgnidades " << endl;

/I ---- EVALUACION DE CASOS DEL ELSP ----//
/[** ciclos IF para los dos casos posibles //
if((ku>=0.0)&(Q>0.0))
/I Caso 3 //
Utres = P*(d)*(EE[a]*K)*B - aSp - aCp*aMp*Tp - (g€ (ahdayP))*ku*K -
(aCp*(ahdayP)*K)*(aMp*Tp)*(1-(Tp/(2*K*B))) + (aCp*a&hdayP)*K)*(EE[a]*B*d*0.5);

llcout << " price> " << P*(d)*(E[a]*K)*B << endl;
/lcout << " setup> " << - aSp << end|;

147

Appendix 2

endl;

}

/lcout << " prod> " << - aCp*aMp*Tp << endl;
/lcout << " inv1> " <<- (aCp*(ahdayP/12))*ku*K <endl;
/llcout << " inv2>" << - (aCp*(ahdayP/12)*K)*(aMgp)*(1-(Tp/(2*K*B))) <<

/lcout << " inv3> " << + (aCp*(ahdayP/12)*K)*(E[&B*d*0.5) << end];

UP=Utres;

/lcout << " ** Caso TRES ** " << endl;

/lcout << " Utilidad del periodo " << a << " esg¥ UP[a] << endl;
/lcout << " " << endl;

ku=Q); // inventario inicial del sig. periodo es imventario final en este periodo

if ((ku>=0.0)&(Q<0.0))

{

I/l Caso 4 //
Ucuatro = P*(d)*(EE[a]*K)*B - aSp - aCp*aMp*Tp -

aVvp*((d*(EE[a]*K)*B)+(@Mp*Tp)*(((z*S)/(K)) - 1)) -
aCp*K*(ahdayP)*((Tp*Tp)/(2*B))*(((aMp*aMp)/(d*(((EHa]))))) - (aMp/K)) -
((aCp*K*(ahdayP)*(ku))/(B*d*((EE[a]))))*((Tp*aMp) +(ku/2)) ;

llcout << " 1: " << P*(d)*(E[a]*k)*B << endl;

/lcout << " setup: " << -aS << end];

/lcout << "prod: " << -aC*aM*Tp << endl;

llcout << " v: " << - V*((d*(E[a]*k)*B) +(aM*Tp)*(((z*S)/(K)) - 1)) << end];
/llcout << "invl " << - aC*k*(aH/12)*((Tp*Tp)/(2*B)*(((aM*aM)/(d*(((E[a])))))

- (aM/k)) << endl;

/llcout << "inv2 " << - ((@C*k*(aH/12)*(ku))/(B*df(E[a]))))*((Tp*aM) + (ku/2))

<< endl;

UP=Ucuatro;
/lcout << " ** Caso CUATRO ** " << endl;
//cout << " Utilidad del periodo " << i << " es<< UP[a] << end];

Compra = ((d)*(EE[a])*(K)*B)+(@Mp*Tp)*(((z*S)/(K))- 1);
/lcout << " Se necesitan comprar: " << Compra <witlades " << endl;
[lcout << " " << endl;

ku=Q); // Cambio de variable para que el Inv. Faelperiodo Anterior sea el Inv.

Inicial del periodo siguiente

148

Appendix 2

}

/Variable que va acumulando el valor de las diels
Usuma = UP + Usuma;

} /I termina ciclo FOR

T
// *kk __ e. Resultado Flnal del PELSP _o kkkkkkkFkhkkkkkkkkkkkkkkkkhkkkhkk //
T

I Ya no lo uso -- 21 jun06 /T Ciclo FOR para suma de periodos
[lfor (a=1 ; a<(periodos/K) ; a++){
I Suma = UP[a] + Suma;}

Utotal = Usuma - Tp*F - aTp*F;

/lcout << " " << endl;
/lcout << " " << endl;

llcout << * oo RESULTADO FINAL -------------- *" << endl,
llcout << " * * " << endl

/lcout << " * La utilidad total para la simulacies: " << Utotal << endl,
/lcout << " * El tiempo de Produccion es: " <g K< end|;

/ICOUL << M ¥ e e *" << endl

Tp=Tp + Step ; // Incrementa el ciclo de Conteapgy
/Ivalores que se transferiran:

Uopt=Utotal;

/lcout << " --- Fin Tercera Rutina --- " << end|;
llcout << " " << endl;

/lcout << " " << endl;

return (Uopt);

149

