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Abstract

An intrusion detection system (IDS) aims at signalling an alarm for every ac-
tivity that compromises a secure state of an IT system. It often amounts to
detecting a known pattern of computer misuse, a deviation to ordinary, ex-
pected user behaviour, or a combination thereof. Regardless of which of these
approaches is adopted, current Intrusion Detection Systems (IDSs) are easy to
bypass.

This thesis addresses about the three most important limitations of existing
IDSs: i) current IDSs are easily overwhelmed by the the amount of information
they ought to analyse; ii) current IDSs are not sufficient to monitor dynamic
environments where the monitored services are changed according to the needs
of the organisation; and iii) current IDSs are easy to bypass using a mimicry
attack (attacks that simulate normal sequences of system calls). These kinds of
attacks simulate normal activity (eg traffic, interaction) by varying an attack
signature in a way that does not affect the harmfulness of the attack.

Instead of creating a lightweight detection method capable of dealing with
large volumes of information, at the probable cost of loss of accuracy, we focus
on making intrusion detection more tractable, scalable and efficient (without
compromising accuracy). We make intrusion detection more tractable by pre-
processing the information. Whether it is a sequence of network packets or a
sequence of system calls, the information an IDS analyses is often redundant in
at least, two respects: first, every entry in the sequence may contain spurious
information; second, any sequence may contain redundant subsequences.

To make probabilistic intrusion detection more scalable, efficient and flexible,
we propose a novel architecture that includes a service selection mechanism.
Instead of analysing a single stream of data, the stream is partitioned in services,
each of which is analysed by a very specialised sensor. New sensors can be added
on demand; if a new service needs to be monitored another sensor is placed. To
make mimicry attack intrusion detection more accurate (reduce false positives)
we propose to divide attacks into smaller segments. For each segmentwe will
create a detector that classifies the segment and all its variants. By combining
these smaller detectors we hope to detect all variations of an attack.

By using rough sets we have identified key attributes to eliminate spu-
rious information, without missing chief details. Using n-gram theory we
have identified the most redundant subsequences within a sequence, substi-
tution of these subsequences with a fresh tag results in a reduction of the
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xiv Abstract

sequence length. To approach service selection, we suggest the use of hid-
den Markov models (HMMs), trained to detect a specific service described
by a family of n-gram.s In this thesis, we introduce a method which is ca-
pable of successfully detecting a significant, interesting sub-class of mimicry
attacks. The key behind our method's effectiveness lies on the use of a word
network [Pereira and Riley, 1997, Young et al., 2002]. A word network conve-
niently decomposes a pattern matching problem into a chain of smaller, noise-
tolerant pattern matchers, thereby making it more tractable and robust. A word
network is realised as a finite state machine, where every state is an HMM.

In our experiments, our mechanism shows an accuracy of 93%. ..By contrast.,
the rate of false positive occurrence is only 3%. Our log reduction methods are
among the best in reduction ratio and features a minimal loss of information.
Ours is one of the first techniques to successfully detect a sub-class of mimicry
attacks.
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Chapter 1

Introduction

An intrusion detection system (IDS) is a computer security element that sends
alerts when an intrusion is detected. An intrusion can be denned as any activity
that compromises the secure state of an IT system. Based on the detection
scheme, current IDSs can be divided in two categories, misuse IDSs (MIDSs)
and anomaly IDSs (AIDSs).

Both kinds of IDSs have now been studied for more than 15 years and nat-
urally the methods for intrusion detection have evolved. Nowadays the most
effective techniques for detecting intrusions make a lot of use of probability and
stochastic theory. These methods demand a lot of computational power and
storage space to build suitable profiles. The main problems we have identified
with current IDSs are:

• Undesirable number of false-positives and false-negatives.

• Vulnerability to complex attacks.

• High network loads: Computational complexity.

• Non scalability.

• Lack of robustness.

• Lack of a data source integration mechanism.

• Inefficient update of attack signatures.

• Lack of a terminology standard.

This thesis addresses the problems of: i) the vulnerability to complex attacks,
namely mimicry attacks; ii) the computational complexity; and iii) the non
scalability. By concentrating on these problems we aim at making probabilistic
intrusion detection more tractable, scalable, efficient and flexible.

The contribution of this thesis is divided in two parts: i) we propose a novel
architecture complemented with information reduction techniques specifically
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2 CHAPTER 1. INTRODUCTION

designed to alleviate computational complexity for intrusion detection and to
allow for higher scalability; and ii) we propose the use of speech recognition tech-
niques to facilitate the detection of complex attacks, specially mimicry attacks.
This contributions are the result of proving three hypothesis.

Hypothesis 1 By using pre-processing mechanisms we can improve the per-
formance of current intrusion detection methods by operating on compact
information. The mechanisms keep key information necessary for a proper
intrusion detection.

To make probabilistic intrusion detection more tractable, we compact the
information to be analysed without losing key information. This input infor-
mation, either being a sequence of network commands or a sequence of system
calls, is often redundant in at least two respects. First, any entry in either of
these sequences, called object for short, may contain spurious information. Sec-
ond, any sequence may contain a number of irrelevant objects. To remove these
irrelevant objects we propose the use of a pre-processing mechanism consisting
of two log file reducers. We reduced the number of attributes using rough set
theory, and the length of sessions using n-gram language models.

The attribute reducer is used to filter out redundant attributes. Rough sets
are an appropriate tool to discriminate redundant and spurious information.
Compared with other techniques like GINI or ID3, rough sets are capable of
treating incomplete information. Results from the rough set attribute reduction
show that 66% of the attributes in log files were redundant and thus can be
eliminated. A reduction in the number of attributes compacts the number of
different elements to look for in intrusion detection.

Yet, performance of probabilistic methods, like for instance hidden Markov
models (HMMs), are dependant on the length of the sequences to be classified.
N-grams are used for session length reduction. The reduction is obtained by
an analysis of the most frequent n-grams found in the sessions. The reason to
select n-grams over other methods, like HMMs, is because it provides a similar
cost-based search without non-determinism. Non-deterministic methods result
in loss of information because similar sequences are treated as equal, therefore
a reverse process to recover the original sequence is not possible. Moreover, a
sequence containing an attack might be reduced with the consequential loss of
the attack's evidence. Results using n-grams show that a 75% length reduction
can be obtained using our method. Hence, together the two filtering methods
yield a reduction of more than 85% in the log files.

Hypothesis 2 By using an architecture that allows one to plug-in specialised
intrusion detectors, we can make intrusion detection scalable.

In order to have a higher degree of specialisation, resulting in more efficient,
flexible and scalable IDSs, we have a selector which is capable of distinguishing
the service a session belongs to using only the session header. The problem
to find such a selector is narrowed down to characterising for each service a
family of patterns. To characterise such families we have different options.
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Neural networks are a universal classification system but have a fixed number
of inputs and the header length is variable. Other methods commonly used
to group similar sequences are HMMs, PCFGs, and dynamic programming.
Some of these methods have been used in DNA and RNA sequence align-
ment [Sakakibara et al., 1994, Brown, 1999, Brown, 2000, Krogh et al., 1994,
Hughey and Krogh, 1996, Mamitsuka, 1997]. PCFGs are computationally more
expensive than HMMs and dynamic programming. Dynamic programming on
the other hand relies on the number of differences between a selected sequence
and the tested sequence while HMMs calculate the probability of a symbol in
the sequence given the previous symbol. Experimentally HMMs are more pre-
cise in classifying sequences with variations above a threshold. Our observations
show that variations in service headers are above this threshold, so our service
selector is based on HMMs.

To improve scalability, our selector allows for new detection modules spe-
cialised in different services to be plugged in to the system. Efficiency is a result
of dividing intrusion detection in a series of small specialised modules. Flexibil-
ity is achieved because the service discrimination is done by classifying a service
initial behaviour, and not its configuration.
Hypothesis 3 We can detect mimicry attacks with the help of hidden Markov

models and word networks.
Current IDSs have problems when dealing with complex attacks. In the case

of a misuse IDS only a couple of modifications to an attack are necessary to by-
pass the IDS. Wagner and Soto [Wagner and Soto, 2002] have demonstrated
that host based anomaly IDSs are incapable of detecting a special kind of at-
tack called mimicry attack. Kendall [Kendall, 1998] has also demonstrated the
ineffectiveness of MIDSs to detect mimicry attacks. Mimicry attacks have the
same semantics as known attacks, however they are syntactically different. This
difference is given by variations on the system calls of the original attack and
insertion of system calls that have no effect on the harmful state of the attack
(no-ops). The number of possible variations for a mimicry attack are infinite.
Normalising system calls can not be done straight forward for all system calls.
There are some system calls (A and B) that can be substituted by the same
system call C, since A can not be substituted by B an attack signature might be
lost if we normalise A and B with C. Also, filtering out no-ops is a difficult task
since the no-op condition of a system call depends on the context it is found.
Moreover, normalisation and filtering are not obvious.

1.1 Layout of this Dissertation
Chapter 2 shows the current state of the art in misuse and anomaly intrusion

detection, as well as current trends in log file reduction. We also illustrate
problems with current IDSs.

Chapter 3 describes trends and limitations of other architectures and de-
scribes how our architecture helps to overcome these limitations. We de-
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scribe the way the architecture helps to solve the illustrated problems of
current IDSs, namely: i) the high information loads; ii) the non scalability;
and iii) the vulnerability to complex attacks (mimicry attacks).

Chapter 4 investigates the problem of attribute reduction. We compare other
techniques used for attribute reduction against rough sets by using a reduc-
tion sample. We show why rough sets are good at dealing with problems,
such as incomplete information, other techniques can not deal with. We
include a description on the use of rough set theory for attribute reduction
as well as a discussion on how other methods compare to ours.

Chapter 5 describes why the session length affects effective intrusion detec-
tion. We describe why we selected n-grams as our length reduction method
by comparing its performance against other reduction techniques. We
show the use n-grams models for session reduction as well as its impact
on misuse detection. We also show a comparison of our method against
other reduction methods used in intrusion detection.

Chapter 6 describes our service selection mechanism, it gives special attention
as to why we chose HMM to classify services. It also explains the rationale
for using a service selector based on a complex method and not just using
the port number. We show classification results using normal sessions as
well as reduced ones.

Chapter 7 illustrates the problem of detecting mimicry attacks. We begin
by showing that the problem is not trivial and that filtering system calls
can not be done directly. We explain why fragmenting attack signatures
and using HMMs and word networks is a good method for detecting such
attacks. Then we describe how our misuse IDS is built and how attacks are
characterised and finish by presenting detection results using both normal
and reduced sessions.

Chapter 8 summarises the results of the dissertation with our conclusions and
proposed future work.

Appendix A describes the BSM log file format.

Appendix B describes the ARPA language model file format.

Appendix C contains a description of the HTK file format for HMMs and
word networks



Chapter 3

A Novel Architecture for an
IDS

3.1 Introduction
As described in chapter 2, we identified three deficiencies of current IDSs: i) they
get easily overwhelmed for the amount of information they ought to analyse;
ii) they lack scalability; iii) they are prone to mimicry attacks. This chapter
presents a novel architecture (Fig. 3.1) that makes IDSs more scalable, tractable,
and more tolerant with respect to mimicry attacks.

Usually an IDS is presented as the audit source, a sensor (data collector),
an analyser (detection method), and a response unit. Many problems an IDS
faces, like scalability, flexibility, or efficiency, are not related to the detection
method but to the IDS architecture.

A log file is composed of a sequence of objects, each of which have a number
of attributes. This input information, whether it being a sequence of network
commands or a sequence of system calls, is often redundant in at least two
respects. First, any entry in either of these sequences, called object for short,
may contain spurious information. The same information can be extracted with
a fewer number of attributes. And second, any sequence may contain a number
of irrelevant objects. The sequences of objects in a log file are the result of both
human interaction and automatic sequences generated by a computer. Within
these sequences it is common to find many repetitive subsequences.

Based on these observations, we propose the use of information filters and
reducers as first elements of our architecture. To make intrusion detection more
tractable and allow for faster detection results, we compact the information to
be analysed without losing key information. Using rough set theory (described
in §4.5), we have successfully identified the object attributes that characterise
best the object information without missing important details. Using n-gram
theory §5.3), we have successfully identified those subsequences of objects that
most frequently occur within a session and then folded them up with a fresh

23



24 CHAPTER 3. A NOVEL ARCHITECTURE FOR AN IDS

tag, thus reducing the session length.
Current IDSs are tied to the service they are monitoring. If a new service

needs to be monitored, then the whole IDS needs to be reconfigured. The same
happens when the configuration of the monitored services changes. If an IDS is
monitoring a service attached to some port and the port is changed, then the
IDS needs to be reconfigured. To make an IDS scalable, we suggest to structure
intrusion detection as a collection of sensors, each of which is specialised to a
particular service. To approach service discrimination, we suggest to use hidden
Markov models (HMMs) (described in §6.3) trained to pinpoint what n-gram
family (characterising a service) the given header of an input sequence is likely
to belong to. Service discrimination is the third module of our architecture.

Besides the deficiencies with current IDSs, we have found desirable charac-
teristics: i) more accurate detection methods; ii) lower level of false alarms (in
order to make an IDSs more reliable); iii) faster response time. To make an IDS
more accurate, we propose the use of probabilistic pattern recognition methods.
These methods need large amounts of information for proper training. They
ought to analyse huge amounts of information to perform intrusion detection.
For these methods to have a faster response time, we propose a modular ar-
chitecture which allows to incorporate modules that: i) reduce the amount of
information to analyse; ii) increase the scalability and flexibility of the IDS; and
iii) increase the true positive rate and reduce the false positive rate of the IDS.

The last two modules of our architecture contain the actual intrusion detec-
tors. The fourth module is a misuse intrusion detection module which is based
on HMMs and Word Networks (see §7.3). For the fifth module we have proposed
an anomaly detection scheme relying on probabilistic context-free grammars to
describe normal user behaviour and detect behavioural deviations.

The remainder of this chapter is organised as follows: §3.2 is a description of
the problems faced by current architectures; §3.5 describes the inputs and output
for our architecture; §3.6 present other architectures and how they compare to
ours; §3.3 describes the proposed architecture for an IDS; §3.4 outlines the chief
characteristics of our architecture; finally in §3.7 we will present conclusions
regarding our architecture.

3.2 Problem Description
As described in 2.8 we have identified limitations with current IDSs, in this
chapter we will tackle the following: i) problems to deal with large data volumes;
ii) computational complexity of the more effective detection methods; iii) lack
of scalability; iv) lack of flexibility.

The large data volumes an IDS has to analyse get in the way of both, a
real time detection and the use of more complex detection techniques, such as
probabilistic sequence recognition methods. These probabilistic methods have
a computational complexity directly related to the length of the sequence to be
analysed, and to the size of the vocabulary for the sequences. Our hypothesis is
that by reducing both the size of the vocabulary and the length of the sequences,
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we can reduce training and parsing times of the probabilistic methods without
an impact to intrusion detection.

On the problems of lack of flexibility and scalability, as the monitoring re-
quirements evolve, it becomes difficult to add new components to a typical IDS.
Our hypothesis is that by using a modular architecture (one module per service)
it becomes feasible to monitor any number of services, as long as the system's
memory and CPU allow it. It is also common to tie the IDS configuration to
the system configuration. When the system configuration needs to be changed,
i.e. change the port of a given service, the IDS must be reconfigured, this re-
sults in less flexibility. Our hypothesis is that by using a characterisation of the
analysed data that is independent of system configuration, the detection process
becomes more flexible.

3.3 An Architecture for an IDS
In this section we present a novel architecture for an IDS. The architecture is
novel in three respects: i) it incorporates two pre-processing mechanisms, one
for attribute filtering, and one for session folding; ii) it incorporates a service
discriminator, to separate multiplexed input sequences to its individual services;
iii) and it incorporates a hybrid detection scheme by including both, a misuse
detector (MIDS) and anomaly detector (AIDS) [Debar et al., 1999]. The IDS
simultaneously checks the input for misuse and anomaly. Fig. 3.1 shows the IDS
architecture.

Now we will briefly describe the role of each module of our architecture.

Session 1

N-Gram Session

Folding

BSM Log File Attribute Filter

Sessioni

N-Gram Session
Folding

HMM Service
Selection

Session n

N-Gram Session
Folding

Attribute Filter
Module

Session Folding
Module

Service Selection Module Misuse and Anomaly
Detection Modules

Figure 3.1: IDS Architecture
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3.3.1 Attribute Filter Module

Audit log files can be seen as a two dimensional array of data. Rows stand
for objects, in our case an object is a system call, and columns as the object's
attributes. Object's attributes often provide repetitive and superfluous infor-
mation. In order to remove redundant information we use an attribute filter
based on rough set theory. The filter is explained in detail in chapter 4. We
need only to notice that this filter takes a log file with all its attributes as input.
After the filtering process, the modules outputs objects with a reduced number
of attributes, usually about 64% of the original number of attributes. A BSM
log file object can have up to 51 attributes. But usually an entry has half that
number. We normalised this number of attributes to the most significant ones.
The reduced output is passed to the session folding module.

3.3.2 Session Folding Module

The session folding module takes as input the objects delivered by the attribute
filter module, and substitutes common subsequences to reduce session length.
The rationale behind this procedure is that there exist repetitive subsequences
among different services. Using an n-gram model analysis, as described in chap-
ter 5, we identify key subsequences in the form of n-grams. Such n-grams are
used to reduce other sessions. The obtained reduction factor is 4. Also the
number of n-grams used in reduction is very small; we only used 19 out of 200
possibilities for reduction. This only adds a small number of new objects to
the object vocabulary. The importance of a small object vocabulary is that
HMMs training time depends on the size of the vocabulary as well as sequence
length. Other methods like HMMs can be used to find repetitive subsequences,
but with our method, all the reductions are deterministic and we can return to
the original sequence. HMMs have an different role in our architecture, which
is described below.

3.3.3 Service Selection Module

Folded sequences of system calls are the input for the service selection module
and its output are the same sequences but separated by services. This module
is a discriminator that uses hidden Markov models to calculate the probability
that a given session belongs to a certain service. This selection reduces the
search space for the next stage of the IDS. If we know that a session is a telnet,
smtp, or ftp session we only need to test for specific attacks to detect misuse, or
specific profiles to detect anomalies. The selection process is throughly described
in chapter 6. With sessions separated by services, our misuse detection module
only tests for attacks belonging to that service. Thus it specialises the intrusion
detection by services.
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3.3.4 Misuse Detection Module
Not only are hidden Markov models (HMMs) useful for service selection, they
can also be useful to detect similarities between a session and known attacks. If
the session is similar enough then an alarm is raised. The input of the misuse
detection module is a service discriminated and folded sequence of system calls,
and its output is the probability that such a sequence can be generated by a
given HMM.

HMMs have been successfully used for intrusion detection
[Warrender et al., 1999, Qiao et al., 2002, Yeung and Ding, 2003]. But as
reported in all these papers, HMMs take a large amount of time for training.
Our reduction methods can be helpful to improve the training times reported
for both, the experiments by Warrender et al. and by Qiao et al.

Wagner and Soto [Wagner and Soto, 2002] have also studied the disadvan-
tages of using only short sequences as a detection base using HMMs. As de-
scribed in chapter 2, Wagner and Soto demonstrated the inability of current
IDSs to detect mimicry attacks. The main advantage of our misuse detection
method is that it is capable of detecting a variety of mimicry attacks. The
misuse detection module will be described in detail in chapter 7.

3.3.5 Anomaly Detection Module
By folding a sequence of system calls, the creation of a reliable profile is more
feasible. By reliable, we mean that it faithfully describes the profiled user. The
module will process the input session and verify whether it is similar to some
of the known profiles. If the session does not fit any of the profiles then an
alarm is raised. This module can also be used to prevent false positive alarms
in conjunction with the misuse detection module. If some behaviour matches a
known attack but also a known profile it is probably normal behaviour. This
will depend on some relation between the two modules.

By using the misuse detection module the rate of false negatives (unseen
attacks) is reduced. Also by using the anomaly detection module unknown
attacks are more easily detected. For the anomaly detection module we advocate
the use of probabilistic context-free grammars. We use one such a grammar
to describe service specific behaviour. A profile for each service is built from
training data. The anomaly detection module is only part of our proposed
architecture but was left as future work.

3.4 Architecture Characteristics
Our proposed architecture is well suited for environments with high information
loads. Regardless the source, our architecture can be used to reduce information
and alleviate the work load of an IDS. Even if the source are network packets,
some spurious information can be identified and therefore discarded. It is also
possible to discover repetitive patterns among data sequences and use a folding
method as the one described in chapter 5.
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Our reduction modules improve the performance of probabilistic pattern
recognition methods like HMMs (already used in intrusion detection), or Prob-
abilistic Context-Free Grammars (not used in intrusion detection). In both
methods, order of training and parsing algorithms, is directly related to the
length of the sequence to be analysed.

The output from the reduction modules is a sequence of reduced objects. The
sequence is in the form of a number sequence. Any data source can be used,
adding flexibility to the IDS. The service discriminator aims at selecting the
particular IDS that will be used for the analysed sequence. This specialisation
reduces the search space for the IDS making it more efficient. More services can
be added to the IDS accordingly just by inserting a proper discriminator.

Using a hybrid architecture, and combining the output from both detection
modules, the number of false alarms can be reduced, and the detection ratio
increased. This is possible because of the feedback from the misuse detection
module to the anomaly detection method. If a sequence is similar to a known
attack but also to normal behaviour then the alarm ratio is lowered. If it is
similar to an attack and not similar to normal behaviour the alarm is higher. If
it is not similar to either an attack nor normal behaviour then it is regarded as
an anomaly. In the next section we describe graphically how data is transformed
in each module of our architecture.

3.5 Input and Desired Output
The input data for our architecture are BSM raw log files. These log files
have a variable number of attributes for each object. They are normalised to
a constant number of attributes i. Then the normalised logs are formated to a
reduced number of attributes j = i/3. The normalised and reduced log files are
separated into sessions and run through the session folding module and reduced
sequences are the result. The number of objects in a sequence before folding is
n, the number of objects after folding is m, notice that n » m. From this point
on all the process is run in parallel for each session. These folded sequences are
separated by services. The service selector is like a multiplexer, each session is
tested using the appropriate IDS (both misuse and anomaly). The final output
is a set of probabilities indicating how similar is the sequence with the known
attack base. The information flow in our architecture is shown in figure 3.2.

3.6 Alternative Architectures
Other architectures were analysed in order to understand their performance in
terms of large data volume management, flexibility, and scalability. According
to each architecture's description we made an hypothetical assumption on how
the architecture will behave against configuration changes, new service mon-
itoring, and large volumes of information. We only analysed host-based IDS
architectures, there are other possible architectures such as network-based, or
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Figure 3.2: Architecture Cycle, input is a raw BSM log file, output is a proba-
bility for each monitored session.

distributed [Mell and McLarnon, 2000, Karlsson, 2001].
According to [Arvidson and Carlbark, 2003] most of current IDSs use a three

level architecture. The first level is an information collector, the second level is
an analyser, and the third level is the response unit. This typical architecture
has as inputs raw data and as output a response event. In this sense the archi-
tecture is similar as the one proposed in this dissertation, we are based on the
same three levels as well as similar inputs/outputs.

The collector processes the information and transforms it in a standard for-
mat for the IDS. This transformation mentions a possible (not necessary) re-
duction step, but reduction is not an explicit element of the architecture. The
output information is fed to the analyser.

The analyser verifies if the data provided by the collector contains an attack.
In case of a positive response the analyser triggers an event that is sent to
the response unit. The analyser can be split into two elements: i) knowledge
base; and ii) the classification engine. The knowledge base contains information
related to the attacks it will detect. To determine if the data from the collector is
an attack, the classification engine compares the data received from the collector
with the one contained in the knowledge base.

The response unit decides the actions to follow depending on the results from
the analyser. The unit has two Complementary modules: i) policy rules; and ii)
an event base. The policy rules determine the type of response based on the
knowledge base from the analyser and a set of predetermined rules. This module
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can filter out events that are known to be harmless. If this module is not present,
the same standardised response is used for all the events and every event is to
be considered. The architecture definition from [Arvidson and Carlbark, 2003]
states that this module is optional. Finally, the event base records every event
monitored by the IDS for a future analysis.

Even though the architecture considers information pre-processing, reduc-
tion is only mentioned and treated in a general manner. Reduction steps are
never defined (the order or the kind of reduction). Pre-processing is presented
as a black box where input data is transformed to fit the analyser regardless
the methods used in the pre-processing. Even though an architecture definition
only has to contemplate a general description independent of the implementa-
tion, it is necessary to at least describe the order of the steps to follow. It is very
different to reduce the number of attributes first and then reduce the length of
the object sequences. If the length reduction is performed before the attribute
reduction, then the reduction rate might be smaller, because the larger the num-
ber of attributes, the larger the number of different objects in the sequence. The
more variations between objects in a sequence makes it harder to find repetitive
patterns to be used in a reduction the reduction. By contrast, our architecture
has well defined pre-processing steps. This order is best to achieve greater data
reduction.

Arvidson and Carlbark's architecture does not consider a mechanism to
adapt to configuration changes in the monitored system, or the addition of new
monitored services. The architecture proposes a knowledge base and a classifi-
cation engine, this combination leads to extra work if different services want to
be monitored. According to the architecture the same knowledge base is used
for every monitored service. By contrast our architecture is designed as a series
of different sensors each specialised in a given service. If a new service is to be
monitored, then a new sensor can be added to the architecture. The problem
of the configuration flexibility is approached by separating services according to
their behaviour at system call level and not their configuration.

This architecture does not consider a hybrid detection model. This results
in less efficiency (if the detector is anomaly based) or flexibility (if the detector
is misuse based). In our architecture a hybrid detection model is proposed, but
the module has not been developed yet.

3.7 Conclusions
The architecture presented in this chapter incorporates different modules that
solve three of the identified problems of current IDSs. By incorporating a pre-
processing mechanism we reduce the work load for the detection methods. With
the use of a service discriminator, the search space for detection methods is
greatly reduced by means of specialisation. The service discriminator adds scal-
ability, because new services can be incorporated to the IDS. And by incorpo-
rating a hybrid architecture the detection ratio can be increased.

In chapter 6 we will describe the key element of our architecture the scala-
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bility, flexibility and efficiency of the IDS.
AH the theory used during the remainder of the thesis is described in the

next chapter. If the reader is familiar with rough set theory, n-grams, hidden
Markov models and word networks it is safe to skip the chapter and start reading
in chapter 4.
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Chapter 4

Attribute Reduction

4.1 Introduction
With growing amount of information flow in an IT system there is a need for an
effective method capable of identify key elements in the data in order to reduce
the amount of memory and time used in the detection process.

As we described in chapter 3, our architecture incorporates a pre-processing
mechanism consisting of two modules. One of the modules is an attribute filter
and the other is a sequence folding module, this chapter describes the former
method.

A log file can be arranged as a two dimensional array. BSM log files have
a variable number of attributes for each object, so before considering BSM log
files as two dimensional arrays they have to be normalised with a standard
number of attributes. After normalisation, the dimensionality of the array is
calculated by multiplying the number of columns (attributes) by the number
of rows (objects). To facilitate intrusion detection, the dimensionality of the
log files must be reduced. This is called the dimensionality reduction problem.
The dimensionality can be reduced in two ways: i) by reducing the number of
attributes; and/or ii) by reducing the number of objects.

This chapter addresses the problem of dimensionality reduction using an
attribute relevance analyser. Our experience shows that, in order to differentiate
one object from another many attributes provide redundant information. We
aim to filter out redundant, spurious information, and significantly reduce the
amount of computer resources, both memory and CPU time, required to detect
an attack.

Using rough sets, we have been able to successfully identify pieces of informa-
tion that succinctly characterise computer activity without missing important
details. We have tested our approach using various BSM log files of the DARPA
repository. More precisely we used 8 days out of 25 available from 1998 to ex-
tract the reducts. We then used other 8 days from the 25 available from 1998
and 6 days out of 15 form 1999 as a test set. The results we obtained show that

33
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we need less than a third part of the 51 identified attributes to represent the
log files without significant loss of information.

This chapter is organised as follows: §4.2 describes the problem of attribute
reduction. In §4.3 we show with brief examples the input for the attribute
reduction module and desired output. §4.5 gives an introduction to the rough
set theory used in this chapter. §4.4 is a brief explanation of why we selected
rough set theory over other methods. In §4.6 we describe the methodology
used in our experiments. §4.7 describes the experimental results. In §4.8 we
contrast our method with existing attribute reduction methods. Finally some
conclusions drawn from this experiments are discussed in §4.9.

4.2 Problem Description
A log file is a file containing sequences of events from some source. The source
can be system calls, network traffic, information from a router, etc. Each of this
events, which we call objects, has a number of values attached to it, which we
call attributes. What we propose is to take this input, transform it into a two
dimensional array with an heterogeneous number of attributes, and then take
out all the unnecessary attributes from each object. This will leave a log with
a reduced set of attributes for each object.

The set of attributes must be such that we keep at least 90% of information
discernibility between objects. That is, if before reduction 100 objects were
distinguishable, after reduction at least 90 objects must still be distinguishable.
With less than 90% of information discernibility the effective detection rate di-
minishes as well as the false positive rate. We use Bayes theorem to prove this
claim. D is the detection rate, FP is the false positive rate, and Di is discerni-
bility between objects. P{D\Di) is the conditional probability that the IDS
detects an attack if it can discern between objects, P[D\Di) is the complement.
P(D\Di) is the conditional probability that the IDS will detect an attack if it
can not discern between objects, P{D\Di) is the complement. P(FP\Di) is the
conditional probability of a false positive given full discernibility. Suppose a
nearly perfect IDS with P(D\Di) = 0.999 and P(D\D~i) = 0.01. Using Bayes
theorem we calculate the real detection rate for our IDS or P(D) with:

P{D) = PQDi)P(Di) -i- P(D\Di)P(Dl)

here the detection rate without discernibility is negligible, so the IDS effective-
ness is mostly affected by the discernibility. In the case of our nearly perfect IDS,
a discernibility lower than 90% decrements the effectiveness below 90%. Supose
the same nearly perfect IDS with P(FP\Di) = 0.05 and P{FP\D~l) = 0.99.
With Bayes theorem we can calculate P(FP) as:

P{FP) = P{FP\Di)P{Di) + P(FP\Di)P(Dl)

with a discernibility of 90% we have an effective false positive rate of 18.9%,
with a discernibility of 85% the false positive rate increases to 24%.
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At the same time the reduction must keep the minimal number of attributes.
The method used for reduction should also be capable of dealing with missing
values for some attributes in each object. Depending on the source objects
in a log file might have varying number of attributes. Most pattern recogni-
tion methods like GINI, ID3, C5 or k-means rely on an homogeneous number
of attributes. And they usually need values for every attribute they use for
she classification. If a dummy value is used to fill the missing attributes, the
techniques above mentioned will generate imprecise decision trees. So the first
condition for our log file is to have the same number of attributes for all its
objects. This homogeneous system is also called an information system.

Even with an information system, intrusion detection still poses a big prob-
lem with respect to the amount of information that needs to be analysed. We
believe that by reducing the number of attributes in an information system, the
data load for the IDS should also be reduced.

4.3 Desired Input/Output
The attribute reduction module has as its input raw BSM log files in ASCII
format as shown in figure 4.1. This kind of input is not suitable for a detection
method that relies on a constant number of attributes. To find the most rel-
evant attributes the first step is to transform the raw BSM log file into a two
dimensional array (which in rough set theory is called an information system).
This information system is then used to extract a reduced set of attributes.
In figures 4.2, 4.3, and 4.4 we can appreciate the extent of a log entry for 6
objects and 51 attributes. The columns in bold text indicate the name of the
attributes. In figure 4.5 we can appreciate the same 6 objects but with only 18
attributes. We can immediately appreciate the reduction advantages of using
less attributes. For example attributes Remote J P and Machine-ID have the
same values in all the examples. In reality Remote J P is present when a net-
work connection is in place and Machine J D is present when a process is being
executed. However Machine J D only has useful values when Remote J P is
present, so Machine J D can be discarded. It could have been Remote J P the
d/'scarded attribute but the algorithm keeps the first it founds.

4-A The Use of Rough Sets for Attribute Reduc-
tion

In production environments, output data are often vague, incomplete, in-
consistent and of a great variety, getting in the way of its sound analysis.
Data imperfections rule out the possibility of using conventional data min-
ing techniques, such as ID3, C5 or GINI. Fortunately, the theory of rough
sets [Komorowski et al., 1998] has been specially designed to handle these kinds
of scenarios. Same as in fuzzy logic, in rough sets every object of interest is as-
sociated with a piece of knowledge indicating relative membership. This knowl-
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BSM Log File

header,110,2,open(2)- read,,Mon May 04 23:51:26 1&y8, + 221428243
msec
path,/proc/00104
attribute.100600/001/001,40894464,168,0
subject,2122/oot,other/oot,other,4070,25S10 0 172.16.112.50
return,success,5
trailer.no
headerl134,2,ioctl(2)l,Mon May 04 23:51:26 1998, + 221428243 msec
path,/proc/00104
attribute.100600/001/001,40894464,168.0
argument,2,0x711 e.cmd
argument1310xeffffba0,arg
subject,2122,root1other,root,other,4070,258,0 0 172.1 b. 112.50
return,success,0
trailer.134
header.121,2,clOse(2),,Mon May 04 23:51:26 1998, + 231428336 msec
argument,1,0x5.fd
P3th,/proc/00104
attribute.100600/001/001,40894464,168,0
subject,2122/oot,other/oot.other,4070.258,0 0 172.16.112.50
retum.success.O
trailer, 121

Figure 4.1: BSM log file in its yaw ASCII &rmat
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Figure 4.2: A BSM log file segment as an information system (attributes 1 to 21
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Figure 4.3: A BSM log file segment as an information system (attributes 21 to 4?)
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seteuid(2) | Undefined | success :0
sysinfo(2)|Undefined|success:l
seteuid(2)|Undefined|success:0

Figure 4.4: A BSM log file segment as an information system (attributes 43 to 51)
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Figure 4.5: An information system with a reduced number of attributes
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edge is used to drive data classification and is the key issue of any reasoning,
learning, and decision making [Felix and Ushio, 2002].

Other methods like principal component analysis and independent compo-
nent analysis can be used to extract the most significant attributes from an
information system. These methods rely on a co-variance matrix to calculate
attribute relations. For the matrix to be effective, a numeric representation of
the data is needed. Log files like BSM usually have a large number of attributes
with alphanumeric values. A numeric representation of this values might lead to
an incorrect selection of relevant attributes. By contrast rough set theory deals
naturally with alphanumeric values, since it does, not use the numeric values of
the attributes to extract the reduct.

Another approach used to extract distinctive features from an information
system is support vector machines. By executing many iterations the methods
removes one useless feature. By contrast rough sets avoids many iterations and
obtains a similar results in less time as demonstrated by [Zhang et al., 2004].

4.5 Introduction to Rough Set Theory
Knowledge, acquired from human or machine experience, is represented as a set
of examples describing attributes of either of two types, condition and decision.
Condition attributes and decision attributes respectively represent a priori and
a posteriori knowledge. Thus, learning in rough sets is supervised.

Rough sets removes superfluous information by. examining attribute depen-
dencies. It deals with inconsistencies, uncertainty and incompleteness by im-
posing an upper and an lower approximation to set membership. Rough sets
estimates the relevance of an attribute by using attribute dependencies regard-
ing a given decision class. It achieves attribute set covering by imposing a
discernibility relation. Rough set's output, purged and consistent data, can be
used to define decision rules. A brief introduction to rough set theory, mostly
based on [Komorowski et al., 1998], follows.

4.5.1 Rough Sets
Knowledge is represented by means of a table, so-called an information system,
where rows aiid columns respectively denote objects and attributes. An infor-
mation system, A, is given as a pair A = (U, A), where U is a non-empty finite
set of objects, the universe, and A is a non-empty finite set of attributes.

A decision system is an information system that involves at least (and usu-
ally) one decision attribute. It is given by A = (U, A U {d}), where d $• A is the
decision attribute. Decision attributes are often two-valued. Then the input set
of examples is split into two disjoint subsets: positive and negative. An element
is in positive if it belongs to the associated decision class and is in negative oth-
erwise. Multi-valued decision attributes give rise to pairwise, multiple decision
classes.
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A decision system expresses our knowledge about a model. It may be un-
necessarily redundant. This is either because indiscernible objects may appear
several times, or because some object attributes may be superfluous. To remove
redundancies, rough sets define an equivalence relation up to indiscernibility.

Let A = (U,A) be an information system. Then, every B C A yields an
equivalence relation up to indiscernibility, INDA(B) C (U X U), given by:

INDA{B) = {(x,x') : Va e B.a(x) = a(x')}

Where x|0 means the set of all x that satisfy 0. Reducts of .4 are the least B C A
that is equivalent to A up to indiscernibility in symbols, INDA(B) = INDA(A).
Then the attributes in A — B are considered expendable. An information system
typically has many subsets B. The set of all reducts in A is denoted RED(A).

An equivalence splits the universe, allowing us to create new classes, also
cailed concepts. A concept that cannot be completely characterised gives rise
to a rough set. A rough set is used to hold elements for which it cannot be
definitely said whether or not they belong to a given concept. Rough sets are
thus characterised by a boundary region. In symbols, let A = (U,A) be an
information system. Then take B C. A and X C U. X can be approximated
using the information in B by building the S-lower and B-upper approximations
of X, respectively denoted by BX and BX:

BX = {x:[x)BCX}
BX = {x : [x]B 0 X ± 0}

where \X\B denotes the classes induced by the .^-equivalence. So, objects in BX
are members of A', while objects in BX might be. Then, the B-boundary region
of X, which contains objects that cannon be definitely marked as members of
X, is denned as follows:

BNB(X)=BX -B_X

A set is said to be rough if the boundary region is non-empty.
Potential rough sets can be automatically determined using a discernibility

matrix. Let A be an information system describing N objects. The discernibility
matrix (MA) of A is a symmetric, N x N matrix, in which each entry, cy,
captures the set of attributes upon whir'1: objects xi and Xj differ:

MA(i,j) = {a€A : a(xi) ^ a(xj)} for i,j = l,...,n

Adding the classes yielded by rough set analysis to the original attribute
set, the reduction process can be applied a step further. The whole process is
repeated until it no longer yields a reduction. The reduct extraction is extended
with the concept of dynamic deducts presented below.

Dynamic Reducts

The main purpose of a Redvct is to find attribute subsets that hold the general
patterns in the information system. Since it only takes a single noisy object in
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A to change IN DA, reducts as defined above are subject to incorporate noise
in the data set. One way to avoid this problem is to extract dynamic reducts
from A.

The process of extracting dynamic reducts is a combination of normal reduct
computation with re-sampling techniques. First we randomly take a set of
subsystems S = {Ai ...An} from A. Each subsystem Ai = (Ui,A). For each
subsystem Ai € S extract RED(Ai). Then from all reducts extracted calculate
the number of occurrences in Ai An.

The reducts with a larger frequency are believed to be stable and hold more
general information in A than RED(Ai). This set of reducts are also called the
generalised dynamic reducts or DRED(A,e,S). The e parameter defines the
minimal number of occurrences of a reduct to be included in DRED(A,e,S).
This relation is defined in the following equation:

DRED(A,e,S) = BCA
where Ai G S, and
\RED(Ai)\

\S\ > 1-e

The subsets of objects Ui CU resulting in the extraction of dynamic reducts
is the same as removing from the discernibility matrix the rows and columns cor-
responding to objects x £ Ui. We can generalise this by eliminating individual
entries in the matrix instead of entire rows and columns.

By using dynamic reducts we can find a minimum common reduct set which
will give us the most stable reducts with minimal loss of information. We ex-
tended this concept by creating a single reduct which combines the attributes
with higher frequency from all the reducts in the dynamic reduct set. Experi-
mental results of this approach will be seen in section 4.6 but we can say that
the number of attributes in the combined reduct is almost equal to the number
of attributes in the largest reduct in the resulting set.

4.5.2 Rosetta
The Rosetta system is a toolkit developed by Alexander 0hrn and Ko-
morowski [0hrn and Komorowski, 1997] used for data analysis using rough sets
theory. The Rosetta toolkit is composed of a computational kernel and a GUI.
The main interest for us is the kernel which is a general C++ class library im-
plementing various methods of the rough set framework. The library provides
basic structures for data storage (decision tables, reducts, rules) and algorithms
to transform the data (reduct calculation, rule generation, classification) and a
series of data import/export methods. The library is open source thus being
modifiable by the user. This is convenient since it has limitations, like the inca-
pability of importing more than one information system. For reduct validation
purposes it is necessary to import at least two different information systems, one
to generate association rules and the other to test the generated rules. Anyone
interested in the library should refer to [0hrn and Komorowski, 1997].
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Access-Mode
Owner

Owner-Group
File-System-ID

inode-ID

device-ID
arg-value-1
arg-string-1
arg-value-2
arg-value-3

exec-arg-1
Socket-Type
Remote-IP
Audit-ID

Effective-User-ID

Effective-Group-ID
Process-ID

System-Call

Table 4.1: Chief Attributes

4.6 Rough Set Application to Attribute Reduc-
tion

Ideally, to find a reduct, we would just need to collect together as many as pos-
sible session logs and run Rosetta on them. However, this is computationally
prohibitive since one would require to have an unlimited amount of resources,
both in terms of memory and CPU time. To get around this situation, we
ran a number of separate analyses, each of which considers a session segment,
and then collected associated reducts. Then, to find the minimum common
reduct (MCR), we performed an statistical analysis which removes those at-
tributes that appeared least frequently. In what follows, we elaborate on our
methodology to reduct extraction, which closely follows thax one outlined by
Komorowski [Komorowski et al., 1998].

4.6.1 Reduct Extraction

To approach reduct extraction, considering the information provided oy the
DARPA repository, we randomly chose 8 logs, out of 25, from the year 1998,
and put them together. Then the enhanced log was evenly divided in segments
of 25,000 objects, yielding 365 partial log files. For each partial log file, we made
Rosetta extract the associated reduct using Johnson's algorithm and selecting
a 100% support count (see § 4.6.2).

After this extraction process, we sampled the resulting reducts and using
an frequency-based discriminant, we constructed an MCR. This MCR is con-
structed in a way that it keeps most information of the original data minimising
the number of attributes. The largest reduct in the original set has 15 attributes
and our minimum common reduct has 18 attributes. This is still a 66.66% re-
duction in the number of attributes. The 18 chief attributes are shown in table
4.1.

Regardless of size variations, the extracted reducts contain similar attributes.
These similarities are our indicators to construct the MCR. To appreciate these
similarities, both, the shortest and the largest reducts extracted, are shown in
tables 4.2, and 4.3 respectively .
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Access-Mode
inode-ID

arg-number-1
Process-ID

System-Call

Table 4.2: Shortest Extracted Reduct

Proprietary
Owner-Group

File-System-ID
inode-ID

device-ID
arg-value-1
arg-string-1

arg-number-2

arg-value-2
exec-arg-1

Socket-Type
Remote-IP

Effective-Usr-ID
Effective-Usr-ID

Process-ID
System-Call

Table 4.3: Largest Extracted Reduct

4.6.2 Reduct Algorithms
We will explore the two of the most used reduct algorithms. First we need to
note that currently the algorithms supplied by the Rosetta library (the library
is described in 4.5.2) support two types of discernibility:

• Full: In this case the reducts are extracted relative to the system as a
whole. With the resulting reduct set we are able to discern between all
relevant objects.

• Object: This kind of discernibility extract reducts relative to a single
object. The result is a set of reducts for each object in A.

The first algorithm for reduct extraction is [Johnson, 1974]. This implements
a variation of a simple greedy search algorithm. This algorithm extracts a single
reduct only.

The reduct B can be found by executing the following algorithm where S is
a superset of the sets corresponding to gA(U) and w(S) is a weight function as-
signed to S € S (unless stated otherwise the function w(S) denotes cardinality).
The algorithm is described in algorithm 2.

Algorithm 2 Johnson's algorithm_

repeat
Select an attribute a that maximises
Add a to./?.
Remove S\a 6 S from 3.

until (1 —\S\) > (Support Count)
return B

W(S) and VS, a £ S.

Approximate solutions can be provided by interrupting the algorithm's ex-
ecution when an arbitrary number of sets have been removed from S. The
support count associated with the extracted reduct is the percentage of 5 €
S : B D 5 7̂  0, when computing the reducts a minimum support value can be
provided. This algorithm has the advantage of returning a single reduct but
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depending on the desired value for the minimal support count some attributes
might be eliminated. If we use a support of 0% then all attributes are included
in the reduct, if we use a value of 100% then the algorithm executes until S — 0.

We will now explore the Genetic Algorithm described by 0hrn and Viterbo
in [Viterbo and 0hrn, 2000]. In order to find minimal hitting sets the use of
a genetic algorithm is proposed. The algorithm's fitness function is presented
below. In the fitness function, S is the multi set given by the discernibility
function, a is a weighting between subset cost and the hitting fraction, and e is
used for approximate solutions.

cost(A) - cost(B) . / \[S e S\\S H B ? 9\
^i( + axmm 1 £ J 15

The subsets B of A are found by an evolutionary search measured by f(B),
when a subset B has a hitting fraction of at least e then it is saved in a list. The
size of the list is arbitrary. The function cost specifies a penalty for an attribute
(some attributes may be harder to collect) but it defaults to cost(B) = \B\.

If e = 1 then the minimal hitting set is returned. In this algorithm the
support count is the hitting fraction multiplied by 100. That means that if we
select £ = 1 the returned hitting sets will have a support cou"*; of 100 wh;rh is
the same as in Johnson's algorithm.

4.6.3 Algorithm Selection
Previous to reduct extraction, we tested on the performance Oi the two Rosetta
reduction algorithms, in order to find which is the most suitable for our work.
Both reduction algorithms (see section 4.6.2) were used to extract a reduct
from 25 log files. Log files were selected considering different sizes and types of
sessions. A minimum common reduct set containing 14 attributes was obtained
after 25 extraction processes. This amounts to a reduction of 72.5% in the
number of attributes. In general, both algorithms yielded similar total elapsed
times. Sometimes, however, Johnson's algorithm was faster. As expected, the
total elapsed time involved in reduct extraction grows exponentially with the
number of objects to be processed. For a 1,000 object log file the time needed
to extract the reduct is 3 seconds and for a 570,000 is 22 hours. Also the size
of the reduct increases according to the diversity of the log. For a log file with
1,000 objects, we found a reduct of 8 attributes, while for one with 570,000
objects, we found a reduct of 14 attributes. Table 4.4 shows time performance
for reduct extraction using both algorithms and logs of different sizes.

In tables 4.5 and 4.6, we show the difference in attributes among reducts
extracted using Johnson's and the genetic algorithm respectively. The difference
between the algorithms is just one attribute in both reducts, Access-Mode and
Owner-Group. Eventually both attributes ended up in the minimum common
reduct as shown in table 4.1.

However, for larger log files, the instability of the genetic algorithm based
mechanism became apparent. Our experiments show that *Jiis algorithm is
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Algorithm

Johnson
Genetic Algorithm

Johnson
Genetic Algorithm

Johnson
Genetic Algorithm

Johnson
Genetic Algorithm

# of Objects

1,000
1,000
5,000
5,000
25,000
25,000
570,000
570,000

Extraction
Time (hh:mm:ss)

00:00:03.32
00:00:04
00:02:46
00:02:32

L 01:03:51
Crashed
21:40:05
Crashed

# of Attributes
in Reduct

4
8
11
12
13

NA
14

NA

Table 4.4: Reduct Extraction Time

Owner-Group
inode-ID

arg-value-1

arg-string-1
arg-value-2

Effective-Usr-ID

Effective-Group-ID
Process-ID
System-Call

Table 4.5: Reduct extracted with Johnson's algorithm

unable to handle log files containing more than 22,000 objects, each with 51 at-
tributes. This explains why our experiments only consider Johnson's algorithm.

Even though the algorithms accept indiscernibility decision graphs (that is
relations between objects) we did not use them, both because we wanted to
keep the process as unsupervised as possible and because in order to build the
graphs we needed to know in advance the relation between the objects, which
is quite difficult even for the smaller logs which contain around 60,000 objects.

4.7 Reduct Validation—Experimental Results
An association pattern is a pattern that, containing wild-cards, matches part
of an example log file. Given both a reduct and a log file, the corresponding
association patterns are extracted by overlaying the reduct over that log file,
and reading off the values [0hrn and Komorowski, 1997]. Then the association
patterns are compared against another log to compute how well they cover that
log file information. Thus, our validation test consists of checking the quality
of the association patterns generated by our output reduct, considering two log
files. The rationale behind it is that the more information about the system the
reduct comprehends the higher the matching ratio the association patterns of

Access-Mode
inode-ID

arg-value-1

arg-string-1
arg-value-2

Effective-Usr-ID

Effective-Group-ID
Process-ID

System-Call

Table 4.6: Reduct extracted with the genetic algorithm
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that reduct will have.
To validate our reduct, we conducted the following three step approach. For

each one of the 14 log files considered through our experiments:

1. Use the output reduct to compute the association patterns;

2. Cross validate the association patterns against all log files in the same
year, including the one used to generate them; and

3. Collect and analyse the results.

Our validation results for the year 1998 art) summarised in table 4.7. Ta-
ble 4.8 shows the results for the year 1999, and table 4.9 shows the results of
cross-year validation. The association patterns have relations only between at-
tributes present in the MCR. A set of patterns was generated from each log file.

These association patterns describe the information system with a covering
percentage of the patterns over the information system. The first column in
tables 4.7, 4.8 and 4.9 indicates the corresponding log file used to generate the
association patterns. The first row indicates the log file used to test the covering
of the pattern. By contrast if we were to generate a set of patterns using all
attributes, then those patterns will cover 100% of the objects in the table that
generated them. The result is the percentage of objects we were able to cover
using the attributes in our reduct.

These experiments were conducted on a Ultra Sparc 60 with two processors
running Sun Solaris 7. Even though it is a fast workstation the reduct algorithms
are the most computational demanding in all the rough set theory. The order
of the reduction algorithms is O(n2) with n being the number of objects. With
700,000 an overhead in time was to be expected.

Calculating the quality of the rules generated with the extracted reducts is
also time consuming. The generation of the rules took 27 hours (we used the
larger tables to generate the rules) and another 60 hours to calculate the quality
of the generated rules. In order to test the rules with another table we needed to
extend the Rosetta library. This is because of the internal representation of data
depends on the order an object is imported and saved on the internal dictionary
of the table (every value is translated to a numerical form). The library has
no method for importing a table using the dictionary from an already loaded
table. To overcome the above deficiencies we extended the Rosetta library with
an algorithm capable of importing a table using a dictionary from an already
loaded table. This way we were able to test the rules generated in a training
set over a different testing set. We also tested the rules upon the training set.

Finally the quality of the reduction set is measured in terms of the discerni-
bility between objects. If we can still discern between two different objects with
the reduced set of attributes then the loss of information is said to be minimal.
Our goal was to reduce the number of attributes without loosing the discernibil-
ity between objects, so more accurate IDSs can be designed. Our results show



Training
Log
A
B
C
D
E
F
G
H

Testing log
A

93.7
90.9
90.2
90.3
89.8
89.7
89.2
90.1

Size || 744,085

B
89.7
93.1
"90.8
89.3
89.1
89.3
90.3
89.5

2,114,283

C [ D | E J^ F
90.8
91.2
92.8
91.3
92.2
91.4
91.5
91.2

1,093,140

90.3
91.3
90.7
93.1
92.3
92.8
92.6
91.3

1,121,967

90.9
90.9
92.1
91.5
93.4
90.7
91.2
90.8 j

1,095,935

91.1
92.4
90.1
90.5
89.9
92.9
90.7
90.2

815,236

G
89.9
91.4
90.6
92.9
92.1
92.3
93.1
90.9

1,210,358

H
90.9
90.1
91.0
91.1
90.1
90.8
90.6
92.5

927,456

Table 4.7: Covering % of the Association Patterns, 1998 Log Files



i
s
I
I

Training
Log

I
J
K
L
M
N

Size

Testing log
I

92.9
87.7
90.6
89.8
87.1
86.8

| 820,855

J
91.3
91.7
90.7
89.5
88.9
87.3

490,896

K
90.7
89.2
92.3
90.1
89.1
88.5

630,457

L
90.8
89.3
90.5
92.4
87.8
87.5

520,358

M
91.3
89.8
91.1
90.6
92.1
89.7

220,658

N
91.1
89.7
91.0
90.1
87.2
91.8

297,766

Table 4.8: Covering % of the Association Patterns, 1999 Log Files
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Training
Log
A
I

Testing log
A

93.7
88.3

I
87.1
92.9

I Size || 744,085 | 820,855]

Table 4.9: Covering % of the Association Patterns, 1998 vs. 1999

thai we provecT hat about 90% of a BSM log file can be described using a third
of its original attributes.

Even though the entire reduct extraction process is time consuming, it only
needs to be done once and it can be done off-line. There is no need for live
data, the analysis can be done with stock data. Once the reduct is calculated
and its quality verified, we can use the smaller attribute set that best describes
the information system. Thus reducing the space required to hold the logs and
the time required for a proper intrusion detection.

4.8 Related Work
Log files are naturally represented as a two dimensional array, where rows stand
for objects (in our case system calls) and columns for their attributes. These
tables may be unnecessarily redundant. The problem of reducing the rows and
columns of a table, we respectively call object reduction and attribute reduction.
To the best of the authors' knowledge, the attempts to reduce the number of
attributes prior to clustering have been few while this is still a big concern as
thjre might be unnecessary attributes in any given source of information.

Lane and Brodley use an instance based learning (IBL) technique to model
usei behaviour [Lane and Brodley, 1999, Lane and Brodley, 2000] that works at
the level of Unix user commands. Their technique relies upon an arbitrary
reduction mechanism, which replaces all the attributes of a command with
an integer representing the number of that command's attributes (e.g. cat
/etc/password /etc/shadow > /home/mypass is represented by cat <3>).
According to [Lane and Brodley, 1999, Lane and Brodley, 2000], this reduction
mechanism narrows the alphabet by a factor of 14, but certainly at the cost
of loosing important information. This is because the arguments cannot be
eliminated if a proper distinction between normal and abnormal behaviour is to
be done. For example, copying password files may in general denote abnormal
activity. By contrast our method keeps all these attributes as they are main
discriminants between objects and thus an important source of information.

Knop et al have suggested the use of correlation elimination to achieve at-
tribute reduction [Knop et al., 2001]. Their mechanism uses a correlation co-
efficient matrix to compute statistical relations between system calls. *. These
relations are then used to identify chief attributes. Knop et al's mechanism

'Knop et al's raethod resembles Principal Component Analysis [Rencher, 1995]
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relies upon an numerical representation of system call attributes to capture ob-
ject correlation. Since a log file consists of mainly a sequence of strings, this
representation is unnatural and a source of noise. It may incorrectly relate two
syntactically similar system calls with different meaning. By comparison, our
method does not rely on correlation measures but in data frequency which is less
susceptible to representation problems. This concludes our revision of related
work on attribute reduction.

4.9 Conclusions
Based on our results we identified the main attributes of a BSM Jog file without
sacrificing relevant information needed to keep discernibility between different
objects. The method is expected to produce similar results if applied to different
multi-variable log files. The method is performed only once and off-line; it
provides no overhead to the intrusion detection process. Moreover it provides a
small set of attributes for intrusion detection with a. balance between information
descriptiveness and compactness. Our results show that rough sets is a method
suitable for the reduction task. The result of applying our -nethod is a 66%
reduction ratio. Rival techniques have reported on a greater reduction, out at
the expense of information loss.

Our reduction method only assures that the reduced set keeps minimal the
information loss with respect to discernibility. In order to assure that the re-
duced information is sufficient for an effective '.ntrusion defection, empirical
tests must be conducted. As we will demonstrate in chapter 7, the reduction
obtained should be sufficient to explore intrusion detection methods that are
computational intensive and were prohibitive. Th;s chapter ~'''Lalso show that
we keep key information needed for intrusion deV: .tion.



Chapter 2

State of the Art and
Limitations of IDSs

2.1 Introduction
As computer networks grow so does the number of computer attacks.
Computer security is one of the topics of interest to all system man-
agers nowadays. According to [The Computer Security Institute, 2001,
The Computer Security Institute, 2003] losses associated with computer crimes,
reported from 1997 to 2001, summed up $1,004,135,495 USD. In 2002 these
losses raised to $455,000,000 USD and in 2003 to $201,797,340 USD. So attacks
are a major concern to computer industry.

There are many kinds of mechanisms to protect a computer site against
threats. A well-defined security policy should be the first line of defence in any
site [Holbrook and Reynolds, 1991]. A site security policy includes a way of
both preventing intrusions and providing counter measures. Prevention strate-
gies range from user education to the use of a number of devices, including an
Intrusion Detection System (IDS).

A computer attack can be as simple as the reception of a single packet con-
taining an instruction to destabilise a host. It can also be as complex as a
series of independent requests that together lead the site to an insecure state
by compromising one of the hosts. Currently there is not reliable automated
method for detecting intrusions. According to [Alessandri et al., 2001], up to
90% of the alarms (reports of suspicious activities) generated by most IDSs
are false alarms. Some IDSs check only file integrity or the content of a sin-
gle network packet. Most sophisticated IDSs also check for short sequences
of low-level calls to the operating system but without paying attention to
their content [Warrender et al., 1999, Tan and Maxion, 2002, Qiao et al., 2002,
Yeung and Ding, 2003, Wagner and Soto, 2002].

There have been many attempts to solve the problem of detecting attacks
in progress but all the methods fail to detect unknown attacks if those are more
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complicated than a simple network packet or are generated by a trusted source.
Or in the case of known attacks the detection methods fail to detect attacks
disguised as normal activity. Also current intrusion detection methods seem to
be incapable of providing acceptable low rates of false alarms and undetected
attacks. In order to overcome the above problems, we have resorted to methods
commonly used in natural language programming (NLP). These methods have
proved to be succesful for speech recognition, which might be seen as a sim-
ilar problem to sequence identification. We will make the detection based on
session segmented in smaller parts. In speech recognition there are techniques
that detect phonemes before words, and words before phrases. This segmented
approach is the one that we think, will provide a more reliable method since it
can extract more characteristics to make a better analysis.

Some of the most interesting works, have proposed analo-
gies with the immune system (IS), examples of these meth-
ods are [Hofmeyr and Forrest, 2000], [Warrender et al., 1999] and
[Kim and Bentley, 1999b, Kim and Bentley, 1999a]. In the IS self/non-
self discrimination is based upon chemical bonds formed between protein
chains and detector cells [Ferenak, 1993]. The network traffic is viewed as the
universe formed from the union of self and non-self. All these approaches have
failed at detecting attacks disguised as normal traffic. By dividing the traffic
and then grouping each the detection result for each segment we believe that
we can outperform methods based on the IS.

The remainder of this chapter is organised as follows: §2.2 present an in-
troduction to computer security, and terminology that is used throughout this
dissertation; if the reader is familiar with general teminology and concepts of
computer security, §2.2 can be skipped. §2.3 presents the taxonomy of IDSs;
§2.4 reviews IDSs development and evolution; §2.5 describes different intrusion
detection methods; §2.6 presents current trends in IDSs research; §2.7 explains
a kind of attack that has proved difficult to current IDSs; in §2.8we give an
overview what we consider to be the most distinctive limitations of current
IDSs; finally, §2.9 briefly depicts our data source for intrusion detection.

2.2 Computer Security
In order to have a better perspective of the intrusion detection methods we need
to know at least some basic concepts regarding computer security. If the reader
is acquainted with computer security, it is safe to skip this section.

The computer security field is primarily concerned with protecting valuable
data. There are three goals in computer security as defined in [Amoroso, 1994]:

• Confidentiality refers to the prevention of unauthorised disclosure of in-
formation.

• Integrity deals with the prevention of unauthorised modification of infor-
mation.
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• Availability prevents unauthorised withholding of information or re-
sources.

The way these goals can be attained is denned in a security policy which
can be implied or perfectly described. If an organisation wants to keep confi-
dentiality, integrity and/or availability of some information it must constitute
a security policy even if the policy is not well-defined. At least a general and
superficial security policy should be defined.

As information we are protecting has some value, any failure in keeping it
secure can be seen as an economical loss i.e. imagine the losses if the source
code for an operating system is stolen or tampered with.

Some examples of these losses can be seen in the "Computer
Crime and Security Survey" [The Computer Security Institute, 2001,
The Computer Security Institute, 2003]:

35% of 186 respondents were willing and/or able to quantify
their financial losses. These 186 respondents reported $377,828,700
in financial losses. (By contrast, the losses from 249 respondents
in 2000 totalled only $265,589,940, in 2001 $377,828,700, in 2002
$455,848,000 and in 2003 it totalled $201,797,340 USD. The average
annual total over the three years prior to 2000 was $120,240,180.).

We have seen the security goals and the economical risks in the failure of
keeping them. Next we will analyse security in operating systems to explain
some causes of vulnerabilities that can lead to an attack.

2.2.1 Security in Operating Systems
An operating system has conflicting needs: to share resources while protecting
them. In the early days, security consisted of a lock and a key: the system
was physically guarded and only authorised users were allowed in the vicinity.
However with the advent of data communication, networking, the proliferation
of personal computers, and modern telecommunication software, computer se-
curity has become much more difficult to achieve.

Systems that were once unaccessible have now become vulnerable to attacks,
and because system security is a relatively recent problem, many systems have
Uttle protection built into them. The major problem is that system managers
must balance two opposing goals: to keep the system accessible to its authorised
users and to protect it from other people who have no right to access it.

Not all security breaks are malicious; some are purely accidental unautho-
rised use of resources. But some breaks stem from a purposeful disruption of
the system's operation. Malicious or not, a break in security severely damages
the system's credibility.

Accidental flaws are known as security holes due to the opportunity they
give for an attack to take place. Most of the time the holes remain undetected.
But sometimes a security hole goes public and an attack to take advantage of
it is developed. This is called an exploit.
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2.2.2 Security Holes
The two most repetitive accidental flaws are described below:

• Accidental incomplete modification of data occurs when non-synchronised
processes access data records and modify some but not enough of the
record's fields [Flynn and McHoes, 1991].

• Data values are incorrectly encoded when fields are not large enough to
hold numeric values stored there. For example, when a field is too small
to store a numerical value, FORTRAN will store a string of asterisks and
COBOL will cut off a part of the higher order digits. Neither of these
errors would be discovered at the time of storage; it would be discovered
only when the value is retrieved. That is an inconvenient time to make
such an unpleasant discovery [Flynn and McHoes, 1991].

These kind of errors or programming bugs are the main cause of security
holes. And when discovered these security holes become exploits such as a not
bounded buffer that leads to a possible overflow attack

The vast majority of attacks are caused by accidental flaws or the failure to
follow a security policy. A description of some of these attacks follows.

2.2.3 Attack Description
Intentional unauthorised access (regardless its cause) is the most damaging at-
tack in security, and the rest of this subsection will be devoted to some instances
of it.

• Browsing refers to unauthorised users searching through storage, directo-
ries, or files for information they should not have the privilege to read.
Storage refers to main memory or to unallocated space on disk or tapes.
Sometimes browsing occurs after an active process has finished. When a
section of main memory is allocated to a process, the data from a previous
process allocated in that same memory section often remains in there, it is
not usually erased by the system, and so it is available to a browser. The
same applies to secondary storage [Tanenbaum, 1992]. Put the other way
round, when a process deallocates memory, data remains until another
data are written over that memory region.

• Wire tapping is a direct intervention over the transmission line. Wire
tapping is said to be passive if an intruder does not change the content
of a transmission and active otherwise. There are two reasons for passive
tapping: to copy data while bypassing any authorisation procedures and
to collect specific information (such as passwords) that will permit the
tapper entering the system at a later time. Two methods of active wire
tapping are "between lines" transmission and "piggy back" entry. Between
lines does not alter the messages sent by the legitimate user, but it inserts
additional messages into the communication line while the legitimate user
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is pausing. Piggy back intercepts and modifies the original messages. This
can be done by breaking the communication line and routing the message
to another computer that acts as a host. For example, the tapper could
intercept a log-off to the user, and then continue the interactive session
with all the privileges of the original user [Amoroso, 1994].

• Repeated trials is a method used to enter systems that rely on passwords.
If an intruder knows the basic scheme for creating passwords such as pass-
word length and symbols allowed to create it, then the system can be
compromised with a program that systematically goes through all possi-
ble combinations until a valid combination is found. This is not as long a
process as one might think if passwords are short. Since an intruder does
not need to break a specific password, the guessing of any password allows
entry to the system and access to its resources [Amoroso, 1994].

• Trash collection is an evening pastime for those who enjoy perusing any-
thing and everything thrown out by the computer department: discarded
computer tapes, disks, printer ribbons, and printouts of source code, pro-
grams, memory dumps, and notes. They can all yield important informa-
tion that can be used to enter the system illegally [Amoroso, 1994].

• Trap doors are unspecified, non-documented entry points to a system.
Trap doors can be either accidental or they can be put by a system
programmer for future use. They may also be incorporated into a sys-
tem by a "Trojan horse"1 or a destructive "virus"2 as described by
[Amoroso, 1994].

Some of these attacks are caused by security holes while others are the result
of a poor security policy (i.e. viruses and Trojan can be avoided by an anti-virus
software). Some attacks can not be avoided like repeated trials. But all can be
detected.

We have seen what kind of exploits an attacker may use to compromise a
system. But we also need a categorisation of the attacks based on their goals to
know what kind of data to protect. One such a categorisation is given below.

2.2.4 Attack Categorisation
It is notorious that not all attacks are similar. All attack components have spe-
cific goals that include obtaining information about a computer/network system
with intent to use that information as part of an exploit, achieving some level
of privilege on a computer system not specifically granted by a system admin-
istrator, or violating some explicitly stated security policy. Five major attack

XA TVojan horse program is defined as any program that is expected to perform some
desirable function, but actually performs the other way round

2 A virus program is defined as any TVojan horse program that has been designed to self-
reproduce and propagate so as to modify other programs to include a possibly modified copy
of the virus.



10 CHAPTER 2. IDSS, STATE OF THE ART AND LIMITATIONS

categories are presented in [Haines et al., 2001] to group attack components
with regard to the actions and goal of the attacker. We discuss these categories
below.

Denial of Service Attacks A denial of service (DoS) attack is an attack
in which the attacker makes some computing or memory resource too busy or
too full to handle legitimate requests, or denies legitimate users access to a
machine. There are many varieties of DoS attacks. Some DoS attacks (like
a mail-bomb, Neptune, or smurf attack) abuse a perfectly legitimate feature.
Others (teardrop, Ping of Death) create malformed packets that confuse the
TCP/IP stack of the machine that is trying to reconstruct the packet. Still
others (apache2, back, syslogd) take advantage of bugs in a particular network
daemon.

User to Root Attacks User to Root (U2R) exploits are a class of exploit
in which the attacker starts out with access to a normal user account on the
system (perhaps gained by sniffing passwords, a dictionary attack, or social
engineering) and is able to exploit some vulnerability to gain root access to the
system. There are several different types of U2R attacks. The most common
U2R attack is the buffer overflow. Buffer overflows occur when a program copies
too much data into a static buffer without checking to make sure that the data
will fit. By carefully manipulating the data that overflows onto the stack, an
attacker can cause arbitrary commands to be executed by the operating system.

Remote to Local Attacks A Remote to Local (R2L) attack occurs when
an attacker who has the ability to send packets to a machine over a network
but who does not have an account on that machine exploits some vulnerability
to gain local access as a user of that machine. There are many possible ways
an attacker can gain unauthorised access to a local account on a machine. The
Dictionary, Ftp-Write, Guest and Xsnoop attacks all attempt to exploit weak
or poorly configured system security policies.

Probes In recent years, a growing number of programs have been distributed
that can automatically scan a network of computers to gather information or
find known vulnerabilities. These network probes are quite useful to an at-
tacker who is preparing a future attack. An attacker with a map of which
machines and services are available on a network can use this information to
look for weak points. Some of these scanning tools ([Farmer and Venema, 2002],
[SAINT Corporation, 2002], [Focus, 2001]) enable even a very unskilled attacker
to quickly check hundreds or thousands of machines on a network for known vul-
nerabilities.

Data Data Attacks involve someone (user or administrator) performing some
action that they may be able to do on a given computer system, but that they
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are not allowed to do according to site policy. Often, these attacks will involve
transferring "secret" data files to or from sources where they do not belong.

Based on this categorisation we can say now that our method will focus on
U2R and R2L attacks. Thus we will concentrate on user behaviour. In the next
section we present different taxonomies for IDSs.

2.3 Classification of IDSs

IDSs are mainly categorised based on the detection scheme and the source of
information. Based on the detection scheme there are two kinds of IDSs, misuse-
detection and anomaly-detection [Alessandri et al., 2001].

Misuse IDSs (MIDSs) use a pattern matching procedure based on rules.
This allows the IDS to detect any attack with a known signature. These kinds of
IDSs are very effective against known attacks but have problems with detecting
novel attacks of unknown signatures. It also fails to effectively detect stealth
attacks (attacks hidden in valid patterns) or attacks distributed in multiple
sessions. Detection methods used in MIDSs include expert systems, signature
analysis, and data mining [Barbara and Jajodia, 2002].

An anomaly IDS (AIDS) relies on some kind of statistical profile ab-
stracting out normal user behaviour; user actions may be observed at different
levels, ranging from system commands to system calls. Any deviation from
a behaviour profile is taken as an anomaly and therefore an intrusion. Ap-
proaches to anomaly detection include statistical methods, genetic algorithms,
neural networks and data mining [Barbara and Jajodia, 2002].

Based on the data source an IDS, there are three kinds of IDSs, host-based,
network-based and application-based IDSs.

Host-based IDSs usually use system and application logs to obtain records
of events, and analyse them to search for an intrusion [Bishop, 2003]. The
advantage of collecting information at log level is that is less susceptible to
encryption.

Network-based IDSs use a variety of devices to monitor network traffic.
This approach can detect network-oriented attacks, such as a DoS attack intro-
duced by flooding a network [Bishop, 2003]. An IDS of this kind is capable of
monitoring a large number of hosts at the same time.

Application-based IDSs monitor application behaviour. An application
behaviour can be modelled in a way that deviations from known benign behav-
iour are signalled as an intrusion; e.g. a printing application should never try
to read a password file.

Having reviewed how IDSs are classified, we now present a chronological
development of IDSs.
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2.4 An Account for the Development of the IDS
Area

The first model of an IDS goes back to the mid 1980's with the (sem-
inal) work of [Denning and Neumann, 1985]. Denning and Neumann sug-
gested a centralised architecture. Their approach to Intrusion Detection fo-
cuses only on reachability of insecure states; traffic inspection is neglected.
To detect an intrusion, the method uses a pattern matching procedure based
on rules. Many commercial IDSs are based on Denning and Neumann's
model. Example centralised IDS are Intrusion Detection Expert System
(IDES) [Denning and Neumman, 1987], Network Intrusion Detection Expert
(NDIX) [Bauer and Koblentz, 1988] and Network Anomaly Detection, Intru-
sion Reporter (NADIR) [Hochberg et al., 1993]. The pattern matching proce-
dure used in these systems vary from one another, some IDSs target normal
behaviour and others the opposite. Rule-based expert systems or weighted
functions are often used to detect abnormal behaviour. By contrast, the use of
covariance-matrix based mechanisms is preferred to detect normal behaviour.

Netowrk-based IDSs represent an alternative approach to centralised IDS. In-
stead of considering reachability of insecure states, a network-based IDS analy-
ses only network traffic. A network-based IDS called Network Security Monitor
(NSM) was first developed by [Heberlein et al., 1990]. A Network IDS com-
bines the two approaches above into a single one. [Snapp et al., 1991] extended
the Denning and Neumann model to a network model yielding a system called
Distributed Intrusion Detection System (DIDS) the model has a distributed ar-
chitecture. DIDS uses both statistical analysis and rule-based expert systems
to detect attacks. Notice that even though the architecture is distributed, data
is analysed on a single machine.

IDSs of the above sorts present three major weaknesses. First and most
important, lack of robustness (e.g. if the central server crashes so will the whole
system). Second, difficulty of maintenance. Being monolithic Al, any one such
an IDS should be configured according to each host it resides in. Changes in
network configuration result in unnecessary IDS maintenance. Third, ineffi-
ciency. System architecture causes high network loads leading to a long latency
time. Fourth, scalability. As in the second problem, monolithic Al nature of the
system makes it hard to add new hosts or nodes.

IDSs later evolved into a distributed hierarchical model. The architecture of
a distributed IDS consists of three layers. The command and control system is at
the top layer, information gathering is achieved at the middle layer and system
monitoring at the bottom layer. Distributed IDSs are designed to monitor
large scale networks and, unlike previous models, scalability is not an issue.
Some projects in progress using this approach are The Graph-based Intrusion
Detection System [Stainford-Chen et al., 1996] and Event Monitoring Enabling
Responses to Anomalous Live Disturbances [Porras and Neumann, 1997]. In
both systems each unit monitors a single area and sends the result to the layer
above instead of sending all the audit trail. Thus nodes at uppermost layers
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need only to analyse results from layers below to them. By sharing information
between peers the model is able to detect coordinated attacks.

With this model the problem of network load is partially solved but the
robustness problem still exists. If a node at a higher level crashes so will its
descendants. And if a node crashes the detection of coordinated attacks becomes
difficult to perform.

As for the time of writing these are the approaches used in commercial IDSs.
We will describe in the next section the most common detection methods.

2.5 Most Common Methods in IDSs
This section aims to briefly describe the most important methods used in both
commercial IDSs, and research IDS prototypes. We illustrate current methods'
weak points so as to demonstrate that a more accurate method is needed.

Regarding data representation there are mainly two kinds of detection meth-
ods: context dependent and context independent. Both kinds of methods are
described below along with the most representative frameworks of each method.

2.5.1 Context Dependent Methods
Context depending methods are characterised by the representation they use
to make the detection. They use the data as is, e.g. when checking a network
packet the method verifies source and destination addresses and compares the
data without further treatment.

The most common method for context dependant intrusion detection is the
rule-based one. Network traffic may be captured using a graph, where nodes
represent host states and transitions requests to the host. Some states are
labelled as insecure. An attack is then any path that leads to an insecure state.
Therefore an analysis of that graph is a method for detecting such an attack.
As a consequence of the graph representation an attack can be analysed using
expert systems, statistical methods, and simple rule matching.

Expert System Methods

In the expert system approach a series of rules, each of the form if-then-else,
is used to determine if the current session is malicious or not. This method
is analogous to follow the transitions in a graph thus if an state reached by a
transition is an insecure one then an alarm is triggered. The method has the
advantage of scalability but not without a cost: detecting a large number of
attacks normally implies a decrease in performance due to the large number of
rules that need to be compared with.

In these methods both data representation and discrimination are done at a
more abstract level. Since expert systems are used to verify if an action leads
to an insecure state we need to know all the transitions in advance. Even with
the aid of heuristics, the set of rules needed to represent a considerable number
of attacks is enormous.
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The same problem applies if the expert system is modelling user behaviour.
If an attack is not contemplated in the rules the expert will system fail to
recognise it. If the user behaviour is being modelled then any attack that
matches the rules of certain user will be overlooked. Also if a user action differs
from the rules denning its behaviour a false alarm will be triggered.

Some commercial and research IDSs that use the expert system approach
are:

• NADIR™: Network Anomaly Detection and Intrusion Reporter
[Hochberg et al., 1993]. NADIR monitors network authentication (Ker-
beros) and mass file storage activity (Common File System).

• AID: Adaptive Intrusion Detection system (research prototype)
[Sobirey et al., 1996]. The expert system uses a knowledge base with state
oriented attack signatures, which are modelled by deterministic finite state
machines and implemented as rule sequences.

• EMERALD™: Event Monitoring Enabling Response to Anomalous Live
Disturbances [Porras and Neumann, 1997]. The system has misuse detec-
tion method called eXpert which is based on the P-BEST expert system
[Lindqvist and Porras, 1999].

• Expert-BSM™ [Lindqvist and Porras, 2001]. The system uses a forward-
reasoning expert systems that analyses audit trails.

• NetSTAT: Network-based State Transition Analysis Tool (research proto-
type) [Vigna and Kemmerer, 1999]. NetSTAT represents state transition
diagrams within its rule-base and uses them to seek out those state tran-
sitions within the target system that correspond to known penetration
scenarios.

Statistical/Probabilistic Methods

The statistical detection method compares current behaviour profiles against
historic (expected) behaviour profiles. In the statistical method an anomaly
(which can be taken as an attack) takes place when current behaviour deviates
beyond normal behaviour. With this approach detection is made upon known
behaviour of the user.

Bayes is a popular probabilistic method that analyses effects or observable
behaviour and gives a probability of an attack being the cause of that anomaly.

If we have a complete distribution function of user behaviour and attacks,
statistical/probabilistic methods are the right choice in terms of accuracy and
performance. If we knew those probabilities that would mean that we would
know all the attacks and have examples of all the causes of them or we could
describe completely user behaviour which is impossible.

If a profile is used to detect deviation from normal user behaviour then any
valid action that deviates from that behaviour is signalled as an anomaly or
any attack similar to normal behaviour will be missed by the IDS. In order
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to learn new behaviour a probability describing such behaviour (the attribute
on which is extracted the probability depends on the IDS) must be given. Also
statistical methods fail to represent relational structures between components of
the attacks and without these structures learning new attacks is a real problem.

Some commercial and research IDSs that use the statistical approach are:

• SIDS: Statistical Intrusion Detection System (research prototype)
[Javitz et al., 1986]. This is a host based IDS which profiles user behaviour
based on audit trails of the host.

• CMDS™: Computer Misuse Detection System [Proctor, 1994]. The sta-
tistical detection system compares current behaviour profiles to historic
behaviour. The data is extracted from the audit trails of the host.

• NIDES: Next-generation Intrusion Detection Expert System (research pro-
totype) [Anderson et al., 1995]. NIDES statistical analysis maintains his-
torical statistical profiles for each user and raises an alarm when observed
activity departs from established patterns of use for an individual.

• EMERALD™: Event Monitoring Enabling Response to Anomalous Live
Disturbances [Porras and Neumann, 1997]. EMERALD is the continua-
tion of NIDES and it includes an anomaly detection method called eBayes
[Valdes and Skinner, 2000] which is based on the Bayes theorem. EMER-
ALD analyse TCP sessions at periodic intervals.

Simple Rule Matching
Rule matching methods use a simple string compare approach. If a network
packet or an audit log contains certain string defined in a rule then an alarm
is triggered. A problem with this approach is that a large amount of space is
needed to represent all the rules to be checked against. Therefore the method
only analyses a small part of the universe. Even though the method is very
accurate, in order to detect an attack a signature should be present and if the
attack varies a little then another signature is needed. Rule matching is good
because of the low false alarm ratio but they fail to detect unknown attacks. In
order to do this a dataset containing all the possible attacks (both known and
unknown) is needed which is virtually impossible.

Some frameworks that incorporate this method are:

• NID™, formerly NSM: Network Security Monitor [Heberlein et al., 1990].
NID can examine network packets for strings associated with known at-
tacks. The system can be configured to monitor an specific domain (hosts
or subnetworks).

• AS AX™: Advanced Security audit trail Analyser on uniX
[Habra et al., 1992]. AS AX is a distributed audit trail analysis sys-
tem. It is based on a rule-based analysis engine to detect known attack
patterns.
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• GrIDS: Graph Intrusion Detection System (research prototype)
[Stainford-Chen et al., 1996]. The system builds activity graphs which
approximately represent the causal structure of large scale distributed
activities. These graphs are then compared against known patterns of
attacks.

• Alert-Plus™ [Computer Security Products Inc., 2002]. Alert-Plus is a
rules-based system that compares events recorded in an audit trail against
custom-defined rules.

• Cisco Secure IDS™ (formerly NetRanger™) [Cisco Systems, 2002]. The
NetRanger intrusion detection engine uses signature recognition, which
can be either context- or content-oriented.

• SecureNet PRO™ [MimeStar, 2002]. The system uses string matching
combined with Shared Decision Logic for signature analysis.

• Snort© [Free Software Foundation, 2002]. Snort is based on linear string
matching of TCP/IP traffic dump with a set of rules.

A description along with some examples of context independent methods
follows.

2.5.2 Context Independent Methods
Context independent methods generally transform input data into binary data
so that the origin of data is irrelevant to the success or failure of the method.
This is because the discrimination of classes is done at a bitwise level. Many
of these methods have been proved to be effective in pattern recognition and
optimisation. The possibility for failure does not rely on the method but on
data representation i.e. which portion of data is used as the input or output to
the method. If representation is adequate then the method will succeed in the
detection, otherwise it will fail. In other words the problem with these methods
centres around the data chosen to be the input and the way the programmer
transforms these data so it can be used by the method. Since the method does
not vary according to the input, it can be recycled for use with more data by just
adjusting the representation of it. Unlike context dependent methods, context
independent methods do not care about the origin of data, instead they only
analyse bit positions in these data regardless its nature i.e. analysing a network
packet a match can be made from bits originated from different parts of the
packet (source address and port).

N-contiguous Bit Matching

LYSIS is a framework developed by [Hofmeyr and Forrest, 2000] where multiple
data are represented as a single binary string. Detectors containing strings that
do not match normal traffic are created. Then an n-contiguous bit matching is
done over the strings to see if the traffic being analysed corresponds to something
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abnormal. N-contiguous bit matching consists of comparing two binary strings
using a window of length /, and if a similarity of at least n bits is found then
there is a match. If n equals I then the strings must be identical to have a
positive match.

Because the match is based on unseen traffic, the method is said to be of
type negative selection. In LYSIS the binary string contains information of
source and destination addresses along with the port. The match may use bits
from source address and port or any other data. This framework deploys a lot
of detectors along the network and if a new normal traffic is presented then
all the detectors should be removed from the system or they take the risk of
detecting this new normal traffic as an attack. Also the number of detectors
must be huge in order to detect all unknown (not necessarily malign) traffic.
If not enough detectors are deployed then a non-contemplated attack would be
taken as normal traffic. When in mode of misuse detection (a non-self string is
fed to the system and co-stimulated), detection rate reported is 75% and false
positive rate of 6%.

Genetic Algorithms

Genetic algorithms (GAs) are "search algorithms based on the mechanism of
natural selection and natural genetics". GASSATA [Me, 1998] is a project that
uses GAs to make the discrimination of abnormal situations. The GA presented
in [M£, 1998] works as follows: it creates a population of the host characteristics
(properly represented as binary strings), selects the characteristics that best rep-
resent an insecure state of the host, and mixes the characteristics that fit these
criteria evolving an optimum set of characteristics that represent an undesired
state. GASSATA then uses these characteristics to make the detection.

According to [Me, 1998], searching for 24 attack scenarios GASSATA
reaches a 99% convergence by generation 100. The number of generations
needed to find a solution increases as the number of scenarios is incremented.
Time needed to find a solution also increments but in this case it is incremented
exponentially e.g. with a 24 attack scenario GASSATA needs about 20 seconds
to find a solution and with a 200 attack scenario it needs 600 seconds to find
a solution. In order for the GA to know if the scenario will be a cause of an
attack a set of examples must be provided. The GA is unable to know if a given
scenario will be an attack unless someone provides that information. So the GA
will be unable to detect unknown attacks since it does not know the scenario
that leads to them. Also a GA demands a lot of computation to find a solution
and that could consume resources on the machine hosting it.

Neural Networks

ACME! is a framework described in [Computer Security Research, 2002] where
neural networks are used for intrusion detection. A neural network (NN) struc-
ture is a collection of parallel processors connected together in the form of a
directed graph, organised such that the network structure lends itself to the
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problem being considered as defined in [FVeeman and Skapura, 1991]. In this
framework the NN is trained with known examples of attacks so it can recog-
nise variations of them. The NN in ACME! receives a stimuli vector from the
network traffic at a given time and produces a numerical output. The output
must be interpreted in order to know if the traffic represents an attack. The first
problem with this method is that it only analyses traffic at a given moment and
then the next moment but without relating the traffic over time. The problem
with the NN approach is that if an attacks differs too much from the attacks
used in the training phase then the IDS would be incapable of making a good
detection. Another problem with NN is the difficult to acquire new knowledge,
the NN must be trained all over again which is time consuming and need a fair
amount of examples of a new attack in order to detect it correctly. Due to the
generalisation of a NN, it must be incapable of detecting attacks disguised as
normal traffic without having a high false-alarm ratio.

Context independent methods are not very scalable since the input in these
methods often has fixed length. Due to this characteristic it is impossible to
add features to the input pattern. Also if new patterns are to be recognised,
re-compilation is necessary for the methods to be able to detect it.

Unlike context dependent methods, these method? are able to find hidden
relations in data which is useful as characteristic extraction as a way of pre-
processing. These characteristics can later be used in a context dependent
method. Thus a combination of both methods can prove to be a useful IDS.
Currently there is some development on new models. The problems that need
to be addressed for IDS design will be described in the next section.

2.6 Focus of Current Research on IDS
Current research aims to overcome the problems existing with current IDS tech-
nology [Nolazco et al., 2004].

1. Undesirable number of false-positives and false-negatives.

2. Vulnerability to complex attacks.

3. High network loads.

4. Non scalability.

5. Lack of robustness.

6. Lack of a data source integration mechanism.

7. Inefficient update of attack signatures.

8. Lack of a terminology standard.

A great variety of current research in IDSs, is pointed in one common di-
rection: distributed systems. Ours is With computer networks growing at an
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exponential rate, the systems to guard this networks should develop at the same
rate. Also there is a need for a portable IDS so it could be used among multi-
ple architectures (contemporary networks mix POSIX based architectures with
Windows™ or even Macintosh™) and the implementation should work trans-
parently to administrators.

In the next section we analyse a special kind of attack, an attack
that is disguised as normal behaviour which is called a mimicry at-
tack [Wagner and Soto, 2002].

2.7 Mimicry Attacks
In order to explain mimicry attacks, we make the assumption that an attacker
knows the detection method's inner working. When a detection method becomes
popular is sensible to think that its algorithms and specifications will be publicly
available. Thus, security through obscurity is not very reliable. A mimicry
attack is defined by [Wagner and Soto, 2002] as a variant of an attack that aims
to masquerade as ordinary, non-malicious behaviour [Wagner and Soto, 2002].
The deception is achieved by transforming the known attack in any conceivable
way, provided that it does not lose its harmfulness. For example, in a host-based
MIDS, where an attack takes the form of a sequence of system calls, we could
build a mimicry attack out of other in either of three ways: i) by swapping one
or more subsequences of system calls for other, functionally equivalent; ii) or by
inserting purposeless system calls (which we henceforth call no-ops): or iii) by
a combination thereof.

For a system call to be a no-op it needs not to modify the attack state. A
system call that can be used as no-op is chdir with argument ".". Some system
calls that can not be used as no-ops are exit, pause, vhangup, fork, alarm, and
sets id since they have a negative impact on the success of the attack. Another
way to create a mimicry attack, is to substitute any call to read on an open file
with a call to mmap followed by a memory access.

Since it is a sequence of system calls, an attack is a very simple, restricted
program, containing no recursion. Then, to approach mimicry attack detection,
one might be tempted to use the normalisation procedure shown in Algorithm 1.
This normaliser however is not realisable, because not every no-op can be dis-

Algorithm 1 Normalisation before detecting mimicry attacks
/ f- input sequence of system calls
/ «- the result of striping off every no-op from /
Parse / searching for a variant v of a known subsequence s of system calls
while there is one such a variant v do

/ <- the result of replacing v with s
Parse / searching for a variant v of a known subsequence s of system calls

end while

tinguished via a syntactical analysis. An no-op can be realised by at least two
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means: i) a system call which on execution returns failure; and ii) a system
call which on execution does not interfere with the internal workings of the
attack. The second kind of no-op is therefore state dependant and cannot be
syntactically characterised.

A normalisation approach also faces another technical difficulty: it is neces-
sary to prove that no variants of any two distinct subsequences of system calls
clash one another. Put differently, the normaliser will certainly yield a normal
form, but this normal form is not necessarily unique. One has to prove con-
vergence [Klop, 1992]. We will explore how to tackle mimicry attacks in more
detail in Chapter 7.

There have been many attempts at detecting mimicry at-
tacks [Schonlau et al., 2001, Maxion and Townsend, 2002, Scott et al., 2003,
Boleslaw and Yongqiang, 2004], all will be covered in detail in chapter 7 to
contrast our proposed solution.

This finishes our revision of the state of the art in intrusion detection. We
now proceed to pinpoint the main flaws with current IDSs. These flaws are the
motivation for the rest of the dissertation.

2.8 Summary of Current IDSs Limitations
As we illustrated most current IDSs are incapable of dealing with unknown
attacks (mostly expert system and rule-based). Some are capable of detecting
them (like the statistical methods) but lack the capacity of learning new user
behaviour in a short period. Another problem with current IDSs is the necessity
of a large dataset of known attacks to be able to detect them (NN, expert
systems, rule-based, Bayes). Summarising, some methods are able to detect
unknown attacks but fail in detecting hidden attacks, others precisely detect
attacks even if they are disguised but need to know the attack in advance. Others
are just too resource consuming. Some methods lack a relational capacity in
order to learn new characteristics. Overall some methods have some advantages
but none has enough advantages to make it a remarkable IDS.

We conclude that the main challenges that current IDSs face are:

1. High false positive ratio which decrement confidence in the
IDS [Axelsson, 1999, Axelsson, 2000].

2. High information load, which incapacitates the IDS for a real time detec-
tion, and gets in the way of user profiling.

3. Lack of scalability. As computer networks tend to grow, so does the num-
ber of active services in the system. Current IDSs do not scale up to
monitor all these new services.

4. Difficulty to detect mimicry attacks. A system call normalisation to filter
out no-ops is not possible so new methods should be suggested.

5. Lack of robustness which makes the IDS vulnerable to attacks.
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6. Lack of a data source integration mechanism.

7. Inefficient update of attack signatures. A misuse IDS to be effective, needs
to have an updated signature data base.

8. Lack of a terminology standard. The communication between different
security components needs a standard. To efficiently update security poli-
cies, standardised communication of each module result is needed.

The first four problems problems will be addressed in the following chapters,
the rest of the problems are out of the scope of this dissertation. Before we finish
this chapter we will describe the data source used in our experiments.

2.9 Data Source Used in Dissertation Experi-
ment's

In this dissertation we restrict ourselves to the inspection of sequences of
system calls, the system calls were extracted from the DARPA reposi-
tory [Haines et al., 2001].

A system call consists of an mnemonic and a number of arguments. The
number of arguments varies from one system call to other and there might be a
few dozens of argument types in a typical operating system. Thus, if we were
to use an sequence of system calls as the input to an intrusion detector, then we
will have to consider every possible system call as well as each of its associated
arguments. Since this would make the detection intractable, IDS often consider
only the system call mnemonic, dropping out all of the arguments, hence missing
possible key information.

2.9.1 BSM and the DARPA Repository
Being experimental, computer science involves methods that cannot be the-
oretically analysed. These methods ought to be thoroughly tested. To avoid
suspicion, computer scientist often avoid building their own test set appealing to
third parties for help. DARPA has become one such a third party in the context
of testing IDSs [Haines et al., 2001]. Although the DARPA repository involves
IDS analysis considering the output of various tools (TCP-dump, BSM log files
and output of the UNIX ps command), we have selected BSM. This is because
BSM describes the result of executing system calls and so the output data is
less subject to encrypted attacks and might help detecting a distributed attack.
BSM is part of the SunSHIELD Solaris© log system [SunSHIELD BSM, 2000].
Every security sensitive system call, makes BSM generate a new entry into the
associated audit record.

The logs in the DARPA repository have daily log files and seven weeks for
1998 and five for 1999. The number of objects in each daily BSM log can vary
from 200,000 to 1,300,000. Each object in a BSM file has a variable number
of attributes depending on the system call that generated the entry. For a
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detailed description of the BSM format, and possible attributes for each object,
the reader is referred to appendix A.

In the next chapter we will present the theory of the methods used to tackle
the afore-mentioned challenges.



Chapter 5

N-gram Session Reduction

5.1 Problem Description
IDSs have to analyse a huge amount of information to detect an intrusion. If
the information overwhelms the IDS it might miss an intrusion. Therefore we
need a method to reduce the amount of information an IDS analyses. In chapter
4 we described a method to reduce the number of attributes in a log file. Here
we will deal with reducing the length of object sequences in a log file.

The problem in this case is to build a method which takes as input a session
and removes from it redundant information so that the output is significantly
shorter. At the same time the output must keep as many of the original tracks
of an intrusion as possible.

A log file contains records describing the activity of a number of computer
sessions. Each session consists of a sequence of system calls. From our observa-
tions we discovered that a session contains many repetitive subsequences.

We believe that folding the most repetitive non-attack subsequences in an
audit session, significantly reduces its size with minimal impact on intrusion
detection. A sample of these repetitive subsequences is shown in figure 5.1. The
first column indicates the sequence of system calls that conform the n-gram;
second column is the frequency of such n-gram; and third column is the tag
used to substitute the subsequence when found. In figure 5.2 we can appreciate
the insertion of the fresh tags instead of the original subsequence of system calls.
The output from the reduction method is a shorter sequence of system calls.
The output has a bigger vocabulary than the input.

The remainder of this chapter is organised as follows: §5.2 presents the
reason to chose n-grams over other feature extraction methods like HMMs; §5.3
describes the technique used to fold t^e sessions; §5.4 gives a brief overview
of how and why we chose data for identifying repetitive n-grams; §5.5 shows
the use of the n-gram models to identify the n-grams with higher occurrence
frequency; §5.6 summarises the reduct obtained throughout our investigations;
§5.7 is a description of our validation experiments and the selected data for

53
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TYi-gram
open(2).-_read||success
mmap||success
open (2) .-.read 11 success
munmap| |success
mmap||success ,
mmap 11 success
close(2)||success .
close(2)||success
close(2)||success

Frequency

5795

7615

79753

Substitution tag

abbrSysCalll21

abbrSysCalll32

abbrSysCa!1148

Figure 5-1: Sample tri-grams with its associated freouency

1 :fork(2) | |success
2:close(2)||success
3:fcntl(2)||success
4:abbrSysCaill48
5:execve(2) |date|success
6:abbrSysCalll21
7.abbrSysCalll32
S:mmap(2) | |success
9:close(2) | |suceess
10:open(2)_-_read||success
HabbrSysCalll32
12:mmap(2)||success
13:mmap(2) | [success
14:close(2) | |success
15:open(2)_-_read||success
16:abbrSysCalll32
17:mmap(2)||success

18:close(2) ||success
19:open(2),-_read| |success
20:mmap(2) | |success
21 :close(2) | |success
22:open(2)_-_read| |success
23:abbrSysCalll32
24:mmap(2)||success
25:close(2) | |success
26:close(2)||success
27:munmap(2) | |success
28:open(2)_-_read| |success
29:close(2) | |success
30:ioctl(2)||failure
31:ioctl(2)||failure
32:abbrSysCalll48
33:exit(2)||success

j'igure 5.2: P,erluced sess:on 7 substitutions using the 3 tri-grams in figure 5.1
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such experiments; §5.8 shows the results obtained from applying the validation
experiments to a collection of BSM log files and to the service selection module
(see chapter 6); §5.9 contrasts our reduction methods with other proposed in
the literature; finally, conclusions drawn up from our investigations appear in
§5.10.

5.2 The use of N-grams as a Reduction Method
N-gram models are generally used to predict the next element in a sequence. To
make this prediction, an n-gram model has to have a frequency analysis from
which a probability of occurrence is extracted. This probability is then used
to estimate the probability of occurrence of the next element in the sequence.
Other methods can be used to predict the next element in a given sequence,
e.g. HMMs.

N-grams can be used to identify the most repetitive subsequences in any
sequence of elements. HMMs can also do this job. But the HMMs do not find
an specific sequence, they find a family of subsequences, i.e. [Krogh et al., 1994,
Hughey and Krogh, 1996]. If we were to use a method such as HMMs then we
can substitute any subsequence described by the family for the same tag. This
subsl itution allows for an attack subsequence to be substituted and regarded as a
normal subsequence. By using n-gram models we guarantee a 1-to-l substitution
relation. That way, variations of an attack that pose as a normal sequence
(mimicry attacks) are not substituted.

Another thing we request from an IDS is not to loose the capability to return
to the original sequence. One reason for wanting the reduction process to be
reversible is for forensic analysis. We must assume that after an intrusion is
detected, the attacker already has done some harm to the system. Therefore,
we will perform a forensic analysis on the data to follow all of the attacker steps.
To follow the events we need the track of activity that lead to an insecure state
of the system. When designing a security device it is necessary to assume that
this device will interact with other devices. And the design of our methods is
done to provide •free most information to other devices in the security chain.

5.3 N-Grams Theory
N-gram theory comprises a collection of stochastic meth-
ods [Manning and Schiitze, 1999]. If properly used, these methods can
compute the probability that a sequence of symbols will occur in a larger,
unseen sequence. Let an n-gram be a sequence of n symbols. In our case, each
symbol denotes a system call. Then, according to the n-gram language model,
the probability that symbol wn will appear, given that the system call sequence
Wi,..., wn-\ has •ilready shown up is given by:



56 CHAPTER 5. N-GRAM SESSION REDUCTION

The construction of an n-grara language model, henceforth called language
model for short, is normally a three stage process [Young et al., 2002]. The
first two steps are actually used for building the language model while the
last one is used for validation purposes only. In the first step, each training
sequence is analysed in order to extract every single n-gram and then count its
occurrences. In the second step, the training sequence vocabulary is created and
the language model is built using each n-gram count to estimate the associated
probabilities. In the final step, the goodness of the language model is estimated
by making it measure how many different symbols may follow a given sequence
with equal probabilities. While computing this measure, called the perplexity of
the language model, an unseen test sequence set must be considered. The lower
its perplexity, the better an language model characterises the test sequence
set. This 3-stage process is iterated until the perplexity of the language model
reaches an specified threshold level.

5.3.1 Language Complexity
Building an language model is an computationally expensive process. The num-
ber of all possible n-grams in a language grows exponentially on the size of n.
More precisely, the number of possible n-grams for a vocabulary of size m equals
mn~1 x (TO — 1). In actual situations, most of these n-grams will never show
up, and so it is common practise to consider only the n-grams that arise in the
training set.

Although the actual number of n-grams present in a training corpora is
smaller than the theoretical number, almost all of the n-grams are used ifor
probability calculation.

5.3.2 N-gram Probability Calculation
The most popular method for calculating the probability of n-gram occurrence
is maximum likelihood estimation (MLE). MLE is based on a naive frequency
analysis:

C(wi...wn)P(wu...,wn) = - i — - '-

where N is the total number of instances used in training and C(w\...wn) is the
frequency associated to n-gram w\...wn- MLE, however, has a chief limitation:
every sequence that does not appear in the training set will oe assigned an
occurrence probability equal to 0 and, what is more, will not be included in the
language model.

Any method that gets around the limitation above mentioned is said
to be a discounting strategy. Example discounting strategies include add
one, based on Laplace's Law, expected likelihood estimation, oased on Lid-
stone and Jeffreys-Perks's law, held out estimation, cross-validation, absolute
discounting, linear discounting and good-Turing estimation. For informa-
tion about these strategies, the reader is referred to Manning and Shiitzers
book [Manning and Schiitze, 1999]. Throughout our experiments, we used



5.4. DATA SELECTION FOR N-GRAM EXTRACTION 57

good-Turing estimation, (GT), since according to the reviewed literature GT
greatly avoids the elimination of unseen sequences, without imposing a con-
siderable penalty to an existing one. As described, MLE assigns a probability
equal to 0 for unseen sequences. Therefore if a sequence is to be used it has to
appear on the training corpora. GT avoids this situation by assigning a small
probability to unseen sequences, and presents little computational overhead.

5.4 Data Selection for N-gram Extraction
We chose to use 5 log files out of the 35 available log files for the n-gram selection
process. This number of log files form a representative sample, since according
to [Martinez, 2003]:

where n is the number of samples we need to take to represent a population of
size N with a confidence 1 — e (or with an error tolerance of e). In our case we
chose a confidence of 97.5% (e = 2.5%). We have an average of 250 sessions in
each log file. For a population of 8750 sessions we need around 1300 sessions as
our sample. So we used 5 log files (close to 1250 sessions) as our representative
sample. In order to take a representative sample for a year of log files (52 weeks,
equivalent to 65000 sessions), considering the same 97.5% confidence, we would
need 1500 sessions. Using 1250 sessions we have a confidence of 97.2% that this
sample represents a year of data.

We only used sessions without attacks or anomalies. The rationale behind
this is to select only n-grams that identify normal traffic and do not add noise
to the intrusion detection process. The selected log files are the ones with less
attack sessions, so after discarding attack or anomaly sessions we ended up with
the highest possible number of sessions.

A BSM log file is composed of a set of sessions, each of which belongs to
a given service. Moreover each session is formed by one or more processes.
During our methodology we separated each of these sessions and concatenated
all of its processes. Both the number of sessions and processes in each session are
variable. By separating log files and ordering them by sessions, we extracted n-
grams with high occurrence frequency. These n-grams belong to a single session
without overlapping contiguous sessions. Prom now on, we will refer to these
ordered sessions as the training sessions. The process of separating log files in
sessions is done on-line. The rest of the steps are performed off-line.

We selected n-grams in two ways: i) extracting them from every available
session; and ii) extracting them from service specific sessions. Each log file
contains a finite number of sessions, each of which belongs to a given service.
Some services have a more representative body among the log files. Services
with lower number of sessions have n-grams that reduce that service greatly.
Since these n-grams have lower frequency than the n-grams of most common
services they might get lost in the process. That is why we assigned a priority
that uses the number of sessions of a service instead of the total number sessions.
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5.5 Session Folding Using N-gram Models
The log reduction is a two step procedure, the first step aims at selecting the
n-grams with the highest repetition frequency and to attach their corresponding
priority, we will call this process n-gram detection and tagging. The second step,
is the actual reduction process which makes use of the tagged n-grams extracted
in the first step for session folding. N-gram detection and tagging only needs to
be performed once and can be done offline. Whereas the reduction is done in
real time and for every session.

The following is a description of each step in the n-gram identification
process: i) n-gram extraction; ii) n-gram frequency analysis and n-gram pri-
ority assignment. Later on we shall describe each step in the reduction process:
i) n-gram comparison, aimed at avoiding overlapping; ii) subsequence substitu-
tion using a fresh tag.

Note that the n-gram identification process is not the same as the n-gram
extraction process described in §5.3. Step 1 in the identification process is the
same as language model creation process. Step 2 uses that language model
frequency analysis and priority assignment.

5.5.1 N-gram Identification and Tagging
The first step toward session folding is to extract the n-grams with a higher
occurrence frequency and occurrence probability, and then tag them with a
priority. The priority is calculated using both a combination of services, and a
service exclusive analysis.

N-gram Extraction

N-^ram extraction consists of the application of a blind, exhaustive procedure.
Asa result, we obtained the n-grams that occur most frequently in the training
sessions. Although in theory n-gram model creation should consider all possible
n-grams, in practise only n-grams that exist within the training data are used.
For example for a ̂ 0-gram with a vocabulary of 200 tokens, the possible number
of sequences should be 20010 x 199. However, in our experiments, we found only
2291. N-gram extraction prunes all sequences with 0 occurrences. For the
final language model a low probability is assigned to pruned sequences. In our
calculations, we considered the n-grams that were pruned from the entire log
file as well as those pruned from different services within that file.

N- gram Priority Assignment

Using the n-gram count and the language model, we identified the n-grams.
with a higher frequency or probability of occurrence. We considered n-grams of
different sizes to find n-grams that provide a high reduction rate. If an n-gram
is present in the training log files an occurrence frequency is assigned to it. If it
is not present then the occurrence probability obtained in the language model
is assigned to it.
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Using either the n-gram occurrence frequency or probability, we estimated a
reduction ratio later used as a priority Pr for every n-gram that was found. The
priority is used to select which n-gram to use first in the reduction process. Not
only does this ratio consider large n-grams with a high frequency, but it also
considers the total number of system calls N on the training sequence sessions
from which the n-grams were extracted. We calculated a reduction percentage
for every selected n-gram, i.e. how much will a given n-gram reduce a log file.

If we use n-gram occurrence frequency / the n-gram priority Pr is calculated

iv==i£ta (5.2)
By contrast if we use n-gram occurrence probability P the n-gram priority Pr
is calculated by:

Pr = Pxn (5.3)

In both cases n is the size of the n-gram. Both equations provide a reduction
ratio for the input n-gram. Using Pr we choose the sequences that provide a
high reduction rate. Our n-gram selection criterion is divided in two: selection
of n-grams with high Pr at log file level, and n-grams with high Pr at service
level.

Service Exclusive N-gram Selection and Priority Assignment

It is possible that a certain n-gram has a high ratio, i.e. in an smtp session;
but smtp sessions are a small segment of an entire log file. This is because
some services in the training log files have a less representative body than other
services. This situation might exclude n-grams with low reduction ratio at log
file level from the reduction set, even though the reduction ratio within a given
service is high. The same analysis presented for n-gram priority assignment is
done at service level and it is our second criterion for n-gram selection. Assigning
a priority to an n-gram is not sufficient to avoid overlapping.

5.5.2 Session Folding Using Tagged N-grams
N-grams tend to overlap with each other, they might intersect at some point. To
avoid overlapping when making an n-gram substitution we used a priority queue
approach to select the n-gram to substitute. The queue was used to substitute
high ratio n-grams. We created a window of size equal to the largest n-gram in
the queue. Once the window is full, we tested its content against all n-grams
in the queue. The order of the priority queue is given by the ratio defined
in equations (5.2) and (5.3). By substituting n-grams with higher ratio we
guarantee that, even if there is an overlapping, only the n-grams that provide
maximum reduction are used. Notice that by substituting an n-gram with a
new symbol we are avoiding further substitution on that segment resulting in
overlapping elimination. We avoid substitution because the newly added symbol
is not present in any nvgram used in the substitution.
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Log file reduction using n-grams is accomplished by n-gram substitution at
session level. In n-gram model creation, overlapping is not considered, but only
conditional probability. We need to take the concept even further and include
Pr as a reduction measure. Whenever a high priority n-gram is found, it is
replaced by a fresh symbol that substitutes the entire n-gram. The first time
we use an n-gram, a new symbol is created and added to the symbol dictionary.

5.6 The Methodology in Action
We will provide evidence that as a result of applying our methodology, we
obtained a large reduction ratio using a small number of n-grams. For the
experiments reported in this chapter we used the CMU-Cambridge Statistical
Language Modelling Toolkit [Young et al., 2002]. The toolkit provides a series
of UNIX tools that facilitate language modelling. Each of the steps required for
n-gram substitution and log file reduction is described below.

5.6.1 N-gram Extraction

By using the CMU toolkit we extracted the n-grams and the associated fre-
quency. The analysis was made for each log file and also for each service. The
results of such an analysis are presented in histograms shown in figures 5.3 (all
services histograms), 5.4, and 5.5 (telnet histograms), and 5.6, and 5.6 (smtp
histograms). Here, histogram's axises are shown as a right hand coordinate
system. The x axis represents the n-grams size. The z axis represents the fre-
quency / for that given n-gram. The y axis is the number of different n-grams
of size n with frequency /.

The histograms are used to analyse the amount of n-grams that have a
number of repetitions similar to a multiple of the number of different sessions
included in the training data. If there are m sessions and the frequency of an
n-gram is a multiple of m, then that n-gram is more likely to be common among
every session. That is, we prefer n-grams that are repeated in a large number
of sessions over n-grams that repeated many times in a couple of sessions. The
former are more general n-grams and therefore provide a better reduction ratio
for unseen sessions. The same histograms can be used to know in advance, how
many n-grams to look for when making the frequency based selection.

In figures 5.3, 5.4, 5.5, 5.6, and 5.7 only n-grams of sizes between 2 to 50 are
shown. In figures 5.8, and 5.9, we show the corresponding histograms to days 3
and 4 corresponding to n-grams of sizes 51 to 100. The reader can appreciate
that there are n-grams of bigger sizes that still have a high occurrence frequency.
Nevertheless, the number of n-grams with size above 50 and high frequencies is
a lot smaller than the number of n-grams of size below 51. So we concentrate
our n-gram extraction in n-grams of size smaller than 51.
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unlink(2) | |success
ioctl(2) | |failure: Jnvalid_argument
ioctl(2)||failure:_InvalicLargument
sysinfo(2) | |success
close(2)||success
open(2)_-_read| |success
open(2)_-_read| |success
old_setgid(2) | |success
open(2)_-_read| |success

-0.0011

-0.0025

-0.0010

Figv,/.;. 5.10: Sample tri-grams in a language model file. The last column is the
logarithm of the conditional probability of such n-gram

l:mmap(2)||success
2:close(2) | |success
3:open(2)_-_read||success
4:mmap(2) | |success,.
5:mmap(2)||success
6:munmap(2) | |success
7:mmap(2)||success
8:close(2) | |success
9:open(2)_-_read| |success
10:mmap(2)||success

1 l:mmap(2) | |success
12:munmap(2) 11 success
13:mmap(2) | |success
14:close(2)||success
15:open(2)_-_read||success
16:mmap(2) | |success
17:mmap(2) | |success
18:munmap(2) | |success
19:mmap(2) | |success
20:close(2)||success

Prd = (2676 + 1) * 20/471668

Figure 5.11: Sample n-gram of size 20 with Prj = 0.1135

5.6. J N-gram Tagging
Based on the occurrence frequency analysis we identified the n-grams with a
desired number of repetitions. This analysis makes the extraction of such n-
granis much easier and faster. From the extraction we chose 100 n-grams for
the reduction. These n-grams are mostly the ones whose occurrence frequency is
close to a multiple of the number of sessions. In figure 5.11 we can observe such
an n-^ram with its associated Pr value. Also, based on the language model
probabilities we selected about 50 n-grams with a probability of occurrence
above 98%, in figure 5.10 we show 3 tri-grams with such probabilities.

",Ve also extracted 50 different n-grams using the analysis over separate ser-
vices. Selected n-grams have an occurrence frequency similar to a multiple of
the number of sessions for that service. This means that such n-grams are com-
mon :o many sessions of that service. All these n-grams have an associated
occrrrence count, and the total number of system calls present in the original
log rile. These n-grams are shown in detail in our website1. Along with the size
of t,1™ n-grams, the number of system calls will define the reduction ratio. The

1ht^://webdia.cem.itesm.mx/ac/raulm/ids
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Log File
Size

744,085
2,114,283
1,093,140
1,121,967
1,095,935

Frequency Extraction
Time

00:13:35
00:40:10
00:25:12
00:27:47
00:25:52

Language Model
Extraction Time

01:48:10
06:02:35
03:42:27
03:54:31
03:45:53

Histogram
Generation Time

00:01:32
00:05:25
00:03:21
00:03:27
00:03:22

Table 5.1: Times needed for the different n-gram extraction process.

number of system calls will vary according to the day as we can appreciate in
figure 5.4. That figure shows histograms for five days of telnet sessions. After
extracting n-grams for every log file (both all sessions and service separated) a
language model is generated.

Wfi need to explain the selection of the discounting strategy. The one pro-
vided with the software we used is the good-Turing estimator. As described
in §5:3, it is a great method to avoid elimination of unseen n-grams without
imposing considerable probability reduction of existing n-grams.

The main overhead of using n-gram language models for reduction is the
space required to hold a language model file. For a log file with 800,000 objects
of size 17Mb, a file of 5Mb is needed to hold n-gram occurrence frequency and
about 1Gb to hold the language model. The language model and an n-gram
occurrence frequency file are used to extract key n-grams. Fortunately, the
language model and the frequency file are temporal, as they are eliminated
after key n-gram extraction. The time needes for the whole n-gram selection
process is shown in table 5.1. The format for the language model is described
in appendix B.

After selecting n-grams with high occurrence frequency or probability we
calculated the reduction ratio. The reduction ratio will sort selected n-grams
in a priority queue for subsequent replacement of such n-grams in the log files.
Using the priority queue we substitute, or fold, a given session. Prior to the
substitution we load any abbreviation dictionary that we have previously used in
order to avoid repetitive abbreviations in sub-sequent reductions. The priority
queue is then used to avoid overlapping.

5.6.3 Session Folding
1'he n-gram set used in the folding process and the dictionary are available in
our website2 .With the use of the dictionary we selected the next abbreviation
that will be used in the folding process. An abbreviation is only generated
when an n-gram is used in a substitution, not all n-grams will be assigned an
abbreviation. For example from the 100 n-grams selected based on occurrence
frequency, only 11 were really used. From the 50 selected based on occurrence
probability, only 5 were used and from the 50 selected from each service only

2http://webdia.cem.itesm.mx/ac/raulm/ids
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3 were used. This means that about 89% to 93% of the selected n-grams were
overlapping. Selected n-grams do not intersect, so after the analysis, subsequent
reductions did not consider a priority.

Even by using only 9% of the selected n-grams, we obtained a reduction of
65% in the worst case and a reduction of 82% in the best case. We obtained
an average reduction of 74%. This reduction was tested using the n-gram set
generated from the first 5 BSM log files to reduce another set of 5 BSM log files.
The result is a set of 19 n-grams that provide an average reduction rate of 74%.

5.7 Validation Experiments and Data Selection
To test the reduction capabilities of our method we chose to reduce log files from
the 1998 and 1999 DARPA repositories using extracted n-grams from the 1998
repository. By using log files of different years we aim at .showing the generality
of our reduction method. As we will see, the results are ~ retty similar between
reductions for each year. This is a proof that changes in user activity is not
a critical factor for our reduction method. We specifically used the 5 log files
used for n-gram selection plus another 5 logs from 1998 and 5 more from 1999.
This is a total of 15 log files out of 40. As described in §5.4, this gives us a
confidence of 98.8%. The data used in the validation process includes attack
and anomaly sessions. The validation procedure is straight-forward, we use the
extracted and tagged n-grams, and then apply the reduction methodology to
avoid overlapping.

Nonetheless, we still need to prove that our reduction method Ireeps the
information necessary to discern between two events regardless the ieduction.
To prove this we chose to use the same methodology as described in chapter 6
and to compare the results of using folded sessions against the results of unfolded
sessions. We also use this comparison to show the HMM training time difference
between folded and unfolded sessions. Another test is presented in chapter 7,
where we compare the results of using our IDS with mimi-.ry attacks ever folded
and unfolded sessions.

5.8 Validation Results
Extractea n-grams provide an average reduction of 74% within the training
sessions. We also used the n-grams to reduce unseen sessions from 5 different
log files from the 1998 repository, and 5 from 1999. As input we have an unseen
log file and as output we provide the reduced log file. In tables 5.2, and 5.3, we
show the reduction ratio over the validation data of 1998 and 1999 respectively
(we will only show results for unseen data). The table columns are: log file
ID, original number of system calls, compressed number of system calls, and
number of n-grams used in the reduction. Last row of the table shows the
results cf applying the reduction to a file with only telnet sessions.

By training the HMMs we can validate the impact of our methodology in
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Table 5.2: Validation Results, 1998 Log Files
Log File

ID
1
2
3
4
5

te lnet

Original
Object #
776,000

1,800,000
1,150,000
801,000

1,158,000
209,000

Compressed
Object #
270,000
486,000
344,000
175,000
392,000
48,000

Reduction %

65.3%
73%

70.1%
78.2%
66.2%
77.1%

Used
N-grams

7
12
5
9
5
5

Table 5.3: Validation Results, 1999 Log Files
Log File

1
2
3
4
5

Original
Object #
820,855
490,896
630,457
520,358
220,658

Compressed
Object #
248,719
142,360
198,594
139,456
52,296

Reduction %

69.7%
71%

68.5%
73.2%
76.3%

Used
N-grams

9
8
7
11
13

training times. As we expected training time is significantly reduced by using
folded sessions. The reason for time reduction is that the order of the HMMs
training algorithm is 0(n2/), where n is the number of states in the HMM, and I
is length of the training sequence. In figures 5.12 and 5.13 we show training times
for the HMMs presented in chapter 6. in each figure, training times for unfolded
sessions and its folded counterpart are contrasted. Also in table 5.4 we show
the comparative results for service selection using folded and unfolded sessions.
The-first column in the table indicates.the service discriminator used. The first
row indicates to which seivice a sessidh belongs to. The table should be read
as: the percentage of sessions of service" n (first row) classified as service m (first
column). The first percentage of each cell corresponds to unfolded sessions and
the second result corresponds to folded sessions. The service selection process
is explained in more detail in chapter'6. We can see from this table that not
only does session folding keeps discemibility information, but it also reduces the
number of false positives. The false positive reduction for intrusion detection
will be explored in chapter 7. '

Table 5.4: % of Correct Service Discrimination, Folded vs. Unfolded Sessions
HMMs
telnet

smtp
f t p

finger

te lnet headers
100% vs. 100%

1% vs. 0.8%
0% vs. 0%
0% vs. 0%

smtp headers
2% vs. 1.8%

100% vs. 100%
1% vs. 0.7%
0% vs. 0%

ftp headers
1% vs. 1%

2% vs. 1.6%
100% vs. 100%

0% vs. 0%

finger headers
0% vs. 0%
0% vs. 0%
0% vs. 0%

100% vs. 100%
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•figure 5.12: Telnet Service HMM Training Times, Unfolded Sessions vs. Folded
)essions

S.9 Session Length Reduction Methods
tf-gram theory has been largely used in the context of natural language
analysis, it also nas been used in anomaly detection by Maxion and
Tan [Maxion and Tan, 2002, Maxion and Tan, 2000], Marceau [Marceau, 2000],
Wespi [Wespi et al., 1999], and Forrest et al. [Forrest et al., 1996]. All these pa-
sers present ways of using n-grams for anomaly detection but not for log file
•eduction. Therefore comparing our reduction method with these methods is
:>ut of the scope of this section. Log file reduction methods are presented below.

Marin et. al. [Marin et, al., 2001] have suggested to use an expert system for
jog file reduction. Using a series of fuzzy rules the expert system discriminates
'.lbjects that most frequently occur, using a series of fuzzy rules. Next it clusters
•',he discriminated objects to form a small number of object classes. Even though
its reduction factor is very high, this method is prone to a large false-negative
Intrusion detection rate. This is because it prunes out key information and is
restricted to a 1-gram only. By contrast, we do not get rid of non-commonly
used system calls and the scope of our reduction analysis is considerably larger.
As we showed, this contributes to keep false-negative intrusion detection rate
ow.

Lane and Brodley have also addressed the problem of log file reduc-
Jion [Lane and Brodley, 1999, Lane and Brodley, 2000]. They have proposed
cwo main clustering methods, one based on K-centres and the other on greedy
clustering. By applying both methods, each cluster contains a collection of ob-
jects sequences, which is then collapsed into only two objects: the cluster centre
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Figure 5.13: Smtp Service HMM Training Times, Unfolded Sessions vs. Folded
Sessions

and the associated mean. The other object sequences are simply disregarded.
Lane and Brodley's methods may yield a huge reduction ratio (e.g. 500 different
sequences might be shrunk to only 30 ones or even fewer); however, eager se-
quence elimination inevitably leads to poor or incomplete profiles and therefore
to an increase in the false-alarm detection rate. By comparison, even though
our technique yields a lowê  reduction ratio, it does not have a negative impact
on the false positive ratio.

Besides from the two methods above mentioned, Lane and Brodley have also
explored two heuristic pruning techniques: least recently used (LRU) and least
frequently used (LFU). In both techniques the reduction ratio is defined a priori
and hence a predetermined number of sequences ought to be eliminated from
the input session. Both techniques will of course produce a reduction ratio as
high as indicated, but at the expense of losing of chief information. Lane and
Brodley report on an increment in the false-positive and false-negative ratio
(20% and 16% respectively). By comparison, even though our technique yields
a lower reduction ratio, it does not have a negative impact on the false positive
ratio.

Knop et. al. [Knop et al., 2001] have addressed a similar problem, but
does not consider log file reduction. Rather than shrinking an input session,
Knop et. al.'s method simplifies its content by calling similar objects with the
same name. Let H(seq) denote the alphabet of symbol sequence seq, then
given a sequence ,s, the method will return a new sequence, s' such that
length(s') = length(s) but that |E(s')| < |S(s)|- The method works as fol-
lows: it first correlates objects using a method similar to principal component



74 CHAPTER 5. N-GRAM SESSION REDUCTION

analysis [Rencher, 1995]. This way, two objects will be assigned a coefficient
equal to 1 if they are completely correlated, and equal to 0 otherwise. Then
using this correlation coefficient information, a K-Nearest Neighbours algorithm
is applied for achieving object clustering. Object reduction amounts to selecting
one object from a cluster discarding the rest of them. Once again, the alphabet
simplification factor is very impressive but so is the loss of information. One
important limitation of Knop et al.'s approach is that it is in general difficult
to apply in the intrusion detection context. This is because the method re-
quires some kind of numerical value to express correlation between objects to
be applicable. This is unnatural, since almost every piece of data in sessions are
strings.

5.10 Conclusions
Based on our results we conclude that we successfully reduced the nur.ioer of
objects in a log file with nearly no impact for intrusion detection. By identifying
a small number of key n-grams we reduced BSM log files by a factor of 4.
The number of key n-grams is small enough not to increase considerably the
vocabulary of system calls. An increase in the vocabulary would impact on
ihe training time of a method such as HMM. Our method allowed us to find a
small number of n-grams that provide a large reduction. This reduction ratio
is comparable to the ones proposed by rival techniques and even better va most
cases. Moreover, our reduction method is capable of returning to the original
set of system calls. By contrast, rival techniques are incapable of reverting the
reduction process.

We also trained some HMMs with unfolded sessions and with folded s«f.sion,
and the difference in training times between them is a considerable improvement,
fhat way we proved that using longer sequences to train HMMs is conv nient.
In chapter 7 we demonstrate how folded sessions are equally useful, ;... some
cases better than unfolded sessions for intrusion detection.



Chapter 6

Service Selection

6.1 Problem Description
Usually IDSs keep the information used to make a detection in attack data
bases for misuse detection, or profiles for anomaly detection. When looking
for an attack, it is common that the IDS compares the session of interest (or
packet in network IDSs) against the entire attack base or against the whole
profile. This is why, even with compacted information, an IDS still analyses
information that does not contribute to perform intrusion detection.

Generally speaking, attacks (for misuse IDSs) or profiles (for anomaly IDSs)
are service oriented. Almost all te lnet attacks will not have any effect in an ftp
session. Similarly a profile extracted from smtp sessions will be very different
from a profile for the same user extracted from ssh sessions.

There are IDSs, like Snort [Free Software Foundation, 2002], that can be
configured to monitor a specific service. But these IDSs lack flexibility since
they are dependant on the configuration of each service. The detection is usually
tied to the port where the service is supposed to run. If we want to monitor
more services, then the configuration for each new service is included in the IDS.
If configuration for one service changes all the IDS needs to be adjusted.

We need an IDS with the following three characteristics: i) flexibility;
ii) efficiency; and iii) scalability. These characteristics have been of in-
terest for an IDS since Denning's paper [Denning and Neumann, 1985], and
have been pointed out by Forrest et al. [Hofmeyr et al., 1997], Zamboni et
al. [Balasubramaniyan et si., 1998] and Mell et al. [Mell and McLarnon, 1999,
Jansen et al., 1999].

We believe that by separating intrusion detection as a series of highly spe-
cialised sensors, an IDS will be more flexible (adapt quickly to any system
configuration), scalable (accept new services on demand), and efficient. With
this degree of specialisation, intrusion detection can be focused on a specific
service, and therefore test for fewer attacks than an all purpose IDS, or in the
case of anomaly detection, it will compare against fewer profiles (only profiles

75
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that are related to that specific service).
/or services using port numbers below 1024 there is no need for a service

discriminator, but for services not using reserved port numbers it is very useful to
know in advance which kind of service we are monitoring. Moreover, if we know
to which service belongs the session we are monitoring, we know which attacks
we should check for (for misuse intrusion detection), or which profiles to use (for
anomaly intrusion detection). Most of the current IDSs begin monitoring when
a new process is started. They monitor everything in between a fork and an
exit system call. By successfully discriminating the service that is being used,
we degin monitoring even before the session process is started knowing which
type of communication we have to expect.

The problem with this approach is to build a method which takes as input a
stream of system calls (with sessions of many services) and separates this stream
according to the service each session belongs to. The service of a session can
be identified by the header of the session. But the headers have variations from
one session to another. Thus, service classification is not a trivial problem.

The remainder of this chapter is organised as follows: §6.2 pinpoints the
advantages of having a service discrimination module and describes why we
chose HMMs as our discrimination method; §6.3 gives an introduction into
HMMs theory; §6.4 is a brief description of how we selected the training data for
our experiments, the training data is used to extract an HMM model; while §6.5
de&cribes the methodology used to train all the HMMs. §6.6 is a summary of the
validation data selection process and validation experiments; §6.7 presents the
validation results; and §6.8 presents conclusions drawn from our experiments.

6.2 The Use of HMMs for Service Selection
Even though methods like neural networks and support vector machines can be
used to classify similar events, they have a fixed number of inputs, so a variable
length input as a session header is not suitable for these methods.

Each service such as te lnet , ftp, and smtp has a distinctive session header.
Two headers of the same service might differ depending on a number of factors.
For example, headers include information about previous failed login attempts
or different server states. The last 22 elements of two different te lnet headers
before the fork call can be seen in figure 6.2. The first header is from a non-
incidental session. The second header is from a session executed right after a
failed login attempt. Considering these differences we conclude that a straight-
forward string matching method is not suitable for successful service selection.

¥ we consider each session header as an n-gram, variations in the head-
ers will produce different n-grams. With the use of a hidden Markov model
(HMM) we group such n-grams as a family. HMMs are good at categorising
multiple sequences as families. With todays computer power, parsing time for
a soouence of moderate size using an HMM does not have a negative impact on
the performance. However, HMM training is still a process that demands a tot
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Session Element
1
2
3
4
5
6
7
8
g
10

n12
13
14
15
16
17
18
19
20
21
22
23

Telnet Header 1
close(2)||success

chmod(2) | |success
chown(2) | [success

open(2)_- _read| |success
ioctl(2)||failure
close(2)||success
close(2) 11 success

open(2)_-_read| |success
ioctl(2)||failure
close(2)||success

setaudit(2) | |success
open(2)_-_read| |success

ioctl(2)||failure
close(2)||success

open(2)_-_read| |success
ioctl(2)||failure
close(2)||success

open(2)_-_read| |success
ioctl(2)||failure
close(2)| (success

login.-_telnet| |success
audit(2)||success
fork(2)||success

Telnet Header 2
open(2)_-_read||success

ioctl(2)||failure
close(2)||success

open(2)_-_read| |success
ioctl(2)||failure
close(2)||success
close(2)j|success

open(2)_-_read| |success
ioctl(2)||failure
close(2)||success

setaudit(2) 11 success
open(2)_-_read| |success

ioctl(2)||failure
close(2)||success

open(2)_- _read| |success
ioctl(2)||failure
close(2)||success

open(2)_- _read| |success
ioctl(2)||failure
close(2)||success

login_-_telnet| |success
audit(2)||success
fork(2)||success

Figure 6.1: Difference between elements 1, 2, and 3 of two telnet headers
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of computational resources as time and memory.
Stochastic context-free grammars (SCFGs) are another powerful method

for classification. But the training and parsing times are still prohibitively
expensive. Since header sequences are automatically generated, they can be
modelled with a regular language which is provided by the HMMs, there is no
need to use methods like as an SCFG, that would model header sequences as a
context-free languages.

Clustering methods can also be used for service discrimination by creating a
cluster for each service. But they lack the scalability we still obtain using HMMs.
If a. new service is added, the metric for each cluster should be recalculated,
since the new service will create a new cluster and affect the already calculated
clusters. And there is the problem of attribute representation. For clustering
to work, a metric has to be used to calculate the distance of an object to the
centroid of each cluster. How to transform attributes from system calls to
numbers to calculate this distance is not an easy problem to solve and iT the
wrong transformation is used can lead to poor classification.

6.3 Hidden Markov Models
As defined in [Brown, 1999], HMMs are probabilistic generative models that
output strings by moving through a discrete state space using Markov decisions
indexed by time. At each point in time, t, the current state, TTJ, generates
symbols according to some probabilistic rule. The HMM has states, at each of
which a symbol is generated, and arcs, each of which allows a transition into
another state. There are two types of probability parameters, state transition
probabilities and symbol emission probabilities, which are attached to arcs and
states, respectively. The symbol emission probabilities determine which symbol
is more likely to be produced from every state in the HMM. The state transition
probabilities determine which state of the HMM to move depending on the
current state. This state transition is important because each state has different
emission probabilities, so the emitted symbols depend on the state transitions.

As pointed out in [Manning and Schiitze, 1999], an HMM is useful when
the model under consideration has internal events that generate an external
(that is, observable) event in a probabilistic manner. An HMM can be used to
probabilistically characterise whether or not a given event is member of a family
of other events (a set of related events is called a family).

In an HMM one or more starting and final states are specified. Possible
transitions are made successively from a starting state to a final state, and the
relevant transition probability and symbol output probability can be multiplied
at each transition to calculate the overall likelihood of the sequence of output
symbols produced in the transition path up to that point. When all transitions
are finished, the HMM generates a symbol sequence according to the likelihood
of a sequence being formed along each path. In other words, when a sequence is
given, there is one or more transition paths that could have formed the sequence,
each path has a specific likelihood. The sum of all the likelihoods obtained for
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all such transition paths is regarded as the likelihood that the sequence was
generated by the HMM. According to [Rabiner, 1989], an HMM is specified as
a five-tuple < N,M,Y\,A,B > and it is common practise to call it the model
A:

• N = {si, ...,spf}: the finite number of states in the model.

• M = {ki,...,)CM} = {1,• • •,M}: the alphabet or set of all the output
symbols.

• Y\ — {^l}'- the initial probabilities of all states (probability at time *o)-

• A = (aij)i,jeN = (P(ftt = j\irt-i = i))i,j€N- the Markov state transition
probability distribution, a^ gives the probability of moving from state i
at time (t — 1) to state j at time t (i = l,...,N,j = 1, ...,N). A is a matrix
of size N by N.

• B = (bi(c))i€NiC€M = (P(c|7rt = i))iejv,c6M: the probability that symbol
c is emitted by state i at time t. This is called the symbol emission
probability matrix and is of size N by M.

6.3.1 Three Fundamental Questions of HMMs
There are three fundamental questions about HMMs:

1. How likely is a given observation sequence O given a model A? (P(O\X)).
This is also known as parsing sequence O with model A.

2. What was the state sequence that generated a given an observation se-
quence 01

3. Given an observation sequence O and a set of states, try to find the para-
meters fl> A atl<i B- This is also known as training the HMM.

These questions are called evaluation, decoding, and learning respectively.
To answer the first question the so-called Forward-Backward procedure is used.
To solve the second one Viterbi algorithm is used. And for the third one
Baum-Welch algorithm is the most widely used. The mathematics for these
algorithms is beyond the scope of this document but if the reader is inter-
ested [Rabiner, 1989, Manning and Schutze, 1999] are definite reference mate-
rials. For the purpose of this dissertation we only need to know the algorithms
used by the HMM tools and not how they are implemented. All along this dis-
sertation we are interested in the first and third questions. Using observation
sequences we want to calculate the HMM parameters. Then, we want to use
calculate how likely is a sequence given a the HMM defined by the parameters
we just calculated.
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6.3.2 Common HMM Architectures

The architecture of an HMM refers to the number of states in the model and how
the states are connected. The type of connection of the states is also referred
as the HMM topology. There are two main topologies for HMMs: left-to-right
architecture; and ergodic.

Left-to-right HMMs

The start state of the HMM is the leftmost state and state transitions can only
be made to the same state or to a state to the right. In this architecture the
parameter Y[ has a probability of 1 for the start state, in figure 6.2 the start state
is 1 (the HMM always start on the same state). This topology is widely used
in speech recognition and facial recognition [Cohen et al., 2003]. Variations of
these topology include left-to-right skipping one state or left-to-right skipping
manv states. The state skipping versions are good for accepting noise and not
emitting any output symbol.

Figure 6.2: HMM with left-to-right topology

Ergodic HMMs

Any state in an ergodic HMM can be the start state. The start state is defined
by FJ. In this architecture all states are fully connected as can be seen in figure
6.3. An ergodic model is more flexible than the left-to-right model. However
with sufficient amount of training data an ergodic model will reduce to a left-to-
right model. Ergodic models are good when it is not known the exact number
of states of the problem of interest.

Meaning of HMMs States

Deciding the right number of states for an HMM and giving them a meaning is
one of the hardest problems in HMMs. Usually HMMs are used when there is
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Figure 6.3: HMM with ergodic topology

no knowledge of the inner structure of a given problem and only surface obser-
vations are known [Abou-Moustafa et al., 2004]. One way to find the number
of states for an HMM is empirically (as we do in this dissertation).

There are research problems where knowledge of the structure of the elements
being analysed help to define the architecture of the HMM (to decide topology
and number of states). An example of such a research problem is "part of
speech tagging" (POS) [Manning and Schiitze, 1999]. A typical POS problem
is to partition a speech into phonemes. Then use the phonemes to try to identify
syllables. A label is assigned to each phoneme. We know in advance how many
labels we have and therefore create a state for each label. However, there are
cases that show better classification results with larger number of states.

In POS a priori knowledge of the problem structure allows to define the
HMM architecture beforehand. However, if the architecture is decided empir-
ically, the meaning of the states can be deduced by answering question 2 of
the HMMs. Given an observation sequence and a model obtain the sequence of
states that produced such observation sequence. A correlation from the obser-
vation sequence and the state sequence can be made thereafter.

6.3.3 Common Uses of HMMs
In [Jaakkola and Haussler, 1998], HMMs are used in a DNA splice site clas-
sification problem, where the objective is to recognise true splice sites. The
experiment was run with 2029 positive examples and 7321 false examples. The
results were compared against a naive Bayes approach and HMM showed a lower
ratio in both false positive and false negative errors.

Another field is multiple sequence alignment of protein families
and domains as seen in [Krogh et al., 1994]. Both HMM and
PROFILESEARCH© [Accelrys Inc., 2002] (a technique used to search for rela-
tionships between a protein sequence and multiple aligned sequences) perform
better in these tests than PROSITE (a dictionary of sites and patterns in pro-
teins) [Swiss Institute of Bioinformatics, 2002]. The HMM is reported to have
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a slight advantage over PROFILESEARCH©in terms of lower rates of errors.
HMMs have been used in speech recognition. In [Rabiner, 1989] a number

of approaches are given in order to solve this problem but due to the com-
plexity of the problem no definitive results have arisen. HMMs have also been
widely used mostly in anomaly intrusion detection, e.g. [Warrender et al., 1999,
Tan and Maxion, 2002, Qiao et al., 2002, Yeung and Ding, 2003]. In general
terms what these approaches do is to train HMMs with valid sequences of sys-
tem calls. A valid sequence is such that it was generated by a user of the system.
Then they parse new unseen sequences of system calls, and based on the proba-
bility that such sequences were generated by the trained HMMs these IDSs can
determine if the sequence is an anomaly or not.

6.4 Data Choice for Service Selection
As training data we selected a number of sessions for every service. The training
sessions are non-attack sessions from a 40 day repository. Using the same scheme
as in chapter 5, we calculate the number of training sessions using equation (6.1).

N
n = 1+Ne2 (6.1)

Prom table 6.1 we can appreciate the sample size required for each service
(with a confidence that the sample represents the entire population of 98%). We
will need 226 sessions for ftp service, and 583 sessions for finger service. Since
those numbers are very close to the available number of sessions (248 and 760
respectively), we an alternative approach an select a third of the total number
of sessions as the sample population. This gives us a total of 83 ftp sessions,
and 253 finger sessions.

Table 6.1: Available data and representative sample size with a confidence of
98%

telnet
smtp
f tp

finger

Population Size
4784
11152
248
760

Sample size
1642
2042
226
583

6.5 A Methodology for Service Selection
The methodology to extract n-grams representing session headers uses a fre-
quency analysis similar to the one proposed in chapter 5. We want to find
those n-grams that characterise the beginning of each session of the same ser-
vice. Services that need authentication might have two different n-grams; one
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for successful and one for unsuccessful authentication. Such n-grams will allow
us to identify the service a session belongs to.

We know that headers for the same service are not necessarily identical.
Headers show small variations. The variations are repetitive among different
sessions: the same variation will show up on many sessions. That is the reason
why we only select n-grams with a frequency equal to the number of sessions of
a given service. We repeat the frequency analysis incrementing the size of the
n-grams until no n-gram has a frequency equal to the number of sessions. At
this point we know the largest possible n-gram header common to all sessions.
Larger n-grams are not guaranteed to be equal for every session. We also need
to know how many different system calls exist between different headers, the
length of the largest header, and the end of the header.

By extracting both the largest n-gram in the header, and the closest n-gram
to the first fork, we can identify the entire header. After an identification of
the headers for every session, we proceed to isolate them.

After isolation we concatenate each header corresponding to the same ser-
vice. This concatenation creates a file containing headers of a given service.
We call these concatenations n-gram families. To identify the members of these
families we use HMMs.

In figures 6.4 and 6.5 we show training times (in seconds) for a number of
headers for each service. HMMs training time is exponential, it depends on the
number of states defined in the HMM and the length of the training sequences.
The larger the number of states the better the classification, in practice the
increment in performance stops at a certain number of states. There is no
theoretical way to determine the ideal number of states in advance, however
empirically we have found that for Leader n-gram families 30 states are enough
to make a proper discrimination, i.e. to be able to distinguish between two
different services.

From the five-tuple that defines an HMM we only need to provide two ele-
ments: the vocabulary M and the number of states N. The other three para-
meters n> A, and B are calculated by the Baum-Welch algorithm (mentioned in
§6.3), this is also called training the HMM. M is provided by the problem itself
as the set of different objects ,or vocabulary, in the training sequence. We use
the set of possible system calls as our vocabulary. The methodology we use to
find the right number of states N for an HMM is as follows. First, take an HMM
with one single state. Train the HMM with a set of training examples. Then,
parse a set of cross-validation examples with the HMM, thereby obtaining the
probability P(O\\) where O are the cross-validation sequences. Next, add one
state to the HMM and then test the enhanced HMM against the training set. If
the improvement on the fitness measure is above a threshold then keep adding
states. Otherwise, terminate. The algorithm is described in Algorithm 3. This
method's main problem is that HMM training is in general time consuming,
but is done offline and once finished it can be efficiently used. The maximum
number of states for the HMMs is equal to the length of the shortest header
n-gram.

The times shown in figures 6.4 and 6.5 were calculated in a Pentium IV @
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Algorithm 3 Number of States Calculation
NumStates = 1
Fitness = 0
TS = TrainingSet
CVS = CrossValidationSet
repeat

OldFitness = Fitness
HMM = TrainHMM(TS, NumStates)
Fitness = ParseHMM(HMM, CVS)
NumStates = NumStates + 1

until (Fitness - OldFitness) > Threshold

2.6 GHz, 1GB of RAM, and running Mandrake ©Linux 9.0.

31471 Object Telnet Headers

31471 Object
Telnet Headers

1 2 3 4 5 6 7 8 9 10
Number of States in HMM

Figure 6.4: Telnet Service HMM Training Times

6.6 Validation Experiments and Data Selection
For validation purposes we incorporated all the data from the training samples,
plus the same amount of unseen samples. The size of the validation samples is
described in table 6.2.

We can appreciate that by using two thirds of the population as the valida-
tion sample we obtain a confidence of 95.5% for ftp, and 97.4% for finger.

The experiments ased for validation are as follows. The test is conducted
by parsing sessions from a given service using HMMs of the same service for
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Table 6.2: Available data and representative sample size for 40 days of log files

telnet
smtp
f tp

finger

Validation Samples

3284
4084 |
166
506

Confidence of
Validation Sample

99%
99%

95.5%
97.4%

hitting ratio and using HMMs of different services for false positive test. Ideally
all sessions of a service would be correctly classified by an HMM of the same
service and have a hitting ratio of 100%. And all sessions of a service different
from the HMM would have a hitting ratio of 0%.

6.7 Experimental Validation

We generated HMMs for each of these services: telnet, smtp, ftp, finger. In
the case of telnet and ftp we separated each of them in two HMMs; one for
successful login and one for unsuccessful. Then we tested the generated HMMs
against headers from the same service and from other services. The results are
summarised in table 6.3.

The first column in table 6.3 represents the HMMs for each service. The
percentage is the number of correctly classified headers. The classification has
a low probability if the header belongs to the HMM or low probability if it does
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Table 6.3: % of Correct Service Discrimination
HMMs
telnet

smtp
f tp

f inger

telnet headers
100%

1%
0%
0%

smtp headers
1%

100%
1%
0%

ftp headers
1%
2%

100%
0%

finger headers
0%
0%
0%

100%

not belong. When an smtp, ftp, or finger session is started for example from
within a te lnet session, those sessions are considered as a part of the te lnet
session.

6.8 Conclusions
By using the service discrimination module, we can scale IDSs by adding detec-
tors for any new service we need to monitor, services can be monitored on de-
mand. As long as the header of a service does not change (tha general structure
of the header depends on the protocol) such service will be accurately classified
Independently of configuration values for the service. The detection module also
benefits from the service discrimination by reducing the search space for both
nisuse and anomaly detection. There is no negative impact on intrusion detec-
tion, false positives in service selection only imply more parsing for the intrusion
detection mechanisms. If there are 200 telnet sessions, 100 smtp sessions and
\00 ftp sessions, the te lnet IDS will parse 202 sessions. Each service IDS gets
o analyse all the sessions corresponding to that service, no session is lost due
JO the false positive ratio.

Prom the desired characteristics for an IDS described in §6.1, we conclude
'.hat the service discrimination mechanism delivers each characteristic as follows:

flexibility, the configuration for the service we are monitoring can change,
i.e. by using different port numbers. Service selection will not be affected
by these changes since we are analysing the behaviour but not specific
configuration.

Efficiency, the search space for detection is reduced regardless whether we
adopt misuse or anomaly detection, (i.e. only attacks specific to the se-
lected service are considered).

Scalability, in order to monitor a new service, we need only to add a dis-
criminator for that service, and train the misuse and anomaly detection
mocQes accordingly.
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Conclusions

In chapter 1, we presented briefly the research contributions of this dissertation.
These were given in the form of three hypotheses that are supported by the
evidence presented in this dissertation. Having described the state of the art in
intrusion detection, the background theory, our methodology, our techniques,
the implementation, the experiments and related work in more detail, we are
now in a position to discuss these hypotheses in detail.

Hypothesis 1 By using pre-processing mechanisms we can improve the per-
formance of current intrusion detection methods by operating on compact
information. The mechanisms keep key information necessary for a proper
intrusion detection.

In chapter 4 we presented an attribute filter based on rough sets. The
method selects those attributes that best describe the objects in the BSM log
files. The reduced attribute set is equivalent up to information to the original
attribute set. Objects can still be differentiated from each other, almost as if
all the attributes were used.

In chapter 5 a session folding method based on n-gram models was presented.
The method greatly reduces session length and is capable of returning to the
original session.

Hypothesis 2 By using an architecture that allows one to plug-in specialised
intrusion detectors, we can make intrusion detection scalable.

In chapter 3 we introduced our novel architecture for intrusion detection. In
chapter 6 we described our service selection module and the results of using it
as a service classifier. The module added scalability is a result of its generalised
design. It allows for plug-ins in the form of intrusion detection sensors. These
sensors can be trained for either, misuse or anomaly detection. And they are
specialised to a given service.

Hypothesis 3 We detect mimicry attacks with the help of hidden Markov
models and word networks.

107
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In chapter 7 we presented a method to detect mimicry attacks. Every other
method that has aimed at detecting these kinds of attacks have shown to be
easy to bypass. The false positive ratio of our technique can be further improved
as we will describe in §8.1. We achieved a very decent detection ratio with an
acceptable number of false positives. Our approach considers a class of general
case mimicry attacks and has good results. The results are more impressive if
we consider that no other technique has been able to tackle mimicry attacks,
ours is a great improvement in the state of the art

8.1 Future Work

8.1.1 Attribute Reduction, Alternative Applications

Attribute reduction can be improved even further, by using newer reduct
extraction methods like order based genetic algorithms and approximate en-
tropy [Sl§zak and Wroblewski, 2003, Bazan et al., 2003] instead of Johnson's al-
gorithm. These methods claim to extract a minimal decision reduct.

The reduct extraction can also be used to merge different log files into a
single log file. The attributes that will appear in the centralised log file can
be extracted using rough sets. Once the set of attributes that best discerns
between objects is identified, an analysis using all those log files can be done.
The analysis can be forensic or real time for intrusion detection.

8.1.2 Session Folding, Alternative Applications

Even though the added number of objects to the vocabulary is small, further re-
duction can improve performance even more. And more methods whose training
time depends on the vocabulary size, like probabilistic context-free grammars
(PCFGs) will become an alternative for real time detection.

Our results may help to improve the training times reported in the exper-
iments by Forrest et al. and by Ciao et al. Wagner and Soto have a pa-
per [Wagner and Soto, 2002] describing the disadvantages of using only short
sequences as the detection base using HMMs. With the use of the our method
equivalent sequences of larger size can be analysed using the same methodology.

8.1.3 Service Selection, Future Work

As future work we need to test the actual benefit of reducing the search space
for anomaly detection. Test of the system running without discrimination and
with discrimination.

The IDS should be extended to include other services like ssh, 3ftp, and
rpc.
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8.1.4 Towards Full Mimicry Attack Detection
Mimicry attack detection needs a lot of tuning. Currently we allow for no-ops
in arbitrarily defined positions. We concentrated in a very specific sub-class of
the general case, the general case as a whole is a bit more complex. The full
general case eliminates two restrictions from our studied class. First, the model
can be extended to allow for no-ops in every position of the attack. Second,
the no-ops considered should be extended as to include all context dependant
no-ops. In our analysis we considered a class of context dependant no-ops. The
automatic creation of these no-ops is not a trivial task since a deep knowledge
of the inner workings of an attack is needed.

No-ops can not be filtered out because even system calls returning failure
which might be considered as no-ops, might be part of an attack's signature in
properly positioned, if the position is changed then it becomes a no-op. Our
system has a limit in the number of no-ops that can be inserted in each position,
if a large number of no-ops is inserted (over 500) then the word network would
regard the sequence as an attack with a low probability. This area can also be
extended to tolerate a larger number of no-ops.

We propose two approaches to tackle general case mimicry attacks. The first
one is to use HMMs but use no-ops as silent symbols. As no-ops are silent, any
number of no-ops can be inserted in any position in the attack sequence. Then
the no-ops would be consumed (filtered) by the HMM. The other alternative is
to use PCFGs. The grammar should include production rules with no-ops, that
way the no-ops will be consumed by the parser and the attacks can still be de-
tected. To train the PCFGs, training sessions should be bracketed in a way that
no-ops are easily spotted. The training sessions should be synthetically created
to assure that the no-ops include context dependant no-ops. The challenge with
both approaches is to define which symbols are considered no-ops and how to
create context dependant no-ops. A method to automatically create the no-ops
can be inspired in the work by [Gorodetski and Kotenko, 2002]. In this work,
Gorodetski and Kotenko reproduce an attacker's behaviour using context-free
grammars. Such an approach might be extended to synthetically create mimicry
attacks.

Word networks can also be used to organise all our misuse database in the
same place and only calculate the most likely path of an attack. This can be
done by using a word network for each service. Each network is composed of a
series of parallel nodes with the same transition probability. Each of this nodes
corresponds to an attack subnetwork.

8.1.5 Anomaly Detection Suggested Work
We still need to prove that probabilistically combining the output from a MIDS
and an AIDS will improve detection ratio, and at the same time will lower the
number of false positives.

We are currently testing anomaly detection using PCFGs to generate normal
user profiles. The main problem with this method is the training time. For a
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set of 80 different sessions at least a month and a half training period is needed.
We still need to test different data representations, however with the use of
bracketing, an improvement in training time is obtained.

8.2 Conclusions
We proved that our reduction methods are suitable for intrusion detection and
yield very good reduction ratios. Our novel architecture allows for scalability of
an IDS and to test different detection methods with the same modular approach.

Detection of mimicry attacks is a recent problem and as such it has a long
road ahead. We have but taken the first step towards successful mimicry attack
detection. There is still a lot of research left in this area but ours is in a
promising direction with very good results.
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Appendix A

BSM Log File Format

Reproduction of BSM documentation page downloaded from Sun Microsystems
website.1

Audit Record Descriptions gives a detailed description of each audit token.
The appendix also lists all the audit records generated by Solaris BSM auditing.
The definitions are sorted in order of the short descriptions, and a cross-reference
table translates event names to event descriptions.

Binary Format Audit records are stored and manipulated in binary form;
however, the byte order and size of data is predetermined to simplify compati-
bility between different machines.

Audit Event Type Each auditable event in the system generates a par-
ticular type of audit record. The audit record for each event has certain tokens
within the record that describe the event. An audit record does not describe
the audit event class to which the event belongs; that mapping is determined
by an external table, the /etc/security/audit_event file.

Audit Token Types Each token starts with a one-byte token type, fol-
lowed by one or more data elements in an order determined by the type. The
different audit records are distinguished by event type and different sets of to-
kens within the record. Some tokens, such as the text token, contain only a
single data element, while others, such as the process token, contain several
(including the audit user ID, real user ID, and effective user ID).

Order of Audit Tokens
Each audit record begins with a header token and ends (optionally) with a
trailer token. One or more tokens between the header and trailer describe the
event. For user-level and kernel events, the tokens describe the process that

1http://docs.sun.com/db/doc/806-1789/6jb2514bc?a=:view
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performed the event, the objects on which it was performed, and the objects'
tokens, such as the owner or mode.

Each user-level and kernel event typically has at least the following tokens:

• header

• subject

• return

Many events also include a t ra i ler token, but it is optional.

Human-Readable Audit Record Format
This section shows each audit record format as it appears L. the output pro-
duced by the praudit command. This section also gives a short description of
each audit token. For a complete description of each field :n each token, see
Appendix&nbspjA, Audit Record Descriptions.

The following token examples show the form ihat praudit produces by
default. Examples are also provided of raw (-r) and short (-s) options. When
praudit displays an audit token, it begins with the token type, followed by the
data from the token. Each data field from the token is separated from other
fields by a comma. However, if a field (such as a path name) contains a comma,
this cannot be distinguished from a field-separating comma. Use a different field
separator or the output will contain commas. The token type is displayed by
default as a name, like header, or in -r format as a decimal number.

The individual tokens are described in the following order-

• "header Token"

• "trailer Token"

• "arbitrary Token"

• "arg Token"

• "attr Token"

• "exit Token"

• "file Token"

• "groups Token"

• "in_addr Token"

• "ip Token"

• "ipc Token"

• "ipeperm Token"
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• "iport Token"

• "opaque Token"

• "path Token"

• "process Token"

• "return Token"

• "seq Token"

• "socket Token"

• "subject Token"

• "text Token"

header Token
Every audit record begins with a header token. The header token gives infor-
mation common to all audit records. The fields are:

• A token ID

• The record length in bytes, including the header and trailer tokens

• An audit record structure version number

• An event ID identifying the type of audit event

• An event ID modifier with descriptive information about the event type

• The time and date the record was created

When displayed by praudit in default format, a header token looks like
the following example from ioctl:

header,240,1,ioctl(2),es,Tue Sept 1 16:11:44 1992, + 270000 msec
. Using praudit-s, the event description (ioctl(2) in the default praudit ex-

ample above) is replaced with the event name (AUE_I0CTL), like this:
header,240,l,AUEJOCTL,es,Tue Sept 1 16:11:44 1992, + 270000 msec
Using praudit-r, all fields are displayed as numbers (that can be decimal,

octal, or hex), where 158 is the event number for this event.
20,240,1,158,0003,699754304, + 270000 msec
Notice that praudit displays the time to millisecond resolution.
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trailer Token
This token marks the end of an audit record and allows backward seeks of the
audit trail. The fields are:

• A token ID

• A pad number that marks ihe end of ilie record (does not sĥ »w)

• The total number of audit record characters including the hnader and
trailer tokens

A trailer token is displayed by praudit as follows:
trailer,136

arbitrary Token
This token encapsulates data for the audit trail. The item array can contain a
number of items. The fields are:

• A token ID

• A suggested format, such as decimal

• A size of encapsulated data, such as int

• A count of the data array -terns

• An item array

An arbitrary token is displayed by praudit as follows:
arbitrary,decimal,int,l 42

arg Token
This token contains system call argument information. A 32-bit integer system
call argument is allowed in an audit record. The fields are:

• A token ID

• An argument ID of the relevant system call argument

• The argument value

• The length of an optional descriptive ..xt string (does not s!u,-v)

• An optional text string

An arg token is displayed by praudit as follows:
argument,l,0x00000000,addr
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attr Token
This token contains information from the file vnode. The attr token is usu-
ally produced during path searches and accompanies a path token, but is not
included in the event of a path-search error. The fields are:

• A token ID

• The file access mode and type
• The owner user ID

• The owner group ID
• The file system ID

• The inode ID
• The device ID that the file might represent
An attr token is displayed by praudit as follows:
attribute,100555,root,staff,1805,13871,-4288

exit Token
An exit token records the exit status of a program. The fields art:

o A token ID
• A program exit status as passed to the exit() system call
• A return value that describes the exit status or indicates a system error

number
An exit token is displayed by praudit as follows:
exit,Error 0,0

file Token
This token is generated by the audit daemon to mark the beginning of a new
audit trail file and the end of an old file as the old file becomes deactivated.
The audit record containing this token links successive audit files into one audit
trail. The fields are:

• A token ID

• A time and date stamp of a file opening or closing

• A byte count of the file name (does not show)

• The file name
A file token is displayed by praudit as follows:
file.Tue Sep 1 13:32:42 1992, + 79249 msec, /bau-

dit/localhost/files/19920901202558.19920901203241.quisp
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groups Token

A groups token records the groups entries from a process's credential. The
fields are:

• A token ID

• An array of groups entries of size NGR0UPS_MAX(16)

A groups token is displayed by praudit as follows:
group,staff,wheel,daemon,kmem,bin,-l,-l,-l,-l,-l,-l,-l,-l,-l,-l,-l

in_addr Token
An in_addr token gives a machine Internet Protocol address. The fields are:

• A token ID

• An Internet address

An in_addr token is displayed by praudit as follows:
ip addr,129.150.113.7

ip Token
The ip token contains a copy of an Internet Protocol header. The fields are:

• A token ID

• A 20-byte copy of an IP header

An ip token is displayed by praudit as follows:
ip address,0.0.0.0

ipc Token
This token contains the System V IPC message/semaphore/shared-memory
handle used by a caller to identify a particular IPC object. The fields are:

• A token ID

• An IPC object type identifier

• The IPC object handle

An ipc token is displayed by praudit as follows:
IPC,msg,3
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ipc_perm Token
An ipc_perm token contains a copy of the System V IPC access information.
Audit records for shared memory, semaphore, and message IPCs have this token
added. The fields are:

• A token ID

• The IPC owner's user ID

• The IPC owner's group ID

• The IPC creator's user ID

• The IPC creator's group ID

• The IPC access modes

• The IPC sequence number

• The IPC key value

An ipcperm token is displayed by praudit as follows:
IPC perm,root,whee!,root,wheel,0,0,0x00000000

iport Token
This token cortains a TCP (or UDP) address. The fields are:

• A token ID

• A TCP/UDP address

An iport token is displayed by praudit as follows:
ip port,0xf6d6

opaque Token
The opaque token contains unformatted data as a sequence of bytes. The fields
are:

• A token ID

• A byte count of the data array

• An array of byte data

An opaque token is displayed by praudit as follows:
opaque,12,0x4f5041515545204441544100
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path Token
A path token contains access path information for an object. The Selds are:

• A token ID

• A byte count of the path length (does not show)

• An absolute path

A path token is displayed by praudit as follows:
path,/an/anchored/path/name/to/test/auditwrite/AWJPATH

process Token
The process token contains information describing a process. The fields are:

• A token ID

• The user audit ID

• The effective user ID

• The effective group ID

• The real user ID

• The real group ID

• The process ID

• The session ID

• A terminal ID made up of:

- A device ID
- A machine ID

A process token is displayed by praudit as follows:
process ,root,root,wheel,root,wheel,0,0,0,0.0.0.0

return Token
A return token gives the return status of the system call and the process return
value. This token is always returned as part of kernel-generated -ridit recorc';
for system calls. The fields are:

• A token ID

• The system call error status

• The system call return value

A return token is displayed by praudit as follows:
return,success,0
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seq Token
This token is optional and contains an increasing sequence 'dumber used for
debugging. The token is added to each audit record when the seq policy is
active. The fields are:

• A token ID

• A 32-bit unsigned long-sequence number

A seq token is displayed by praudit as follows:
sequence, 1292

socket Token
A socket token describes an Internet socket. The fields are:

• A token ID

• A socket type field (TCP/UDP/UNIX)

• The local port address

• The local Internet address

• The remote port address

• The remote Internet address

A socket token is displayed by praudit as follows:
socket,0x0000,0x0000,0.0.0.0,0x0000,0.0.0.0

subject Token
This token describes a subject (process). The fields are:

• A token ID

• The user audit ID

• The effective user ID

• The effective group ID

• The real user ID

• The real group ID

• The process ID

• The session ID

• A terminal ID made up of:
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- A device ID
- A machine ID

A subject token is displayed by praudit as follows:
subject,cjc,cjc,staff,cjc,staff,424,223,0 0 quisp

text Token
A text token contains a text string. The fields are:

• A token ID

• The length of the text string (does not show)

» A text string

A text token is displayed by praudit as follows-
text,aw_test_tokenNext:



Appendix B

ARPA Language Model
File Format

Reproduction of man page downloaded from SRI website.1

NAME
ngram-format - File format for ARPA backoff N-gram models.

SYNOPSIS
\data\
ngram l=nl
ngram 2=n2

ngram N = nN
\l-grams:
p w [bow]

\2-grams:
p wl u>2 [bow]

\iV-grams:
pwl ... wN

\end\

1http://www.speech.sri.com/projects/srilm/manpages/ngram-format.html
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DESCRIPTION

The so-called ARPA (or Doug Paul) format for N-gram backoff models starts
with a header, introduced by the keyword \data \ , listing the number of N-
grams of each length. Following that, TV-grams are listed one per line, grouped
into sections by length, each section starting with the keyword \ TV-gram:, where
N is the length of the TV-grams to follow. Each TV-gram line starts with the
logarithm (base 10) of conditional probability p of that TV-gram, followed by the
words wl... wN making up the TV-gram. These are optionally followed by the
logarithm (base 10) of the backoff weight for the TV-gram. The keyword \end\
concludes the model representation.

Backoff weights are required only for those TV-grams that form a prefix of
longer TV-grams in the model. The highest-order TV-grams in particular will not
need backoff weights (they would be useless).

Since log(0) (minus infinity) has no portable representation, such values are
mapped to a large negative number. However, the designated dummy value (-99
in SRILM) is interpreted as log(0) when read back from file into memory.

The correctness of the TV-gram counts nl , n2, . . . in the header is not enforced
by SRILM software when reading models (although a warning is printed when
an inconsistency is encountered). This allows easy textual insertion or deletion
of parameters in a model file. The proper format can be recovered by passsing
the model through the command ngram -order TV -lm input -write-lm output

Note that the format is self-delimiting, allowing multiple models to be stored
i:i one file, or to be surrounded by ancillary information. Some extensions of
.•V-gram models in SRILM store additional parameters after a basic TV-gram
'. "tion in the standard format.

>EE ALSO
), ngram-count(l), Im-scripts(l), pfsg-scripts(l).

BUGS

'.rhe ARPA format does not allow TV-grams that have only a backoff weight
associated with them, but no conditional probability. This makes the format
less general than would otherwise be useful (e.g., to support pruned models, or
ones containing a mix of words and classes). The ngram-count(l) tool satisfies
this constraint by inserting dummy probabilities where necessary.

For simplicity, an TV-gram model containing N-grams up to length N is re-
ferred to in the SRILM programs as an TV-th order model, although technically
it represents a Markov model of order TV - 1.
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BUGS
There is no way to specify words with embedded whitespace.

AUTHOR
The ARPA backoff format was developed by Doug Paul at MIT Lincoln
Labs for research sponsored by the U.S. Department of Defense Advanced
Research Project Agency (ARPA). Man page by Andreas Stolcke jstol-
cke@speech.sri.comi,. Copyright 1999, 2004 SRI International
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Appendix C

HTK File Format for
HMMs and Word Networks

All the definitions for the HTK language format were taken
from [Young et al., 2002]. We will begin by presenting a formal descrip-
tion of the language used to represent an HMM, then we show some of the
models we built for our experiments. All the definitions are valid for HTK
version 2.0 and up. And the material presented in this text is copyright of
Cambridge University Engineering Department. We would like to thank all the
people that worked really hard in the HTK project so we wers able to use such
a valuable toe!..

C.I HMM Definition Language
Syntax for the HTK language format is described using an extended BNF no-
tation in which alternatives are separated by a vertical bar [, parentheses ()
denote factoring, brackets [ ] denote options, and braces { } denote zero or more
repetitions.

All keywords are enclosed in angle brackets and the case of the keyword name
is not significant. White space is not significant except within double-quoted
strings.

The top level structure of a HMM definition is shown by tlie following lule.

hmmdef = [ ~h macro ]
<BeginHMM>

[ globalOpts ]
<NumStates> short
state { state }
[ regTree ]
transP
[ duration ]
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<EndHMM>

A HMM definition consists of an optional set of global options followed by
the <NumStates> keyword whose following argument specifies the number of
states in the model inclusive of the non-emitting entry and exit states. The
information for each state is then given in turn, followed by the parameters of
the transition matrix and the model duration parameters, if any. The name of
the HMM is given by the ~h macro. If the HMM is the only definition within
i file, the ~h macro name can be omitted and the HMM name is assumed to
be the same as the file name.

The global options are common to all HMMs. They can be given separately
using a ~o option macro

optrnacro = ' -o globalOpts

or they can be included in one or more HMM definitions. Global options may be
repeated but no definition can change a previous definition. All global options
must be defined before any other macro definition is processed. In practise
this means that any HMM system which uses parameter tying must have a ~o
option macro at the head of the first macro file processed.

The full set of global options is given below. Every HMM set must define
the vector size (via <VecSize>, the stream widths (via <Streamlnfo> and the
observation parameter kind. However, if only the stream widths are given, then
Ihe vector size will be :nferred. If only the vector size is given, then a single
:tream of identical width will be assumed. All other options default to null.

globalOpts — ,'|jtion { option }
option = <HmmSetld> string |

<Streamlnfo> short { short } |
<VecSize> short |
<lnputXform> inputXform |
covkind |
ilurkind |
^armkind

The <HmmSetld> option allows the user to give the macro master files an identi-
der. The arguments to the <Streamlnfo> option are the number of streams (de-
fault 1) and then for each stream, the width of that stream. The <VecSize> op-
tion gives the total number of elements in each input vector. If both <VecSize>
and <Streamlnfo> are included then the sum of all the stream widths must
equal the input vector size.

The covkind defines the kind of the covariance matrix

covkind = <DiagC> | <lnvDiagC> | <FullC> |
<XformC>

vvhere <lnvDiagC> is used internally. <LLTC> and <XformC> are not used
in HTK Version 2.0. Setting the covariance kind as a global option forces all
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components to have this kind. In particular, it prevents mixing full and diagonal
covariances within a HMM set.

The durkind denotes the type of duration model used according to the fol-
lowing rules

durkind = <nullD> | <poissonD> | <gammaD> | <genD>

For anything other than <nullD>, a duration vector must be supplied for the
model or each state as described below. Note that no current HTK tool can
estimate or use such duration vectors.

The parameter kind is any legal parameter kind including qualified forms
parmkind = <basekind{_D|^A|_T|_E|_N|_Z|_O|_V|_C|_K}>
basekind = <discrete>|<lpc>|<lpcepstra>|<mfcc> | <fbank> |

<melspec>| <lprefc>| <user>

where the syntax rule for parmkind is non-standard in that no spaces are allowed
between the base kind and any subsequent qualifiers.

Each state of each HMM must have its own section defining the parameters
associated with that state

state = < State: Exp > short stateinfo

where the short following <State: Exp > is the state number. State information
can be defined in any order. The syntax is as follows

stateinfo = ~s macro |
[ mixes ] [ weights ] stream { stream } [ duration ]

macro ~ string

A stateinfo definition consists of an optional specification of the number of mix-
tures, an optional set of stream weights, followed by a block of information for
each stream, optionally terminated with a duration vector. Alternatively, ~s
macro can be written where macro is the name of a previously defined macro.

The optional mixes in a stateinfo definition specify the number of mixture
components (or discrete codebook size) for each stream of that state

mixes = <NumMixes> short {short}

where there should be one short for each stream. If this specification is omitted,
it is assumed that all streams have just one mixture component.

The definition of each mixture component consists of a Gaussian pdf option-
ally preceded by the mixture number and its weight

mixture = [ <Mixture> short float ] mixpdf

If the <Mixture> part is missing then mixture 1 is assumed and the weight
defaults to 1.0.

The tmixpdf option is used only for fully tied mixture sets. Since the mixpdf
parts are all macros in a tied mixture system and since they are identical for
every stream and state, it is only necessary to know the mixture weights. The
tmixpdf syntax allows these to be specified in the following compact form
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tmixpdf = <TMix> macro weightList
weightList = repShort { repShort }
repShort = short [ * char ]

where each short is a mixture component weight scaled so that a weight of 1.0
is represented by the integer 32767. The optional asterisk followed by a char
is used to indicate a repeat count. For example, 0*5 is equivalent to 5 zeroes.
The Gaussians which make-up the pool of tied-mixtures are defined using ~m
macros called macrol, macro2, macro3, etc.

Discrete probability HMMs are defined in a similar way
discpdf = <DProb> weightList

The only difference is that the weights in the weightList are scaled log probabil-
ities.

The definition of a Gaussian pdf requires the mean vector to be given and
one of the possible forms of covariance

mixpdf = ~m macro | [ rclass ] mean cov [ <GConst> float ]
rclass = <RCIass> short
mean = ~u macro | <Mean> short vector
cov = var | inv | xform
var = ~v macro | <Variance> short vector
inv = ~i macro |

(<lnvCovar> | <LLTCovar>) short tmatrix
xform = ~x macro | <Xform> short short matrix
matrix = float {float}
tmatrix = matrix

In mean and var, the short preceding the vector defines the length of the vec-
tor, in inv the short preceding the tmatrix gives the size of this square upper
triangular matrix, and in xform the two short's preceding the matrix give the
number of rows and columns. The optional <GConst> gives that part of the
log probability of a Gaussian that can be precomputed. If it is omitted, then
it will be computed during load-in, including it simply saves some time. HTK
tools which output HMM definitions always include this field. The optional
<RCIass> stores the regression base class index that this mixture component
belongs to, as specified by the regression class tree (which is also stored in the
model set). HTK tools which output HMM definitions always include this field,
and if there is no regression class tree then the regression identifier is set to zero.

In addition to defining the output distributions, a state can have a dura-
tion probability distribution defined for it. However, no current HTK tool can
estimate or use these.

duration = ~d macro | <Duration> short vector

Alternatively, as shown by the top level syntax for a hmmdef, duration parame-
ters can be specified for a whole model.

The transition matrix is defined by
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transP = ~ t macro | <TransP> short matrix

where the short in this case should be equal to the number of states in the model.
Finally the input transform is denned by

inputXform = ~ j macro | inhead inmatrix
inhead = <MMFIdMask> string parmkind [<PreQual>]
inmatrix = <LinXform> <VecSize> short <Blocklnfo>

short short {short} block {block}
block = <Block> short xform

where the short following <VecSize> is the number of dimensions after applying
the linear transform and must match the vector size of the HMM definition.
The first short after <Blocklnfo> is the number of block, this is followed by the
number of output dimensions from each of the blocks.

C.2 Word Network Definition Language
Word networks are specified using the HTK Standard Lattice Format (SLF).
This is a general purpose text format which is used for representing word net-
works. Since SLF format is text-based, it can be written directly using any text
editor. However, this can be rather tedious and HTK provides a tool which
allows the application designer to use a higher-level representation. The tool
HParse allows networks to be generated from a source text containing extended
BNF format grammar rules.

Lattices in HTK are used for specifying finite state syntax networks for
recognition. The HTK SLF is designed to be extensible and to be able to serve
a variety of purposes. However, in order to facilitate the transfer of lattices, it
incorporates a core set of common features.

An SLF file can contain zero or more sub-lattices followed by a main lat-
tice. Sub-lattices are used for defining sub-networks prior to their use in sub-
sequent sub-lattices or the main lattice. They are identified by the presence of
a SUBLAT field and they are terminated by a single period on a line by itself.
Sub-lattices offer a convenient way to structure finite state grammar networks.
They are never used in the output word, lattices generated by a decoder. Some
lattice processing operations like lattice pruning or expansion will destroy the
sub-lattice structure, i.e. expand all sub-lattice references and generate one un-
structured lattice.

A lattice consists of optional header information followed by a sequence of
node definitions and a sequence of link (arc) definitions. Nodes and links are
numbered and the first definition line must give the total number of each.

Each link represents a word instance occurring between two nodes, however
for more compact storage the nodes often hold the word labels since these are
frequently common to all words entering a node (the node effectively represents
the end of several word instances). This is also used in lattices representing
word-level networks where each node is a word end, and each arc is a word
transition.
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Each node may optionally be labelled with a word hypothesis and with a
time. Each link has a start and end node number and may optionally be labelled
,vith a word hypothesis (including the pronunciation variant, acoustic score and
segmentation of the word hypothesis) and a language model score.

The lattice must have exactly one start node (no incoming arcs) and one
end node (no outgoing arcs). The special word identifier INULL can be used for
ihe start and end node if necessary.

C.2.1 Standar Lattice Format
The format is designed to allow optional information that at its most detailed
gives full identity, alignment and score (log likelihood) information at the word
and phone level to allow calculation of the alignment and likelihood of an indi-
vidual hypothesis. However, without scores or times the lattice is just a word
graph. The format is designed to be extensible. Further field names can be de-
nned to allow arbitrary information to be added to the lattice without making
rhe resulting file unreadable by others.

The lattices are stored in a text file as a series of fields that form two blocks:

• A header, specifying general information about the lattice.

• The node and link definitions.

Either block may contain comment lines, for which the nrst character is a
' # ' and the rest of the line is ignored.

All non-comment lines consist of fields, separated by white space, fields
;onsist of an alphanumeric field name, followed by a delimiter (the character
'= ' or "") and a (possibly "quoted") field value. Single character field names are
eserved for fields defined in the specification and single Character abbreviations
nay be usea for many of the fields defined below. Field values can be specified
either as normal text (e.g. a=-318 31) <Jr in a binary representation if the '= '
"iiaracter is replaced by '"'. The binary representation consists of a 4-byte
loating point number (IEEE 754) or a 4-byte integer number stored in big-
endian byte order by default.

The convention used to define the current field names is that lower case is
"ised for optional fields and upper case is used for required fields. The meaning
of field names can be dependent on the context in which they appear.

The header must include a field specifying which utterance was u&ed to
generate the lattice and a field specifying the version of the lattice specificacion
used. The header is terminated by a line which defines the number of nodes
•ind links in the lattice. %

The node definitions are optional but if included each node definition consists
of a single line which specifies the node number followed by optional fields that
nay (for instance) define the time of the node or the word hypothesis ending at
',hat node.

The link definitions are required and each link definition consists of a single
"Ane which specifies the link number as well as the start and end node mmbers
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that it connects to and optionally other information about the link such as the
word identity and language model score. If word identity information is not
present in node definitions then it must appear in link definitions.

C.2.2 Syntax
The following rules define the syntax of an SLF lattice. Any unrecognised fields
will be ignored and no user defined fields may share the first character with
pre-defined field names. The syntax specification below employs the modified
BNF notation used in section C.I. For the node and arc field names only the
abbreviated names are given and only the text format is documented in the
syntax.

latticedef = laticehead
lattice { lattice >

L
latticehead = "VERSION=" number

"UTTERANCE=" string
"SUBLAT=" string
{ "vocab=" string gl "hmms=" string I

"lmname=" string I "wdpenalty=" floatnumber f
"lmscale=" floatnumber |"acscale=" floatnumber I
"base=" floatnumber I "tscale=" floatnumber }

lattice = sizespec
{ node }
{ arc }

sizespec = "N=" intnumber "L=" ijitnumber

node = "I=" intnumber
{ "t=" floatnumber I "W=" string |

"s=" string I "L=" string I "v=" intnumber }

arc = "J=" intnumber
"S=" intnumber
"E=" intnumber
{ "a=" floatnumber I "1=" floatnumber I "a=" floatnumber I

"r=" floatnumber I "W=" string I "v=" intnumber I
"d=" segments }

segments = ":" segment {segment^
segment = string [ "i" floatnumber [ "," floatnumber ]] ":"
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C.2.3 Field Types
The currently defined fields are as follows:-

Field abbr o|c Description

leader fields
V E R S I O N S
UTTERANCE='/.s
SUBLAT='/.s
acscale='/£f
tscale='/.f

V
U
S

o
o
o
o
o

base='/.f

lmname=y,"?
lmscale=y,f
wdpenalty=y,f

o
o
o

lattice Size fields
NODES=f/.d N c
LINKS='/.d L c

'ode Fields

time=*/.f
W0RD='/.s

L=*/.S

var=*/.d

ink Field?
J=*/.d
START='/.d
END='/.d
W0RD='/.s

var=y.d
div=f/.s

acoustic-Xf
language='/.f
r='/.f

t
W

V
s

S
E
W

V
d

a
1
r

o
we

we
wo
o

c
c

we

wo
wo

wo
o
o

Lattice specification adhered to
Utterance identifier
Sub-lattice name
Scaling factor for acoustic likelihoods
Scaling factor for times (default 1.0,
i.e.\ seconds)
LogBase for Likelihoods (0.0 not logs,
default base e)
Name of Language model
Scaling factor for language model
Word insertion penalty

Number of nodes
Number of links

in lattice
in lattice

Node identifier. Starts node information
Time from start of utterance (in seconds)
Word (If lattice labels nodes rather that
links)
Substitute named sub-lattice for this node
Pronunciation variant number
Semantic Tag

Link identifier. Starts link information
Start node number (of the link)
End node number (of the link)
Word (If lattice labels links rather that
nodes)
Pronunciation variant number
Segmentation (modelname, duration,
likelihood) triples
Acoustic likelihood of link
General language model likelihood of link
Pronunciation probability

'ote: The -"ord identity (and associated 'w' fields var.div and
acoustic) must appear on either the link or the end node.
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abbr is a possible single character abbreviation for the

field name

o|c indicates whether field is optional or compulsory.

C.2.4 Building a Word Network with HParse
Whilst the construction of a word level SLF network file by hand is not dif-
ficult, it can be somewhat tedious. In earlier versions of HTK, a high level
grammar notation based on extended Backus-Naur Form (EBNF) was used to
specify recognition grammars. This HParse format was read-in directly by the
recogniser and compiled into a finite state recognition network at run-time.

HParse format is still supported but in the form of an off-line compilation
into an SLF word network which can subsequently be used to drive a recogniser.

A HParse format grammar consists of an extended form of regular expression
enclosed within parentheses. Expressions are constructed from sequences of
words and the meta-characters

I denotes alternatives

[ ] encloses options

{ } denotes zero or more repetitions

< > denotes one or more repetitions

« » denotes context-sensitive loop

The following examples will illustrate the use of all of these except the last which
is a special-purpose facility provided for constructing context-sensitive loops as
found in for example, context-dependent phone loops and word-pair grammars.
It is described in the reference entry for HParse.

As a first example, suppose that a simple isolated word single digit recog-
niserwas required. A suitable syntax would be

(
one I two t three i four I five I
six I seven I eight I nine I zero

)
If this HParse format syntax definition was stored in a file called digitsyn,

the equivalent SLF word network would be generated in the file digitnet by
typing

HParse digitsyn digitnet

The above digit syntax assumes that each input digit is properly end-pointed.
This requirement can be removed by adding a silence model before and after
the digit
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s i l (one | two I three I four | five |
six I seven I eight | nine I zero) s i l

)

The allowable sequence of models now consists of silence followed by a digit
followed by silence. If a sequence of digits needed to be recognised then angle
brackets can be used to indicate one or more repetitions, the HParse grammar

s i l < one I two I three I four I five |
six I seven I eight I nine I zero > s i l

would accomplish this.
HParse grammars can define variables to represent sub-expressions. Variable

names start with a dollar symbol and they are given values by definitions of the
form

$var = expression ;

For example, the above connected digit grammar could be rewritten as

$digit = one | two I three I four | five |
six I seven I eight | nine I zero;

(
s i l < $digit > s i l

)
Here $digit is a variable whose value is the expression appearing on the right
hand side of the assignment. Whenever the name of a variable appears within
an expression, the corresponding expression is substituted. Note however that
variables must be defined before use, hence, recursion is prohibited.

As a final refinement of the digit grammar, the start and end silence can be
?nade optional by enclosing them within square brackets thus

$digit = one | two I three I four I five |
six | .*even I eight | nine i zero;

(
[si.l] < $digit > [s i l ]

)
HParse format grammars are a convenient way of specifying task grammars

fjor interactive voice interfaces. As a final example, the following defines a simple
grammar for the control of a telephone by voice.

$digit = one i two I three I four I five |
six I seven I eight | nine | zero;

$number = $digit { [pause] $digi t} ;
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$scode = shortcode $digit $digit;
$telnum = $scode I $number;
$cmd = dia l $telnum I

enter $scode for $number |
redia l I cancel;

$noise = lipsmack I breath I background;
( < $cmd | $noise > )

The dictionary entries for pause, lipsmack, breath and background would
reference HMMs trained to model these types of noise and the corresponding
output symbols in the dictionary would be null.





Chapter 7

Mimicry Attack Detection

7.1 Problem Description
To detect known attacks, MIDS rely on a classification mechanisms like expert
systems or pattern matching. Regardless of the mechanism an MIDS utilises,
it needs to recognise the attack from a known attack base. If an attack is
substantially different from the signature stored in the attack base, then the
detection mechanism becomes less accurate and in some cases useless.

There is a kind of attacks that mimic normal traffic to avoid detection by
standard intrusion detection mechanisms. These attacks have been of interest
for some time now, they are called mimicry attacks. A mimicry attack can
be constructed by simply changing a given system call for other system calls
that complete the same tasks with tespect to the goal of the attack. Or it
can be more complex by inserting system calls that do not change the harmful
state of the attack. We call the latter kind of system calls no-ops. By harmful
state of an attack we mean the achievement of an attack goal whether it is to
steal information, destroy information, gaining unprivileged access to a system
or causing a denial of service. Two sequences are said to be equivalent up to
harmfulness if they achieve the same attack goal, the attacker can not tell the
difference between the two sequences in terms of the goal being achieved.

We divide mimicry attacks into two types: bass case and general case. Base
case mimicry attacks make only use of modified system calls and have a finite
number of variations. General case mimicry attacks include the base case ones
but also add no-ops, therefore the set of general case mimicry attacks is infi-
nite. We consider an important class of the general case mimicry attacks which
includes no-ops built out of system calls returning failure and some context-
dependent no-ops. Syntactically it is not possible to use a filter that eliminates
no-ops, because many no-ops are context dependent and hence are not identifi-
able. In a given context a system call can be a no-op while in others it is part
of the attack.

For example assume a telnet session where the attacker is trying to execute

87
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a buffer overflow using a vulnerability in program Pi. The attacker injects the
buffer overflow into the victim's host and then executes it. The steps to achieve
the desired goal are well defined. Now assume the attacker opens a socket
connection in the middle of the attack to another machine and then closes the
connection. The system calls generated during the socket operation will not
affect the buffer overflow in other words the socket system call in this case can
be regarded as a no-op. Tf the attack was not a buffer overflow but uploading
information to other site, then a socket operation will be part of the attack. In
that case the socket system call is not a no-op.

For a better understanding of mimicry attacks, suppose we have 10 system
calls: A, B, C, D, E, F, G, H, I, and J. Now suppose that the sequence jA,
C, A, B, C& is attack 1. If A is equivalent up to harmfulness to E and G
(A = E,A = G), and B is equivalent up to harmfulness to F (B = F), then the
sequence jE, C, G, F, C& is equivalent up to harmfulness to attack 1. Call this
new sequence attack 2 {attack! = attack2). If H, I, and J are no-ops then the
sequence < E, H, C, J, G, F,I,C > is also equivalent to attack 1 and attack
2, we will call this attack 3 (attackl = attack"! = attacks).

We can appreciate that even though attack 1, attack 2, and attack 3
are equivalent up to harmfulness, their form is very different. This difference
explains the difficulty on detecting mimicry attacks using the signature of the
attack.

To solve this problem we propose the use of a "noise" tolerant mechanism
that is capable of detecting variations in the signature of an attack. To test
for attacks, we first separate sequences of system calls from the log files into
sessions. Each session is classified according to the service it belongs to. Our
MIDS will parse each of these sessions and compare it to known attacks.

The output of the MIDS is a number that indicates how likely is that a
session is an attack. This number is a probability function so it really indicates
the similarity between the parsed session and a known attack. The output from
the MIDS for each sequence attack 1, attack 2, and attack 3 indicates the
similarity between the sequence and a given attack. Since the three sequences
are equivalent to the same attack the probabilities indicating that they are
identical should be very high. We consider similar as any sequence with a
likelihood of more than 95%.

The remainder of this chapter is organised as follows: §7.2 explains why
we chose HMMs and word networks for mimicry attack detection. §7.4 gives
a brief overview of mimicry attacks, both the base case and general case. §7.5
describes two of the attacks used as examples in the chapter. In §7.6 we describe
training data for base case mimicry attacks. §7.7 describes our mechanism to
test base case mimicry attacks, while §7.8 is a description of the validation data
and experiments, and §7.9 presents validation results. §7.10 describes the data
used for training in general case mimicry attacks. §7.11 the core of this chapter,
introduces our mechanism, a word network based, misuse intrusion detector,
while §7.12 describes validation experiments, and §7.13 which reviews results,
sustains why it is good at mimicry attack detection. §7.14 further validates our
method against mimicry attacks but using folded sessions (see chapter 5). §7.15
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contrasts our detection method with others proposed in the literature. Some
conclusions drawn from our investigation are discussed in §7.16.

7.2 HMMs and Word Networks for Mimicry At-
tack Detection

As described in chapter 6, HMMs is a probabilistic classification method that is
well suited for sequence classification. When used for misuse detection, HMMs
determine how similar an observed session and a known attack is. This is
accomplished by training an HMM with a sequence of system calls describing a
known attack. When a session is parsed by the trained HMM, the probability
of that session being generated by the HMM indicates how similar the attack
and the session are.

Other techniques for sequence pattern matching were considered, like sto-
chastic context-free grammars which are more powerful versions of the HMMs,
but the training and parsing times are prohibitively larger. Another alternative
are Petri nets; however this approach is not well suited to create families of
sequences, the transitions in a Petri net are deterministic and therefore varia-
tions in an attack might bypass the IDS. Bayesian networks can also be used,
but they do not provide a mechanism to test for relations on the order of the
sequence elements which is needed for sequence classification.

Other techniques like term rewriting can be used to ease the problem and
facilitate even further the detection process by working with a unified set of
system calls instead of using all possible variations for each scenario. However
system call interchange does not always works straight forward, for example
A = B and C = B but A ^ C. An example for this is the system call mmap that
can be used as a substitution for a read system call or even a socket system
call. As in the previous section, there are some system calls that can be no-ops
in some circumstances. But the same system calls are very useful to detect
an attack under other circumstances, therefore rewriting these system calls as
no-ops does not work directly.

In this chapter we show that MIDSs are capable of detecting mimicry at-
tacks. We introduce a host-based MIDS, capable of successfully detecting a
great variety of mimicry attacks. The method makes use of a word network.
A word network is a technique conveniently solves a pattern matching problem
by using a chain of smaller, noise-tolerant pattern matchers, thereby making it
more tractable arid robust. A word network is realised as a finite state machine,
where every state is an HMM.

7.3 Word Networks
In speech recognition a word network is a directed graph where each node
represents a single HMM that is able to detect a single word or even a
phoneme, and the arcs are transition between the nodes [Young et al., 2002,
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Pereira and Riley, 1997]. By using word networks, the grammatical structure
analysis is independent of the phoneme detection process. Thus HMMs only de-
tect phonemes or even whole words, regardless their position in a phrase. This
process allows dealing with long silences or noises between phonemes while the
word can still be recognised. Additionally, probabilities can be attached to the
arcs making the graph more versatile.

The simplest word network has one pattern matching state and two silent
states, one of the silent states is the start point and the other one is the ending
point. Silent states are not linked with any HMM as the pattern matching states
are. The transition graph is straightforward, not even a recursive transition is
needed. This simple network works exactly the same as only using the HMM
attached to the pattern matching state. A more complex network has many arcs
departing from any given node, thus different paths can be tested. To calculate
the probability of a sequence over a word network we probabilistically combine
the output from each of its HMM nodes. A weight is assigned to each node
transition to calculate the output of the network. The weight can be positive
if we want to increment the output of the network or negative if we want to
decrement the total output.

7.4 An Approach to Mimicry Attacks
We used the methodology proposed by Wagner and
Soto [Wagner and Soto, 2002] to generate equivalent variations of a mali-
cious sequence. These generated sequences are used to train and then test our
IDS against mimicry attacks. The ability to create sequences equivalent up to
harpifulness is based on the semantic equivalences inherent in the operating
system.

3elow is a description of possible changes to create mimicry attacks accord-
ing to Wagner and Soto's methodology.

No j p is a system call that has no effect on the state of the attack, by inserting
no-ops the effects of the attack do not change. One way to select no-ops
is to invoke a system call with invalid arguments. Any system call that
takes as a parameter things like:

1. pointer,
2. memory address,
3. file descriptor,
4. uid,
5. pid,
6. gid

can be turned into a no-op by passing invalid arguments to it. Some
system calls that can not be used as no-ops for instance exit, pause,
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vhangup, fork, alarm, and setsid since they have a negative impact on
the success of the attack as these system calls leave the current session,
and following system calls will be executed in a new environment.

System Call Substitution is achieved by replacing successive calls to read
with a single read. Another way is to substitute any call of read
from an open file by a call to mmap followed by a memory access
call [Wagner and Soto, 2002]. In an operating system like Solaris, there
are new system calls that provide the same functionality as older sys-
tem calls (or sequences of system calls). An example is the call sysinf o
which is equivalent to getdomainname, gethostid, and gethostname if
we provide appropriate parameters.

System Call Interchange, if one system call does not depend on the results
of a previous system call they can de interchanged accordingly.

By dividing a session into segments, we can detect an attack enriched with
no-ops, as long as the no-ops are presenc between the segments and not within
them. We divided each attack in segments of size 6. The reason for choosing
a size 6 is given by Tan and Maxion [Tan and Maxion, 2002]. They proved
that a subsequence size of 6 is the minimal length in which at least one foreign
subsequence exists. A foreign subsequence is a subsequence not found in the
training data. All of the subsequences of size five and below exist in the training
data. These demonstration was conducted on anomaly detection data, and
proved that in order to detect anomalies, a sequence of at least six system calls
should be analysed. The rationale for our research is that a mimicry attack can
be regarded as an anomaly if compared against an attack base...

Consider E as the vocabulary of system calls x, xt e E and 0 < i < n where
n is the size of the vocabulary. The sets of n-grams with occurrence frequency
> 1 are defined as S2 for bi-grams, S3 for tri-grams, etc. And the n-grams
for all anomaly subsequences are defined as E2^ for bi-grams, S^.for tri-grams,
etc. All subsequences of size two in E^ c a n be found in S2. Or in other words,
E^ C E2, E^ c E3, E^ c S4, E^ C E5, E^ £ E6. This was proved for the log
files used by Forrest which are composed of sequences of system calls; we hope
that the same results holds for the DARPA repository.

7.5 Eject and FFB Attacks
During this chapter we will use as examples two specific attacks for the Solaris
operating system. The attacks can be found in the 3SM log files of the DARPA
repository. The two attack we will use ?re eject ancf ffb.

7.5.1 Eject Attack
The Eject attack exploits a buffer overflow in the e j ect utility distributed with
Solaris 2.5. In Solaris 2.5, removable media devices that do not have an eject
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button or removable media devices that are managed by Volume Management
use the eject utility. Due to insufficient bounds checking on arguments in the
volume management library, l ibvolmgt.so.l , it is possible to overwrite the
internal stack space of the eject program. If exploited, this vulnerability can be
used to gain root access on the system under attack.

The eject attack can be executed by following these steps: i) inject the
exploit script to the victim's host; ii) compile the exploit script; iii) execute the
compiled exploit script; and iv) use the root console. If the exploit script is
already in the victim's host and if it has been compiled, then the eject attack
can also be executed as follows: i) execute the compiled exploit script; and ii)
use the root console. Both versions achieve the same results using similar means
(eject vulnerability), therefore the two versions of the attack are equivalent up
to harmfulness. We will refer to the long version of the attack as eject 1 and to
the short version as eject 2.

7.5.2 FFB Attack
The fib attack exploits a buffer overflow in the ffbconf ig utility distributed
with Solaris 2.5. The ffbconf ig utility configures the Creator Fast Frame
Buffer (FFB) Graphics Accelerator, which is part of the FFB Configuration
Software Package, SUNWffbcf. This software is used when the FFB Graphics
accelerator card is installed. Due to insufficient bounds checking on arguments,
it is possible to overwrite the internal stack space of the ffbconfig program.

The attack follows an execution path similar to the eject attack. We also
separate the ffb attack in two version: i) ffb 1 injects, compiles and executes
the exploit script; and ii) ffb 2 executes the compiled exploit script.

7.6 Base Case Mimicry Attacks-Data Selection
To generate base case mimicry attacks, we used a table of equivalent system
calls, a portion of this table is presented in table 7.2. The number of variations
for some of the attacks from our attack base are shown in table 7.1. The number
of possible attacks is given as the product of all the possible variations for each
segment. We considered an average of 3 possible substitutions in case of read,
mmap or exec system calls. Then the number of segments subject to modification
is equal to the number of attack segments that include a modifiable system call.
The maximum number of attacks is the number of possible values for a system
call multiplied by the number of modifiable system calls.

From table 7.1 we can see that the possible number of attacks that can
be generated 'oy only modifying some system calls is staggering. If we were
to detect all vaiiations for an attacks using a simple matching mechanism, the
time to search the entire database would be prohibitively large, let alone storage
space.

The population for each segment is at most 36 (considering three variations
for every system call in the segment). If we use equation (5.1) (rewritten below)
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Table 7.1: Number of Variations for Each Attack
Attack Name

Eject 1
Eject 2
FFB 1
FFB2

# of Segments

106
38
32
44

# of Segments
Subject to

Modification

72
22
17
15

Maximum #
of Attacks
that can be
generated

317b

32B

3 4 a

to calculate the sample size n, assume a population size N and a desired error
tolerance e, with a 2% error tolerance (e = 0.02), then we need 564 variations
of the segments for a representative sample of the entire segment population of

N
n = 1+Ne2

By contrast, the entire attack population for the eject 1 attack is N = 3175, for
a 2% error margin, we have a representative sample n = 2500. For a 0.5% error
margin, a representative sample is 40,000 elements. For a population with over
20,000 elements, the size of the representative sample is always similar: it only
variates with the desired error margin. Equation (7.1) is best suited for large
populations. To train a single HMM for an entire attack, a sample size of 40,000
training sequences would be enough. If the attack is divided in segments of size
6, the sample size for each segment is smaller.

For example, for the first eject attack in table 7.1> each segment has an
average of 14.43 variations. The total number of variations is 3175, generated
from 72 segments, so each segment has sn average of 3175/72 = 32-43 = 14.43
variations. Using the same approach, with a sample size of 40,000 training
sequences, we would have an average of 1.158 variations for each segment
(logs (40000) = 9.6454, and 3 9 6 4 5 4 / 7 2 = 158). This number of variations is
not enough to train an HMM and allow for generalisation.

By using another rule of thumb to select the training sample size we selected
a third of the available population, that is 4.81 variations for each segment,
to train each segment's HMM. With this sample size we allow for a better
generalisation of the HMMs.

7.7 Base Case Mimicry
Methodology

Attacks—Detection

We followed a three step approach to train our IDS: i) we generated approx-
imately 4.81 variations for each segment; ii) we trained one HMM for each
segment using the generated variations; and iii) we generated the word network
that combines all the segments.
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Table 7.2:
Original
System-Call
memcntl
read
write
openjread
open.write
execv

exit
acl
chdir
chmod
chown
stat
brk

System Call Equivalences
Equivalent
System-Call(s)

«-> mctl
«-»• pread, readv, mmap
<-> pwrite, writev
•<-> read
«-» write
o execve, execvp,

execl, execle, execlp
«-> _exit
•H- facl
«-> fchdir
-o- fchmod ' '
•f* fchown, lchown
•(-> fstat
•H- sbrk ;

In order to generate attack variations, we considered only "one to one"
substitutions (one system call is substituted by a single system call). In table
7.2 we show some of the equivalences used to generate base case mimicry attacks.

To train an HMM for a segment, we gather a selected number of variations
for that segment and use them as a family. We call family a set of sequences
that describe the same object, in this case a family is the set of sequences that
describe an attack segment. Each HMM is saved as a separate file using the
following naming convention: "name of the attack it detects" concatenated with
a number i. The number i represents the position of the segment in the attack
sequence. With the use of HMMs instead of a simple matching mechanism,
the number of HMMs needed to describe the attack is equal to the number
of segments of the attack it describes. For example, the eject 1 attack, only
needs 106 HMMs. Training time for 106 HMMs trained with sequences of size
6 and using up to 35 different sequences is about a minute. Total training time
for an attack of n segments is in the worst case n minutes.

The topology for each segment's HMM is left-to-right HMMs (see §6.3).
Each state in the HMM corresponds to a system call occurring in a sequence
of size 6. The same transitions can be represented with an ergodic HMM with
two states, where one state emits an output symbol when the parsed system
call is part of the segment, and the other state emits a different output symbol
when the system call is not part of the segment. Our experiments show that
a left-to-right HMM is more precise in classifying our sequences. We tested
both topologies and with a left-to-right topology the rate of false positives is
lower (by 1%) and the detection rate is also higher (by 0.5%). An additional
advantage of using a left-to-right topology is training and parsing time because
this topology has less connections than the ergodic topology.
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The generation of word networks for base case mimicry attacks is straight-
forward. We put the pieces of the attack together by linking the HMMs for
every segment of the attack. Then by parsing the word network with an unseen
sequence, we will know the probability that the sequence was generated by the
word network.

7.8 Base Case Mimicry Attacks—Validation Ex-
periments

All false positive tests were conducted using complete non-attack sessions of
different services. We tested against 800 telnet , 1000 smtp, 50 ftp and 150
finger sessions. All the sessions were randomly picked from non-attack sessions
of the BSM DARPA repository.

Thes*? non-attack sessions were combined with attacks generated with Wag-
ner and Soto's methodology. We used 2500 variations of each attach as our
validation sample. The attacks were generated using the first and second thirds
of each segment variations. With a sample size of 2500 we have a representative
sample with a 97.5% confidence.

7.9 Validation of Base Case Mimicry Attacks
Word Network

Since the number of possible variations for each segment is finite, we used equa-
tion (5.1) to calculate the number of attacks needed for proper generalisation
of the segment detectors. So the validation set for base case mimicry attacks
is included in the training set of the HMMs. We used 100 variations of each
attack to test detection rate. For false positive rates we tested each detector
against 50 other attacks and against all normal sessions described above.

On average, detection rate is 98%, and the false positive rate is about 10%.
By reducing the detection threshold the false positive rate also lowers. Initially
we were using a 90% similarity measure. For a sequence of system calls, to be
considered as an attack, the similarity between the sequence of interest and the
training sequences should be at least of 90% (this is our similarity threshold), the
similarly measure is given by the HMM. By increasing the similarity threshold
to 95% the false positives reduced from 10% to 3% on the average. But the
detection rate also lowered to 93%. Results summarised for each attack are
shown in table 7.3.

It is worth mentioning that false positive detections arose out of sessions
belonging to the same service. If an HMM is trained to detect a te lnet attack
then only te lnet sessions will throw false positives. This can be explained with
the work presented in chapter 6; when an HMM is trained to detect a telnet
attack it is also trained to distinguish te lnet sessions from sessions of other
services. The reason for the high false positive is that the harmful elements
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Table 7.3: Detection and false positive rate with different similarity measures.
Similarity is indicated with an 5 and false positive with FP.

Attack Name

Eject 1
Eject 2
FFB 1
FFB 2

Loadmodule
Format 1
Format 2
Ftp-Write
warezclient

Satan
ipsweep

Detection %
5=90%

97%
96%
98%
99%
97%
98%
96%
99%
99%
98%
97%

FP%
5=90%

9%
8%
10%
8%
7%
9%
7%
11%
12%
9%
10%

Detection %
5=95%

92%
90%
93%
95%
91%
92%
89%
96%
95%
90%
91%

FP%
5=95%

2%
3%
4%
1%
1%
4%
3%
5%
5%
2%
3%

of an attack usually comprehend a small portion of the whole attack session;
therefore the rest of the session used to train the HMM contains segments that
can be found in non-attack sessions.

Thus the IDS will detect a normal session as an attack because it has similar
segments. The order of these segments is important and a normal session and
an attack have similar segments in the same order when they belong to the same
service. The reason for this similitudes is that many system calls in a session
are automatically generated by ';he service server. This will cause the HMM to
detect a normal session as an attack.

7.10 General Case Mimicry Attacks—Data Se-
lection

Word networks can be used for misuse intrusion detection by allowing no-ops to
be treated as silences or noise. The rationale behind this is that an attack can
be still detected even if it is divided in small segments and an HMM is used to
detect each segment. Each segment's HMM has a probability associated with it.
The joint probability of all the segment's HMMs in the word network indicates
the probability that the sessions is an attack.

The transition between segments will indicate the occurrence of part of an
attack. If the word network followed a path from beginning to end that resulted
in a high probability for each of HMM corresponding to attack segments then
these transitions will define how similar are the session and the attack.

Detecting general case mimicry attacks is more complicated than detecting
base case mimicry attacks; in addition to interchanged system calls, the attacks
are enriched with no-ops. Usually a system call returning a failure can be
regarded as a no-op since it does not affect the state of the system, but there are
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system calls that return success and can be turned into a no-op (like the socket
example). Moreover, as shown in table 7.4, the same system call can be both a
no-op and a useful system call for intrusion detection in the same sequence. In
our example, we selected a sequence of four system calls from the eject attack
with two s ta t system calls. The first s ta t system call is the execution of
part of the eject attack (specifically address jump in the buffer overflow). The
second is simply a result of a temporary file not found and can be considered
a no-op since it does not affect the execution of the script exploit, or the script
compilation or injection. Thus by filtering out system calls returning failure
we risk to modify the signature of the attack. A filtering mechanism that tries
to differentiate such system calls would need the arguments of the system calls
which leaves us with another problem, if we consider as two different objects
two executions of the same system call with different arguments, then the size
of our vocabulary will grow as large as the number of possible arguments. A
readdir system call with a directory name as its argument would produce a
number of objects equal or greater than the number of valid directories in a
system. So, to keep the number of objects tractable we consider only the name
of the system call, the return value and in case of exec system calls the name
of the program being executed. Wagner and Soto for example, state that none
of the IDSs they analysed consider the return value of the system calls. By
considering the return value of a system call we can identify some no-ops since
some system calls that return failure can be considered no-ops. There are other
system calls that can be inserted as no-ops like a chdir with argument ".". This
system call will probably not modify the harmful state of an attack and will
generate a non-failure system call trace. The very nature of what makes a no-
op a no-op is what makes it so difficult to identify, and as a consequence, filter
out.

Table 7.4: A Sequence of 4 system calls where system calls 1 and 2 return failure
but are not no-ops and number 4 returns failure and is a no-op

System calls returning failure that are not no-ops (a buffer overflow attack)
l:open(2)T-j:ead|/etc/openwin|failure:_No-Such_file_or-directory
2:stat(2)|/export/home/alie/AAAAA-n|failure:_No^uchJile-or_directory
3:execve(2) |ksh|success
System call returning failure that is a no-op
4:stat(2)|/tmp/115553|failure:-No-Such-file-Or_directory

We considered sequences of size two to train no-op HMMs. Size two is the
smallest sequence size which can be used in an HMM. This way an HMM with
two states can revisit either state for a sequence of size three. If a two state
HMM can parse sequences of size two and three successfully then with the use
of word networks we can parse no-op sequences of any size just by iterating over
no-op nodes.

Different nodes in a word network are used to test for occurrences of de-
sired patterns or repetitions of unwanted patterns (noise). The no-ops used in
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our experiments were mostly generated from system calls returning failure and
some not returning failure. The number no-ops we used is 210. These no-ops
can be safely inserted in an attack without modifying its harmfulness. But as
demonstrated on table 7.4 we can not just filter them out.

In our experiments we consider a smaller, yet representative, class of general
case mimicry attacks. In order to insert no-ops from system calls not returning
failure, a complete understanding of the attack is needed. We need to test
the effect of every inserted no-op and then decide if it is really a no-op. This
decision depends on the position of the system call, and the state of the attack
at insertion time. If the harmfulness of the attack is not affected then the system
call then it is a no-op. Thus no-op creation is not a trivial problem.

The no-ops based on system calls returning failure conform to a set of ap-
proximately 2102 bi-grams. The set of bi-grams is the result of combining all
no-ops. Some of these bi-grams have to be removed from the set, specially
those that have an occurrence in the attack segments. The removal is to a^oid
confusion when parsing in parallel an attack segment node, and a no-op node.
After removing the bi-grams present in the attacks from this bi-gram set, the
remaining elements are used to train no-op HMMs.

7.11 General Case Mimicry Attacks-Detection
Methodology

We now have the building blocks for our word network. We have an HMM
for each attack segment and also HMMs for a total of 210 possible no-ops.
Each training sequence is a no-op followed by another no-op. So every HMM
wac trained with a total of 210 sequences (the same no-op can be used twice).
We choose sequences of size two since this is the smallest usable for an HMM.
Smaller sequences would not include transition probabilities, but only symbol
emission probabilities (only 1 state).

Since eject 2 is a shorter version of eject 1 we can use the same word network
to detect the both, eject 2 attack consists of the execution of the exploit script
which is 226 system calls long, eject 1 consists of exploit script injection, exploit
script compilation, and exploit execution; in this case the whole attack is 632
system calls long. Our word network must be able to follow both path of
execution. Either it begins by exploit script injection, or it begins by exploit
script execution.

Resulting probabilities from the HMM of each segment are weighted with
positive values; whereas results from no-op nodes will be weighted with a small
negative value as a penalisation. Then we calculate the joint probability of all
the HMMs in the execution path of the word network. This joint probability
indicates the similarity between the session of interest and the attack described
by the word network.

In table 7.5 we show a piece of a grammar that generates a word network for
an eject attack. The notation depicted in the table is the same used in HTK,
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Table 7.5: A grammar corresponding to the eject attack word network.
$no-op
Scodeansertion
$code_execution

( [$code_insertion

= no-opi \n
= eject-Si
= eject-Sj

io-op2\...\no-opm;
{$no-op} eject-S2 {!
{$no-op} eject-Sj+i

{$no-op}] $code.execution )

ino-op} ..
{$no-op}

. eject-Si]
. . . eject-sn;

it is not BNF notation (for a more detailed description of HTK notation refer
to appendix C). In HTK format everything starting with $ is a variable, we
created many variables to simplify the word network. Anything enclosed in { }
means zero or more repetitions. Anything enclosed in [ ] is optional, zero or 1
repetition, no-opi, and eject-Sj, (1 < i < M and 1 < j < N) correspond to the
names of HMMs that identify such sequences.

Figure 7.1 is a graphical representation of the word network for the eject
attack. Each node in figure 7.1 represents a word network. The first node is
parsed depending on the session being eject 1 or eject 2 . The word network
for exploit script injection and exploit script compilation is shown in figure 7.2.
The word network corresponding exploit script execution is shown in figure 7.3.
Each of these word networks use only one node for no-ops, this node is a word
network representing all possible word no-ops; this word network is shown in
figure 7.4.

Figure 7.1: Word network for eject attack

As we demonstrated in chapter 5, it is possible to find repetitive subse-
quences. The same applies for attack segments. We found repetitive sequences
of size 6 among the attacks. If we build an HMM for each available sequence of
size 6, then we only need to build the word networks using HMMs from unique
sequences of size 6 to detect an attack. Therefore the number of HMMs needed
to describe an attack is equal or lesser than the total number of segments of the
attack.

Since training data is sparse, training time is very reasonable. For a word
network with 110 HMMs with up to 36 training sequences of 6 system calls for
each HMM, and each HMM with 6 states, training time was about 25 minutes.
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Figure 7.2: Word network for eject exploit script injection and compilation
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Figure ^.3: Word network for eject exploit script execution

We also tried the training with 12 states (two for each element in the sequence)
for each HMM and the time it took to train was about 55 minutes. All the
tests were made on a PIV HT @ 2.6 GHz with 1 GB of dual channel RAM @
400MHz running Linux Mandrake 9.0.

7.12 General Case Mimicry Attacks—Validation
Experiments

Since the set of possible attacks that can be generated by inserting no-ops is
infinite, we limit ourselves to a subclass of general case mimicry attacks that
contain at most 10 different randomly selected no-ops. For each variation of an
attack we created 10 more variations by inserting the no-ops. This subclass is
still important because it includes some context-dependant no-ops, and no-ops
derived from system calls returning failure. In both cases a normalisation is
not possible. With a data base of 2,500 variations for each attack, we obtain
25,000 different attacks for general case mimicry attacks. The attack segments
were generated using the first and third sets of variation of segments (as defined
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Figure 7.4: Word network for no-ops

in §7.6). 25,000 different attacks are a representative sample of the possible
attacks with a 99.2% confidence. As in base case mimicry attacks validation,
normal sessions were used to test for false positives.

The experiments consist of parsing each generated attack with each of the
generated word networks. If the probability that a session was generated by
an attack word network falls below a threshold, the session is considered as a
non-attack session. Otherwise the session is considered as an attack.

7.13 Validation of General Case Mimicry At-
tacks Subclass

By using word networks as described in table 7.5 we extend mimicry attack
detection to a subclass of general case mimicry attacks as defined in §7.10. The
detection accuracy for this subclass is about 92%. The false positive detection
rate is still high; about 4% of the sequences were wrongfully labelled as attacks.
The increment on the false positive rate over modified attacks without inserted
no-ops was to be expected. The noise that the no-ops insert to the model
confuses the detector. In table 7.6 we summarise our results.
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Table 7.6: Detection and false positive rate for general case mimicry attacks
Attack Name

Eject 1
Eject 2
FFB 1
FFB2

Loadmodule
Format 1
Format 2
Ftp-Write
warezclient

Satan
ipsweep

Detection Rate
93%
91%
93%
94%
91%
92%
89%
93%
92%
90%
91%

False Positive Rate
4%
2%

2.8%
3.2%
3%

2.5%
2%
4%
3%
4%
5%

7.14 Reduction Impact on Intrusion Detection
This section aims to show that using n-gram reduction allows us to use
HMMs with larger sequences than the ones proposed in previous works,
such as [Yeung and Ding, 2003, Qiao et al., 2002, Warrender et al., 1999].
HMMs take a large amount of time for training. Wagner and
Soto [Wagner and Soto, 2002], describe the disadvantages of using only short
sequences as a detection base for HMMs. We used entire sessions containing
the attacks for both, our training and testing data. We used a single word
network for each attack.

We used 20 instances of each attack to train the HMMs. The tests were
conducted against entire sessions of different services, in this case we used folded
sessions. Again, we tested against 800 telnet , 1000 smtp, 50 ftp and 150
finger sessions.

7.14.1 Detection Results
By using reduction techniques as described in chapters 4 and 5 we obtained a
98% detection ratio and 23 false positives out of 200 detected attacks. With
a higher similarity measure of 95%, false positives lowered from 23 to 14 and
the detection ratio also lowered but only by 1%. We tested the same attacks
in both scenarios. The difference in false positives was found in short attacks
as eject. Most of the false positives were normal sessions labelled as one of
these short attacks. Nevertheless, the higher detection ratio is due to the addi-
tional detection of variations of these same short attacks. We have successfully
detected a significant subclass of general case mimicry attacks which is a great
breakthrough since no other approach was able to do anything similar.

For all our experiments we used the "Hidden Markov Model Toolkit
(HTK)". The software allows for large HMMs to be used and it also has
the ability to use word networks. The software and its documentation
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can be found at http://htk.eng.cam.ac.uk/. The HTK file format for
HMMs and word networks is shown is appendix C and in our website at
http://webdia.cem.itesm.mx/ac/raulm/ids.

7.15 Related Work
7.15.1 HMMs-Based Detection Methods
More recently, misuse intrusion detection has been complemented with anom-
aly intrusion detection. Following this approach, a user activity is compared
against a profile of a user's normal behaviour; any disagreement is considered
an anomaly, and thereby as an intrusion.

An anomaly IDS (AIDS) is usually implemented using a Hidden Markov
Model (HMM). Warrender, Forrest and Pearlmutter's seminal paper reports on
an HMM based AIDS with 96.6% of accuracy [Warrender et al., 1999]. Their
method uses a sliding window, of size 6, with which they take an observation,
a phrase, and then compare it with a profile of known, ordinary behaviour.
The size of the window is the depth of the grammar; the smaller the size of the
window, the more limited is the intrusion detector. Other researchers, for exam-
ple [Qiao et al., 2002, Yeung and Ding, 2003, Tan and Maxion, 2002], have also
explored the use of HMMs to intrusion detection, improving only slightly War-
render et al's results. More related to our work are approaches of Tan and Max-
ion [Tan and Maxion, 2002], and Wagner and Soto [Wagner and Soto, 2002].
The former have demonstrated that for an anomaly to be detected a minimal
depth of the grammar equal to 6 should be used. The latter, have argued against
this result, pinpointing the disadvantages of using a small grammar depth for
intrusion detection. In particular, Wagner and Soto have demonstrated that
using a sliding window of size 6 is insufficient to detect lots of mimicry attacks,
therefore dismissing Warrender et al.'s approach. We used an approach of size
6 just as Tan and Maxion propose as our minimal detection block. Then we
combined these these block with the use of word networks expanding the depth
of the grammar by a size six for each segment of the attack. We provided evi-
dence in this chapter that by using the proper encoding and detection methods,
a MIDS is capable of dealing with mimicry attacks.

7.15.2 Mimicry Attack Detection Methods
On their seminal work, [Schonlau et al., 2001] analyse the performance of vari-
ous mimicry detection methods, or as they call them masquerade attacks. They
analyse six distinct detection methods: Uniqueness, Bayes 1-Step Markov, Hy-
brid Multi-Step Markov, Compression, IPAM and Sequence-Match. All these
are anomaly detection methods, and use sets of user commands to build normal
behaviour profiles. For a given number of commands a score is calculated and
if the score is below certain threshold then the commands are considered as a
mimicry attack. Below is a brief description of each method.
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Uniqueness bases its scoring system on unpopular and uniquely used com-
mands. It assumes that commands of these kind are the ones that most
likely represent a mimicry attack. A mimicry attack will disguise itself as
a normal sequence. This is the reason the approach yields a detection rate
of only 40% and a good false positive ratio of 1.4%.

Bayes 1-Step Markov is similar to uniqueness but tests for transition prob-
abilities between commands. It builds a profile with known probabilities
and tests input for deviations on these probabilities. Again this approach
tests for mimicry attacks as if they were anomalies. Detection ratio for
this approach is 69.3% and false positive ratio is 6.7%.

Hybrid Multi Step Markov relies on a high order Markov Chain. The
length of the command history is 10. The transition probabilities are
calculated with the help of a mixture transition distribution. Only the
most frequent commands are given attention, the rest is labelled as other,
the most frequent commands cover 99% of the user's training data. If
there are too many commands labelled as other in the analysed sequence,
an independence model is proposed. Instead of calculating the occurrence
probability, each command is treated as an independent event and the
probability of a sequence is calculated by multiplying each command's
probability. The approach to use for detection is selected automatically.
Detection ratio is 49.3%, and false positive ratio is 3.2%

Compression is based on a reversible mapping that uses fewer bytes (much
in the sense of our session folding method). The rationale behind this
method is that data from a normal user will compress more readily than
that of a mimicry attack. This approach, as we demonstrated in chapter
7, improves detection ratio but is not well suited for detecting mimicry
attacks as a stand alone measure. Detection ratio is 34.2%, and the false
positive ratio is 5%.

IPAM (Incremental Probabilistic Action Modelling) is based on a 1-step com-
mand transition (just as Bayes 1-Step Markov). The approach is similar
to a bi-gram model. Prom the training data the probability of the next
command is estimated. These probabilities are dynamically updated with
an arbitrary value a (0 < a < 1). On arrival of a new command, 1 — a
is added to the transition probability from the previous command to the
most recent command. All other transition probabilities on the previous
command are multiplied by a. A value of a of 0.9 is suggested. The
four commands with higher transition probabilities are compared against
the current command. If the command is present in the predictions it is
labelled as good. The fraction of good transitions is used as the measure
for anomalies. If it falls below a threshold an alarm is raised. Detection
ratio is 36.8%, and false positive ratio is 3.7%

Sequence-Match computes a similarity measure between the 10 more recent
commands and a user profile. The similarity measure is the count of
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matches between the commands and the user profile of 10-grams. Detec-
tion ratio is 41.1%, and false positive ratio is 2.7%.

Another method, proposed by [Maxion and Townsend, 2002], uses naive
Bayes to estimate the probability that a command c can be issued by user
u. This method builds a profile for a user, so-called self, from a set of training
data. The self of other users is then taken as the user's non-self. This method
shows a detection ratio of 61.5% and a false positive ratio of 1.5%.

An alternative way of approaching mimicry detection is proposed
by [Scott et al., 2003]. The method is based on a widely used technique in the
comparison of genetic material such as DNA, RNA, and other protein sequences.
The method aims at detecting how well two sequences align one another and
thus how similar they are. If enough no-ops are inserted in an attack sequence
the alignment will test positive as if it belonged to a normal sequence. The
technique assigns a small penalty for gaps occurring between normal user com-
mands. The gaps are non-matching objects in the sequence. This allows to deal
with inserted no-ops, but with a certain number of no-ops, the alignment score
will be too low. Detection ratio for this approach is 75.8%, and false positive
ratio is 7.7%.

A recursive data mining approach is proposed
by [Boleslaw and Yongqiang, 2004]. It recursively extracts repetitive se-
quences, and replaces them by a new symbol until no dominant patterns are
left. After the substitution, different features are extracted, such as the number
of distinct patterns, the number of dominant patterns, the number of distinct
dominant patterns, the length reduction or the number of distinct symbols.
Then, a support vector machine is trained using the user patterns as negative
examples and other user patterns as positive examples. This approach can
also be used for misuse detection by using attack patterns for positive samples
and user patterns for negative patterns. The authors report a detection ratio
of 68% and a false positive ratio of 9%. However with a mimicry attack the
patterns can resemble user patterns and therefore be wrongfully classified as a
normal pattern.

These approaches all have the same limitation: they are all susceptible to
overlook no-ops inserted along normal user commands. These approaches are
good for detecting anomalies but have a poor performance on mimicry attack
detection. By contrast, our approach is able to detect a wider class of mimicry
attacks thanks to the use of word networks, which provide a way to sequence
decomposition. Our approach detects many variations in the attack segments
by means of the HMMs and connect all these segments with a word network
which tolerates no-ops and still detects the attack as such.

7.16 Conclusions
We have successfully tested our IDS against a large number of the mimicry
attacks that can be generated from the BSM DARPA repository. In our exper-
iments, our mechanism has shown a 93% of effectivity for base case mimicry
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attacks and 92% for general case mimicry attack detection. Thus, a false nega-
tive occurs at a rate of 7% and 8 % respectively. By contrast, the rate of false
positive occurrences is a bit smaller: only 3% for base case mimicry attacks,
and 4% for general case mimicry attacks.

Using the same technique in reduced log files yields interesting results. False
positive ratio is only 1% higher than the one obtained with non reduced log
files. Detection ratio is better using reduced log files.

The use of word networks proved to be very useful to detect attacks with
inserted no-ops. As future work we propose to build word networks using full
language models and to characterise usual behaviour in attacks such as a buffer
overflows. A full language model would incorporate probabilities for node tran-
sitions in the word network and could be used to reduce the false positive rate.

Another area of improvement is to develop a method to test for no-ops
inside the attack segments. Word networks might also be used to model normal
behaviour for an anomaly IDS.

Our approach is an attempt at detecting a very elusive kind of attacks. Othei'
techniques as term rewriting can be used in conjunction with our approach to
test in order to alleviate the search space even further.




